Scilab Textbook Companion for Fundamentals Of Aerodynamics by J. D. Anderson Jr.¹

Created by
Prateek Bhandari
B.Tech
Others
IIT Bombay
College Teacher
Iit Bombay
Cross-Checked by

July 31, 2019

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fundamentals Of Aerodynamics

Author: J. D. Anderson Jr.

Publisher: McGraw - Hill

Edition: 3

Year: 2001

ISBN: 0072373350

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Aerodynamics Some Introductory Thoughts	5
2	Aerodynamics Some Fundamental Principles and Equations	11
3	Fundamentals of Inviscid Incompressible Flow	13
4	Incompressible Flow over Airfoils	25
5	Incompressible Flow over Finite Wings	34
7	Compressible Flow Some Preliminary Aspects	39
8	Normal Shock Waves and Related Topics	42
9	Oblique Shock and Expansion Waves	54
10	Compressible Flow Through Nozzles Diffusers and Wind Tunnels	64
11	Subsonic Compressible Flow over Airfoils Linear Theory	71
12	Linearized Supersonic Flow	73

14 Elements of Hypersonic Flow	77
16 Some Special Cases Couette and Poiseuille Flows	79
18 Laminar Boundary Layers	82
19 Turbulent Boundary Layers	88

List of Scilab Codes

Exa 1.1	Calculation of drag coefficient over a wedge	5
Exa 1.3	Calculation of center of pressure for a NACA	
	4412 airfoil	7
Exa 1.5	Calculation of parametres for wind tunnel test-	
	ing	7
Exa 1.6	Calculation of cruise lift coefficient and lift to	
	drag ratio of a Cesna 560	8
Exa 1.7	Calculation of maximum lift coefficient for Cesna	ı
	560	8
Exa 1.8.a	calculation of upward acceleration of a hot air	
	balloon	9
Exa 1.8.b	Calculation of maximum altitude for the hot	
	air balloon	10
Exa 2.1	Calculation of time rate of change of volume	
	of the fluid element per unit volume for the	
	given velocity field	11
Exa 3.1	Calculation of velocity on a point on the airfoil	13
Exa 3.2	Calculation of pressure on a point on the airfoil	13
Exa 3.3	Calculation of velocity at the inlet of a ven-	
	turimeter for a given pressure difference	14
Exa 3.4	Calculation of height difference in a U tube	
	mercury manometer	14
Exa 3.5	Calculation of the maximum allowable pres-	
	sure difference between the wind tunnel set-	
	tling chamber and test section	15
Exa 3.6.a	Calculation of reservoir pressure in a nozzle	16
Exa 3.6.b	Calculation of increment in the reservoir pres-	
	sure	17

Exa 3.7	Calculation of airplane velocity from pitot tube	
	measurement	18
Exa 3.8	Calculation of pressure measured by the pitot	
	tube for a given velocity	18
Exa 3.9	Calculation of airplane velocity from pitot tube	
	measurement	19
Exa 3.10	Calculation of equivalent air speed for an air-	
	craft flying at a certain altitude	19
Exa 3.11	Calculation of pressure coefficient on a point	
	on an airfoil	20
Exa 3.12.a	Calculation of velocity on a point on the air-	
	foil for a given pressure coefficient	20
Exa 3.12.b	Calculation of velocity on a point on the air-	
	foil for a given pressure coefficient	21
Exa 3.13	Calculation of locations on cylinder where the	
	surface pressure equals the freestream pressure	21
Exa 3.14	Calculation of the peak negative pressure co-	
EAG 0.11	efficient for a given lift coefficient	22
Exa 3.15	Calculation of stagnation points and locations	
LXa 0.10	on cylinder where the surface pressure equals	
	the freestream pressure	22
Exa 3.16	Calculation of lift per unit span of the cylinder	23
Exa 4.1	Calculation of angle of attack and drag per	∠ و
DAA 4.1	unit span of a NACA 2412 airfoil	25
Exa 4.2	Calculation of moment per uint span about	۷.
Exa 4.2	the aerodynamic center of a NACA 2412 airfoil	26
Exa 4.3	Compare lift to drag ratios at different angle	20
Exa 4.5	of attacks for a NACA 2412 airfoil for a given	
	- The state of the	25
Exa 4.4	Reynolds number	27
£Xa 4.4	Calculation of lift and moment coefficients for	07
D 45	a thin flat plate at a given angle of attack.	27
Exa 4.5	Calculation of different attributes of an airfoil	0.0
D 4.0	using thin airfoil theory for a cambered airfoil	28
Exa 4.6	Calculation of location of aerodynamic center	0.0
D 45	for a NACA 23012 airfoil	30
Exa 4.7	Calculation of laminar boundary layer thick-	
	ness and the net laminar skin friction drag	
	coefficient for a NACA 2412 airfoil	30

Exa 4.8	Calculation of turbulent boundary layer thickness and the net turbulent skin friction drag	-
	coefficient for a NACA 2412 airfoil	31
Exa 4.9	Calculation of net skin friction drag coefficient for NACA 2412 airfoil	32
Exa 4.10	Calculation of net skin friction drag coeffi-	00
D * 1	cient for NACA 2412 airfoil	33
Exa 5.1	Calculation of lift and induced drag coefficients for a finite wing	34
Exa 5.2	Calculation of induced drag coefficient for a	01
LAG 0.2	finite wing	35
Exa 5.3	Calculation of angle of attack of an airplane	00
LAG 0.0	at cruising conditions	36
Exa 5.4	Calculation of lift and drag coefficients for a	90
11Aa 0.1	Beechcraft Baron 58 aircraft wing	37
Exa 7.1	Calculation of internal energy and enthalpy	01
ΔΑα (.1	of air in a room	39
Exa 7.2	Calculation of temperature at a point on the	00
1.2 TAG 1.2	Boeing 747 wing	40
Exa 7.3	Calculation of total temperature and total pres-	10
LAG 1.0	sure at a point in the flow	41
Exa 8.1	Calculation of Mach number at different fly-	11
11/10 O.1	ing altitudes	42
Exa 8.2	Calculation of Mach number at a given point	43
Exa 8.3	Calculation of ratio of kinetic energy to inter-	10
LAG 0.0	nal energy at a point in an airflow for given	
	mach numbers	44
Exa 8.4	Calculation of total temperature and total pres-	
2310 0.1	sure at a point in the flow	45
Exa 8.5	Calculation of local stagnation temperature	10
2120 010	and pressure speed of sound and mach num-	
	ber at the given point	45
Exa 8.6	Calculation of local mach number at the given	10
2110 0.0	point on the airfoil	46
Exa 8.7	Calculation of velocity on a point on the air-	10
	foil for compressible flow	47
Exa 8.8	Calculation of velocity temperature and pres-	11
	sure downstream of a shock	48

Exa 8.9	Calculation of loss of total pressure across a	
	shock wave for given values of mach number	49
Exa 8.10	Calculation of air temperature and pressure	
	for a given value of local mach number	50
Exa 8.11	Calculation of air temperature and pressure	
	for a given value of local mach number	51
Exa 8.13	Calculation of stagnation pressure at the stag-	
	nation point on the nose for a hypersonic mis-	
	sile	52
Exa 8.14	Calculation of velocity of a Lockheed SR71	
	Blackbird at given flight conditions	52
Exa 9.1	Calculation of the horizontal distance between	
	a supersonic aircraft from a bystander at the	
	instant he hears the sonic boom from the air-	
	craft	54
Exa 9.2	Calculation of flow mach number pressure tem-	
	perature and stagnation pressure and temper-	
	ature just behind an oblique shock wave	54
Exa 9.3	Calculation of deflection angle of the flow and	
	the pressure and temperature ratios accross	
	the shock wave and the mach number the wave	55
Exa 9.4	Calculation of mach number upstream of an	
	oblique shock	56
Exa 9.5	Calculation of the final total pressure values	
	for the two given cases	57
Exa 9.6	Calculation of the drag coefficient of a wedge	
	in a hypersonic flow	58
Exa 9.7	Calculation of the angle of deflected shock	
	wave related to the straight wall and the pres-	
	sure temperature and mach number behind	~ 0
T	the reflected wave	58
Exa 9.8	Calculation of mach number pressure temper-	
	ature and stagnation pressure temperature and	F 0
F 0.0	mach line angles behind an expansion wave	59
Exa 9.9	Calculation of mach number and pressure be-	01
	hind a compression wave	61

Exa 9.10	Calculation of mach number static pressure	
	and stagnation pressure behind an oblique shock	
	wave	61
Exa 9.11	Calculation of the lift and drag coefficients of	
	a flat plate in a supersonic flow	62
Exa 10.1	Calculation of mach number pressure and tem-	
	perature at the nozzle exit	64
Exa 10.2	Calculation of isentropic flow conditions through	l
	a CD nozzle for a supersonic and subsonic flow	65
Exa 10.3	Calculation of throat and exit mach numbers	
	for the nozzle used in previous example for	
	the given exit pressure	66
Exa 10.4	Calculation of thrust for the given rocket en-	
	gine and the nozzle exit area	67
Exa 10.5	Calculation of mass flow through the rocket	
	engine used in the previous example	68
Exa 10.6	Calculation of the ratio of diffuser throat area	
	to the nozzle throat area for a supersonic wind	
	tunnel	69
Exa 11.1	Calculation of pressure coefficient on a point	
	on an airfoil with compressibilty corrections	71
Exa 11.2	Calculation of the lift coefficient for an airfoil	
	with compressibility corrections	71
Exa 12.1	Calculation of lift and drag coefficients for a	
	flat plate in a supersonic flow using linearized	
	theory	73
Exa 12.2	Calculation of angle of attack of a Lockheed	
	F104 wing in a supersonic flow	73
Exa 12.3	Calculation of the airfoil skin friction drag co-	, ,
	efficient and the airfoil drag coefficient for the	
	wing used in the previous example	74
Exa 14.1	Calculation of the pressure coefficients on the	
2760 1111	top and bottom surface the lift and drag co-	
	efficients and the lift to drag ratio using the	
	exact shock expansion theory and the newto-	
	nian theory for an infinitely thin flat plate in	
	a hypersonic flow	77
	a hypothome non	

Exa 16.1	Calculation of the velocity in the middle of	
	the flow the shear stress the maximum tem-	
	perature in the flow the heat transfer to either	
	wall and the temperature of the lower wall if	
	it is suddenly made adiabatic	79
Exa 16.2	Calculation of the heat transfer to either plate	
	for the given geometry	80
Exa 18.1	Calculation of the friction drag on a flat plate	
	for the given velocities	82
Exa 18.2	Calculation of the friction drag on a flat plate	
	using the reference temperature method	84
Exa 18.3	Calculation of the friction drag on a flat plate	
	using the Meador Smart equation for the ref-	
	erence temperature	85
Exa 19.1	Calculation of the friction drag on a flat plate	
	assuming turbulent boundary layer for the	
	given velocities	88
Exa 19.2	Calculation of the friction drag on a flat plate	
	assuming turbulent boundary layer using ref-	
	erence temperature method	89
Exa 19.3	Calculation of the friction drag on a flat plate	
	for a turbulent boundary layer using the Meador	
	Smart reference temperature method	90

