Scilab Textbook Companion for Engineering Thermodynamics Fundamental And Advanced Topics by Kavati Venkateswarlu¹

Created by
Sonam Mishra
B.Tech
Chemical Engineering
BIT SINDRI
Cross-Checked by
Scilab Tbc Team

June 13, 2022

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Engineering Thermodynamics Fundamental And Advanced Topics

Author: Kavati Venkateswarlu

Publisher: Publisher: Crc Press , Place : Boca Raton

Edition: 1

Year: 2020

ISBN: 978-1-003-12836-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Introduction and Basic Concepts	5
2	Temperature Zeroth Law of Thermodynamics	15
3	Energy and the First Law of Thermodynamics	23
4	Properties of Pure Substances	43
5	First Law Analysis of Control Volumes	57
6	Second Law of Thermodynamics	71
7	Entropy	84
8	Properties of Gases and Gas Mixtures	104
9	Concept of Available Energy Exergy	126
10	Vapor and Advanced Power Cycles	144
11	Gas Power Cycles	166
12	Refrigeration Cycles	185

13 Thermodynamic Relations	199
14 Psychrometry	206

List of Scilab Codes

Exa 1.1	Determine the absolute pressure	5
Exa 1.2	Convert the following into kPa	7
Exa 1.3	Find gauge and absolute pressure and depth	8
Exa 1.4	Determine the absolute pressure	11
Exa 1.5	Determine the absolute pressure	11
Exa 1.6	Determine the pressure inside the container	13
Exa 2.1	Express the Fahrenheit temperature change	
	in Celsius and Kelvin and Rankine unit	15
Exa 2.2	Find absolute fire point in Celsius and Kelvin	
	and Rankine unit	17
Exa 2.3	Determine temperature corresponding to ther-	
	mometric property value given	18
Exa 2.4	Determine the constants A and B in R	20
Exa 3.1	Estimate the work done by the gas on the	
	piston	23
Exa 3.2	Determine the magnitude and direction of third	
	work transfer	26
Exa 3.3	Determine the specific heat Cp and Cv	26
Exa 3.4	Estimate the net heat transfer	28
Exa 3.5	Determine the heat transfer	30
Exa 3.6	Find total heat to be removed from fish and	
	total latent heat to be removed	31
Exa 3.7	Estimate the time required for cooling milk	33
Exa 3.8	Estimate the work done for given conditions	34
Exa 3.9	Calculate net work done and heat transfer	
	and show Qcycle and Wcycle are equal	36
Exa 3.10	Determine the outer surface temperature	38
Exa 3.11	Find the thermal conductivity of the plate .	40

Exa 3.12	Find the rate of heat transfer	41
Exa 4.1	Determine specific volume temperature en-	
	thalpy and entropy and internal energy	43
Exa 4.2	Determine change in enthalpy entropy inter-	
	nal energy and volume	45
Exa 4.3	Compute ideal power of turbine	47
Exa 4.4	Determine power of turbine and diameter at	-
	inlet and exit	49
Exa 4.5	Calculate amount of heat required to produce	
L 110	1kg of steam under 3 condition	51
Exa 4.6	Determine dryness fraction and maximum mois-	01
LAG 1.0	ture	54
Exa 4.7	Determine the quality of steam in the main	55
Exa 5.1	Find Velocity and Mass flow rate and Area.	57
Exa 5.1	Estimate the power output for steady flow	01
LAG 0.2	conditions	59
Exa 5.3	Calculate power and inlet and outlet cross	00
Exa 0.0	sectional area	61
Exa 5.4	Estimate heat transfer rate in compressor and	01
Exa 5.4	cooler	63
Exa 5.5	Estimate velocity of air stream leaving the	05
Exa 5.5	nozzle	64
Exa 5.6	Determine the mass flow rate of air and tem-	04
Exa 5.0		67
D = 7	perature of air at the exit of diffuser	
Exa 5.7	Determine mass flow rate of the cooling water	68
Exa 6.1	Determine the power required to drive the	71
E 6 0	plant	71
Exa 6.2	Estimate the monthly bill of the refrigerator	74
Exa 6.3	Determine the heat input required to heat en-	
	gine and heat available for heating by the heat	71
D 6.4	pump	74
Exa 6.4	Determine ratio between heat transfer to cir-	70
D 0 5	culating water and heat input to engine	76
Exa 6.5	Estimate heat rejected to the surroundings	
.	and the engine efficiency	78
Exa 6.6	Estimate minimum work input required	80
Exa 6.7	Evaluate the power required to remove heat	
	in 5 hours	82

Exa 7.1	Determine the increase in entropy of water .	84
Exa 7.2	Determine heat supplied and work done and	
	steam flow rate	86
Exa 7.3	Estimate the entropy change of the system .	88
Exa 7.4	Estimate the entropy change of the universe	90
Exa 7.5	Find which of the heat transfer process is re-	
	versible	92
Exa 7.6	Determine the power of turbine	93
Exa 7.7	Determine the entropy increase of the universe	95
Exa 7.8	Find isentropic efficiency of turbine and mass	
	flow rate of steam	97
Exa 7.9	Find isentropic efficiency of compressor and	
	power required to drive compressor	99
Exa 7.10	Find Isentropic efficiency Exit temperature	
	and Actual exit velocity of air	101
Exa 8.1	Determine the pressure exerted by N2 gas .	104
Exa 8.2	Evaluate Mole fraction Mass fraction and Av-	
	erage gas constant of mixture	106
Exa 8.3	Find work done and heat transfer in isother-	
	mal and adiabatic process	108
Exa 8.4	Compute change in Enthalpy Work done Heat	
	transferred and Final temperature	110
Exa 8.5	Calculate following question when heat is trans-	
	ferred to 5 kg gas	112
Exa 8.6	Determine specific volume of superheated va-	
	por	114
Exa 8.7	Determine Volume Temperature Total Work	
	and Heat transfer and Total entropy change	116
Exa 8.8	Estimate the increase in entropy due to mixing	120
Exa 8.9	Compute Specific heats and change in Inter-	
	nal energy Enthalpy and Entropy	120
Exa 8.10	Compute Final temperature Final partial pres-	
	sure of components and change in internal en-	
	ergy	122
Exa 9.1	Determine reversible power input and irre-	
T	versibility for the process	126
Exa 9.2	Calculate Actual work required Minimum work	100
	required and Irreversibility of process	128
	_	
	7	

Exa 9.3	Calculate Availability at states 1 and 2 Irre-	100
	versibility and Second law efficiency	130
Exa 9.4	Determine Exergy of steam Exergy destruc-	
	tion and Efficiency	132
Exa 9.5	Calculate following question on air expansion	
	in turbine	136
Exa 9.6	Determine temperature and rate of exergy de-	
	struction	137
Exa 9.7	Estimate the increase in unavailable energy	139
Exa 9.8	Estimate the exergy destroyed	141
Exa 10.1	Determine cycle efficiency and thermal effi-	
	ciency in both case	144
Exa 10.2	Estimate reheat pressure and efficiency and	
	steam rate	147
Exa 10.3	Compute thermal efficiency of plant	149
Exa 10.4	Calculate following question on regenerative	
	cycle	152
Exa 10.5	Compute kg of Hg per kg of cycle and effi-	
	ciency of combined cycle	155
Exa 10.6	Calculate Work Efficiency of cycle Steam rate	
	and Isentropic efficiency	158
Exa 10.7	Compute steam generation capacity and rate	
	of heat input and rejected	160
Exa 10.8	Calculate exergy destruction and second law	
	efficiency	164
Exa 11.1	Calculation on air standard Otto cycle	166
Exa 11.2	Calculation on air standard Diesel cycle	168
Exa 11.3	Calculate following question on Brayton cycle	100
2310 11.0	gas turbine plant	171
Exa 11.4	Calculate maximum temperature and percent-	111
11.1	age increase in efficiency	173
Exa 11.5	Compute the efficiency of the cycle	175
Exa 11.6	Determine efficiency of the plant	178
Exa 11.7	Calculate following question on turbojet air-	170
LAA 11.1	craft	180
Exa 11.8	Calculate following question on simple Bray-	100
тла 11.0	ton cycle	182
	ton cycle	104

Exa 12.1	Determine COP and volume and power re-	
	quired	185
Exa 12.2	Calculate following question on gas refriger-	
	ating system	187
Exa 12.3	Calculate following question on food freezing	
	system	189
Exa 12.4	Determine the steam flow rate	192
Exa 12.5	Determine COP and air mass flow rate and	
	power	194
Exa 12.6	Find total exergy destruction and in each pro-	
	cess and efficiency	195
Exa 13.1	Verify the 4th Maxwell relation	199
Exa 13.2	Evaluate enthalpy of vaporization of water .	201
Exa 13.3	Develop an expression for entropy change of	
	a gas that follows van der Waals equation .	203
Exa 13.4	Determine the saturation pressure of the re-	
	frigerant R 134a	203
Exa 14.1	Determine amount of heat transferred and amount	unt
	of steam added to air	206
Exa 14.2	Determine capacity of cooling and heating coil	
	and amount of water vapor removed	208
Exa 14.3	Estimate Partial pressure Specific humidity	
	Enthalpy and Mass	210
Exa 14.4	Using psychometric chart evaluate the follow-	
	ing	212
Exa 14.5	Determine the specific humidity	213
Exa 14.6	Calculate following question when air water	
	vapor mixture is heated at constant pressure	214
Exa 14.7	Determine mass flow rate and heat removed	216

Chapter 1

Introduction and Basic Concepts

Scilab code Exa 1.1 Determine the absolute pressure

```
1 / \text{Example } 1.1
2 //Determine the absolute pressure
3 clear
4 clc
5 / P_abs = P_atm + P_Gauge
    rho_mercury = 13600; // [kg/m^3]
    g = 9.81; //[m/s^2] acceleration due to gravity
     z = 760; //[mm]
     z1 = z*10^-3; //[m]
9
    P_atm = (rho_mercury*g*z1)/10^3 ; //[kPa]
10
        atmospheric pressure
11
     rho_oil = 800; //[kg/m^3]
12
     z2 = 5; //[m]
13
     P_{gauge} = (rho_{oil*g*z2})/10^3 ; // [kPa] gauge
        pressure
     P_abs = P_atm + P_gauge; // [kPa] absolute
14
        pressure
```

```
Console

"Absolute Pressure ="

140.63616

"kPa"
```

Figure 1.1: Determine the absolute pressure

```
"850 mm Hg gauge = "

113.4036

" kPa "

"50 cm Hg vacuum ="

66.708

"kPa"

"1.3 m H2O ="

12.753

" kPa "

" 2.5 bar ="

250.

" kPa "
```

Figure 1.2: Convert the following into kPa

```
disp('Absolute Pressure =',P_abs,'kPa');
```

${\bf Scilab} \ {\bf code} \ {\bf Exa} \ {\bf 1.2} \ {\bf Convert} \ {\bf the} \ {\bf following} \ {\bf into} \ {\bf kPa}$

```
1 //Example 1.2
2 // Convert the following into kPa
3 clear
4 clc
```

```
5 //(i) Convert 850mm Hg gauge into kPa
6 z = 850*10^{-3}; //[m]
7 rho_mercury = 13600; //[kg/m^3]
8 g = 9.81; //[m/s^2] acceleration due to gravity
9 P1 = (rho_mercury*g*z)/10^3; // [kPa]
10 disp('850 \text{ mm Hg gauge} = ', P1, 'kPa');
11 //(ii) Convert 50 cm Hg vacuum into kPa
12 h = 50*10^-2; // [m]
13 P2 = (rho_mercury*g*h)/10^3; //[kPa]
14 disp('50 cm Hg vacuum =', P2, 'kPa');
15 //(iii) Convert 1.3 m H2O into kPa
16 \quad 1 = 1.3; //[m]
17 rho_H2O = 1000; //[kg/m^3] density of H2O
18 P3 = (rho_H20*g*1)/10^3; //[kPa]
19 disp('1.3 \text{ m H2O} = ', P3, ' \text{ kPa}');
20 //(iv) Convert 2.5 bar into kPa
21 P4 = 2.5*100; //[kPa] 1 bar = 100 kPa
22 disp('2.5 bar = ',P4,'kPa');
```

Scilab code Exa 1.3 Find gauge and absolute pressure and depth

```
//Example 1.3
// Find gauge and absolute pressure and depth
clear
clc
//(i) Find gauge pressure and absolute pressure
ho_oil = 782; //[kg/m^3] density of oil
P_atm = 101.32; //[kPa] atmospheric pressure
h = 32; //[m] height
g = 9.81; //[m/s^2] acceleration due to gravity
P_gauge = (rho_oil*g*h)/10^3; //[kPa] gauge
pressure
disp('Gauge Pressure =',P_gauge,'kPa');
```

```
Console

"Gauge Pressure = "

245.48544

"kPa"

"Absolute Pressure = "

346.80544

"kPa "

"Depth = "

17.206723

"m"
```

Figure 1.3: Find gauge and absolute pressure and depth

```
Console

"Absolute Pressure = "

171.39616

"kPa"
```

Figure 1.4: Determine the absolute pressure

Scilab code Exa 1.4 Determine the absolute pressure

```
1 / Example 1.4
2 // Determine the absolute pressure
3 clear
4 clc
  z = 760; //[mm]
  z1 = z*10^-3; //[m] height
   rho = 13600; //[kg/m^3] Density of mercury
   g = 9.81; //[m/s^2] acceleration due to gravity
   P_atm = (rho*g*z1)/10^3; //[kPa] Atmospheric
      Pressure
10
   P_gauge = 70; //[kPa] Gauge Pressure
   P_abs = P_atm + P_gauge; //[kPa] Absolute
11
      Pressure
   disp('Absolute Pressure =' , P_abs , 'kPa');
12
```