Chapter 1

Aerodynamics Some Introductory Thoughts

Scilab code Exa 1.1 Calculation of drag coefficient over a wedge

```
1 // All the quantities are in SI units
2 M_inf = 2; //freestream mach number
3 p_inf = 101000; //freestream static pressure
4 rho_inf = 1.23; //freestream density
5 T_inf = 288; //freestream temperature
6 R = 287; //gas constant of air
7 a = 5; //angle of wedge in degrees
8 p_upper = 131000; //pressure on upper surface
9 p_lower = p_upper; //pressure on lower surface is
     equal to upper surface
10 c = 2; //chord length of the wedge
11 c_{tw} = 431; //shear drag constant
12
13 //SOLVING BY FIRST METHOD
14 // According to equation 1.8, the drag is given by D
     = I1 + I2 + I3 + I4
15 //Where the integrals I1, I2, I3 and I4 are given as
16
17 I1 = (-p\_upper*sind(-a)*c/cosd(a))+(-p\_inf*sind(90)*
```

```
c*tand(a)); //pressure drag on upper surface
18 I2 = (p_lower*sind(a)*c/cosd(a))+(p_inf*sind(-90)*c*
      tand(a)); //pressure drag on lower surface
19 I3 = c_{tw}*cosd(-a)/0.8*((c/cosd(a))^0.8);
                        //skin friction drag on upper
      surface
20 I4 = c_{tw}*cosd(-a)/0.8*((c/cosd(a))^0.8);
                        //skin friction drag on lower
      surface
21
22 D = I1 + I2 + I3 + I4; // \text{Total Drag}
24 a_inf = sqrt(1.4*R*T_inf); //freestream velocity of
      sound
25 v_inf = M_inf*a_inf; //freestream velocity
26 q_inf = 1/2*rho_inf*(v_inf^2); //freestream dynamic
      pressure
27 S = c*1; //reference area of the wedge
28
29 c_d1 = D/q_inf/S; //Drag Coefficient by first method
30
31 printf("\nRESULT\n----\nThe Drag coefficient by
      first method is: \%1.3 \text{ f} \text{ n}, c_d1)
32
33 //SOLVING BY SECOND METHOD
34 C_p_upper = (p_upper-p_inf)/q_inf; //pressure
      coefficient for upper surface
35 C_p_lower = (p_lower-p_inf)/q_inf; //pressure
      coefficient for lower surface
36
37 \text{ c_d2} = (1/c*2*((C_p\_upper*tand(a))-(C_p\_lower*tand(-
      a)))) + (2*c_tw/q_inf/cosd(a)*(2^0.8)/0.8/c);
38
39 printf("\nThe Drag coefficient by second method is:
     \%1.3 \text{ f} \n\n", c_d2)
```

Scilab code Exa 1.3 Calculation of center of pressure for a NACA 4412 airfoil

```
//All the quantities are expressed in SI units
alpha = 4; //angle of attack in degrees
c_l = 0.85; //lift coefficient
c_m_c4 = -0.09; //coefficient of moment about the quarter chord
x_cp = 1/4 - (c_m_c4/c_l); //the location centre of pressure with respect to chord
printf("\n\nRESULTS\n----\nXcp/C = %1.3f\n\n", x_cp)
```

Scilab code Exa 1.5 Calculation of parametres for wind tunnel testing

```
1 V1 = 550; //velocity of Boeing 747 in mi/h
2 h1 = 38000; //altitude of Boeing 747 in ft
3 P1 = 432.6; //Freestream pressure in lb/sq.ft
4 T1 = 390; //ambient temperature in R
5 T2 = 430; //ambient temperature in the wind tunnel in R
6 c = 50; //scaling factor
7
8 //Calculations
9 //By equating the Mach numbers we get
10 V2 = V1*sqrt(T2/T1); //Velocity required in the wind tunnel
11 //By equating the Reynold's numbers we get
12 P2 = c*T2/T1*P1; //Pressure required in the wind tunnel
13 P2_atm = P2/2116; //Pressure expressed in atm
```

```
14 printf("\nRESULTS\n----\nThe velocity required in the wind tunnel is: \%3.1\,\mathrm{f} mi/h\n\n",V2)
15 printf("The pressure required in the wind tunnel is: \%5.0\,\mathrm{f} lb/sq.ft or \%2.2\,\mathrm{f} atm\n\n",P2,P2_atm)
```

Scilab code Exa 1.6 Calculation of cruise lift coefficient and lift to drag ratio

```
1 v_inf_mph = 492; //freestream velocity in miles per
     hour
2 rho = 0.00079656; //aimbient air density in slugs
     per cubic feet
3 W = 15000; //weight of the airplane in lbs
4 S = 342.6; //wing planform area in sq.ft
5 C_d = 0.015; //Drag coefficient
7 // Calculations
8 v_inf_fps = v_inf_mph*(88/60); //freestream velocity
      in feet per second
10 C_1 = 2*W/rho/(v_inf_fps^2)/S; //lift coefficient
12 //The Lift by Drag ratio is calculated as
13 L_by_D = C_1/C_d;
14
15 printf("\nRESULTS\n----\nThe lift to drag ratio
     L/D is equal to: \%2.0 \, f \n, L_by_D)
```

Scilab code Exa 1.7 Calculation of maximum lift coefficient for Cesna 560

```
1 v_stall_mph = 100; //stalling speed in miles per
    hour
2 rho = 0.002377; //aimbient air density in slugs per
    cubic feet
```

Scilab code Exa 1.8.a calculation of upward acceleration of a hot air balloon

```
1 d = 30; //inflated diameter of ballon in feet
2 W = 800; // weight of the balloon in lb
3 g = 32.2; //acceleration due to gravity
4 // part (a)
5 \text{ rho}_0 = 0.002377; //density at zero altitude
7 //Assuming the balloon to be spherical, the Volume
     can be given as
8 \ V = 4/3*\%pi*((d/2)^3);
10 //The Buoyancry force is given as
11 B = g*rho_0*V;
12
13 //The net upward force F is given as
14 F = B - W;
15
16 m = W/g; //Mass of the balloon
17
```

```
18 //Thus the upward acceleration of the ballon can be
    related to F as
19 a = F/m;
20
21 printf("\nRESULTS\n---\nThe initial upward
    acceleration is:\n a = %2.1 f ft/s2",a)
```

Scilab code Exa 1.8.b Calculation of maximum altitude for the hot air balloon

```
1 d = 30; //inflated diameter of ballon in feet
2 W = 800; // weight of the balloon in lb
3 g = 32.2; //acceleration due to gravity
4 rho_0 = 0.002377; //density at sea level (h=0)
5 //part (b)
6 //Assuming the balloon to be spherical, the Volume
     can be given as
7 V = 4/3*\%pi*((d/2)^3);
8 //Assuming the weight of balloon does not change,
     the density at maximum altitude can be given as
9 rho_max_alt = W/g/V;
10
11 //Thus from the given variation of density with
      altitude, we obtain the maximum altitude as
12
13 \text{ h_max} = 1/0.000007*(1-((rho_max_alt/rho_0)^(1/4.21))
     )
14
15 printf("\nRESULTS\n----\nThe maximum altitude
     that can be reached is:\n
                                         h = \%4.0 f ft,
     h_max)
```

Chapter 2

Aerodynamics Some Fundamental Principles and Equations

Scilab code Exa 2.1 Calculation of time rate of change of volume of the fluid elem

```
1 // All the quantities are in SI units
2 v_inf = 240; //freestream velocity
             //wavelength of the wall
3 1 = 1;
4 h = 0.01; //amplitude of the wall
5 M_inf = 0.7; //freestream mach number
6 b = sqrt(1-(M_inf^2));
7 x = 1/4;
8 y = 1;
10 function temp = u(x,y)
11 temp = v_{inf}*(1 + (h/b*2*\%pi/1*cos(2*\%pi*x/1)*exp
      (-2*\%pi*b*y/1)));
12 endfunction
14 function temp = v(x,y)
15 temp = -v_{inf}*h*2*%pi/1*sin(2*%pi*x/1)*exp(-2*%pi*b*)
     y/1);
```

```
16 endfunction
17
18 d = 1e-10;
19
20 du = derivative(u,x,d);
21
22 dv = derivative(v,y,d);
23
24 grad_V = du + dv;
25
26 test = (b-(1/b))*v_inf*h*((2*%pi/1)^2)*exp(-2*%pi*b);
27
28 printf("\nRESULT\n---\nThe time rate of change of the volume of the fluid element per unit volume is: %1.4 f s-1\n", grad_V)
```

Chapter 3

Fundamentals of Inviscid Incompressible Flow

Scilab code Exa 3.1 Calculation of velocity on a point on the airfoil

```
//All the quantities are expressed in SI units

//All the quantities are expressed in SI units

// Treestream density of air at sea level

// Freestream static pressure
// Freestream velocity
p = 90000; // Freestream velocity

// Pressure at given point

//The velocity at the given point can be expressed as
v = sqrt((2*(p_inf-p)/rho_inf) + (v_inf^2));

printf("\nRESULTS\n----\nThe velocity at the given point is\n V = %3.1 f m/s\n",v)
```

Scilab code Exa 3.2 Calculation of pressure on a point on the airfoil

Scilab code Exa 3.3 Calculation of velocity at the inlet of a venturimeter for a g

```
// All the quantities are expressed in SI units
// All the quantities are expressed in SI units
// Treestream density of air along the streamline
delta_p = 335.16; // pressure difference between inlet and throat
ratio = 0.8; // throat-to-inlet area ratio
// The velocity at the inlet can be given as
v_1 = sqrt(2*delta_p/rho/(((1/ratio)^2)-1));

printf("\nRESULTS\n---\nThe value of velocity at the inlet is\n V1 = %3.1f m/s\n", v_1)
```

Scilab code Exa 3.4 Calculation of height difference in a U tube mercury manometer

```
1 // All the quantities are expressed in SI units
                          //freestream density of air
3 \text{ rho} = 1.23;
     along the streamline
4 v = 50;
                          //operating velocity inside
     wind tunnel
5 rho_hg = 13600;
                         //density of mercury
6 \text{ ratio} = 12;
                         //contraction ratio of the
     nozzle
7 g = 9.8;
                         //acceleration due to gravity
                          //weight per unit volume of
8 w = rho_hg*g;
     mercury
9
10 //The pressure difference delta_p between the inlet
     and the test section is given as
11 delta_p = 1/2*rho*v*v*(1-(1/ratio^2));
12
13 //Thus the height difference in a U-tube mercury
     manometer would be
14 delta_h = delta_p/w;
15
16 printf("\nRESULTS\n----\nThe height difference
     in a U-tube mercury manometer is \n
      delta_h = \%1.5 f m/n, delta_h)
```

 ${f Scilab\ code\ Exa\ 3.5}$ Calculation of the maximum allowable pressure difference between

```
measured by the mechanical balance

7 rho_inf = 1.225; //free-stream density of air

8

9 //the maximum allowable freestream velocity can be given as

10 V_inf = sqrt(2*L_max/rho_inf/S/Cl_max);

11

12 //thus the maximum allowable pressure difference is given by

13 delta_p = 1/2*rho_inf*(V_inf^2)*(1-(ratio^-2));

14

15 printf("\nRESULTS\n---\nThe maximum allowable pressure difference between the wind tunnel setling chamber and the test section is\n delta_p = %4.2 f Pa",delta_p)
```

Scilab code Exa 3.6.a Calculation of reservoir pressure in a nozzle

```
1 // all the quantities are expressed in SI units
3 V2 = 100*1609/3600;
                               //test section flow
      velocity converted from miles per hour to meters
      per second
4 p_atm = 101000;
                               //atmospheric pressure
                               //pressure of the test
5 p2 = p_atm;
      section which is vented to atmosphere
6 \text{ rho} = 1.23;
                               //air density at sea
     level
7 \text{ ratio} = 10;
                               //contraction ratio of
      the nozzle
9 //the pressure difference in the wind tunnel can be
      calculated as
10 delta_p = rho/2*(V2^2)*(1-(1/ratio^2));
11
```

Scilab code Exa 3.6.b Calculation of increment in the reservoir pressure

```
1 // all the quantities are expressed in SI units
3 V2 = 89.4; //test section flow velocity
     converted from miles per hour to meters per
     second
4 p_atm = 101000;
                              //atmospheric pressure
5 p2 = p_atm;
                              //pressure of the test
     section which is vented to atmosphere
6 \text{ rho} = 1.23;
                              //air density at sea
     level
7 ratio = 10;
                              //contraction ratio of
     the nozzle
9 //the pressure difference in the wind tunnel can be
     calculated as
10 delta_p = rho/2*(V2^2)*(1-(1/ratio^2));
12 //thus the reservoir pressure can be given as
13 p1 = p2 + delta_p;
14
15 p1_atm = p1/p_atm; //reservoir pressure
     expressed in units of atm
16
17 printf("\nRESULTS\n----\nThe new reservoir
```

```
pressure is \n p1 = \%1.3 \, \mathrm{f} \, \mathrm{atm}, p1_atm)
```

Scilab code Exa 3.7 Calculation of airplane velocity from pitot tube measurement

 ${
m Scilab\ code\ Exa\ 3.8}$ Calculation of pressure measured by the pitot tube for a given

Scilab code Exa 3.9 Calculation of airplane velocity from pitot tube measurement

```
1 // all the quantities are expressed in SI units
3 p0 = 6.7e4;
                                //total pressure as
     measured by the pitot tube
4 p1 = 6.166e4;
                                //ambient pressure at 4km
       altitude
                                //density of air at 4km
5 \text{ rho} = 0.81935;
      altitude
7 //thus the velocity of the airplane can be given as
8 V1 = sqrt(2*(p0-p1)/rho);
10 printf("\nRESULTS\n----\nThe velocity of the
      airplane is\n
                                  V1 = \%3.1 \text{ f m/s} = \%3.0 \text{ f}
      mph", V1, V1/0.447)
```

 ${f Scilab\ code\ Exa\ 3.10}$ Calculation of equivallent air speed for an aircraft flying a

```
5 q1 = 1/2*rho*(V1^2) //dynamic pressure
      experienced by the aircraft at 4km altitude
                                //density of air at sea
6 \text{ rho\_sl} = 1.23;
      level
8 //according to the question
                                //sealevel dynamic
9 q_sl = q1;
     pressure
10
11 //thus the equivallent air speed at sea level is
      given by
12 Ve = sqrt(2*q_sl/rho_sl);
13
14 printf("\nRESULTS\n----\nThe equivallent
                                                     Ve =
      airspeed of the airplane is \n
     \%2.1 \, \mathrm{f} \, \mathrm{m/s}", Ve)
```

Scilab code Exa 3.11 Calculation of pressure coefficient on a point on an airfoil

Scilab code Exa 3.12.a Calculation of velocity on a point on the airfoil for a giv

```
//all the quantities are expressed in SI units
//peak negative pressure
    coefficient
//peak negative pressure
    coefficient
//freestream velocity
//the velocity at the given point can be calculated
    as
// V = sqrt(V_inf^2*(1-Cp));
// Peak negative pressure
    coefficient
// freestream velocity
// the velocity at the given point can be calculated
    as
// V = sqrt(V_inf^2*(1-Cp));
// RESULTS\n———\nThe velocity at the
// given point is\n
```

Scilab code Exa 3.12.b Calculation of velocity on a point on the airfoil for a giv

Scilab code Exa 3.13 Calculation of locations on cylinder where the surface pressu

```
1 //all the quantities are expressed in SI units 2   
3 //When p = p_i inf, Cp = 0, thus
```

 ${f Scilab\ code\ Exa\ 3.14}$ Calculation of the peak negative pressure coefficient for a g

 ${f Scilab\ code\ Exa\ 3.15}$ Calculation of stagnation points and locations on cylinder wh

```
1 // All the quantities are expressed in SI units
```

```
3 theta = [180-asind(-5/4/\%pi) 360+asind(-5/4/\%pi)];
              //location of the stagnation points
4
5 printf("\nRESULTS\n----\nThe angular location of
       the stagnation points are \n
                                                     theta =
       \%3.1\,\mathrm{f} , \%3.1\,\mathrm{f} degrees",theta(1),theta(2))
7 function temp = Cp(thet)
       temp = 0.367 - 3.183*sind(thet) - 4*(sind(thet)
                  //Cp written as a function of theta
  endfunction
10
11 printf("\nRESULTS\n----\nThe value of Cp on top
                                            Cp = \%1.2 \, f", Cp
      of the cylinder is \n
      (90))
12
13 [k] = roots([-4 -3.183 0.367]);
14
15 theta_2 = 180/\%pi*[%pi-asin(k(1)) 2*%pi+asin(k(1))
      asin(k(2)) %pi-asin(k(2))];
16
17 printf("\nRESULTS\n----\nThe angular location of
       points on the cylinder where p = p_i nf is n
                     theta = \%3.1 \, \text{f}, \%3.2 \, \text{f}, \%1.2 \, \text{f}, \%3.1 \, \text{f},
      theta_2(1), theta_2(2), theta_2(3), theta_2(4))
18
19 printf("\nRESULTS\n----\nThe value of Cp at the
      bottom of the cylinder is \n
                                                    Cp = \%1
      .2 f", Cp (270))
```

Scilab code Exa 3.16 Calculation of lift per unit span of the cylinder

```
1 //All the quantities are expressed in SI units
```

```
//density of air at 3km
3 rho_inf = 0.90926;
     altitude
                             //maximum velocity on the
4 V_{theta} = -75;
     surface of the cylinder
5 V_{inf} = 25;
                             //freestream velocity
6 R = 0.25;
                             //radius of the cylinder
7
8 //thus the circulation can be calculated as
9 tow = -2*\%pi*R*(V_theta+2*V_inf);
10
11 //and the lift per unit span is given as
12 L = rho_inf*V_inf*tow;
13
14 printf("\nRESULTS\n----\nThe Lift per unit span
                                               L"' = \%3
     for the given cylinder is \n
     .1 f N",L)
```

Chapter 4

Incompressible Flow over Airfoils

 ${f Scilab\ code\ Exa\ 4.1\ Calculation\ of\ angle\ of\ attack\ and\ drag\ per\ unit\ span\ of\ a\ NAC}$

```
1 // All the quantities are expressed in SI units
                                                   //chord
3 c = 0.64;
      length of the airfoil
4 \ V_{inf} = 70;
      freestream velocity
                                                   //lift per
5 L_{dash} = 1254;
      unit span L'
                                                   //density
6 \text{ rho\_inf} = 1.23;
      of air
7 \text{ mu\_inf} = 1.789e-5;
      freestream coefficient of viscosity
8 \text{ q\_inf} = 1/2*\text{rho\_inf}*V_{inf}*V_{inf};
                                                    //
      freestream dynamic pressure
10 //thus the lift coefficient can be calculated as
11 c_l = L_dash/q_inf/c;
12
13 //for this value of C<sub>-</sub>l, from fig. 4.10
```

```
14 \text{ alpha} = 4;
15
16 //the Reynold's number is given as
17 Re = rho_inf*V_inf*c/mu_inf;
18
19 //for the above Re and alpha values, from fig. 4.11
20 c_d = 0.0068;
21
22 //thus the drag per unit span can be calculated as
23 D_dash = q_inf*c*c_d;
24
25 printf("\nRESULTS\n----\n\nc_l = \%1.2 \, f, for
     this c_l value, from fig. 4.10 we get\nalpha = \%1
     value of Re, from fig. 4.11 we get \ nc_d = \%1.4 f
     nD"' = \%2.1 f N/m n", c_l, alpha, Re/1000000, c_d,
     D<sub>dash</sub>
```

 ${
m Scilab\ code\ Exa\ 4.2\ Calculation\ of\ moment\ per\ uint\ span\ about\ the\ aerodynamic\ cent$

```
1 // All the quantities are expressed in SI units
                                              //chord
3 c = 0.64;
     length of the airfoil
4 \ V_{inf} = 70;
     freestream velocity
5 \text{ rho\_inf} = 1.23;
                                              //density
     of air
6 q_inf = 1/2*rho_inf*V_inf*V_inf;
     freestream dynamic pressure
7 c_m_ac = -0.05
                                              //moment
     coefficient about the aerodynamic center as seen
     from fig. 4.11
9 //thus moment per unit span about the aerodynamic
```

Scilab code Exa 4.3 Compare lift to drag ratios at different angle of attacks for

Scilab code Exa 4.4 Calculation of lift and moment coefficients for a thin flat pl

Scilab code Exa 4.5 Calculation of diiferent attributes of an airfoil using thin a

```
1 // all the quantities are expressed in SI units
2
3 //(a)
4 //the slope function in terms of theta is given as
5 function temp = dz_by_dx(theta)
       if (theta>=0) & (theta<=0.9335) then
            temp = 0.684 - 2.3736*\cos(\text{theta}) + 1.995*(\cos(
7
              theta)^2);
8
       elseif (theta <= %pi) & (theta > 0.9335) then
           temp = -0.02208;
9
10
       else
           temp = 0;
11
12
       end
13 endfunction
14
15 //the integration function for alpha, L=0 is thus
```

```
given as
16 function temp = integ1(theta)
        temp = dz_by_dx(theta)*(cos(theta)-1);
17
18 endfunction
19
20 / \text{from eq.} (4.61)
21 alpha_L0 = -1/\%pi*intg(0,%pi,integ1);
22
23 //(b)
24 \text{ alpha} = 4*\%pi/180;
25
\frac{26}{\text{from eq.}}(4.60)
27 c_1 = 2*\%pi*(alpha-alpha_L0);
28
29 //(c)
30 //the integration function for A1 is given by
31 function temp = integ2(theta)
        temp = dz_by_dx(theta)*cos(theta);
33 endfunction
34
35 // thus
36 A1 = 2/%pi*intg(0,%pi,integ2);
37
38 //the integration function for A2 is given by
39 function temp = integ3(theta)
40
        temp = dz_by_dx(theta)*cos(2*theta);
41 endfunction
42
43 // thus
44 A2 = 2/%pi*intg(0,%pi,integ3);
45
\frac{46}{\text{from eq.}(4.64)}, the moment coefficient about the
      quarter chord (c/4) is given as
47 c_m_qc = \%pi/4*(A2-A1);
48
49 // (d)
50 // \text{from eq.} (4.66)
51 \text{ x_cp_by_c} = 1/4*(1+\%\text{pi/c_l*(A1-A2)});
```

Scilab code Exa 4.6 Calculation of location of aerodynamic center for a NACA 23012

```
1 // All the quantities are expressed in SI units
2
3 \text{ alpha1} = 4;
4 \text{ alpha2} = -1.1;
5 \text{ alpha3} = -4;
6 \text{ cl}_1 = 0.55;
                                 //cl at alpha1
7 c1_2 = 0;
                                // cl at alpha2
8 c_m_qc1 = -0.005;
                                //c_m_qc at alpha1
9 c_m_qc3 = -0.0125;
                              //c_m_qc at alpha3
10
11 //the lift slope is given by
12 a0 = (cl_1 - cl_2)/(alpha1-alpha2);
13
14 //the slope of moment coefficient curve is given by
15 m0 = (c_m_qc1 - c_m_qc3)/(alpha1-alpha3);
16
17 / \text{from eq.} 4.71
18 x_ac = -m0/a0 + 0.25;
19
20 printf("\nRESULTS\n----\nThe location of the
      aerodynamic center is \n
                                   x_ac = \%1.3 f n
     ",x_ac)
```

Scilab code Exa 4.7 Calculation of laminar boundary layer thickness and the net la

```
1 // All the quantities are expressed in SI units
3 c = 1.5;
                       //airfoil chord
                       //Reynolds number at trailing
4 \text{ Re_c} = 3.1e6;
     edge
6 //from eq.(4.84), the laminar boundary layer
      thickness at trailing edge is given by
7 delta = 5*c/sqrt(Re_c);
9 / from eq (4.86)
10 Cf = 1.328/sqrt(Re_c);
11
12 //the net Cf for both surfaces is given by
13 \text{ Net_Cf} = 2*Cf;
14
15 printf ("\nRESULTS\n----\n(a)\n delta = \%1.5 f m
     \n Cf = \%1.2 \text{ f x } 10^-4\n
     Cf = \%1.4 f", delta, Cf*10000, Net_Cf)
```

Scilab code Exa 4.8 Calculation of turbulent boundary layer thickness and the net

```
12  // the net Cf for both surfaces is given by
13  Net_Cf = 2*Cf;
14
15  printf("\nRESULTS\n---\n(a)\n delta = %1.4 f m
   \n---\n(b)\n Cf = %1.5 f\n Net Cf = %1.5
   f",delta,Cf,Net_Cf)
```