Scilab code Exa 1.5 Determine the absolute pressure

```
1  //Example 1.5
2  // Determine the absolute pressure
3  clear
4  clc
5  //P_abs = P_atm - P_gauge
6  //P_gauge is the vaccum pressure
7  rho = 13600; //[kg/m^3]
8  g = 9.8; //[m/s^2] acceleration due to gravity
9  z = 760; //[mm]
10  z1 = z*10^-3; //[m]
11  P_atm = (rho*g*z1)/10^3; //[kPa] Due to barometer
```

```
Console

"Absolute Pressure = "

14.660800

"kPa"
```

Figure 1.5: Determine the absolute pressure

```
Console

"Pressure inside the container = "

134.6128

"kPa"
```

Figure 1.6: Determine the pressure inside the container

```
12  z2 = 650; // [mm]
13  z3 = z2*10^-3; // [m]
14  P_gauge = (rho*g*z3)/10^3; // [kPa]
15  P_abs = P_atm - P_gauge;
16  disp('Absolute Pressure =',P_abs,'kPa');
```

Scilab code Exa 1.6 Determine the pressure inside the container

```
1 / \text{Example } 1.6
2 //Determine the pressure inside the container
3 clear
4 clc
5 / P = P0 + P1
   rho = 13600; //[kg/m^3]
   g = 9.8; //[m/s^2]
   z0 = 760; // [mm] Barometric height
   z1 = z0*10^-3; //[m]
   z = 250; //[mm]
10
                     Difference between height of two
       columns of manometer
   z2 = z*10^-3; //[m]
11
12
   P0 = rho*g*z1; //[Pa]
                          atmospheric pressure
   P1 = rho*g*z2; //[Pa]
13
   P = (P0 + P1)/10^3; //[kPa] Pressure inside the
14
      container
    disp('Pressure inside the container = ',P,'kPa');
15
```

Chapter 2

Temperature Zeroth Law of Thermodynamics

Scilab code Exa 2.1 Express the Fahrenheit temperature change in Celsius and Kelvi

```
1 / Example 2.1
2 // Express the fahrenheit temperature change in
     celsius and kelvin and rankine unit
3 clear
4 clc
5 T1 = 20; // [F] temp change in fahrenhite
6 //Temp changes are identical in fahrenheit and
     rankine
7 T2 = T1; //[R] temp change in rankine
8 T3 = T2/1.8; //[K] temp change in kelvin
9 //temp changes are identical in kelvin and celsius
     scale
10 T4 = T3; // C //temp change in celsius scale
11 disp('Temp change in Celsius scale is = ',T4, 'C'
     )
12 disp('Temp change in Kelvin scale is =', T3, 'K')
13 disp('Temp change in Rankine scale is =', T2, 'R')
```

Console "Temp change in Celsius scale is = " 11.111111 "°C" "Temp change in Kelvin scale is = " 11.111111 "K" "Temp change in Rankine scale is = " 20. "R"

Figure 2.1: Express the Fahrenheit temperature change in Celsius and Kelvin and Rankine unit ${\bf r}$

```
Console

"Absolute fire point in Celsius scale = "
176.66667

"°C"

"Absolute fire point in Kelvin scale = "
449.81667

"K"

"Absolute fire point in Rankine scale = "
809.67000

"R"
```

Figure 2.2: Find absolute fire point in Celsius and Kelvin and Rankine unit

 ${\it Scilab\ code\ Exa\ 2.2}$ Find absolute fire point in Celsius and Kelvin and Rankine uni

```
3 clear
4 clc
5 T1 = 350; // [F] temperature in fahrenheit
6 T2 = T1 + 459.67; // [R] Temperature in Rankine
7 T3 = T2/1.8; // [K] Temperature in Kelvin
8 T4 = T3 - 273.15; // [C] Temperature in Celsius
9 disp('Absolute fire point in Celsius scale = ', T4, 'C')
10 disp('Absolute fire point in Kelvin scale = ', T3, 'K')
11 disp('Absolute fire point in Rankine scale = ', T2, 'R')
```

Scilab code Exa 2.3 Determine temperature corresponding to thermometric property v

```
1 / Example 2.3
2 // Determine temperature corresponding to
      thermometric property value given
3 clear
4 clc
5 t1 = 0; //[C] ice point temperature
6 t2 = 100; //[C] steam point temperature
7 k1 = 1.75; //thermometric property at ice point
8 k2 = 8.5; //thermometric property at steam point
9 // given a equation t = x * log(k) + y
10 //we first need to find x and y and temp
      corresponding to thermometric property value of
      4.25
    //from given value two equatins are formed
11
   //x * \log(k1) + y = 0
12
13
   //x*log(k2) + y = 100
14
    //solving the equations
    A = [\log(k1), 1; \log(k2), 1];
15
```

Console

```
"On solving the equation value of x is"
63.273103

"On solving the equation value of y is"
-35.408628

"Temperature corresponding to thermometric property value of 4.25 is "
56.142427

"°C"
```

Figure 2.3: Determine temperature corresponding to thermometric property value given

```
16  B = [t1 ; t2];
17  C= inv(A)*B;
18  x = C(1,1);
19  y = C(2,1);
20  disp('On solving the equation value of x is', x)
21  disp('On solving the equation value of y is', y)
22  k3 = 4.25;
23  t = x*log(k3) + y; //[ C ]
24  disp('Temperature corresponding to thermometric property value of 4.25 is', t,'C')
25  //The answer vary due to round off error
```

Scilab code Exa 2.4 Determine the constants A and B in R

```
1 / Example 2.4
2 //Determine the constants A and B in R
3 clear
4 clc
5 t1 = 0; //[C] ice point temperature
6 t2 = 100; //[ C ] steam point temperature
7 t3 = 444.6; //[C] sulfur point temperature
8 R1 = 10.805; //[ ] resistance at t1
9 R2 = 14.583; //[ ] resistance at t2
10 R3 = 29.332;
                 //[ ] resistance at t3
11 //given equation R = R0(1 + At + Bt^2)
12 //we need to find value of Aand B
13 RO = R1; // solving equation at t1 = 0 C
14 / 14.583 = 10.805(1 + A*100 + B*100^2) / at t2 =
      100 C
15 // 29.332 = 10.805(1 + A*444.6 + B*444.6^2) // at
     t3 = 444.6 \text{ C}
16 / 1080.5*A + 1080.5*100*B = 3.778
17 / 4803.903*A + 10.805*444.6^2*B = 18.527
```

Console

"Value of A is"

0.0033920

"Value of B is "

0.0000010

Figure 2.4: Determine the constants A and B in R

```
18  X = [1080.5 , 108050; 4803.903 , 2135815.27];
19  Y = [3.778 ; 18.527];
20  Z = inv(X)*Y;
21  A = Z(1,1);
22  B = Z(2,1);
23  disp('Value of A is' , A)
24  disp('Value of B is ' , B)
25  //The answer given in book is wrong
```

Chapter 3

Energy and the First Law of Thermodynamics

Scilab code Exa 3.1 Estimate the work done by the gas on the piston

```
1  //Example 3.1
2  //Estimate the work done by the gas on the piston
3  clear
4  clc
5  P1 = 1600; //KPa
6  P2 = 175; //KPa
7  A = 0.118; //m*m //area of cylinder
8  l = 0.25; //m //stroke of piston
9  V = A*l; //volume
10  //work done = area of PV diagram
11  W = (1/2)*(P1 + P2)*V;
12  disp('Work done by the gas on the piston = ' , W , ' kJ ')
```

Console

"Work done by the gas on the piston = " 26.18125

" kJ "

Figure 3.1: Estimate the work done by the gas on the piston

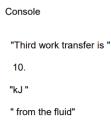


Figure 3.2: Determine the magnitude and direction of third work transfer

Scilab code Exa 3.2 Determine the magnitude and direction of third work transfer

Scilab code Exa 3.3 Determine the specific heat Cp and Cv

```
1 //Example 3.3
2 //Determine the specific heat Cp and Cv
3 clear
4 clc
5 //u = 205 + 0.827t
6 u = poly([205 0.827] , 't', 'coeff');
7 Cv = derivat (u); //[kJ/kg K] specific heat at constant volume
8 // pv = 0.279(t + 273)
9 //h = u+pv = 281.167 + 1.106t
10 h = poly([281.167 1.106], 't', 'coeff');
11 Cp = derivat (h); //[kJ/kg K] specific heat at constant pressure
```

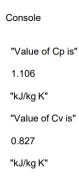


Figure 3.3: Determine the specific heat Cp and Cv

```
12 disp('Value of Cp is' , Cp , 'kJ/kg K' ) 13 disp('Value of Cv is' , Cv , 'kJ/kg K' )
```

Scilab code Exa 3.4 Estimate the net heat transfer

```
1 / Example 3.4
2 //Estimate the net heat transfer
3 clear
4 clc
                        Initial pressure
Final pressure
5 P1 = 1200; //[kPa]
6 \text{ P2} = 250; //[\text{kPa}]
7 \text{ V1} = 0.25; //[\text{m}^3]
                         Initial volume
                        Final volume
8 \text{ V2} = 1.35; //[\text{m}^3]
9 //given a equation p = a + 2bV
10 //from given value two equation are formed
11 // a + 2*V1*b = 1200;
12 // a + 2*V2*b = 250;
13 X = [1, 2*V1; 1, 2*V2];
14 \ Y = [P1; P2];
15 Z = inv(X) * Y;
16 \ a = Z(1,1);
17 b = Z(2,1);
18 disp('a = ', a) // value of a given in book is wrong
19 disp('b = ', b)
20 //now we need to find the value of work transfer
21 function w = f(V)
22
       w = a + 2*b*V;
23 endfunction
24 W = intg(V1, V2, f);
25 disp('Work transfer = ', W, 'kJ')
26 // next we have to find change in internal energy
27 \text{ del_U} = 2*(P2*V2) - 2*(P1*V1); //change in internal
      energy
```

```
Console

"a = "

1415.9091

"b = "

-431.81818

"Work transfer = "

797.50000

"kJ"

"Change in internal energy"

75.

"kJ"

"Net heat transfer = "

872.50000

"kJ"
```

Figure 3.4: Estimate the net heat transfer

```
Console

"Final volume = "
91.900608

"Heat transfer = "
2022.1616

"kJ"
```

Figure 3.5: Determine the heat transfer

```
28 disp('Change in internal energy',del_U,'kJ')
29 Q = W + del_U; //net heat transfer
30 disp('Net heat transfer = ', Q, 'kJ')
31 // The answer provided in the textbook is wrong
```

 ${\it Scilab}\ {\it code}\ {\it Exa}\ 3.5$ Determine the heat transfer

```
1 //Example 3.5
```

```
2 //Determine the heat transfer
3 clear
4 clc
5 P1 = 980; //[kPa] initial pressure
6 P2 = 2.5; //[kPa] final pressure
7 V1 = 0.93; //[m^3] initial volume
8 n = 1.3;
9 \text{ m} = 5; //[kg]
10 V2 = ((P1/P2)*(V1^n))^(1/n);
11 disp('Final volume = ', V2)
                                 //[kJ]
12 \text{ W1}_2 = (P1*V1 - P2*V2)/(n-1);
13 del_u = 50; //kJ/kg
14 \text{ del}_U = m*(del_u);
                      //[kJ]
15 Q1_2 = W1_2 - del_U; //[kJ]
16 disp('Heat transfer = ', Q1_2, 'kJ')
17 //The answer vary due to round off error
```

Scilab code Exa 3.6 Find total heat to be removed from fish and total latent heat

```
1 / Example 3.6
2 //Find total heat to be removed from fish and total
      latent heat to be removed
3 clear
4 clc
5 m = 700; //[kg] mass of fish
6 t1 = 7; //[C] initial temperature
7 t2 = -15; //[C] temperature required
8 tf = -2; //[C] freezing point
9 Cp1 = 3.2; //[kJ/kg K]
                            specific heat of fish
     above freezing point
10 Cp2 = 1.699; //[kJ/kg K] specific heat of fish
     below freezing point
11 hfg = 232; //[kJ/kg]
                          latent heat
```

Console "Total heat to be removed from fish" 198020.9 "kJ" "Total latent heat to be removed" 162400. "kJ"

Figure 3.6: Find total heat to be removed from fish and total latent heat to be removed

```
Console

"Time required for cooling the milk"

7395.3846

"s"
```

Figure 3.7: Estimate the time required for cooling milk

```
12 // Q = m*Cp*del_t //heat removal
13 Q = m*(Cp1*(t1-tf) + hfg + Cp2*(tf - t2)); //[kJ]
14 disp('Total heat to be removed from fish', Q , 'kJ')
15 H = m*hfg; //total latent heat to be removed
16 disp('Total latent heat to be removed', H , 'kJ')
```

Scilab code Exa 3.7 Estimate the time required for cooling milk

```
1 / \text{Example } 3.7
2 //Estimate time required for cooling milk
3 clear
4 clc
5 m = 1000; //[kg] mass of milk
6 cp = 4.18; //[kJ/kg K]
                          specific heat of milk
7 t1 = 30; //[C] initial temperature
8 t2 = 7; //[C]
                   final temperature
9 del_t = t1-t2; //[ C ]
10 Q = m*cp* del_t; //total heat to be removed from
     milk
11 C1 = 15; //[kJ/s] capacity of milk chilling unit
     to remove heat from milk
12 C2 = 2; //[kJ/s]
                   rate of heat leakage into the
     milk
13 Net_Capacity = C1 - C2; //[kJ/s] net capacity of
     the plant
14 Time_req = Q/Net_Capacity; //[s]
15 disp('Time required for cooling the milk', Time_req
      , 's')
```

Scilab code Exa 3.8 Estimate the work done for given conditions

```
1 //Example 3.8
2 //Estimate the work done for given conditions
3 clear
4 clc
5 P1 = 250; //[kPa]
6 m = 1; //[kg]
7 V1 = 0.035; //[m^3]
8 V2 = 0.09; //[m^3]
9 //(i) Gas expands to 0.09 m^3 when pressure is constant
```

Console

```
"Work done in isobaric process = "
13.750000

"kJ"

"Work done in isothermal process = "
8.2640391

"kJ"

"Work done in polytropic process = "
6.8823544

"kJ"
```

Figure 3.8: Estimate the work done for given conditions

```
10 function W = f(V)
       W = P1;
11
12 endfunction
13 w = intg(V1, V2, f); //[kJ]
14 disp('Work done in isobaric process = ', w , 'kJ')
15 //(ii) Gas expands isothermally when the weights are
      removed
16 W1 = P1*V1*log(V2/V1); //[kJ]
17 disp('Work done in isothermal process = ', W1, 'kJ')
18 //(iii) Expansion follows P*(V^1.4) = Constant
19 n = 1.4;
20 P2 = P1*(V1/V2)^n; //[kPa]
21 \text{ W2} = (P1*V1-P2*V2)/(n-1); //[kJ]
22 disp('Work done in polytropic process = ', W2, 'kJ
23 //The answer vary due to round off error
```

 ${f Scilab\ code\ Exa\ 3.9}$ Calculate net work done and heat transfer and show Qcycle and

```
//Example 3.9
//Calculate net work done and heat transfer and show
        Qcycle and Wcycle are equal

clear

clc
//first ques is to sketch cycle of p-V diagram
// (ii) Calculate Wnet

p1 = 1.4; //[bar]

p2 = p1; //[bar] pressure is constant during process 1-2

V1 = 0.028; //[m^3]

V3 = V1; //[m^3] volume is constant during process 1-3

W1_2 = 10.5; //[kJ]
```

Console "Net workdone for the cycle = " -8.2824030 "kJ" "Q1_2 = " 36.9 "kJ" "Qcycle = " -8.2824030 " kJ" "Therefore Qcycle = Wcycle"

Figure 3.9: Calculate net work done and heat transfer and show Qcycle and Wcycle are equal

```
12 / W1_2 = p1*(V2-V1)
13 \text{ V2} = (W1_2/(p1 *100)) + V1;
14 \text{ W2}_3 = \text{p2}*100*\text{V2}*\log(\text{V3/V2}); //[kJ]
15 U1_U3 = -26.4; //[kJ] U1—U3
16 //U3 = U2;
17 //U3-U2 = 0;
18 // Q2_3 = W2_3 + U3 - U2;
19 Q2_3 = W2_3; //[kJ]
20
   W3_1 = 0; //[kJ]
    Q3_1 = -26.4; //[kJ]
21
    Wnet = W1_2 + W2_3 + W3_1;
22
    disp('Net workdone for the cycle = ', Wnet , 'kJ')
23
24
    //(iii) Calculate Q1<sub>-2</sub>
    U2_U1 = -(U1_U3); //U2-U1=U3-U1 \text{ since } U3 = U2
25
26
    Q1_2 = W1_2 + U2_U1; //[kJ]
    disp('Q1_2 = ',Q1_2, 'kJ')
27
28
    //(iv) Show Qcycle = Wnet
29
    Qcycle = Q1_2 + Q2_3 + Q3_1; //[kJ]
    disp('Qcycle = ', Qcycle , 'kJ')
30
31
    disp('Therefore Qcycle = Wcycle')
32 //Answer varies due to round off error
```

Scilab code Exa 3.10 Determine the outer surface temperature

```
1  //Example 3.10
2  //Determine the outer surface temperature
3  clear
4  clc
5  Q = 1500; //[W] heat loss through wall
6  k = 1.7; //[W/m K]
7  L = 0.20; //[m]
8  A = 0.5*1.5; //m^2]
9  T1 = 1273; //[K] inner surface temperature
```

```
Console

"Outer surface temperature t2 = "

764.56588

"°C"
```

Figure 3.10: Determine the outer surface temperature

```
Console

"Thermal conductivity of the plate, k = "

0.140625
```

"W/m K"

Figure 3.11: Find the thermal conductivity of the plate

Scilab code Exa 3.11 Find the thermal conductivity of the plate

```
1 //Example 3.11
2 //Find the thermal conductivity of the plate
3 clear
4 clc
5 q = 450; //[W/m^2] heat flux through the plate
6 T1 = 0; //[ C ]
7 T2 = 80; //[ C ]
8 del_T = T2-T1;
9 L = 0.025; //[m]
10 k = q*L/del_T; //[W/m K]
11 disp('Thermal conductivity of the plate, k = ', k , 'W/m K')
```

Scilab code Exa 3.12 Find the rate of heat transfer

```
//Example 3.12
//Find the rate of heat transfer
clear
clc
T_alpha = 100; //[ C ] temperature of air
Ts = 25; //[ C ] surface temperature of plate
h = 50; // [W/m^2 K] convective heat transfer coefficient
A = 1.5*3; //[m^2] area
Q_conv = [h*A*(T_alpha - Ts)]/1000; //[kW]
disp('Heat transfer by convection , Q_conv = ', Q_conv , 'kW')
```

```
Console

"Heat transfer by convection , Q_conv = "

16.875
"kW"
```

Figure 3.12: Find the rate of heat transfer α

Chapter 4

Properties of Pure Substances

Scilab code Exa 4.1 Determine specific volume temperature enthalpy and entropy and

```
1 // Example 4.1
2 // Determine specific volume, temperature, enthalpy,
     entropy, internal energy
3 clear
4 clc
5 //(i) Determine specific volume
6 \ V = 50*10^{-3} // [m^3]
7 m = 5; //[kg]
8 v = V/m; //[m^3/kg] specific volume
9 disp('Specific volume v_1 = v_2, v_3 = v_3)
10 //(ii) Determine temperature
11 //From steam table at 150 kPa
12 vf = 0.00109; //[m^3/kg]
13 vg = 0.3749; //[m^3/kg]
14 t = 151.86; // C
                     since vf<v<vg , water is in
     saturated mixture region, the temperature must be
      the saturated temperature at pressure 150 kPa
15 disp('Temperature = ', t , 'C')
16 //(iii) Determine enthalpy
```

```
Console
 "Specific volume v, = "
 0.01
 "m^3/kg"
 "Temperature = "
  151.86
 "°C"
 "Enthalpy, h = "
  690.47687
 "kJ/kg"
 "Entropy, s = "
  2.0232872
 "kJ/kg K"
 "Internal energy, u = "
  688.97687
 "kJ/kg"
```

Figure 4.1: Determine specific volume temperature enthalpy and entropy and internal energy $\,$

```
17 vfg = vg - vf; //[m^3/kg]
18 x = (v-vf)/vfg;
19 // At 500 kPa
20 hf = 640.23; //[kJ/kg] //value of hf is mentioned
     wrong in book
21 hfg = 2108; //[kJ/kg]
22 sf = 1.8607; //[kJ/kg K]
23 sfg = 6.821; //[kJ/kg K]
24 h = hf + x*hfg; //[kJ/kg]
25 disp('Enthalpy, h = ', h, 'kJ/kg')
26 //(iv) Determine entropy
27 s = sf +x*sfg; //[kJ/kg K]
28 disp('Entropy, s = ', s, 'kJ/kg K')
\frac{29}{\sqrt{(v)}} Determine internal energy
30 p = 150; //[kPa]
31 \text{ v1} = 0.01;
32 u = h - p*v1; // [kJ/kg]
33 disp('Internal energy, u = ', u, 'kJ/kg')
34 //The answer vary due to round off error
```

Scilab code Exa 4.2 Determine change in enthalpy entropy internal energy and volum

```
1 //Example 4.2
2 //Determine change in enthalpy, entropy, internal
    energy and volume
3 clear
4 clc
5 m = 15; //kg
6 //At state 1, water is saturated water, so from
    saturated steam table at 55 C
7 hf = 230.26; // kJ/kg
8 h1 = hf; // kJ/kg
9 vf = 0.00101; // m^3/kg
```

```
Console

"Change in enthalpy = "

43736.1

"kJ"

"Change in entropy = "

94.551

"kJ/K"

"Change in internal energy = "

39545.400

"kJ"

"Change in volume = "

2.6023500

"m^3"
```

Figure 4.2: Determine change in enthalpy entropy internal energy and volume

```
10 v1 = vf; // \text{ m}^3/\text{kg}
11 uf = 230.24; // kJ/kg
12 u1 = uf; // kJ/kg
13 sf = 0.7679; // kJ/kg K
14 s1 = sf; // kJ/kg K
15 //At state 2, water becomes superheated, so from
      superheated steam tables at 16 bar and 350 C
16 h2 = 3146.0; // kJ/kg
                //\text{m}^3/\text{kg}
17 v2 = 0.1745;
                 // kJ/kg
18 u2 = 2866.6;
                 // kJ/kg K
19 	 s2 = 7.0713;
20 //(i) Determine the change in enthalpy
21 enthalpy = m*(h2-h1); //kJ
22 disp('Change in enthalpy = ', enthalpy , 'kJ')
23 //(ii) Determine change in entropy
24 entropy = m*(s2-s1); // kJ/K
25 disp('Change in entropy = ', entropy, 'kJ/K')
26 //(iii) Determine change in internal energy
27 \text{ del}_U = m*(u2-u1); //kJ
28 disp('Change in internal energy = ', del_U, 'kJ')
29 //(iv) Determine change in volume
30 del_V = m*(v2-v1); //m^3
31 disp('Change in volume = ',del_V, 'm^3')
```

Scilab code Exa 4.3 Compute ideal power of turbine

```
//Example 4.3
//Compute ideal power of turbine
clear
clc
m = 5; //[kg/s]
//from superheated steam table
h1 = 3137.0; //[kJ/kg]
```

Console

"Power of turbine, (dW/dt) = "

2585.

"kJ/s or kW"

Figure 4.3: Compute ideal power of turbine

```
Console

"Power of the turbine"

818.98880

" kW"

"Diameter at inlet, d1 = "

5.3270970

"cm"

"Diameter at exit, d2 = "

60.806970

"cm"
```

Figure 4.4: Determine power of turbine and diameter at inlet and exit

Scilab code Exa 4.4 Determine power of turbine and diameter at inlet and exit

```
1 / Example 4.4
2 //Determine power of turbine and diameter at inlet
      and exit
3 clear
4 clc
5 m = 2; // [kg/s]
6 V1 = 100; //[m/s] velocity of steam at inlet
7 V2 = 50; //[m/s] velocity of steam at exit
8 z_{1}z_{2} = 3; /[m] difference in height of inlet and
       exit(z1-z2)
9 //From superheated steam table
10 //At state 1 at 20 bar and 250 C
11 h1 = 2902.5; //[kJ/kg]
12 s1 = 6.5453; //[kJ/kg K]
13 v1 = 0.11144 //[\text{m}^3/\text{kg}]
14 //At state 2 at 0.2 bar and 5% moisture
15 hf2 = 251.40; //[kJ/kg]
16 hfg2 = 2358.3; //[kJ/kg]
17 vf2 = 0.00101; //[m^3/kg]
18 sf2 = 7.64; //[kJ/kg]
19 x = 0.95; // Quality or drynes fraction
20 h2 = hf2 + x*hfg2; //[kJ/kg] enthalpy at state 2
21 q = -10; //[kJ/s] rate of heat loss(dQ/dt)
22 g = 9.8; //[m/s^2]
23 //(i) Determine power of turbine when heat loss is
      at rate of 10 kJ/s
24 P = m*[(h1 - h2) + (V1^2 - V2^2)/(2*1000) + (z1_z2)*
      g/1000] + q; //[kW] power (dW/dt)
25 disp('Power of the turbine', P, 'kW')
26 //(ii) Determine the diameters at inlet and exit
27 A1 = (m*v1)/V1; //[m^2] inlet area
28 v2 = 7.26; //[m^3/kg]
29 A2 = (m*v2)/V2; //[m^2] exit area
30 d1 = sqrt((A1*4)/\%pi); //[m] inlet diameter
31 d2 = sqrt((A2*4)/%pi); //[m] exit diameter
32 disp('Diameter at inlet, d1 = ', d1*100, 'cm')
33 disp('Diameter at exit, d2 = ', d2*100, 'cm')
34 //Answer vary due to round off error
```

```
Console

"Heat required to produce 1 kg of steam with x1 = 0.9, q1 = "

2422.005

"kJ/kg"

"Heat required to produce 1 kg of dry saturated steam, q2 = "

2611.085

"kJ/kg"

"Heat required to produce 1 kg of superheated steam, q3 = "

2674.085

"kJ/kg"
```

Figure 4.5: Calculate amount of heat required to produce 1kg of steam under 3 condition