Scilab code Exa 4.9 Calculation of net skin friction drag coefficient for NACA 241

```
1 // All the quantities are expressed in SI units
2
3 c = 1.5;
                              //airfoil chord length
4 \text{ Rex\_cr} = 5e5;
                              //critical Reynold's number
5 \text{ Re_c} = 3.1e6;
                             //Reynold's number at the
      trailing edge
7 //the point of transition is given by
8 x1 = Rex_cr/Re_c*c;
10 //the various skin friction coefficients are given
11 Cf1_laminar = 1.328/sqrt(Rex_cr);
12 Cfc_turbulent = 0.074/(Re_c^0.2);
13 Cf1_turbulent = 0.074/(Rex_cr^0.2);
14
  //thus the total skin friction coefficient is given
15
      by
16 Cf = x1/c*Cf1_laminar + Cfc_turbulent - x1/c*
      Cf1_turbulent;
17
18 //taking both sides of plate into account
19 Net_Cf = 2*Cf;
20
21 printf("\nRESULTS\n----\nThe net skin friction
                             \widetilde{\mathrm{Net}} \mathrm{Cf} = \%1.4\,\mathrm{f}", \mathtt{Net\_Cf})
      coefficient is \n
```

Scilab code Exa 4.10 Calculation of net skin friction drag coefficient for NACA 24

```
1 // All the quantities are expressed in SI units
3 c = 1.5;
                            //airfoil chord length
4 \text{ Rex\_cr} = 1e6;
                            //critical Reynold's number
5 \text{ Re_c} = 3.1e6;
                            //Reynold's number at the
      trailing edge
7 //the point of transition is given by
8 x1 = Rex_cr/Re_c*c;
10 //the various skin friction coefficients are given
11 Cf1_laminar = 1.328/sqrt(Rex_cr);
      this is a mistake in the book in calulation of
      this quantity thus the answer in book is wrong
12 Cfc_turbulent = 0.074/(Re_c^0.2);
13 Cf1_turbulent = 0.074/(Rex_cr^0.2);
14
15 //thus the total skin friction coefficient is given
     by
16 Cf = x1/c*Cf1_laminar + Cfc_turbulent - x1/c*
     Cf1_turbulent;
17
18 //taking both sides of plate into account
19 Net_Cf = 2*Cf;
20
21 printf("\nRESULTS\n----\nThe net skin friction
                               Net Cf = \%1.5 f", Net_Cf)
      coefficient is \n
```

Chapter 5

Incompressible Flow over Finite Wings

 ${f Scilab\ code\ Exa\ 5.1}$ Calculation of lift and induced drag coefficients for a finite

```
1 // All the quantities are expressed in SI units
3 \text{ AR} = 8;
                             //Aspect ratio of the wing
4 \text{ alpha} = 5*\%pi/180;
                                      //Angle of attack
      experienced by the wing
5 \ a0 = 2*\%pi
                             //airfoil lift curve slope
6 alpha_L0 = 0;
                            //zero lift angle of attack
      is zero since airfoil is symmetric
8 //from fig. 5.20, for AR = 8 and taper ratio of 0.8
9 \text{ delta} = 0.055;
10 \text{ tow} = \text{delta};
                             //given assumption
11
12 //thus the lift curve slope for wing is given by
13 a = a0/(1+(a0/\%pi/AR/(1+tow)));
14
15 //thus C<sub>-</sub>l can be calculated as
16 C_1 = a*alpha;
17
```

Scilab code Exa 5.2 Calculation of induced drag coefficient for a finite wing

```
1 // All the quantities are expressed in SI units
                                            //induced drag
3 \text{ CDi1} = 0.01;
      coefficient for first wing
4 \text{ delta} = 0.055;
                                            //induced drag
      factor for both wings
5 \text{ tow} = \text{delta};
                                            //zero lift
6 \text{ alpha_L0} = -2*\%\text{pi}/180;
      angle of attack
7 \text{ alpha} = 3.4*\%pi/180;
                                            //angle of
      attack
                                            //Aspect ratio
8 \text{ AR1} = 6;
      of the first wing
  AR2 = 10;
                                            //Aspect ratio
      of the second wing
10
  //from eq.(5.61), lift coefficient can be calculated
12 C_l1 = sqrt(%pi*AR1*CDi1/(1+delta));
13
14 //the lift slope for the first wing can be
      calculated as
15 a1 = C_11/(alpha-alpha_L0);
16
17 //the airfoil lift coefficient can be given as
18 a0 = a1/(1-(a1/\%pi/AR1*(1+tow)));
19
```

 ${
m Scilab\ code\ Exa\ 5.3}$ Calculation of angle of attack of an airplane at cruising cond

```
1 // all the quantities are expressed in SI units
2
3 \text{ a0} = 0.1*180/\%\text{pi};
                                              //airfoil lift
      curve slope
4 \text{ AR} = 7.96;
                                     //Wing aspect ratio
5 \text{ alpha_L0} = -2*\%\text{pi}/180;
                                              //zero lift
      angle of attack
6 \text{ tow} = 0.04;
                                     //lift efficiency
      factor
7 \quad C_1 = 0.21;
                                     //lift coefficient of
      the wing
9 //the lift curve slope of the wing is given by
10 a = a0/(1+(a0/\%pi/AR/(1+tow)));
11
12 //thus angle of attack can be calculated as
13 alpha = C_1/a + alpha_L0;
14
15 printf("\nRESULTS\n----\n
                                              alpha = \%1.1 f
      degrees \n", alpha*180/%pi)
```

Scilab code Exa 5.4 Calculation of lift and drag coefficients for a Beechcraft Bar

```
1 // All the qunatities are expressed in SI units
3 \text{ alpha_L0} = -1*\%\text{pi}/180;
                                                 //zero lift
      angle of attack
4 \text{ alpha1} = 7*\%pi/180;
                                                 //reference
      angle of attack
5 C_{11} = 0.9;
                                                 //wing lift
      coefficient at alpha1
6 \text{ alpha2} = 4*\%pi/180;
7 \text{ AR} = 7.61;
                                                 //aspect
      ratio of the wing
8 \text{ taper} = 0.45;
                                                 //taper ratio
       of the wing
                                                 //delta as
9 \text{ delta} = 0.01;
      calculated from fig. 5.20
10 \text{ tow} = \text{delta};
11
12 //the lift curve slope of the wing/airfoil can be
      calculated as
13 a0 = C_11/(alpha1-alpha_L0);
14
15 e = 1/(1+delta);
16
17 / \text{from eq.} (5.70)
18 a = a0/(1+(a0/\%pi/AR/(1+tow)));
19
20 //lift coefficient at alpha2 is given as
21 C_12 = a*(alpha2 - alpha_L0);
22
\frac{23}{from} eq. (5.42), the induced angle of attack can be
       calculated as
24 alpha_i = C_12/\%pi/AR;
25
26 //which gives the effective angle of attack as
27 alpha_eff = alpha2 - alpha_i;
28
```

Chapter 7

Compressible Flow Some Preliminary Aspects

Scilab code Exa 7.1 Calculation of internal energy and enthalpy of air in a room

```
1 // All the quantities are expressed in SI units
3 1 = 5;
                              //dimensions of the room
4 b = 7;
//volume of the room
7 p = 101000; //ambient pressure
8 T = 273 + 25; //ambient temperature
9 R = 287;
5 h = 3.3;
                            //ambient temperature
10 \text{ gam} = 1.4;
                             //ratio of specific heats
11 cv = R/(gam-1);
12 cp = gam*R/(gam-1);
13
14 //the density can by calculated by the ideal gas law
15 rho = p/R/T;
16
17 //thus the mass is given by
18 M = rho * V;
19
```

```
20 //from eq.(7.6a), the internal energy per unit mass
     i s
21 e = cv*T;
22
23 //thus internal energy in the room is
24 E = e * M;
25
\frac{26}{100} //from eq.(7.6b), the enthalpy per unit mass is
     given by
27 h = cp*T;
28
29 //Thus the enthalpy in the room is
30 \text{ H} = \text{M*h};
31
32 printf("\nRESULTS\n----\nThe internal energy in
     H = \%1.2 f x
     Enthalpy in the room is:\n
     10^7 \, J n, E/10<sup>7</sup>, H/10<sup>7</sup>)
```

 ${
m Scilab\ code\ Exa\ 7.2\ Calculation\ of\ temperature\ at\ a\ point\ on\ the\ Boeing\ 747\ wing}$

```
11 printf("\nRESULTS\n---\nThe temperature at the given point is:\n T = \%3.1 f K \ n",T)
```

Scilab code Exa 7.3 Calculation of total temperature and total pressure at a point

```
1 // All the quantities are expressed in SI units
3 p = 101000;
                                //static pressure
                                //static temperature
4 T = 320;
                                //velocity
5 v = 1000;
                                //ratio of specific heats
6 \text{ gam} = 1.4;
7 R = 287;
                                //universal gas constant
8 \text{ cp} = \text{gam}*R/(\text{gam}-1);
                                //specific heat at
      constant pressure
10 //from eq.(7.54), the total temperature is given by
11 T0 = T + (v^2)/2/cp;
12
13 //from eq.(7.32), the total pressure is given by
14 p0 = p*((T0/T)^(gam/(gam-1)));
15
16 \text{ p0\_atm} = \text{p0/101000};
17
18
19 printf("\nRESULTS\n----\nThe total temperature
      and pressure are given by:\n
                                               T0 = \%3.1 f K
                  P0 = \%2.1 f atm n, TO, pO_atm)
      n \setminus n
```

Chapter 8

Normal Shock Waves and Related Topics

Scilab code Exa 8.1 Calculation of Mach number at different flying altitudes

```
1 // All the quantities are expressed in SI units
3 R = 287;
4 \text{ gam} = 1.4;
5 V_{inf} = 250;
7 //(a)
8 //At sea level
9 T_{inf} = 288;
10
11 //the velocity of sound is given by
12 a_inf = sqrt(gam*R*T_inf);
13
14 //thus the mach number can be calculated as
15 M_inf = V_inf/a_inf;
16
17 printf("\n(a)\nThe Mach number at sea level is:\n
             M_{inf} = \%1.3 f n, M_{inf}
18
```

```
19 //similarly for (b) and (c)
20 //(b)
21 / at 5km
22 \text{ T_inf} = 255.7;
23
24 a_inf = sqrt(gam*R*T_inf);
25
26 M_inf = V_inf/a_inf;
27
28 printf("\n(b)\nThe Mach number at 5 km is:\n
      M_{inf} = \%1.2 f n, M_{inf}
29
30 //(c)
31 // at 10 km
32 \text{ T_inf} = 223.3;
34 a_inf = sqrt(gam*R*T_inf);
36 M_inf = V_inf/a_inf;
37
38 printf("\n(c)\n Mach number at 10 km is:\n
              M_{inf} = \%1.3 f n, M_{inf}
```

Scilab code Exa 8.2 Calculation of Mach number at a given point

```
11 //the mach number can be calculated as 12 M = V/a; 13  
14 printf("\nRESULTS\n---\nThe Mach number is:\n M = \%1.2 \, f \ n",M)
```

Scilab code Exa 8.3 Calculation of ratio of kinetic energy to internal energy at a

```
1 // All the quantities are expressed in SI units
                                   //ratio of specific
3 \text{ gam} = 1.4;
     heats
5 //(a)
6 M = 2;
                                   //Mach number
8 //the ratio of kinetic energy to internal energy is
      given by
  ratio = gam*(gam-1)*M*M/2;
10
11 printf("\n(a)\nThe ratio of kinetic energy to
      internal energy is:\n\n
                                                        \%1
      .2 f \n", ratio)
12
13 //similarly for (b)
14 //(b)
15 M = 20;
16
17 ratio = gam*(gam-1)*M*M/2;
18
19 printf("\n(b)\nThe ratio of kinetic energy to
                                                        \%3
      internal energy is:\n\
      .0 f n, ratio)
```

Scilab code Exa 8.4 Calculation of total temperature and total pressure at a point

```
1 // All the quantities are expressed in SI units
3 M = 2.79;
                    //Mach number
                   //\,\mathrm{static} temperature from ex. 7.3
4 T = 320;
                    //static pressure in atm
5 p = 1;
6 \text{ gam} = 1.4;
8 / \text{from eq.} (8.40)
9 T0 = T*(1+((gam-1)/2*M*M));
10
11 / \text{from eq.} (8.42)
12 p0 = p*((1+((gam-1)/2*M*M))^(gam/(gam-1)));
13
14 printf("\nRESULTS\n----\nThe total temperature
     and pressure are:\n
                                  T0 = \%3.0 f K n
     P0 = \%2.1 f atm n, TO, p0)
```