 ${f Scilab\ code\ Exa\ 4.5}$ Calculate amount of heat required to produce 1kg of steam under

```
1 //Example 4.5
2 //Calculate the amount of heat required to produce 1
    kg steam under 3 condition
```

```
3 clear
4 clc
5 t = 45; //[C] temperature of feed water
6 Cpw = 4.187; //[kJ/kg K]
7 Cp_steam = 2.1; //[kJ/kg]
8 hf = Cpw*(t-0); //[kJ/kg]
                              sensible heat of feed
      water
9 //from steam table at 20 bar
10 hf1 = 908.79; //[kJ/kg]
11 hfg1 = 1890.7; //[kJ/kg]
12 hg1 = 2799.5; //[kJ/kg]
13 //(i) Calculate amount of heat required to produce 1
      kg steam with x1 = 0.9
14 \times 1 = 0.9;
15 h1 = hf1 + x1*hfg1; //[kJ/kg]
16 q1 = h1 - hf; //[kJ/kg]
17 disp('Heat required to produce 1 kg of steam with x1
      = 0.9, q1 = ',q1, 'kJ/kg')
18 // (ii) Calculate amount of heat required to produce
     1 kg of dry saturated steam
19 q2 = hg1-hf; //[kJ/kg]
20 disp('Heat required to produce 1 kg of dry saturated
      steam , q2 =  ' , q2 , 'kJ/kg')
21 // (iii) Calculate amount of heat required to produce
      1 kg of superheated steam with 30 C of
      superheat
\frac{22}{from} steam table at 20 bar t_sat = 212.42 C
23 \text{ t_sat} = 212.42; //[C]
24 t2 = 30; //[C] given in ques 3
25 \text{ t_sup} = \text{t_sat} + \text{t2}; //[C]
26 h3 = hg1 + Cp_steam*(t_sup - t_sat); //[kJ/kg]
27 \text{ q3} = \text{h3} - \text{hf}; //[kJ/kg]
28 disp('Heat required to produce 1 kg of superheated
      steam, q3 = ', q3, 'kJ/kg')
```

Console "Quality (dryness fraction) of steam = " 96.810934 "%" "Maximum moisture allowed is" 4.8595292 "%"

Figure 4.6: Determine dryness fraction and maximum moisture

Scilab code Exa 4.6 Determine dryness fraction and maximum moisture

```
1 / Example 4.6
2 // Determine dryness fraction and maximum moisture
3 clear
4 clc
5 p1 = 10; //[MPa]
6 p2 = 0.05; //[MPa]
7 t = 100; //[C]
8 //(i) Calculate dryness fraction of steam
9 h2 = 2682; //[kJ/kg] when p2 = 0.05 MPa and t =
     100 C from superheated steam tables
10 hf1 = 1407; //[kJ/kg] at p1 = 10 MPa
11 hfg1 = 1317; //[kJ/kg] at p1 = 10MPa
12 h1 = h2; //for throttling process (h1 = h2 = hf1
     + x*hfg1
13 x = (h2 - hf1)/hfg1;
14 dryness_fraction = x*100; //[\%]
15 disp('Quality (dryness fraction) of steam = ',
     dryness_fraction, '%')
16 //(ii) Calculate the maximum moisture
17 t2 = 5; //[ C ] superheat reuired after throttling
18 t_sat = 81; //[C] at p2=0.05 MPa
19 T = t_sat + t2; //[C]
20 //from superheated steam tables
21 h3 = 2660; //[kJ/kg]
22 h4 = h3; //[kJ/kg]
23 hf4 = hf1; //[kJ/kg]
24 hfg4 = hfg1; //[kJ/kg]
25 / h4 = hf4 + x4*hfg4
26 \times 4 = (h4-hf4)/hfg4;
27 \text{ max_moisture} = (1-x4)*100;
28 disp('Maximum moisture allowed is', max_moisture, '
     %')
```

Console
"x1 = "
0.9040610

Figure 4.7: Determine the quality of steam in the main

 $29\ // The\ answer\ vary\ due\ to\ round\ off\ error$

 Scilab code Exa 4.7 Determine the quality of steam in the main

```
1 //Example 4.7
2 //Determine the quality of steam in the main
3 clear
4 clc
```

```
5 h3 = 2768.8; //[kJ/kg] From superheated steam
     tables, at 2 bar and 150 C
6 h2 = h3; //enthalpy before throttling = enthalpy
     after throttling
7 hf2 = 798.65; //[kJ/kg] From saturated steam table
      at 12 bar
8 hfg2 = 1986.2; //[kJ/kg] From saturated steam table
      at 12 bar
9 / h2 = hf2 + x2*hfg2
10 x2 = (h2-hf2)/hfg2;
11 V = 0.2*10^{-3}; //[m^3]
12 v = 0.001029; //[m^3/kg] From saturated steam
    table at 80 C (v = vf = 0.001029)
13 m1 = V/v; //[kg]
14 m2 = 2; //[kg] Mass of steam condensed after
     throttling
15 x1 = (x2 *m2)/(m1 +m2);
16 \text{ disp}('x1 = ', x1)
```

Chapter 5

First Law Analysis of Control Volumes

Scilab code Exa 5.1 Find Velocity and Mass flow rate and Area

```
1 // Example 5.1
2 //Find Velocity and Mass flow rate and Area
3 clear
4 clc
5 //At inlet
6 \text{ h1} = 2670; // [kJ/kg]
7 \text{ V1} = 72; //[\text{m/s}]
8 \text{ A1} = 0.098; //[\text{m}^2]
9 v1 = 0.179; // [m^3/kg]
10 //At exit
11 h2 = 2580; // [kJ/kg]
12 v2 = 0.503; // [m<sup>3</sup>/kg]
13 heat_loss = 0; //(dQ/dt = 0) heat loss is
      negligible
14 work_done = 0; //work done is zero for nozzle
15 //(i) Find the velocity at the exit of the nozzle
16 // final equation is [h1 + (V1^2)/2] = [h2 + (V2^2)]
```

Console "Velocity at the exit of the nozzle, V2 = " 430.33011 "m/s" "Mass flow rate, m =" 39.418994 "kg/s" "Area at the exit of nozzle, A2 = " 0.0460757 "m^2"

Figure 5.1: Find Velocity and Mass flow rate and Area

```
/2]

17 V2 = sqrt(2*1000*(h1-h2) + V1^2); // [m/s]

18 disp('Velocity at the exit of the nozzle, V2 = ', V2, 'm/s')

19 //(ii) Find the mass flow rate of gas at A1 and v1

20 m = (A1*V1)/v1; // [kg/s]

21 disp('Mass flow rate, m = ', m, 'kg/s')

22 //(iii) Find the area at the exit of the nozzle

23 A2 = (m*v2)/V2; // [m^2]

24 disp('Area at the exit of nozzle, A2 = ', A2, 'm^2')
```

Scilab code Exa 5.2 Estimate the power output for steady flow conditions

```
1 / Example 5.2
2 //Estimate the power output for steady flow
      conditions
3 clear
4 clc
5 //At turbine inlet
6 p1 = 110; //[bar]
7 h1 = 2900; //[kJ/kg]
8 \text{ V1} = 36; //[\text{m/s}]
9 	 z1 = 3.3; 	 //[m]
10 //At turbine outlet
11 p2 = 30; //[kPa]
12 h2 = 2490; //[kJ/kg]
13 V2 = 110; //[m/s]
14 z2 = 0; //[m]
15 heat_loss = -0.32; //[kJ/s] rate of heat loss (dQ/dt)
      )
16 m = 0.393; //[kg/s]
17 g = 9.8; //[m/s^2]
```

Console "Power output of turbine = " 158.69972 "kW"

Figure 5.2: Estimate the power output for steady flow conditions

```
Console

"Power required to drive the compressor, P = "
95.487062

"kW"

"Inlet cross sectional area, A1 = "
0.05625

"m^2"

"Outlet cross sectional area, A2 = "
0.0207143

"m^2"
```

Figure 5.3: Calculate power and inlet and outlet cross sectional area

```
18 P = m*[(h1-h2) + (V1^2 - V2^2)/(2*1000) + ((z1-z2)*g)/1000] + heat_loss;//[kW]
19 disp('Power output of turbine = ', P, 'kW')
```

Scilab code Exa 5.3 Calculate power and inlet and outlet cross sectional area $1\ //\ {\rm Example}\ 5.3$

```
2 // Calculate power and inlet and outlet cross
                sectional area
  3 clear
  4 clc
  5 p1 = 1.5; //[bar]
 6 v1 = 0.9; // [m<sup>3</sup>/kg] specific volume while
               entering
  7 \text{ V1} = 8; // [m/s]
  8 p2 = 8; //[bar]
  9 v2 = 0.145; // [m<sup>3</sup>/kg] specific volume while
                leaving
10 V2 = 3.5; //[m/s]
11 z1_z2 = 0; //difference in height at inlet and
                outlet (z1-z2)
12 heat_rate = -55; //[kW] rate at which cooling
                water absorbs heat from air
13 u1_u2 = -100; //[kJ] difference in internal energy
                   of air entering and leav
14 m = 30/60; // [kg/s]
15 / [h1-h2 = u1_u2 + (p1*v1 - p2*v2)*10^5] [kJ/kg] (
                difference in enthalpy)
16 g = 9.8; // [m/s<sup>2</sup>] acceleration due to gravity
17 //(i) Calculate power required to drive the
               compressor
18 P = m*[(u1_u2) + ((p1*v1-p2*v2)*10^5)/1000+ (V1^2 - p2*v2)*10^5)/1000+ (V1^2 - p2*v2)/1000+ (V1^2 - p2*v2)/1000+
                  V2^2/(2*1000) + (z1_z2)*g + heat_rate; //[kW]
19 disp('Power required to drive the compressor, P = '
                , -P , 'kW')
20 //(ii) Calculate inlet and outlet cross sectional
                area
21 A1 = (m*v1)/V1; // [m^2]
22 A2 = (m*v2)/V2; //[m^2]
23 disp('Inlet cross sectional area, A1 = ', A1, 'm<sup>2</sup>
24 disp('Outlet cross sectional area, A2 = ', A2, 'm
                ^2')
```

```
Console

"Heat transfer rate in compressor = "
-0.3486367

"kJ/s"

"Heat transfer rate in cooler = "
-4.5534399

"kJ/s"
```

Figure 5.4: Estimate heat transfer rate in compressor and cooler

 ${\it Scilab\ code\ Exa\ 5.4\ Estimate\ heat\ transfer\ rate\ in\ compressor\ and\ cooler}$

```
1 //Example 5.4
2 //Estimate heat transfer rate in compressor and
        cooler
3 clear
4 clc
```

```
5 p1 = 1; // [bar]
6 \text{ P1} = 100; //[\text{kPa}]
7 \text{ t1} = 25; //[C]
8 V1 = 2.5; // [m<sup>3</sup>/min] volumetric flow rate of air
9 p2 = 2; // [bar]
10 t2 = 120; //[C]
11 t3 = 27; //[C]
12 dW_by_dt_1 = -5; // [kW] Work input required for
     compressor
13 T1 = t1 + 273; //[K]
14 T2 = t2 + 273; //[K]
15 T3 = t3 + 273; //[K]
16 R = 0.287;
17 v1 = (R*T1)/P1; //[m^3/kg]
18 m = V1/v1; //[kg/min] mass flow rate in kg/min
19 m2 = m/60; //[kg/s] mass flow rate in kg/s
20 //(i) Estimate heat transfer rate in compressor
21 cp = 1.005; //[kJ/kg K]
22 h1_h2 = cp*(T1 - T2); // [kJ/kg]
23 Q1 = dW_by_dt_1 - m2*[h1_h2]; //[kJ/s] //heat
      transfer rate in compressor
24 disp('Heat transfer rate in compressor = ', Q1 , 'kJ
     /s ')
25 //(ii) Estimate heat transfer rate in cooler
26 h2_h3 = cp*(T2-T3); //[kJ/kg]
27 \text{ dW\_by\_dt\_2} = 0; // since no work is involved in
      cooler dW/dt = 0
28 Q2 = dW_by_dt_2 - m2*(h2_h3); // heat transfer
      rate in cooler
29 disp('Heat transfer rate in cooler = ', Q2 , 'kJ/s')
30 //Answer vary due to round off error
```

Scilab code Exa 5.5 Estimate velocity of air stream leaving the nozzle

Console "Velocity of air stream leaving the nozzle at 30°C = " 447.21508

"m/s"

Figure 5.5: Estimate velocity of air stream leaving the nozzle

```
1 / Example 5.5
2 //Estimate velocity of air stream leaving the nozzle
3 clear
4 clc
5 p1 = 1.2; //[bar]
6 	 t1 = 30; //[C]
7 V1 = 25; //[m/s]
8 p2 = 6; //[bar]
9 t2 = 230; //[C]
10 V2 = 45; // [m/s]
11 Q = -80; // [kJ/s] Rate at which heat is removed
      from chamber
12 t4 = 30; // [ C ]
                      //[ C ] Final temperature after
13 	 t3 = (t1 + t2)/2;
      mixing
14 // From tables of ideal gas properties of air
15 h1 = 303; //[kJ/kg]
                         At 303 K
16 h2 = 503; //[kJ/kg]
                         At 503 K
17 h3 = 403; //[kJ/kg]
                         At 403 K
18 // for mixing chamber m1*[h1 + V1^2/2] + m2*[h2 + V2]
      ^2/2] = m3*[h3 + V3^2]+Q
19 // Also m1 = m2 = m and from mass balance m1+m2 = m3
      = 2*m
20 // Final eq = [m*[h1 + V1^2/2 + h2 + V2^2/2] = 2*m
      *[h3 + V3^2/2]+Q]
21 \text{ V3} = \text{sqrt}(h1 + \text{V1}^2/(2*1000) + h2 + \text{V2}^2/(2*1000) -
      2*h3); //[m/s]
22 // For nozzle mass flow rate remain constant so
      final equation is
23 / m3*[h3 + V3^2/2] = m3*[h4 + V4^2/2]
24 \text{ h4} = \text{h1};
25 \text{ V4} = \text{sqrt}(2*1000*[h3 + V3^2/(2*1000)-h4]);
26 disp('Velocity of air stream leaving the nozzle at
      30 \text{ C} = \text{, V4, } \text{m/s, }
27 // The answer vary due to round off error
```

```
"Mass flow rate of the air = "

88.959059

"kg/s"

"h2 = "

311.1125

"kJ/kg"

"Temperature of air at the exit of diffuser is equal to Temperature corresponding to the enthalpy value of h2 from tables"

"Temperature of air at the exit of diffuser = "

39.

"°C"

-->
```

Figure 5.6: Determine the mass flow rate of air and temperature of air at the exit of diffuser

 ${\bf Scilab}\ {\bf code}\ {\bf Exa}\ {\bf 5.6}$ Determine the mass flow rate of air and temperature of air at

```
1 //Example 5.6
2 //Determine the mass flow rate of air and
        temperature of air at the exit of diffuser
3 clear
4 clc
5 T1 = 273 + 15; //[K]
6 V1 = 215; //[m/s]
7 p1 = 90; //[kPa]
8 R = 0.287;
```

```
9 v1 = (R*T1)/p1; //[m^3/kg]
10 A1 = 0.38; //[m^2]
11 //(i) Determine mass flow rate of air
12 m = (A1*V1)/v1; //[kg/s]
13 disp('Mass flow rate of the air = ',m, 'kg/s')
14 //(ii) Determine the temperature of air at the exit
      of diffuser
15 //For diffuser, mass flow rate remains constant in
      steady flow so final equation is [h1 + V1^2/2] =
      [h2 + V2^2/2]
16 V2 = 0; // velocity of air leaving the diffuser is
      very small to vel at inlet
17
  h1 = 288; //[kJ/kg] from tables of ideal gas
      properties of air
18 \text{ h2} = \text{h1} + \text{V1}^2/(2*1000) - \text{V2}^2/(2*1000);
19 \operatorname{disp}('h2 = ',h2, 'kJ/kg')
20 disp ('Temperature of air at the exit of diffuser is
      equal to Temperature corresponding to the
      enthalpy value of h2 from tables')
21 T2 = 39; //[ C ] From tables of ideal gas properties
       of air, temperature corresponding to h2
22 disp('Temperature of air at the exit of diffuser = '
      , T2 , C ')
23 // The answer vary due to round off error
```

Scilab code Exa 5.7 Determine mass flow rate of the cooling water

Console

```
"Mass flow rate of cooling water = "
1.4374701
"kg/s"
```

Figure 5.7: Determine mass flow rate of the cooling water

```
6 //For steady flow, mass flow rates are equal so eq
    is m_air(h1-h3)=m_water(h4-h2)
7 m_air = 1; //[kg/s]
8 h1 = 373; //[kJ/kg] from tables of ideal gas
    properties of air at 373 K
9 h3 = 313; //[kJ/kg] from tables of ideal gas
    properties of air at 313 K
10 h2 = 125.79; //[kJ/kg] from saturated water
    temperature table at 30 C
11 h4 = 167.53; //[kJ/kg] from saturated water
    temperature tables at 40 C
12 m_water = (m_air*(h1-h3))/(h4-h2); //[kg/s]
13 disp('Mass flow rate of cooling water = ',m_water,'
    kg/s')
```

Chapter 6

Second Law of Thermodynamics

Scilab code Exa 6.1 Determine the power required to drive the plant

Console

"Power required to drive the plant = "

0.7669173

"kW"

Figure 6.1: Determine the power required to drive the plant

Console

"Monthly bill of the refrigerator = "

"Rs"

4.2238267

Figure 6.2: Estimate the monthly bill of the refrigerator

Scilab code Exa 6.2 Estimate the monthly bill of the refrigerator

```
1 / Example 6.2
2 //Estimate the monthly bill of the refrigerator
3 clear
4 clc
5 T1 = 273 + 30; //[K]
6 	ext{ T2} = 273 + 4; //[K]
7 Ideal\_COP = T2/(T1-T2);
8 Actual_COP = 0.20 * Ideal_COP;
   n = 12; // no. of times the door of refrigerator is
        opened in a day
10
    Q = 360; //[kJ]
   Q2 = Q*n; //[kJ]
11
12
    Wnet_in = Q2/Actual_COP; // [kJ]
    Cost_of_work = 0.25; //[Rs/kW h]
13
   // 1 kW h = 3600 kJ
14
    Wnet_in_1 = Wnet_in/3600; //[kW h]
15
     Cost = Wnet_in_1*Cost_of_work; // [Rs.] Cost of
16
        work for Wnet_in_1
17
     Bill = 30*Cost; //[Rs] //Monthly bill of
        refrigerator
18
     disp('Monthly bill of the refrigerator = ', 'Rs',
         Bill,)
```

 ${f Scilab\ code\ Exa\ 6.3}$ Determine the heat input required to heat engine and heat avai

```
1 //Example 6.3
2 //Determine the heat input required to heat engine
      and heat available for heating by the heat pump
3 clear
4 clc
5 COP_R= 4.5; //COP of refrigerator
```

Console "Heat input required to the engine is " 793.65079 "kJ" "Heat available for heating by the heat pump is" 1540. "kJ"

Figure 6.3: Determine the heat input required to heat engine and heat available for heating by the heat pump

```
6 Q4 = 1000; //[kJ] Heat removed from refrigerator
7 Wnet_in = Q4/COP_R; //[kJ] Work need to remove 1MJ
     of heat
8 eta_thermal = 0.28; // Thermal efficiency of heat
9 Wnet_out_1 = Wnet_in; //[kJ] Work output of heat
     engine
10 //(i) Determine heat input required to the engine
11 Q1 = Wnet_out_1/eta_thermal; //[kJ] heat input
     required to the engine
12 disp('Heat input required to the engine is ', Q1 , '
     kJ ')
13 //(ii) Determine the heat that is available for
     heating if above is used as heat pump for each MJ
      of heat input to the engine
14 q = 1000; //[kJ] Heat input to the Heat engine
15 Wnet_out_2 = eta_thermal*q; //[kJ] Work output
16 Wnet_in_2 = Wnet_out_2; //[kJ] Work input to heat
17 COP_HP = 1 + COP_R; // COP_Of_heat_pump
18 Q3 = COP_HP*Wnet_in_2; //[kJ]
19 disp ('Heat available for heating by the heat pump is
      ', Q3, 'kJ')
20 // The answer provided in textbook is wrong
```

 ${
m Scilab\ code\ Exa\ 6.4}$ Determine ratio between heat transfer to circulating water and

```
1 // Example 6.4
2 // Determine ratio between heat transfer to
          circulating water and heat input to engine
3 clear
4 clc
5 COP_HP = 3.5;
```

Console

"The ratio between heat transfer to circulating water and heat input to engine is "

1.625

Figure 6.4: Determine ratio between heat transfer to circulating water and heat input to engine

```
6  // COP_HP = Q3/Wnet
7  // therefore Wnet = Q3/COP_HP — eq1
8  eta_thermal = 0.25;
9  // eta_thermal = Wnet/Q1
10  // therefore Wnet = eta_thermal*Q1 — eq2
11  // From eq1 & 2  [eta_thermal*Q1 = Q3/COP_HP]
12  // so Q3/Q1 = eta_thermal*COP_HP
13  Q3_1 = eta_thermal*COP_HP;  // Q3/Q1
14  // Q2/Q1 = 1 - eta_thermal
15  Q2_1 = 1 - eta_thermal;
16  Ratio = Q3_1 + Q2_1;  // (Q3/Q1) + (Q2/Q1) = (Q3 + Q2)/Q1
17  disp('The ratio between heat transfer to circulating water and heat input to engine is ', Ratio)
```

 ${
m Scilab\ code\ Exa\ 6.5}$ Estimate heat rejected to the surroundings and the engine effi

```
1 / \text{Example } 6.5
2 //Estimate heat rejected to the surroundings and the
       engine efficiency
3 clear
4 clc
5 \text{ T1} = 800; //[K]
6 \text{ T2} = 298; //[K]
7 \ Q1 = 900; //[kW]
8 Wnet_out_1 = 400; //[kW]
9 eta_thermal = (Wnet_out_1/Q1)*100; //[\%] Actual heat
       engine efficiency
10 Q2_1 = Q1 - Wnet_out_1; //[kW] Heat rejected to
      surrounding by actual heat engine
11 eta_carnot = 1 - (T2/T1); //Carnot heat engine
      efficiency
12 Wnet_out_2 = eta_carnot*Q1; //[kW]
```

Console "Heat rejected by actual heat engine = " 500. "kW" "Heat rejected by carnot heat engine = " 335.25 "kW" "Actual heat engine efficiency = " 44.444444 "%" "Carnot heat engine efficiency = " 62.750000 "%"

Figure 6.5: Estimate heat rejected to the surroundings and the engine efficiency

Scilab code Exa 6.6 Estimate minimum work input required

```
1 / Example 6.6
2 // Estimate minimum work input required
3 clear
4 clc
5 T1 = 20 + 273; //[K]
6 	ext{ T2 = 0 + 273; } // [K]
7 m = 1000; //[kg] Mass of ice
8 LH = 335; //[kJ/kg] Enthalpy of fusion of ice
9 Cp = 4.2; //[kJ/kg K] Specific heat capacity of
     water at constant pressure
10 COP_R_Rev = T2/(T1 - T2); // COP for reversible
     refrigerator
11 Q2 = m*LH + m*Cp*(T1 - T2); //[kJ] Heat removed by
     refrigerator from water to produce 1 ton ice
12 Wnet_in = Q2/COP_R_Rev; //[kJ]
13 W_min = Wnet_in/3600; //[kW h] Minimum work input
     required in kW h
14 disp('Minimum work input required in kW h to produce
```

Console

"Minimum work input required in kW h to produce 1 ton of ice = "

8.5266585

"kW h"

Figure 6.6: Estimate minimum work input required

```
Console

"Power required to remove heat in 5 hours = "

0.8566449

"kW"
```

Figure 6.7: Evaluate the power required to remove heat in 5 hours

```
1 ton of ice = ', W_min, kW h')
```

 ${\bf Scilab}\ {\bf code}\ {\bf Exa}\ {\bf 6.7}\ {\bf Evaluate}\ {\bf the}\ {\bf power}\ {\bf required}\ {\bf to}\ {\bf remove}\ {\bf heat}\ {\bf in}\ {\bf 5}\ {\bf hours}$

```
1 //Example 6.7
2 // Evaluate the power required to remove heat in 5
    hours
3 clear
```

```
4 clc
5 m = 150; //[kg]
6 ti = 10; //[ C ] Initial temperature
7 tf = -2; //[ C ] Freezing point
8 T1 = 35 + 273; //[K] Ambient temperature
9 t2 = -5; //[ C ] Temperature required in celsius
10 T2 = 273 - 5; //[K] Temperature required in kelvin
11 Cp1 = 3.2; //[kJ/kg K] Specific heat of fish above
     freezing point
12 Cp2 = 1.699; //[kJ/kg K] Specific heat of fish below
      freezing point
13 hfg = 232; //[kJ/kg] Latent heat of fusion
14 COP_R_Rev = T2/(T1 - T2);
15 COP = 0.4*COP_R_Rev; // Actual COP
16 Q2 = m*[Cp1 *(ti - tf) + hfg + Cp2*(tf - t2)]; //[kJ]
17 Wnet_in = Q2/COP; //[kJ]
18 del_t = 5*3600; //[s]
19 W = Wnet_in/del_t; //[kW]
20 disp('Power required to remove heat in 5 hours = ',W
     , 'kW')
```

Chapter 7

Entropy

Scilab code Exa 7.1 Determine the increase in entropy of water

```
1 / \text{Example } 7.1
2 //Determine the increase in entropy of water
3 clear
4 clc
5 \text{ m1} = 1.5; // [kg]

6 \text{ t1} = 75; // [C]
7 \text{ T1} = 273 + \text{t1}; //[K]
8 m2 = 4; // [kg]
9 t2 = 40; // [C]
10 T2 = 273 + t2; //[K]
11 Cpw = 4.2; //[kJ/kg K]
12 t = 0; // [ C ]
13 T = 273 + t; //[K]
14 m = m1+m2; //[kg]
15 E = m1*Cpw*(t1-t) + m2*Cpw*(t2-t); // total energy
      before mixing
16 // total energy after mixing = m*Cpw*(tf - t)
17 tm = E/(m*Cpw); //[ C ]
                              final equilibrium
      temperature of water
```

Console

```
"Initial entropy of the system, s1 = "
3.8262908
"kJ/kg K"
"Final entropy of the system, s2 = "
3.8524396
"kJ/kg K"
"Increase in entropy of the system, del_s = "
0.0261488
"kJ/kg K"
```

Figure 7.1: Determine the increase in entropy of water

Scilab code Exa 7.2 Determine heat supplied and work done and steam flow rate

```
1 //Example 7.2
2 //Determine heat supplied and work done and steam
     flow rate
3 clear
4 clc
5 T1 = 600; //[K]
6 	ext{ T2} = 320; //[K]
7 //(i) Determine the heat supplied
8 // Q1/T1 = Q2/T2 = del_s (for a reversible cycle)
9 del_s = 1.5; //[kJ/kg K]
10 Q1 = del_s * T1; //[kJ/kg]
11 disp('Heat supplied = ', Q1 , 'kJ/kg')
12 //(ii) Determine the work done
13 eta = 1 - (T2/T1);
14 W = eta*Q1; //[kJ/kg]
                           Work done
15 disp('Work done = ',W, 'kJ/kg')
16 //(iii) Determine the steam flow rate
```