 ${
m Scilab\ code\ Exa\ 8.5}$ Calculation of local stagnation temperature and pressure speed

```
12 / \text{from eq.} (8.42)
13 p0 = p*((1+((gam-1)/2*M*M))^(gam/(gam-1)));
14
15 a = sqrt(gam*R*T);
16 V = a*M;
17
18 //the values at local sonic point are given by
19 T_{star} = T0*2/(gam+1);
20 a_star = sqrt(gam*R*T_star);
21 M_star = V/a_star;
22
23 printf("\nRESULTS\n----\n
                                               T0 = \%3.0 f K n
               P0 = \%2.1 f atm \ n
                                          T* = \%3.1 f k n
                                          \mathrm{M*} = \%1.2~\mathrm{f} ", TO , pO ,
              a* = \%3.0 \text{ f m/s} 
      T_star,a_star,M_star)
```

 ${
m Scilab\ code\ Exa\ 8.6}$ Calculation of local mach number at the given point on the air

```
1 // All the quantities are expressed in SI units
2
3 p_inf = 1;
4 p1 = 0.7545;
5 \text{ M\_inf} = 0.6;
6 \text{ gam} = 1.4;
8 / \text{from eq.} (8.42)
9 p0_{inf} = p_{inf}*((1+((gam-1)/2*M_{inf}*M_{inf}))^(gam/(
      gam-1)));
10
11 p0_1 = p0_inf;
12
13 / \text{from eq}. (8.42)
14 \text{ ratio} = p0_1/p1;
15
16 //from appendix A, for this ratio, the Mach number
```

```
is

17 M1 = 0.9;

18

19 printf("\nRESULTS\n---\nThe mach number at the given point is:\n M1 = %1.1 f\n", M1)
```

Scilab code Exa 8.7 Calculation of velocity on a point on the airfoil for compress

```
1 // All the quantities are expressed in SI units
3 T_{inf} = 288;
     //freestream temperature
4 p_inf = 1;
     //freestream pressure
5 p1 = 0.7545;
     //pressure at point 1
6 M = 0.9;
     //mach number at point 1
7 \text{ gam} = 1.4;
      //ratio of specific heats
8 R = 8.314;
9 //for isentropic flow, from eq. (7.32)
10 T1 = T_{inf}*((p1/p_{inf})^{((gam-1)/gam));
11
12 //the speed of sound at that point is thus
13 a1 = sqrt(gam*R*T1);
14
15 //thus, the velocity can be given as
16 \ V1 = M*a1;
17
18 printf("\nRESULTS\n----\nThe velocity at the
                                V1 = \%3.0 \text{ f m/s/n}, V1)
      given point is:\n
```

Scilab code Exa 8.8 Calculation of velocity temperature and pressure downstream of

```
1 // All the quantities are expressed in SI units
3 u1 = 680;
                                          //velocity
     upstream of shock
4 T1 = 288;
                                          //temperature
     upstream of shock
5 p1 = 1;
                                          //pressure
     upstream of shock
6 \text{ gam} = 1.4;
                                          //ratio of
      specific heats
7 R = 287;
                                          //universal gas
       constant
9 //the speed of sound is given by
10 a1 = sqrt(gam*R*T1)
11
12 //thus the mach number is
13 \quad M1 = 2;
14
15 //from Appendix B, for M = 2, the relations between
      pressure and temperature are given by
16 pressure_ratio = 4.5;
                                          //ratio of
      pressure accross shock
17 temperature_ratio = 1.687;
                                          //ratio of
      temperature accross shock
18 \quad M2 = 0.5774;
                                          //mach number
     downstream of shock
19
20 //thus the values downstream of the shock can be
      calculated as
21 p2 = pressure_ratio*p1;
22 T2 = temperature_ratio*T1;
23 a2 = sqrt(gam*R*T2);
24 u2 = M2*a2;
25
26 printf ("\nRESULTS\n----\n p2 = \%1.1 f atm
```

```
\n p2,T2,u2)  T2 = \%3.0 \ f \ K \ u2 = \%3.0 \ f \ m/s",
```

Scilab code Exa 8.9 Calculation of loss of total pressure across a shock wave for

```
1 // All the quantities are expressed in SI units
3 p1 = 1;
     //ambient pressure upstream of shock
5
6 //(a)
7 // for M = 2;
8 p0_1 = 7.824*p1;
     //total pressure upstream of shock
9 pressure_ratio = 0.7209;
     //ratio of total pressure accross the shock
10 p0_2 = pressure_ratio*p0_1;
     //total pressure downstream of shock
11
12 //thus the total loss of pressure is given by
13 pressure_loss = p0_1 - p0_2;
14
15 printf("\nRESULTS\n----\nThe total pressure
      loss is:\n(a)
                          P0 - loss = \%1.3 f atm n,
     pressure_loss)
16
17 //similarly
18 //(b)
19 // \text{ for } M = 4;
20 p0_1 = 151.8*p1;
21 pressure_ratio = 0.1388;
22 p0_2 = pressure_ratio*p0_1;
23
24 //thus the total loss of pressure is given by
```

```
25 pressure_loss = p0_1 - p0_2;
26 
27 printf("\n(b) P0_loss = \%3.1 \, f \, atm \n",
pressure_loss)
```

Scilab code Exa 8.10 Calculation of air temperature and pressure for a given value

```
1 // All the quantities are expressed in SI units
3 \text{ M\_inf} = 2;
                                    //freestream mach
     number
                                     //freestream pressure
4 p_{inf} = 2.65e4;
                                    //freestream
5 T_{inf} = 223.3;
      temperature
7 //from Appendix A, for M = 2
8 p0_{inf} = 7.824*p_{inf};
                                    //freestream total
      pressure
9 T0_{inf} = 1.8*T_{inf};
                                    //freestream total
      temperature
10
11 //from Appendix B, for M = 2
                                    //total pressure
12 p0_1 = 0.7209*p0_inf;
     downstream of the shock
13 TO_1 = TO_inf;
                                    //total temperature
      accross the shock is conserved
14
15 //since the flow downstream of the shock is
      isentropic
16 p0_2 = p0_1;
17 T0_2 = T0_1;
18
19 //from Appendix A, for M = 0.2 at point 2
20 p2 = p0_2/1.028;
21 	 T2 = T0_2/1.008;
```

```
22  
23  p2_atm = p2/102000;
24  
25  printf("\nRESULTS\n\n\nThe pressure at point 2 is:\n p2 = \%1.2 \, f \, atm \n",p2_atm)
```

Scilab code Exa 8.11 Calculation of air temperature and pressure for a given value

```
1 // All the quantities are expressed in SI units
3 \text{ M_inf} = 10;
                                     //freestream mach
     number
4 p_{inf} = 2.65e4;
                                     //freestream pressure
5 T_{inf} = 223.3;
                                     //freestream
      temperature
7 //from Appendix A, for M = 2
8 p0_inf = 0.4244e5*p_inf;
                                 //freestream total
      pressure
                                    //freestream total
9 T0_{inf} = 21*T_{inf};
      temperature
10
11 //from Appendix B, for M = 2
12 p0_1 = 0.003045*p0_inf;
                                    //total pressure
     downstream of shock
13 TO_1 = TO_inf;
                                    //total temperature
      downstream of shock is conserved
14
15 //since the flow downstream of the shock is
      isentropic
16 p0_2 = p0_1;
17 \text{ TO}_2 = \text{TO}_1;
18
19 //from Appendix A, for M = 0.2 at point 2
20 p2 = p0_2/1.028;
```

Scilab code Exa 8.13 Calculation of stagnation pressure at the stagnation point on

```
1 // All the quantities are expressed in SI units
3 p1 = 4.66e4;
                                                //
     ambient pressure
                                                //mach
4 M = 8;
     number
6 //from Appendix B, for M = 8
7 p0_2 = 82.87*p1;
                                                //total
      pressure downstream of the shock
9 // since the flow is isentropic downstream of the
     shock, total pressure is conserved
10 ps_atm = p0_2/101300;
                                                //
     pressure at the stagnation point
11
12 printf("\nRESULTS\n----\nThe pressure at the
                       p_s = \%2.1 f atm n, ps_atm)
     nose is:\n
```

 ${
m Scilab\ code\ Exa\ 8.14\ Calculation\ of\ velocity\ of\ a\ Lockheed\ SR71\ Blackbird\ at\ given}$

```
1 // All the quantities are expressed in SI units 2
```

```
3 p1 = 2527.3;
                                     //ambient pressure
      at the altitude of 25 km
4 T1 = 216.66;
                                     //ambient
      temperature at the altitude of 25 km
5 p0_1 = 38800;
                                     //total pressure
6 \text{ gam} = 1.4;
                                     //ratio of specific
      heats
7 R = 287;
                                     //universal gas
      constant
                                    //ratio of total to
8 pressure_ratio = p0_1/p1;
      static pressure
10 //for this value of pressure ratio, mach number is
11 \quad M1 = 3.4;
12
13 //the speed of sound is given by
14 a1 = sqrt(gam*R*T1)
15
16 //thus the velocity can be calculated as
17 V1 = M1*a1;
18
19 printf("\nRESULTS\n----\nThe Velocity of the
                            V1 = \%4.0 \, f \, m/s \backslash n", V1)
      airplane is:\n
```

Chapter 9

Oblique Shock and Expansion Waves

 ${f Scilab\ code\ Exa\ 9.1\ Calculation\ of\ the\ horizontal\ distance\ between\ a\ supersonic\ ai}$

```
//All the quantities are expressed in SI units
// Mach number
// altitude of the plane
// the mach angle can be calculated from eq.(9.1) as
mue = asin(1/M); //mach angle

d = h/tan(mue);

printf("\nRESULTS\n---\nThe plane is ahead of the bystander by a distance of:\n d = %2.1 f km\n",d/1000)
```

Scilab code Exa 9.2 Calculation of flow mach number pressure temperature and stagn

```
1 // All the quantities are expressed in SI units
3 M1 = 2;
                                             //mach number
                                              //ambient
4 p1 = 1;
      pressure
5 T1 = 288;
                                              //ambient
      temperature
6 \text{ theta} = 20*\%\text{pi}/180;
                                             //flow
      deflection
8 //from figure 9.9, for M=2, theta = 20
9 b = 53.4*\%pi/180;
                                             //beta
10 \quad Mn_1 = M1*sin(b);
                                             //upstream
      mach number normal to shock
11
12 //for this value of Mn, 1 = 1.60, from Appendix B we
      have
13 \text{ Mn}_2 = 0.6684;
                                             //downstream
     mach number normal to shock
14 M2 = Mn_2/\sin(b-theta);
                                             //mach number
      downstream of shock
15 p2 = 2.82*p1;
16 T2 = 1.388*T1;
17
18 / for M = 2, from appendix A we have
19 p0_2 = 0.8952*7.824*p1;
20 \quad T0_1 = 1.8*T1;
21 \quad TO_2 = TO_1;
23 printf("\nRESULTS\n----\n
                                             M2 = \%1.2 f n
             p2 = \%1.2 f atm n
                                        T2 = \%3.1 f K n
             p0, 2 = \%1.2 f atm n
                                          T0,2 = \%3.1 f K,
      M2,p2,T2,p0_2,T0_2)
```

Scilab code Exa 9.3 Calculation of deflection angle of the flow and the pressure a

```
1 // All the quantities are expressed in SI units
3 b = 30*\%pi/180;
                                             //oblique
      shock wave angle
4 M1 = 2.4;
                                             //upstream
      mach number
5
6 //from figure 9.9, for these value of M and beta, we
       have
7 theta = 6.5*\%pi/180;
9 \quad Mn_1 = M1*sin(b);
                                             //upstream
      mach number normal to shock
10
11 //from Appendix B
12 pressure_ratio = 1.513;
13 temperature_ratio = 1.128;
14 \text{ Mn}_2 = 0.8422;
15
16 M2 = Mn_2/\sin(b-theta);
17
18 printf("\nRESULTS\n---\n
                                            theta = \%1.1 f
                        p2/p1 = \%1.3 f \ n
                                                 T2/T1 =
      degrees\n
      \%1.3 \text{ f} \n
                     M2 = \%1.2 \, f \, n", theta*180/%pi,
      pressure_ratio,temperature_ratio,M2)
```

Scilab code Exa 9.4 Calculation of mach number upstream of an oblique shock

Scilab code Exa 9.5 Calculation of the final total pressure values for the two giv

```
1 // All the quantities are expressed in SI units
2
3 M1 = 3;
4 b = 40*\%pi/180;
6 // for case 1, for M = 3, from Appendix B, we have
7 p0_ratio_case1 = 0.3283;
9 // for case 2
10 \quad Mn_1 = M1*sin(b);
11
12 //from Appendix B
13 p0_ratio1 = 0.7535;
14 \text{ Mn}_2 = 0.588;
15
16 //from fig. 9.9, for M1 = 3 and beta = 40, we have
17 theta = 22*\%pi/180;
18 M2 = Mn_2/sin(b-theta);
19
20 //from appendix B for M = 1.9; we have
21 p0_ratio2 = 0.7674;
22 p0_ratio_case2 = p0_ratio1*p0_ratio2;
23
24 ratio = p0_ratio_case2/p0_ratio_case1;
25
26 printf ("\nRESULTS\\n---\n Ans = \%1.2 \text{ f} \setminus \text{n}"
```

Scilab code Exa 9.6 Calculation of the drag coefficient of a wedge in a hypersonic

```
1 // All the quantities are expressed in SI units
3 M1 = 5;
4 theta = 15*\%pi/180;
5 \text{ gam} = 1.4;
7 // for these values of M and theta, from fig. 9.9
8 b = 24.2*\%pi/180;
9 \quad Mn_1 = M1*sin(b);
10
11 //from Appendix B, for Mn, 1 = 2.05, we have
12 p_{ratio} = 4.736;
13
14 //hence
15 c_d = 4*tan(theta)/gam/(M1^2)*(p_ratio-1);
16
17 printf("\nRESULTS\n----\nThe drag coefficient
                              cd = \%1.3 f \setminus n", c_d)
      is given by:\n
```

 ${
m Scilab\ code\ Exa\ 9.7}$ Calculation of the angle of deflected shock wave related to the

```
1 // All the quantities are expressed in SI units
2
3 M1 = 3.5;
4 theta1 = 10*%pi/180;
5 gam = 1.4;
6 p1 = 101300;
7 T1 = 288;
```

```
9 // for these values of M and theta, from fig. 9.9
10 b1 = 24*\%pi/180;
11 \text{ Mn}_1 = \text{M1}*\sin(b1);
12
13 //from Appendix B, for Mn, 1 = 2.05, we have
14 \text{ Mn}_2 = 0.7157;
15 p_ratio1 = 2.32;
16 T_{ratio1} = 1.294;
17 M2 = Mn_2/sin(b1-theta1);
18
19 //\text{now}
20 \text{ theta2} = 10*\%pi/180;
21
\frac{1}{22} //from fig. 9.9
23 b2 = 27.3*\%pi/180;
24 phi = b2 - theta2;
25
26 //from Appendix B
27 p_{ratio2} = 1.991;
28 T_{ratio2} = 1.229;
29 \text{ Mn}_3 = 0.7572;
30 M3 = Mn_3/\sin(b2-theta2);
31
32 / thus
33 p3 = p_ratio1*p_ratio2*p1;
34 T3 = T_ratio1*T_ratio2*T1;
35
36 printf("\nRESULTS\n----\n
                                        p3 = \%1.2 f x
      10^5 \text{ N/m} 2 \text{ n}
                            T3 = \%3.0 f K n, p3/1e5, T3)
```

Scilab code Exa 9.8 Calculation of mach number pressure temperature and stagnation

```
1 // All the quantities are expressed in SI units
2
3 M1 = 1.5; // upstream mach
```

```
number
4 theta = 15*\%pi/180;
                                          //deflection angle
                                          //ambient pressure
5 p1 = 1;
      in atm
6 \text{ T1} = 288;
                                          //ambient
      temperature
7
8 //from appendix C, for M1 = 1.5 we have
9 v1 = 11.91*\%pi/180;
10
11 / \text{from eq.} (9.43)
12 	 v2 = v1 + theta;
13
14 //for this value of v2, from appendix C
15 M2 = 2;
16
17 //from Appendix A for M1 = 1.5 and M2 = 2.0, we have
18 p2 = 1/7.824*1*3.671*p1;
19 T2 = 1/1.8*1*1.45*T1;
20 p0_1 = 3.671*p1;
21 p0_2 = p0_1;
22 \text{ TO}_1 = 1.45*\text{T1};
23 \text{ TO}_2 = \text{TO}_1;
24
\frac{25}{\text{from fig. }} 9.25, we have
                                         //Angle of forward
26 \text{ fml} = 41.81;
      Mach line
27 \text{ rml} = 30 - 15;
                                         //Angle of rear Mach
       line
28
29 printf("\nRESULTS\n----\n
                                                p2 = \%1.3 f atm
                  T2 = \%3.0 f K n
                                           p0, 2 = \%1.3 f atm 
                 T0,2 = \%3.1 f \dot{K} n
                                           Angle of forward
       Mach line = \%2.2 \,\mathrm{f} degrees\n
                                                Angle of rear
       Mach line = \%2.0 \,\mathrm{f} degrees", p2, T2, p0_2, T0_2, fml,
      rml)
```

 ${f Scilab\ code\ Exa\ 9.9}$ Calculation of mach number and pressure behind a compression w

```
1 // All the quantities are expressed in SI units
3 M1 = 10;
                                     //upstream mach
      number
4 theta = 15*\%pi/180;
                                       //deflection angle
                                       //ambient pressure
5 p1 = 1;
      in atm
7 //from appendix C, for M1 = 10 we have
8 v1 = 102.3*\%pi/180;
10 //in region 2
11 	 v2 = v1 - theta;
12
13 // for this value of v2, from appendix C
14 M2 = 6.4;
15
16 //from Appendix A for M1 = 10 and M2 = 6.4, we have
17 p2 = 1/(2355)*1*42440*p1;
18
19 printf ("\nRESULTS\n---\n
                                            M2 = \%1.1 \, f \setminus n
             p2 = \%2.2 f atm n, M2, p2)
```

 ${
m Scilab\ code\ Exa\ 9.10}$ Calculation of mach number static pressure and stagnation pre-

```
5 p1 = 1;
                                      //ambient pressure
     in atm
7 //from fig 9.9, for M1 = 10 and theta = 15 we have
8 b = 20*\%pi/180;
9 \quad Mn_1 = M1*sin(b);
10
11 //from Appendix B, for Mn, 1 = 3.42
12 \text{ Mn}_2 = 0.4552;
13 M2 = Mn_2/sin(b-theta);
14 p2 = 13.32*p1;
15
16 //from Appendix A, for M1 = 10
17 p0_2 = 0.2322*42440*p1;
18
                                        M2 = \%1.2 f n
19 printf("\nRESULTS\n----\n
             p2 = \%2.2 f atm n
                                     p0,2 = \%1.2 f x
     10^3 atmn, M2, p2, p0_2/1e3)
```

 ${f Scilab\ code\ Exa\ 9.11}$ Calculation of the lift and drag coefficients of a flat plate

```
14 //for this value of v2, from appendix C
15 \quad M2 = 3.27;
16
17 //from Appendix A for M1 = 3 and M2 = 3.27, we have
18 p_{ratio1} = 36.73/55;
19
\frac{20}{\text{from fig. }} 9.9, for M1 = 3 and theta = 5
21 b = 23.1*\%pi/180;
22 \quad Mn_1 = M1*sin(b);
23
24 //from Appendix B
25 p_ratio2 = 1.458;
26
27 // thus
28 c_1 = 2/gam/(M1^2)*(p_ratio2-p_ratio1)*cos(alpha);
30 c_d = 2/gam/(M1^2)*(p_ratio2-p_ratio1)*sin(alpha);
31
32 printf("\nRESULTS\n----\nThe lift and drag
      coefficients are given by: \n
                                              cl = \%1.3 f \ n
              cd = \%1.3 f n, c_1, c_d
```

Chapter 10

Compressible Flow Through Nozzles Diffusers and Wind Tunnels

 ${
m Scilab\ code\ Exa\ 10.1\ Calculation\ of\ mach\ number\ pressure\ and\ temperature\ at\ the\ normalised$

```
1 // All the quantities are expressed in Si units
                                                     //exit to
3 	mtext{ area_ratio} = 10.25;
       throat area ratio
                                                     //
4 p0 = 5;
      reservoir pressure in atm
5 \text{ TO} = 333.3;
                                                     //
      reservoir temperature
7 //from appendix A, for an area ratio of 10.25
8 \text{ Me} = 3.95;
                                                     //exit
      mach number
9 \text{ pe} = 0.007*p0;
                                                     //exit
      pressure
10 Te = 0.2427*T0;
                                                     //exit
      temperature
11
```

```
12 printf("\nRESULTS\n----\n Me = \%1.2 f\n pe = \%1.3 f atm\n Te = \%2.1 f K", Me, pe, Te)
```

 ${
m Scilab\ code\ Exa\ 10.2}$ Calculation of isentropic flow conditions through a CD nozzle

```
1 // All the quantities are expressed in Si units
                                                           //exit to
3 area_ratio = 2;
        throat area ratio
4 p0 = 1;
       reservoir pressure in atm
5 \text{ TO} = 288;
                                                           //
       reservoir temperature
7 //(a)
8 //since M = 1 at the throat
9 \text{ Mt} = 1;
                                                           //
10 \text{ pt} = 0.528*p0;
       pressure at throat
11 \text{ Tt} = 0.833*T0;
                                                           //
       temperature at throat
12
13 //from appendix A for supersonic flow, for an area
       ratio of 2
                                                           //exit
14 \text{ Me} = 2.2;
      mach number
15 \text{ pe} = 1/10.69*p0;
                                                           //exit
       pressure
16 \text{ Te} = 1/1.968*T0;
                                                           //exit
       temperature
17
18 printf("\nRESULTS\n----\nAt throat:\n
                                                                    Mt
       = \%1.1 \, f \setminus n \qquad pt = \%1.3 \, f \, atm \setminus n \qquad Tt = \%3 .0 f K\n\nFor supersonic exit:\\n Me = \%1.1 f
                                                             Tt = \%3
```

```
pe = \%1.4 \text{ f atm} \text{n} Te = \%3.0 \text{ f K} \text{n}"
       ,Mt,pt,Tt,Me,pe,Te)
19
20 // (b)
21 //from appendix A for subonic flow, for an area
       ratio of 2
22 \text{ Me} = 0.3;
                                                        //exit
      mach number
23 \text{ pe} = 1/1.064*p0;
                                                         //exit
      pressure
24 \text{ Te} = 1/1.018*T0;
                                                         //exit
      temperature
25
26 printf("\nFor subrsonic exit:\n Me = \%1.1 \text{ f} \setminus n
               pe = \%1.2 f atm n
                                             Te = \%3.1 f K, Me,
      pe,Te)
```

Scilab code Exa 10.3 Calculation of throat and exit mach numbers for the nozzle us

```
1 // All the quantities are expressed in Si units
                                                  //exit to
3 area_ratio = 2;
       throat area ratio
4 p0 = 1;
      reservoir pressure in atm
5 \text{ TO} = 288;
      reservoir temperature
6 \text{ pe} = 0.973;
                                                  //exit
      pressure in atm
                                                  //ratio
8 p_ratio = p0/pe;
      of reservoir to exit pressure
10 //from appendix A for subsonic flow, for an pressure
       ratio of 1.028
```

```
// exit
11 Me = 0.2;
      mach number
                                                       //A_exit/
12 area_ratio_exit_to_star = 2.964;
      Astar
13
14 // thus
15 area_ratio_throat_to_star = area_ratio_exit_to_star/
                                 //A_{\text{exit}}/A_{\text{star}}
      area_ratio;
16
  //from appendix A for subsonic flow, for an area
       ratio of 1.482
18 \text{ Mt} = 0.44;
                                                       //throat
      mach number
19
20 printf("\nRESULTS\n----\n
                                                Me = \%1.1 f n
               Mt \,=\, \% 1.2\; f \,\backslash\, n , Me , Mt )
```