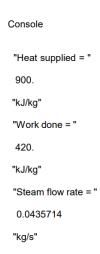


Figure 7.2: Determine heat supplied and work done and steam flow rate

```
17 P = 18.3; //[kW] Power output

18 m = P/W; //[kg/s] mass flow

19 disp('Steam flow rate = ', m, 'kg/s')
```

Scilab code Exa 7.3 Estimate the entropy change of the system

```
1 / \text{Example } 7.3
2 // Estimate the entropy change of the system
3 clear
4 clc
5 T1 = 273 + 25; //[K]
6 	ext{ T2} = 273 + 0; //[K]
7 T3 = 273 + (-5); //[K]
8 m = 250; //[g]
9 Cp_water = 4.182; //[J/g K] Specific heat of water
10 Cp_ice = Cp_water/2; //[J/K] Specific heat of ice
11 del_s_1 = m*Cp_water*log(T2/T1); //[J/K] Entropy
      change of system when it is converted to ice from
      25 C to 0 C
12 // Answer of del_s_1 is given wrong as T2 is 298 and
       in book it is solved by taking T2 as 293
13 disp('Entropy change of the system(water) when it is
       converted to ice from 25 C to 0 C', del_s_1,
     J/K')
14 L = 335; //[J/g] latent heat of fusion at 0 C
15 Q = m*L; //[J]
16 del_s_2 = -Q/T2; //[J/K] entropy change of system
     when water freezes at 0 C
17 disp('Entropy change of the system (water) when
      water freezes at 0 \, \mathrm{C} ', del_s_2, 'J/K')
18 del_s_3 = m*Cp_ice*log(T3/T2); //[J/K] entropy
      change when ice is formed from 0 \text{ C} to -5 \text{ C}
19 disp ('Entropy change of system (water) when ice is
```

"Entropy change of the system(water) when it is converted to ice from 25°C to 0°C" -91.608478 "J/K" "Entropy change of the system (water) when water freezes at 0°C" -306.77656 "J/K" "Entropy change of system (water) when ice is formed from 0°C to -5°C" -9.6629369 "J/K" "Total entropy change of the system" -408.04797 "J/K"

Figure 7.3: Estimate the entropy change of the system

Scilab code Exa 7.4 Estimate the entropy change of the universe

```
1 / Example 7.4
2 //Estimate the entropy change of the universe
3 clear
4 clc
    m = 0.5; //[kg]
    Cp = 0.45; //[kJ/kg K]
7
    T1 = 273 + 120; //[K]
    T2 = 273 + 10; //[K]
    // Case 1 : Iron block is placed in lake at 10 C
10
    del_s_system = m*Cp*log(T2/T1); //[kJ/kg]
    Q = m*Cp*(T1-T2); //[kJ]
11
12
    del_s_surr = Q/T2; //[kJ/kg K]
13
    del_s_1 = del_s_{system} + del_s_{surr}; //[kJ/kg K]
14
    disp ('Entropy change when iron block is placed in
       lake at 10 C ',del_s_1,'kJ/kg K')
15
    // Case 2: Iron block is dropped in lake from 150 m
    g = 9.8; //[m/s^2] Acceleration due to gravity
16
    h = 150; //[m]
17
    Q1 = m*g*h; //[kJ/kg K]
18
    del_s_2 = Q1/T2; //[kJ/kg K]
19
20
    disp('Entropy change when iron block is dropped
       from 150 \text{ m'}, \text{del_s_2}, \text{'kJ/kg K'}
```

Console "Entropy change when iron block is placed in lake at 10°C" 0.0135742 "kJ/kg K" "Entropy change when iron block is dropped from 150 m" 2.5971731 "kJ/kg K" "Entropy change when two blocks are joined" 0.0060379

"kJ/kg K"

Figure 7.4: Estimate the entropy change of the universe

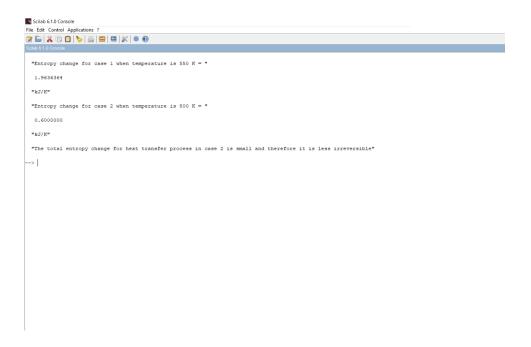


Figure 7.5: Find which of the heat transfer process is reversible

```
// Case 3: Two iron blocks are joined together
21
    Tf = (T1 + T2)/2; //[K] Final temperature when both
22
        blocks are joined
23
    del_s_block1 = m*Cp*log(Tf/T1); //[kJ/kg K]
    del_s_block2 = m*Cp*log(Tf/T2); //[kJ/kg K]
24
    del_s_3 = del_s_block1 + del_s_block2; //[kJ/kg K]
25
      Entropy change when two blocks are joined
    disp('Entropy change when two blocks are joined',
26
      del_s_3, 'kJ/kg K')
27 // Value of del_s_1 vary due to round off error
```

Scilab code Exa 7.5 Find which of the heat transfer process is reversible

```
1 / \text{Example } 7.5
```

```
2 //Find which of the heat transfer process is
      reversible
3 clear
4 clc
5 T = 1000; //[K]
6 Q = 2400; //[kJ]
7 // Case1: When temperature is 550 K
8 T1 = 550; //[K]
9 del_s_source_1 = -Q/T; //[kJ/K]
10 del_s_sink_1 = Q/T1; //[kJ/K]
11 del_s_total_1 = del_s_source_1 + del_s_sink_1; // [kJ]
     /K]
12 disp('Entropy change for case 1 when temperature is
      550~\mathrm{K}= ',del_s_total_1,'kJ/K')
13 // Case 2: When temperature is 800 K
14 T2 = 800; //[K]
15 del_s_source_2 = -Q/T; //[kJ/K]
16 del_s_sink_2 = Q/T2; // [kJ/K]
17 del_s_total_2 = del_s_source_2 + del_s_sink_2; //[kJ]
     /k]
18 disp('Entropy change for case 2 when temperature is
      800 \text{ K} = \text{`,del_s\_total\_2,'kJ/K'})
  if (del_s_total_1 > del_s_total_2)
19
       then disp('The total entropy change for heat
20
          transfer process in case 2 is small and
          therefore it is less irreversible')
       else disp('The total entropy change for heat
21
          transfer process in case 1 is small and
          therefore it is less reversible')
22 end
```

Scilab code Exa 7.6 Determine the power of turbine

Figure 7.6: Determine the power of turbine

```
//Example 7.6
//Determine the power of turbine
clear
clc
m = 2.3; //[kg/s] Stream flow rate
h1 = 3375.1; //[kJ/kg] From Mollier diagram at 100
bar and 500 C
s1 = 6.6; //[kJ/kg K] from Mollier diagram at 100
bar and 500 C
h2 = 2570; //[kJ/kg K] From Mollier diagram at 10
bar and 500 C
s2 = s1; //Since stream flow isentropically
P = m*(h1-h2); //[kW] Power of the turbine
disp('Power of the turbine, P = ',P,'kW')
```

Scilab code Exa 7.7 Determine the entropy increase of the universe

```
1 / Example 7.7
2 // Determine the entropy increase of the universe
3 clear
4 clc
5 m = 2.5; //[kg]
6 P = 200; //[kPa]
7 s_fg = 5.597; //[kJ/kg K] From steam tables for
     saturated water vapour at 200 kPA
8 del_s_sys = -(m*s_fg); //[kJ/K] for system
9 T = 273 + 30; //[K]
10 h_fg = 2202; //[kJ/kg] From steam tables
11 Q = m*h_fg; //[kJ]
12 del_s_surr = Q/T; //[kJ/K] for surrounding
13 del_s_univ = del_s_sys + del_s_surr; //[kJ/K] for
     universe
14 disp('Entropy increase of the universe = ',
```

Console "Entropy increase of the universe = " 4.1758168 "kJ/K"

Figure 7.7: Determine the entropy increase of the universe

Scilab code Exa 7.8 Find isentropic efficiency of turbine and mass flow rate of st

```
1 //Example 7.8
2 //Find isentropic efficiency of turbine and mass
     flow rate of steam
3 clear
4 clc
5 p1 = 50; //[bar]
6 \text{ T1} = 600; //[C]
7 h1 = 3666.5; //[kJ/kg] From superheated steam tables
      at p1 and T1
8 s1 = 7.259; //[kJ/kg K] From superheated steam
     tables at p1 and T1
9 p2 = 0.5; //[bar]
10 T2 = 150; //[C]
11 h2 = 2780.2; //[kJ/kg \ s] From superheated steam
     tables at p2 and T2
12 s2 = 7.9413; //[kJ/kg K] From superheated steam
     tables at p2 and T2
13 //From saturated steam tables at p2 = 0.5 bar
14 sf = 1.091; //[kJ/kg K]
15 sg = 7.593; //[kJ/kg K]
16 sfg = 6.502; //[kJ/kg K]
17 hf = 340.5; //[kJ/kg]
18 hfg = 2304.7; //[kJ/kg]
19 s2_1 = s1; //Entropy remains constant for isentropic
       process
20 	 x2_1 = (s2_1 - sf)/sfg;
21 h2_1 = hf + x2_1 * hfg; //[kJ/kg]
22 //(i) Find isentropic efficiency of the turbine
23 eta_T = ((h1 - h2)/(h1 - h2_1))*100;
```

```
Console

"Isentropic efficiency of turbine = "

77.766782

"%"

"Mass flow rate of steam flowing through the turbine = "

5.6414307

"kg/s"
```

Figure 7.8: Find isentropic efficiency of turbine and mass flow rate of steam

Scilab code Exa 7.9 Find isentropic efficiency of compressor and power required to

```
1 / \text{Example } 7.9
2 //Find isentropic efficiency of compressor and power
       required to drive compressor
3 clear
4 clc
5 m = 0.25; //[kg/s]
6 	ext{ T1} = 273 + 17; // [k]
7 h1 = 290.16; //[kJ/kg] From table of ideal gas
      properties of air at 290 K
8 Pr1 = 1.2311; //From table of ideal gas properties
      of air at 290 K
9 T2 = 610; //[K]
10 h2 = 617.53; //[kJ/kg] From tables of ideal gas
     properties at 610 K
11 P1 = 100; //[kPa]
12 P2 = 1000; //[kPa]
13 // Isentropic relation of ideal gas Pr2/Pr1 = P2/P1
14 \text{ Pr2} = (Pr1 * P2)/P1;
15 h2_1 = 559.23; //[kJ/kg] At Pr2
16 //(i) Find isentropic efficiency of compressor
17 eta_c = ((h2_1 - h1)/(h2 - h1))*100; //[\%]
```

Console "Isentropic efficiency of compressor = " 82.191404 "%" "Power required to run the compressor = " 81.842500 "kW"

Figure 7.9: Find isentropic efficiency of compressor and power required to drive compressor

Scilab code Exa 7.10 Find Isentropic efficiency Exit temperature and Actual exit v

```
1 //Example 7.10
  2 //Find Isentropic efficiency, Exit temperature and
                       Actual exit velocity of air
  3 clear
  4 clc
  5 \text{ T1} = 880; //[K]
  6 \text{ T2} = 690; //[K]
  7 \text{ P1} = 250; //[kPa]
 8 \text{ P2} = 90; //[kPa]
  9 //From tables of ideal gas specific heats
10 Cp_ave = 1.099; //[kJ/kg] Average specific heat
11 k = 1.354;
12 // Isentropic efficiency of nozzle = eta_N = (h1 - far 
                      h2)/(h1 - h2_1) = (Cp_ave(T1-T2))/Cp_ave(T1 -
13 T2_1 = T1*[(P2/P1)^( (k-1)/k)]; //[K] Exit
                       temperature
14 eta_N = (T1 - T2)/(T1 - T2_1); // Isentropic
                        efficiency of nozzle
15 V2_1 = sqrt(2*Cp_ave*(T1 - T2_1)*1000); //[m/s]
                       Isentropic exit velocity of nozzle
16 V2 = V2_1*sqrt(eta_N); //[m/s] Actual exit velocity
```

Console " Isentropic efficiency of nozzle = " 92.107539 "%" " Exit temperature = " 673.71938 "K" " Actual exit velocity of air = " 646.23525 "m/s"

Figure 7.10: Find Isentropic efficiency Exit temperature and Actual exit velocity of air

```
of air

17 disp(' Isentropic efficiency of nozzle = ',eta_N *100,'%')

18 disp(' Exit temperature = ',T2_1,'K')

19 disp(' Actual exit velocity of air = ',V2,'m/s')

20 //The answer vary due to round off error
```

Chapter 8

Properties of Gases and Gas Mixtures

Scilab code Exa 8.1 Determine the pressure exerted by N2 gas

```
1 / Example 8.1
2 // Determine the pressure exerted by N2 gas
3 clear
4 clc
5 m = 10; //[kg]
6 \ V = 8; \ //[m^3]
7 T = 273 + 25; //[K]
8 R = 8.314; //[kJ/mol K] Gas constant
9 mu_N2 = 28; //[kg/mol] Molecular weight of nitrogen
10 R_N2 = R/mu_N2; //[kJ/kg K] Gas constant of N2
11 // (i) Determine the pressure exerted by N2 gas when
      the gas obeys idel gas equation
12 p = (m*R_N2*T)/V; //[kPa] Pressure
13 disp('Pressure exerted by N2 gas when gas obeys
     ideal gas equation = ',p,'kPa')
14 //(ii) Determine the pressure exerted by N2 gas when
      the gas follows Vander waals equation
```

Console "Pressure exerted by N2 gas when gas obeys ideal gas equation = " 110.60589 "kPa" "Pressure exerted by N2 gas when gas follows Vander waals equation" 110.52438 "kPa"

Figure 8.1: Determine the pressure exerted by N2 gas $\,$

Scilab code Exa 8.2 Evaluate Mole fraction Mass fraction and Average gas constant

```
1 / Example 8.2
2 //Evaluate Mole fraction, Mass fraction and Average
      gas constant of mixture
3 clear
4 clc
5 \text{ m}_02 = 5; //[kg]
6 \text{ m} \text{N2} = 8; //[kg]
7 \text{ m}_{CO2} = 10; //[kg]
8 Mol_wt_02 = 32; //[kg] molecular weight of O2
9 Mol_wt_N2 = 28; //[kg] molecular weight of N2
10 Mol_wt_CO2 = 44; //[kg] molecular weight of CO2
11 m_m = m_02 + m_N2 + m_C02; //[kg] total mass of
      mixture
12 //(i) Evaluate mole fraction of each gas
13 n_02 = m_02/Mol_wt_02; //[kmol] no. of mole of O2
14 n_N2 = m_N2/Mol_wt_N2; //[kmol] no. of mole of N2
15 n_CO2 = m_CO2/Mol_wt_CO2; //[kmol] no. of mole of
16 \, n_m = n_02 + n_N2 + n_C02; //[kmol] \, Total no. of
      moles
17 Mf_02 = n_02/n_m; //mole fraction of O2
18 Mf_N2 = n_N2/n_m; //mole fraction of N2
```

Console "Mole fraction of O2 =" 0.2334748 "Mole fraction of N2 =" 0.4269254 "Mole fraction of CO2 =" 0.3395998 "Mass fraction of O2 =" 0.2173913 "Mass fraction of N2 =" 0.3478261 "Mass fraction of CO2 =" 0.4347826 "Average gas constant of mixture = " 0.2419146 "kJ/kg K"

Figure 8.2: Evaluate Mole fraction Mass fraction and Average gas constant of mixture

```
19 Mf_CO2 = n_CO2/n_m; //mole fraction of CO2
20 disp('Mole fraction of O2 =', Mf_O2)
21 disp('Mole fraction of N2 =',Mf_N2)
22 disp('Mole fraction of CO2 =', Mf_CO2)
23 //(ii) Evaluate mass fraction of each gas
24 \text{ w}_02 = \text{m}_02/\text{m}_m; //\text{mass fraction of } O2
25 w_N2 = m_N2/m_m; //mass fraction of N2
26 \text{ w}_{CO2} = \text{m}_{CO2}/\text{m}_{m}; //\text{mass fraction of CO2}
27 disp('Mass fraction of O2 = ', w_02)
28 disp('Mass fraction of N2 = ', w_N2)
29 disp('Mass fraction of CO2 =', w_CO2)
30 //(iii) Evaluate average gas constant of the mixture
31 mu_m = m_m/n_m; //[kg/kmol] average molar mass of
      mixture
32 R_bar = 8.314; //[kJ/kmol K] gas constant
33 R = R_bar/mu_m; //[kJ/kg \ K] average gas constant of
      mixture
34 disp('Average gas constant of mixture = ',R,'kJ/kg K
```

 ${
m Scilab~code~Exa~8.3}$ Find work done and heat transfer in isothermal and adiabatic p

Console "Work done in isothermal process =" 204.56977 "kJ" "Heat transfer in isothermal process =" 204.56977 "kJ" "Work done in adiabatic process =" 148.30328 "kJ" "Heat transfer in adiabatic process = " 0. "kJ"

Figure 8.3: Find work done and heat transfer in isothermal and adiabatic process

```
10 W1_2 = p1*V1*log(V2/V1); //[kJ] work done
11 U2_U1 = 0; //Change in internal energy is zero (U2-
     U1=0)
12 Q1_2 = U2_U1 + W1_2; //[kJ] Heat transfer
13 disp('Work done in isothermal process =', W1_2, 'kJ')
14 disp('Heat transfer in isothermal process =',Q1_2,'
     kJ ')
15 //(ii) Find work done and heat transfer in adiabatic
      process
16 \text{ gama} = 1.4;
17 p2 = p1*(V1/V2)^gama; //[kPa]
18 W_adia = (p1*V1 - p2*V2)/(gama - 1); //[kJ] work
19 Q = 0; //Heat transfer is 0 since it is adiabatic
      process
20 disp('Work done in adiabatic process = ', W_adia, 'kJ')
   disp('Heat transfer in adiabatic process = ',Q,'kJ'
      )
```

 ${f Scilab\ code\ Exa\ 8.4}$ Compute change in Enthalpy Work done Heat transferred and Fina

Console "Change in enthalpy =" -104.65178 "kJ" "Work done = " 74.751272 "kJ" "Heat transferred =" 0. "Final temperature =" 240.35826 "K"

Figure 8.4: Compute change in Enthalpy Work done Heat transferred and Final temperature $\,$

```
11 T2 = T1*( (p2/p1)^{(gama-1)/gama}); //[K] final
     temperature
12 //(i) Compute the change in enthalpy
13 R = 0.284;
14 \text{ del_h} =
            ((gama*m*R*T1)/(gama-1))*[(p2/p1)^((
     gama-1)/gama ) - 1]; //[kJ]
15 disp('Change in enthalpy =',del_h,'kJ')
16 //(ii) Compute the work done
17 / dQ = dU + dW = 0, therefore dW = -dU = U1 - U2 = m
     (u1 - u2)
18 W1_2 = ((m*R*T1)/(gama-1))*[1 - (p2/p1)^((gama-1))
     -1)/gama)]; //[kJ]
19 disp('Work done = ',W1_2,'kJ')
20 //(iii) Compute the heat transferred
21 Q = 0; //heat transferred is 0, since the process is
      reversible adiabatic
22 disp('Heat transferred =',Q)
23 //(iv) Compute the final temperature
24 disp('Final temperature =',T2,'K')
25 //The answer vary due to round off error
```

 ${\it Scilab\ code\ Exa\ 8.5\ Calculate\ following\ question\ when\ heat\ is\ transferred\ to\ 5\ kg}$

```
1 //Example 8.5
2 //Calculate following question when heat is
          tranferred to 5 kg gas
3 clear
4 clc
5 m = 5; //[kg]
6 V1 = 0.3; //[m^3]
7 t1 = 273+10; //[ C ]
8 t2 = 273 +120; //[ C ]
9 Cp = 1.88; //[kJ/kg K]
```

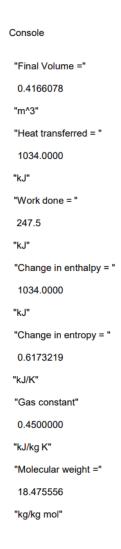


Figure 8.5: Calculate following question when heat is transferred to $5~\mathrm{kg}$ gas

```
10 Cv = 1.43; //[kJ/kg K]
11 R = Cp - Cv; // [kJ/kg K] Gas constant
12 //(i) Calculate the final volume
13 p1 = m*R*t1/V1; //[kPa]
14 p2 = p1; //[kPa] pressure is constant
15 V2 = m*R*t2/p2; // [m<sup>3</sup>] // final volume
16 disp('Final Volume =', V2, 'm<sup>3</sup>')
17 //(ii) Calculate the heat transferred
18 Q1_2 = m*Cp*(t2-t1); //[kJ] heat transferred
19 disp('Heat transferred = ',Q1_2, 'kJ')
20 //(iii) Calculate the work done
21 \text{ W1}_2 = p1*(V2 - V1); //[kJ] \text{ work done}
22 disp('Work done = ', W1_2, 'kJ')
23 //(iv) Calculate the changes in enthalpy and entropy
24 U1_2 = Q1_2 - W1_2; //[kJ] Change in internal energy
25 del_H = m*Cp*(t2 - t1); //[kJ] Change in enthalpy
26 del_s = Cp*log(t2/t1) - R*log(p2/p1); //[kJ/K]
      Change in entropy
27 disp('Change in enthalpy = ',del_H,'kJ')
28 disp('Change in entropy = ',del_s,'kJ/K')
29 //(v) Calculate the gas constant
30 disp('Gas constant', R, 'kJ/kg K')
31 //(vi) Calculate the molecular weight
32 R_bar = 8.314; //[kJ/kg K]
33 mu = R_bar/R; //[kg/kg mol]
34 disp('Molecular weight =',mu,'kg/kg mol')
```

Scilab code Exa 8.6 Determine specific volume of superheated vapor

```
1 //Example 8.6
2 //Determine specific volume of superheated vapor
3 clear
4 clc
```

Console "Using ideal gas equation ,Specific volume = " 0.0191676 "m^3/kg" "Using generalized compressibility chart, Specific volume = " 0.0124590 "m^3/kg" "Error in case 1 = " 66.950904 "%" "Error in case 2 = " 8.5180879

"%"

Figure 8.6: Determine specific volume of superheated vapor

```
5 p = 15; //[MPa]
6 T = 273 + 350; //[K]
7 //From superheated steam tables at 15 MPa and 350 C
8 v = 0.011481; //[m^3/kg] specific volume
9 //From data of water vapour
10 R = 0.4615; //[kJ/kg K]
11 pc = 22.06; //[MPa]
12 Tc = 647.1; //[K]
13 //(i) Determine specific volume of superheated vapor
      using ideal gas equation (pv = RT)
14 v_ideal = (R*T)/(p*1000); //[m^3/kg]
15 disp('Using ideal gas equation , Specific volume = ',
     v_{ideal}, m^3/kg'
16 //(ii) Determine specific volume using generalized
     compressibility chart
17 pr = p/pc;
18 Tr = T/Tc;
19 Z = 0.65; //From compressibility chart at pr and Tr
20 v_actual = Z *v_ideal; //[m^3/kg] Z=actual v/ideal
21 disp('Using generalized compressibility chart,
      Specific volume = ', v_actual, 'm<sup>3</sup>/kg')
  error_in_case1 = ((v_ideal - v)/v)*100; //[%]
22
     error in case 1
23 error_in_case2 = ( (v_actual - v)/v )*100; //[\%]
     error in case 2
24 disp('Error in case 1 = ',error_in_case1,'%')
25 disp('Error in case 2 = ',error_in_case2,'%')
26 // The answer vary due to round off error
```

Scilab code Exa 8.7 Determine Volume Temperature Total Work and Heat transfer and

```
1 //Example 8.7
```

Console "Volume at the end of compression" 0.4640549 "m^3" "Temperature at the end of compression" 560.16989 "K" "Total work transfer =" 491.45713 "kJ" "Total heat transferred =" 4108.0473 "kJ" "Total change in entropy =" 4.2018319 "kJ/kg K"

Figure 8.7: Determine Volume Temperature Total Work and Heat transfer and Total entropy change

```
2 //Determine Volume, Temperature, Total work and heat
       transfer and total entropy change
3 clear
4 clc
5 m = 2.5; //[kg]
6 V1 = 1.8; //[m^3]
7 p1 = 103; //[kPa]
8 \text{ T1} = 373; //[K]
9 p2 = 600; //[kPa]
10 n = 1.3;
11 R = (p1*V1)/(m*T1); //[kJ/kg K] Gas constant
12 //(i) Determine the volume and temperature at the
      end of compression
13 // p1* (V1^n) = p2 * (V2^n)
14 V2 = V1*( (p1/p2)^(1/n) ); //[m^3] volume
15 disp('Volume at the end of compression', V2, 'm<sup>3</sup>')
16 / p2*V2 = m*R*T2
17 T2 = (p2*V2)/(m*R); //[K] temperature
18 disp('Temperature at the end of compression', T2, 'K')
19 //(ii) Determine the total work transfer
20 \text{ W1}_2 = (p1*V1 - p2*V2)/(n-1); //[kJ]
21 V3 = V1; //[m^3]
22 \text{ W2}_3 = \text{p2}*(\text{V3} - \text{V2}); //[\text{kJ}]
23 W_tot = W1_2 + W2_3; //[kJ] total work transfer
24 disp('Total work transfer =', W_tot, 'kJ')
25
    //(iii) Determine total heat transfer
26
    Cv = 0.783; //[kJ/kg K]
27
    Cp = 1.005; //[kJ/kg K]
    Q1_2 = m*Cv*(T2 - T1) + W1_2; //[kJ]
28
    //(p2 V2)/T2 = (p3V3)/T3 \& p3 = p2 \& V3 = V1
29
30
    T3 = (T2*V1)/V2; //[K]
31
    Q2_3 = m*Cp*(T3 - T2); //[kJ]
32
    Q_{tot} = Q1_2 + Q2_3; //[kJ]
33
    disp('Total heat transferred =',Q_tot,'kJ')
34
   //(iv) Determine total change of entropy
35 S2_S1 = m*[Cv*log(T2/T1) + R*log(V2/V1)]; //[kJ/kg k]
     ] S2-S1
36 \text{ S3\_S2} = m*[Cp*log(T3/T2) + R*log(V3/V2)]; //[kJ/kg K]
```

```
Console

"Increase in entropy due to mixing ="

1.3930044

"kJ/K"
```

Figure 8.8: Estimate the increase in entropy due to mixing

```
] S3-S2
37 del_S_tot = S2_S1 + S3_S2; //[kJ/kg K]total change
    in entropy
38 disp('Total change in entropy =',del_S_tot,'kJ/kg K')
39 //The answer provided in textbook is wrong
```