 ${
m Scilab\ code\ Exa\ 10.4}$ Calculation of thrust for the given rocket engine and the noz

```
1 // All the quantities are expressed in SI units
3 p0 = 30*101000;
                                                    //
     reservoir pressure
4 \text{ TO} = 3500;
     reservoir temperature
5 R = 520;
     specific gas constant
6 \text{ gam} = 1.22;
                                                    //ratio
     of specific heats
                                                    //rocket
7 \text{ A\_star} = 0.4;
     nozzle throat area
8 \text{ pe} = 5529;
                                                    //rocket
     nozzle exit pressure equal to ambient pressure at
      20 km altitude
9
```

```
10 //(a)
11 //the density of air in the reservoir can be
                     calculated as
12 \text{ rho0} = p0/R/T0;
13
14 / \text{from eq.} (8.46)
15 rho_star = rho0*(2/(gam+1))^(1/(gam-1));
16
17 / \text{from eq.} (8.44)
18 T_{star} = T0*2/(gam+1);
19 a_star = sqrt(gam*R*T_star);
20 u_star = a_star;
21 m_dot = rho_star*u_star*A_star;
22
23 //rearranging eq. (8.42)
24 Me = sqrt(2/(gam-1)*(((p0/pe)^((gam-1)/gam)) - 1));
25 Te = T0/(1+(gam-1)/2*Me*Me);
26 \text{ ae} = \text{sqrt}(\text{gam}*\text{R}*\text{Te});
27 ue = Me*ae;
28
29 //thus the thrust can be calculated as
30 T = m_dot*ue;
31 \text{ T_lb} = \text{T*0.2247};
32
33 //(b)
34 //rearranging eq.(10.32)
35 Ae = A_star/Me*((2/(gam+1)*(1+(gam-1)/2*Me*Me))^((
                     gam+1)/(gam-1)/2));
36
37 printf("\nRESULTS\n-----\n(a) The thrust of the
                                                                                               T = \%1.2 f x 10^6 N = \%6.0 f lb
                     rocket is:\n
                     \n \n \n \begin{picture}(n) n \begin{picture}(b) n \begin{picture}(b) n \begin{picture}(b) n \begin{picture}(b) n \begin{picture}(c) 
                     \%2.1\,\mathrm{f} \mathrm{m2}\n", T/1e6, T_lb, Ae)
```

Scilab code Exa 10.5 Calculation of mass flow through the rocket engine used in the

```
1 // All the quantities are expressed in SI units
3 p0 = 30*101000;
      reservoir pressure
4 \text{ TO} = 3500;
      reservoir temperature
5 R = 520;
      specific gas constant
                                                   //ratio
6 \text{ gam} = 1.22;
      of specific heats
                                                   //rocket
7 \text{ A_star} = 0.4;
      nozzle throat area
9 //the mass flow rate using the closed form
      analytical expression
10 //from problem 10.5 can be given as
11 m_{dot} = p0*A_{star}*sqrt(gam/R/T0*((2/(gam+1))^((gam+1)))
      +1)/(gam-1))));
12
13 printf("\nRESULTS\n-----\nThe mass flow rate is
      :\n
                  m_{dot} = \%3.1 f kg/s/n", m_dot)
```

 ${
m Scilab\ code\ Exa\ 10.6}$ Calculation of the ratio of diffuser throat area to the nozzl

```
//All the quantities are expressed in SI units
//Mach number
//Mach number
//for this value M, for a normal shock, from
Appendix B
po_ratio = 0.7209;
//thus
area_ratio = 1/po_ratio;
//10
```

```
11 printf("\nRESULTS\n----\nThe diffuser throat to nozzle throat area ratio is:\n At,2/At,1 = \%1.3\,\mathrm{f}",area_ratio)
```

Subsonic Compressible Flow over Airfoils Linear Theory

 ${f Scilab\ code\ Exa\ 11.1\ Calculation\ of\ pressure\ coefficient\ on\ a\ point\ on\ an\ airfoil}$

Scilab code Exa 11.2 Calculatiom of the lift coefficient for an airfoil with compr

```
1 // All the quantities are expressed in SI units
3 cl_incompressible = 2*\%pi;
                                                        //lift
      curve slope
4 \text{ M\_inf} = 0.7;
                                                        //Mach
      number
5
6 / \text{from eq.} (11.52)
7 cl_compressible = cl_incompressible/sqrt(1-M_inf^2);
               //compressible lift curve slope
8
9 printf("\nRESULTS\n----\n(a)\The cl after
      compressibility corrections is:\n
                                                     cl = \%1
      .1\,\mathrm{falpha}\,\backslash\mathrm{n}",cl_compressible)
```

Linearized Supersonic Flow

Scilab code Exa 12.1 Calculation of lift and drag coefficients for a flat plate in

Scilab code Exa 12.2 Calculation of angle of attack of a Lockheed F104 wing in a s

```
1 // All the quantities are expressed in SI units
3 \text{ M\_inf} = 2;
                                        //freestream mach
      number
4 rho_inf = 0.3648;
                                        //freestream
      density at 11 km altitude
5 \text{ T_inf} = 216.78;
                                        //freestream
      temperature at 11 km altitude
                                        //ratio of specific
6 \text{ gam} = 1.4;
      heats
7 R = 287;
                                        //specific gas
      constant
8 m = 9400;
                                        //mass of the
      aircraft
                                        //acceleratio due
9 g = 9.8;
      to gravity
                                        //weight of the
10 \quad W = m * g;
      aircraft
                                        //wing planform
11 S = 18.21;
      area
12
13 // thus
14 a_inf = sqrt(gam*R*T_inf);
15 V_inf = M_inf*a_inf;
16 \text{ q\_inf} = 1/2*\text{rho\_inf}*V_inf^2;
17
18 //thus the aircraft lift coefficient is given as
19 C_1 = W/q_inf/S;
20
21 alpha = 180/\%pi*C_1/4*sqrt(M_inf^2 - 1);
22
23 printf("\nRESULTS\n----\nThe angle of attack of
       the wing is:\n
                               alpha = \%1.2 f degrees \n",
      alpha)
```

Scilab code Exa 12.3 Calculation of the airfoil skin friction drag coefficient and

```
1 // All the quantities are expressed in SI units
2 // All the quantities are expressed in SI units
3
4 //(a)
5 \text{ M\_inf} = 2;
                                         //freestream mach
      number
6 \text{ rho\_inf} = 0.3648;
                                         //freestream
      density at 11 km altitude
                                         //freestream
7 \text{ T_inf} = 216.78;
      temperature at 11 km altitude
8 \text{ gam} = 1.4;
                                         //ratio of specific
       heats
9 R = 287;
                                         //specific gas
      constant
                                         //mass of the
10 m = 9400;
      aircraft
                                         //acceleratio due
11 g = 9.8;
      to gravity
                                         //weight of the
12 \quad W = m * g;
      aircraft
                                         //wing planform
13 S = 18.21;
      area
                                         //chord length of
14 c = 2.2;
      the airfoil
15 \text{ alpha} = 0.035;
                                         //angle of attack
      as calculated in ex. 12.2
  T0 = 288.16;
                                         //ambient
      temperature at sea level
17 \text{ mue0} = 1.7894e-5;
                                         //reference
      viscosity at sea level
18
19 //thus
20 a_inf = sqrt(gam*R*T_inf);
21 V_inf = M_inf*a_inf;
22
\frac{23}{a} //according to eq.(15.3), the viscosity at the given
```

```
temperature is
24 mue_inf = mue0*(T_inf/T0)^1.5*(T0+110)/(T_inf+110);
26 //thus the Reynolds number can be given by
27 Re = rho_inf*V_inf*c/mue_inf;
28
29 //from fig.(19.1), for these values of Re and M, the
       skin friction coefficient is
30 \text{ Cf} = 2.15e-3;
31
32 //thus, considering both sides of the flat plate
33 \text{ net\_Cf} = 2*Cf;
34
35 //(b)
36 c_d = 4*alpha^2/sqrt(M_inf^2 - 1);
38 printf("\nRESULTS\n---\\n(a)\n Net Cf =
     \%1.1 \text{ f x } 10^-3 \ln(b) \ln
                                cd = \%1.2 f \times 10^{-3} n
      ,net_Cf *1e3,c_d *1e3)
```

Elements of Hypersonic Flow

Scilab code Exa 14.1 Calculation of the pressure coefficients on the top and botto

```
1 // All the quantities are expressed in SI units
3 M1 = 8;
                                   //mach number
                                   //anlge of attack
4 \text{ alpha} = 15*\%pi/180;
5 theta= alpha;
6 \text{ gam} = 1.4;
8 //(a)
9 // for M = 8
10 \text{ v1} = 95.62 * \% \text{pi} / 180;
11 	 v2 = v1 + theta;
12
13 //from Appendix C
14 M2 = 14.32;
15
16 //from Appendix A, for M1 = 8 and M2 = 14.32
17 p_{\text{ratio}} = 0.9763e4/0.4808e6;
18
19 // from eq. (11.22)
20 Cp2 = 2/gam/M1^2*(p_ratio - 1);
```

```
\frac{1}{22} // for M1 = 8 and theta = 15
23 b = 21*\%pi/180;
24 \quad Mn_1 = M1*sin(b);
25
26 //for this value of Mn,1, from appendix B
27 p_ratio2 = 9.443;
28
29 // thus
30 Cp3 = 2/gam/M1^2*(p_ratio2 - 1);
31
32 c_n = Cp3 - Cp2;
33
34 c_1 = c_n * cos(alpha);
35
36 c_d = c_n * sin(alpha);
37
38 L_by_D = c_1/c_d;
39
40 printf("\nESULTS\n——\n(a) The exact results
      from the shock-expansion theory are:\n
       = \%1.4 \text{ f} \text{ n}
                           Cp3 = \%1.4 f \ n cl = \%1.4 f
                cd = \%1.4 f n
                                   L/D = \%1.2 \text{ f} \text{ n}", Cp2,
      Cp3, c_1, c_d, L_by_D)
41
42 // (b)
43 //from Newtonian theory, by eq.(14.9)
44 Cp3 = 2*sin(alpha)^2;
45 \text{ Cp2} = 0;
46 c_1 = (Cp3 - Cp2)*cos(alpha);
47 c_d = (Cp3 - Cp2)*sin(alpha);
48 L_by_D = c_1/c_d;
49
50 printf("\n(b) The results from Newtonian theory are
                   Cp2 = \%1.4 \text{ f} \ 
      :\n
                                            Cp3 = \%1.4 f \ n
                               cd = \%1.4 f \setminus n
               cl = \%1.4 f \setminus n
                                                             L/
      D = \%1.2 \text{ f} \ n", Cp2, Cp3, c_1, c_d, L_by_D)
```

Some Special Cases Couette and Poiseuille Flows

 ${f Scilab\ code\ Exa\ 16.1}$ Calculation of the velocity in the middle of the flow the she

```
1 // All the quantities are expressed in SI units
                                               //coefficient of
3 \text{ mue} = 1.7894e-5;
        viscosity
                                               //velocity of
 4 \text{ ue} = 60.96;
      upper plate
5 D = 2.54e-4;
                                               //distance
      between the 2 plates
                                               //temperature of
 6 \quad T_w = 288.3;
       the plates
 7 \text{ Pr} = 0.71;
                                               //Prandlt number
                                               //\operatorname{specific} heat
8 \text{ cp} = 1004.5;
       at constant pressure
9
10 //(a)
11 // from eq.(16.6)
12 u = ue/2;
13
14 //(b)
```

```
15 / \text{from eq.} (16.9)
16 \text{ tow_w} = \text{mue*ue/D};
17
18 //(c)
19 // from eq. (16.34)
20 T = T_w + Pr*ue^2/8/cp;
21
22 // (d)
23 //from eq.(16.35)
24 \text{ q_w_dot} = \text{mue/2*ue^2/D};
25
26 // (e)
27 //from eq.(16.40)
28 T_aw = T_w + Pr/cp*ue^2/2;
29
30 printf("\nRESULTS\n----\n(a)\n
                                                   u = \%2.2 f
        m/s \setminus n(b) \setminus n
                               tow_w = \%1.1 f N/m2 \setminus n(c) \setminus n
               T = \%3.1 f K \setminus n(d) \setminus n q_w_dot = \%3.1 f
                                  Taw = \%3.1 f K", u, tow_w, T,
       Nm-1s-1 n (e) n
       q_w_dot, T_aw)
```

 ${
m Scilab\ code\ Exa\ 16.2}$ Calculation of the heat transfer to either plate for the give

```
1 // All the quantities are expressed in SI units
                                           //coefficient of
3 \text{ mue} = 1.7894e-5;
      viscosity
4 \text{ Me} = 3;
                                            //mach number of
      upper plate
5 D = 2.54e-4;
                                            //distance
     between the 2 plates
6 pe = 101000;
                                            //ambient
     pressure
7 \text{ Te} = 288;
                                            //temperature of
      the plates
```

```
8 \text{ Tw} = \text{Te};
9 \text{ gam} = 1.4;
                                             //ratio of
      specific heats
10 R = 287;
                                             //specific gas
      constant
11 \text{ Pr} = 0.71;
                                             //Prandlt number
12 \text{ cp} = 1004.5;
                                             //specific heat
      at constant pressure
13 \text{ tow_w} = 72;
                                             //shear stress
      on the lower wall
14
15 //the velocity of the upper plate is given by
16 ue = Me*sqrt(gam*R*Te);
17
18 //the density at both plates is
19 rho_e = pe/R/Te;
20
21 //the coefficient of skin friction is given by
22 	 cf = 2*tow_w/rho_e/ue^2;
23
24 //from eq.(16.92)
25 C_H = cf/2/Pr;
26
27 / \text{from eq.} (16.82)
28 \text{ h_aw = cp*Te + Pr*ue^2/2};
29
30 h_w = cp*Tw;
31
32 \quad q_w_dot = rho_e*ue*(h_aw-h_w)*C_H;
33
34 printf("\nRESULTS\n----\nThe heat transfer is
                            q_w_dot = \%1.2 f \times 10^4 W/m2\n"
      given by:\n
      ,q_w_dot/1e4)
```

Laminar Boundary Layers

 ${f Scilab\ code\ Exa\ 18.1\ Calculation\ of\ the\ friction\ drag\ on\ a\ flat\ plate\ for\ the\ given the given the code of the code of$

```
1 // All the quantities are expressed in SI units
                                          //freestream
3 p_{inf} = 101000;
     pressure
                                          //freestream
4 \text{ T_inf} = 288;
      temperature
                                          //chord length of
5 c = 2;
      the plate
6 S = 40;
                                          //planform area
     of the plate
                                          //coefficient of
7 \text{ mue\_inf} = 1.7894e-5;
      viscosity at sea level
                                          //ratio of
8 \text{ gam} = 1.4;
      specific heats
                                          //specific gas
9 R = 287;
      constant
10
11 //the freestream density is
12 rho_inf = p_inf/R/T_inf;
13
14 //the speed of sound is
```

```
15 a_inf = sqrt(gam*R*T_inf);
16
17 //(a)
18 \ V_{inf} = 100;
19
20 //thus the mach number can be calculated as
21 M_inf = V_inf/a_inf;
22
23 //the Reynolds number at the trailing is given as
24 Re_c = rho_inf*V_inf*c/mue_inf;
25
26 //from eq.(18.22)
27 \text{ Cf} = 1.328/sqrt(Re_c);
28
29 //the friction drag on one surface of the plate is
      given by
30 D_f = 1/2*rho_inf*V_inf^2*S*Cf;
31
32 //the total drag generated due to both surfaces is
33 D = 2*D_f;
34
35 printf("\nRESULTS\n----\nThe total frictional
                            D = \%3.1 f N n, D)
      drag is:\n(a)\n
36
37 //(b)
38 \ V_{inf} = 1000;
39
40 //thus the mach number can be calculated as
41 M_inf = V_inf/a_inf;
42
43 //the Reynolds number at the trailing is given as
44 Re_c = rho_inf*V_inf*c/mue_inf;
45
46 // from eq.(18.22)
47 Cf = 1.2/sqrt(Re_c);
48
49 //the friction drag on one surface of the plate is
      given by
```

Scilab code Exa 18.2 Calculation of the friction drag on a flat plate using the re

```
1 // All the quantities are expressed in SI units
                                     //Prandlt number of
3 \text{ Pr} = 0.71;
      air at standard conditions
4 Pr_star = Pr;
5 \text{ Te} = 288;
                                     //temperature of the
      upper plate
6 \text{ ue} = 1000;
                                     //velocity of the
      upper plate
                                     //Mach number of flow
7 \text{ Me} = 2.94;
      on the upper plate
8 p_star = 101000;
9 R = 287;
                                     //specific gas
      constant
10 \text{ TO} = 288;
                                     //reference
      temperature at sea level
11 \text{ mue0} = 1.7894e-5;
                                     //reference viscosity
      at sea level
12 c = 2;
                                     //chord length of the
      plate
                                     //plate planform area
13 S = 40;
14
15 //recovery factor for a boundary layer is given by
      eq.(18.47) as
16 r = sqrt(Pr);
17
```

```
18 //rearranging eq.(16.49), we get for M=2.94
19 T_{aw} = Te*(1+r*(2.74-1));
20
21 / \text{from eq.} (18.53)
22 \text{ T_star} = \text{Te*}(1 + 0.032*\text{Me}^2 + 0.58*(\text{T_aw/Te}-1));
23
24 //from the equation of state
25 rho_star = p_star/R/T_star;
26
27 / \text{from eq.} (15.3)
28 \text{ mue\_star} = \text{mue0*(T\_star/T0)^1.5*(T0+110)/(T\_star)}
      +110);
29
30 // thus
31 Re_c_star = rho_star*ue*c/mue_star;
32
\frac{33}{\text{from eq.}} (18.22)
34 Cf_star = 1.328/sqrt(Re_c_star);
35
36 //hence, the frictional drag on one surface of the
      plate is
37 D_f = 1/2*rho_star*ue^2*S*Cf_star;
38
39 //thus, the total frictional drag is given by
40 D = 2*D_f;
41
42 printf("\nRESULTS\n----\nThe total frictional
                           D = \%4.0 f N n, D)
      drag is:\n
```

 ${
m Scilab\ code\ Exa\ 18.3\ Calculation\ of\ the\ friction\ drag\ on\ a\ flat\ plate\ using\ the\ Me}$

```
4 Pr_star = Pr;
5 Te = 288;
                                        //temperature of the
      upper plate
                                        //velocity of the
6 \text{ ue} = 1000;
      upper plate
7 \text{ Me} = 2.94;
                                        //Mach number of flow
      on the upper plate
8 p_star = 101000;
9 R = 287;
                                        //specific gas
      constant
                                        //ratio of specific
10 \text{ gam} = 1.4;
      heats
11 \text{ TO} = 288;
                                        //reference
       temperature at sea level
                                        //reference viscosity
12 \text{ mue0} = 1.7894e-5;
      at sea level
13 c = 2;
                                        //chord length of the
      plate
14 S = 40;
                                        //plate planform area
15
16 //recovery factor for a boundary layer is given by
      eq.(18.47) as
17 r = sqrt(Pr);
18
19 / \text{from ex.} (8.2)
20 \text{ T_aw} = \text{Te} * 2.467;
21 \quad T_w = T_{aw};
22
23 //from the Meador-Smart equation
24 \text{ T_star} = \text{Te*}(0.45 + 0.55*\text{T_w/Te} + 0.16*\text{r*}(\text{gam}-1)/2*
      Me^2);
25
26 //from the equation of state
27 rho_star = p_star/R/T_star;
28
29 / \text{from eq.} (15.3)
30 \text{ mue\_star} = \text{mue0*(T\_star/T0)^1.5*(T0+110)/(T\_star)}
      +110);
```

```
31
32 / thus
33 Re_c_star = rho_star*ue*c/mue_star;
34
35 / \text{from eq.} (18.22)
36 \text{ Cf\_star} = 1.328/\text{sqrt}(\text{Re\_c\_star});
37
38 //hence, the frictional drag on one surface of the
      plate is
39 D_f = 1/2*rho_star*ue^2*S*Cf_star;
40
41 //thus, the total frictional drag is given by
42 D = 2*D_f;
43
44 printf("\nRESULTS\n-----\nThe total frictional
                       D = \%4.0 f N n, D)
      drag is: \n
```

Turbulent Boundary Layers

Scilab code Exa 19.1 Calculation of the friction drag on a flat plate assuming tur

```
1 // All the quantities are expressed in SI units
3 //(a)
                                          //as obtained from
4 \text{ Re_c} = 1.36e7;
      ex. 18.1a
5 rho_inf = 1.22;
                                          //freestream air
      denstiy
6 S = 40;
                                          //plate planform
      area
8 / \text{hence}, from eq. (19.2)
9 \text{ Cf} = 0.074/\text{Re_c^0.2};
10
11 \ V_{inf} = 100;
12
13 //hence, for one side of the plate
14 D_f = 1/2*rho_inf*V_inf^2*S*Cf;
15
16 //the total drag on both the surfaces is
17 D = 2*D_f;
18
```

```
19 printf("\nRESULTS\n----\nThe total frictional
      drag is:\langle n(a) \rangle n D = %4.0 f N\n",D)
20
21 //(b)
22 \text{ Re_c} = 1.36 \text{ e8};
                                          //as obtained from
       ex. 18.1b
23
24 //hence, from fig 19.1 we have
25 \text{ Cf} = 1.34e-3;
26
27 \text{ V_inf} = 1000;
28
29 //hence, for one side of the plate
30 D_f = 1/2*rho_inf*V_inf^2*S*Cf;
31
32 //the total drag on both the surfaces is
33 D = 2*D_f;
34
35 printf("\n(b)\n D = \%5.0 \text{ f N}\n",D)
```

 ${
m Scilab\ code\ Exa\ 19.2\ Calculation\ of\ the\ friction\ drag\ on\ a\ flat\ plate\ assuming\ tur}$

```
11
12  //hence, for one side of the plate
13  D_f = 1/2*rho_star*ue^2*S*Cf_star;
14
15  //the total drag on both the surfaces is
16  D = 2*D_f;
17
18  printf("\nRESULTS\n---\nThe total frictional drag is:\n D = %5.0 f N\n",D)
```

Scilab code Exa 19.3 Calculation of the friction drag on a flat plate for a turbul

```
1 // All the quantities are expressed in SI units
2
3 \text{ Me} = 2.94;
                                              //mach number of
       the flow over the upper plate
4 \text{ ue} = 1000;
                                              //temperature of
5 \text{ Te} = 288;
       the upper plate
6 \text{ ue} = 1000;
                                              //velocity of
      the upper plate
7 S = 40;
                                              //plate planform
       area
8 \text{ Pr} = 0.71;
                                              //Prandlt number
       of air at standard condition
                                              //ratio of
9 \text{ gam} = 1.4;
      specific heats
10
11 //the recovery factor is given as
12 r = Pr^{(1/3)};
13
14 // \text{for } M = 2.94
15 T_{aw} = Te*(1+r*(2.74-1));
16 \quad T_w = T_aw;
                                               //since the
      flat plate has an adiabatic wall
```

```
17
18 //from the Meador-Smart equation
19 T_{star} = Te*(0.5*(1+T_w/Te) + 0.16*r*(gam-1)/2*Me^2)
20
21 //from the equation of state
22 rho_star = p_star/R/T_star;
23
24 / \text{from eq.} (15.3)
25 \text{ mue\_star} = \text{mue0*(T\_star/T0)^1.5*(T0+110)/(T\_star)}
      +110);
26
27 / thus
28 Re_c_star = rho_star*ue*c/mue_star;
29
30 / \text{from eq.} (18.22)
31 Cf_star = 0.02667/Re_c_star^0.139;
32
33 //hence, the frictional drag on one surface of the
      plate is
34 D_f = 1/2*rho_star*ue^2*S*Cf_star;
36 //thus, the total frictional drag is given by
37 D = 2*D_f;
38
39 printf("\nRESULTS\n----\nThe total frictional
                         D = \%5.0 f N n, D)
      drag is:\n
```