Scilab code Exa 8.8 Estimate the increase in entropy due to mixing

```
1 / Example 8.8
2 //Estimate the increase in entropy due to mixing
3 clear
4 clc
5 \text{ m}_02 = 5; //[kg]
6 \text{ m}_{H2} = 2; //[kg]
7 M_02 = 32; //[kg/mol] molecular weight of O2
8 M_H2 = 2; //[kg/mol] molecular weight of H2
9 \text{ n}_02 = \text{m}_02/\text{M}_02; //[\text{mol}] no. of moles of O2
10 n_H2 = m_H2/M_H2; // [mol] no. of moles of H2
11 x_02 = n_02/(n_02 + n_H2); //mole fraction of O2
12 x_H2 = 1 - x_02; // mole fraction of H2
13 R_bar = 8.314; //[kJ/mol\ K]
14 R_02 = R_bar/M_02; //[kJ/kg K]
15 R_H2 = R_bar/M_H2; //[kJ/kg~K]
16 // Partial pressure of O2 and H2 is equal to their
      mole fraction
17 /p_{-}O_{2}/p = x_{-}O_{2} \text{ and } p_{-}H_{2}/p = x_{-}H_{2}
18 del_s = -(m_02 *R_02 * \log(x_02) - m_H2 *R_H2 * \log(x_02))
      x_H2) ); //[kJ/K] s2 - s1 (increase in entropy)
19 disp('Increase in entropy due to mixing =',del_s,'kJ
      /K')
```

Scilab code Exa 8.9 Compute Specific heats and change in Internal energy Enthalpy

```
1 //Example 8.9
2 //Compute Specific heats and change in Internal energy, Enthalpy and Entropy
```

```
Console
 "Specific heat at constant pressure of mixture = "
 0.8387143
"kJ/kg K"
 "Specific heat at constant volume of mixture = "
 0.5984286
"kJ/kg K"
 "Change in internal energy = "
 104.725
"kJ"
 "Change in enthalpy = "
 146.77500
"kJ"
 "Change in entropy = "
 0.4729609
"kJ/K"
```

Figure 8.9: Compute Specific heats and change in Internal energy Enthalpy and Entropy

```
3 clear
4 clc
5 \text{ m}_02 = 5; //[\text{kg}]
6 \text{ m}_{\text{CO2}} = 2; //[\text{kg}]
7 \text{ T1} = 298; //[K]
8 T2 = 323; //[K]
9 Cp_02 = 0.9094; //[kJ/kg K]
10 Cp_CO2 = 0.662; //[kJ/kg K]
11 Cv_02 = 0.649; //[kJ/kg K]
12 Cv_CO2 = 0.472; //[kJ/kg K]
13 P1 = 250; //[kPa]
14 //(i) Compute the specific heats
15 Cp = (m_02*Cp_02 + m_C02*Cp_C02)/(m_02 + m_C02); //[
      kJ/kg K at constant pressure
16 \text{ Cv} = (m_02*\text{Cv}_02 + m_02*\text{Cv}_02)/(m_02 + m_02); //[
      kJ/kg K at constant volume
17 disp ('Specific heat at constant pressure of mixture
      = ',Cp, 'kJ/kg K')
18 disp('Specific heat at constant volume of mixture =
      ',Cv,'kJ/kg K')
19 //(ii) Compute internal energy, enthalpy and entropy
       of the mixture
20 \text{ m} = \text{m}_02 + \text{m}_02; //[kg]
21 del_U = m*Cv*(T2 - T1); //[kJ] change in internal
      energy
22 del_H = m*Cp*(T2 - T1); //[kJ] change in enthalpy
23 // del_s = m*[Cp*log(T2/T1) - R*log(P2/P1)], but P2
       = P1 \text{ so } R*\log(P2/P1)=0
24 del_s = m*Cp*log(T2/T1); // [kJ/K] change in entropy
25 disp('Change in internal energy = ',del_U, 'kJ')
26 disp('Change in enthalpy = ',del_H,'kJ')
27 disp('Change in entropy = ',del_s,'kJ/K')
```

```
Console

"Final temperature = "

468.00900

"K"

"Final partial pressure of N2 = "

242.64706

"kPa"

"Final partial pressure of CO2 = "

257.35294

"kPa"

"Change in internal energy of the mixture = "

780.15362

"kJ"
```

Figure 8.10: Compute Final temperature Final partial pressure of components and change in internal energy

Scilab code Exa 8.10 Compute Final temperature Final partial pressure of component

```
1 //Example 8.10
2 //Compute Final temperature, Final partialpressure
      of components and change in internal energy
3 clear
4 clc
5 \text{ m_N2} = 3; //[kg]
6 \text{ m}_{\text{CO2}} = 5; //[\text{kg}]
7 m = m_N2 + m_C02; //[kg]
8 M_N2 = 28; //[kg/mol] mol. wt. of N2
9 \text{ M}_{CO2} = 44; //[kg/mol] \text{ mol. wt. of } CO2
10 P1 = 103; //[kPa]
11 P2 = 500; //[kPa]
12 T1 = 273 +25; //[K]
13 R_bar = 8.314; //[kJ/mol K] gas constant
14 R_N2 = R_bar/M_N2; //[kJ/kg K]
15 R_C02 = R_bar/M_C02; //[kJ/kg \ K]
16 \text{ gamma_N2} = 1.4;
17 Cv_N2 = R_N2/(gamma_N2 - 1); //[kJ/kg K]
18 Cp_N2 = gamma_N2*Cv_N2; //[kJ/kg K]
19 \text{ gamma\_CO2} = 1.286;
20 Cv_CO2 = R_CO2/(gamma_N2-1); //[kJ/kg K]
21 Cp_CO2 = gamma_CO2*Cv_CO2; //[kJ/kg K]
22 \text{ Cp} = (m_N2*Cp_N2 + m_C02*Cp_C02)/(m_N2 + m_C02); //[
      kJ/kg K]
23 \text{ Cv} = (m_N2*Cv_N2 + m_C02*Cv_C02)/(m_N2 + m_C02); //
      kJ/kg K]
24 //(i) Compute the final temperature
25 \text{ T2} = \text{T1} * (P2/P1)^{(gamma_N2 - 1)} / \text{gamma_N2}; // [K]
26 disp('Final temperature = ', T2 , 'K')
27 //(ii) Compute the final partial pressure of
      component
28 \text{ x}_{N2} = (m_{N2}/M_{N2})/[(m_{N2}/M_{N2}) + (m_{C02}/M_{C02})];
      //Mole fraction of N2
29 	 x_CO2 = (m_CO2/M_CO2)/[(m_N2/M_N2) + (m_CO2/M_CO2)]
      ]; //Mole fraction of CO2
30 p_N2 = x_N2*P2; //[kPa]
```

```
31 p_CO2 = x_CO2*P2; //[kPa]
32 disp('Final partial pressure of N2 = ', p_N2 , 'kPa')
33 disp('Final partial pressure of CO2 = ', p_CO2, 'kPa')
34 //(iii) Compute the change in internal energy of
        mixture during the process
35 del_U = m*Cv*(T2 - T1); //[kJ]
36 disp('Change in internal energy of the mixture = ',
        del_U, 'kJ')
37 //The answer of (iii) is provided wrong in textbook
        due to calculation mistake
38 // Total mass should be 8 but it is taken as 7
```

Chapter 9

Concept of Available Energy Exergy

Scilab code Exa 9.1 Determine reversible power input and irreversibility for the p

```
1 / Example 9.1
2 // Determine reversible power input
      irreversibility for the process
3 clear
4 clc
5 T1 = 273 + 27; //[K]
6 	ext{ T2} = 273 + (-5); //[K]
7 COP_R_Rev = T2/(T1 - T2);
8 Q2 = 7.8; //[kJ/s] Rate of heat transfer
9 //(i) Determine the reversible power input required
     to drive the plant
10 W_{in}_{rev} = Q2/COP_{R_{ev}} / [kW] Minimum power
      required to drive the plant when it is run on
      reversible conditions
11 disp('The reversible power input required to drive
      the plant = ', W_in_rev, 'kW')
12 W_in_u = 2.2; //[kJ/s] power required to drive the
```

Console "The reversible power input required to drive the plant = " 0.9313433 "kW" "Irreversibility for the process =" 1.2686567 "kW"

Figure 9.1: Determine reversible power input and irreversibility for the process

Scilab code Exa 9.2 Calculate Actual work required Minimum work required and Irrev

```
1 / Example 9.2
2 // Calculate actual work required, minimum work
      required and irreversibility of process
3 clear
4 clc
5 p1 = 140; //[kPa]
6 	ext{ T1 } = 273 + 17; //[K]
7 \text{ V1} = 70; //[\text{m/s}]
8 p2 = 350; //[kPa]
9 T2 = 273 + 127; //[K]
10 V2 = 110; //[m/s]
11 T0 = 273+7; //[K]
12 Cp = 1.005; //[kJ/kg K]
13 R = 0.287;
14 //(i) Calculate actual amount of work required
15 Win_u = Cp*(T2 - T1) + (V2^2 - V1^2)/(2*1000); //[kJ]
      Actual work input required
16 //(ii) Calculate the minimum work required
17 //TdS = dh - vdp
18 // s2 - s1 = Cplog(T2/T1) - Rlog(p2/p1)
19 // 1 - 2 = del = Win_rev = (h1 - T0*s1) - (h2 -
     T0*s2)+(V1^2 - V^2)/2
20 Win_rev = -[Cp*(T1 - T2) - T0*[R*log(p2/p1) - Cp*log
      (T2/T1)]+(V1^2 - V2^2)/(2*1000)]; //[kJ] Minimum
      work required
21 //(iii) Calculate the irreversibility of the process
```

Console "Actual amount of work required = " 114.15000 "kJ" "Minimum work required = " 97.289491 "kJ" "Irreversibility of process = " 16.860509 "kJ"

Figure 9.2: Calculate Actual work required Minimum work required and Irreversibility of process

 ${
m Scilab\ code\ Exa\ 9.3}$ Calculate Availability at states 1 and 2 Irreversibility and ${
m Scilab\ code\ Exa\ 9.3}$

```
1 / Example 9.3
2 // Calculate Availability at state 1 and 2,
       Irreversibility and Second law efficiency
3 clear
4 clc
5 p1 = 500; //[kPa]
6 p2 = 100; //[kPa]
7 p0 = 100; //[kPa]
8 \text{ V1} = 150; //[\text{m/s}]
9 V2 = 70; //[m/s]
10 T1 = 400; //[K]
11 T2 = 300; //[K]
12 TO = 290; //[K]
13 Cp = 1.005; //[kJ/kg K]
14 R = 0.287;
15 //(i) Calculate the availability at states 1 and 2
16 // psi_1 = Cp*(T1 - T0) - T0*(s1 - s2) + V1^2/2
17 \text{ psi}_1 = \text{Cp}*(\text{T1} - \text{T0}) - \text{T0}*[\text{R}*\log(\text{p0/p1}) - \text{Cp}*\log(\text{T0/p1})]
       T1)] + V1^2/(2*1000); //[kJ]
18 disp('Availability at state 1 = ',psi_1, 'kJ')
19 / psi_2 = Cp*(T2 - T0) - T0*(s2 - s0) + V2^2/2
20 \text{ psi}_2 = \text{Cp}*(\text{T2} - \text{T0}) - \text{T0}*[\text{R}*\log(\text{p0}/\text{p2}) - \text{Cp}*\log(\text{T0}/\text{p2})]
       T2)] + V2^2/(2*1000); //[kJ]
21 disp('Availability at state 2 = ',psi_2, 'kJ')
22 //(ii) Calculate irreversibility or energy
```

Console "Availability at state 1 = " 162.02797 "kJ" "Availability at state 2 = " 2.6193928 "kJ" "Irreversibility = " 50.108577 " kJ " "The second-law efficiency = " 68.565947 " % "

Figure 9.3: Calculate Availability at states 1 and 2 Irreversibility and Second law efficiency

Scilab code Exa 9.4 Determine Exergy of steam Exergy destruction and Efficiency

```
1 / Example 9.4
2 // Determine Exergy of steam, Exergy destruction and
      Efficiency
3 clear
4 clc
5 m = 0.052; //[kg]
6 p1 = 12; //[bar]
7 \text{ T1} = 273 + 350; //[K]
8 // At p1 and T1 value of u1, v1 and s1 are
9 u1 = 2872.7; //[kJ/kg]
10 v1 = 0.2345; //[m^3/kg]
11 s1 = 7.2139; //[kJ/kg K]
12 p2 = 3; //[bar]
13 T2 = 273 + 200; //[K]
14 // At p2 and T2 value of u2, v2 and s2 are
15 u2 = 2651; //[kJ/kg]
```

```
Console

"Exergy of steam at state 1 = "

39.048381

"kJ"

"Exergy of steam at state 2 = "

28.490207

"kJ"

"Exergy destroyed ="

3.7356536

"kJ"

" Therefore, the work potential of the steam is "

64.618373

"%"
```

Figure 9.4: Determine Exergy of steam Exergy destruction and Efficiency

```
16 v2 = 0.7164; //[m^3/kg]
17 s2 = 7.313; //[kJ/kg K]
18 p0 = 1; //[bar]
19 T0 = 273 + 25; //[K]
20 // At p0 and T0 value of u0, v0 and T0 are
21 u0 = 104.8; //[kJ/kg]
22 v0 = 0.00103; //[m^3/kg]
23 s0 = 0.3672; //[kJ/kg K]
24 Q = 2.2; //[kJ] Heat lost to the surrounding
25 // (i) Determine the exergy of steam at the initial
     and final states
26 	ext{ X1} = m*[ (u1 - u0) - T0*(s1 - s0) + p0*100*(v1 - v0)]
      ]; //[kJ] Exergy of steam at state 1
27 X2 = m*[(u2 - u0) - T0*(s2 - s0) + p0*100*(v2 - v0)]
     ]; //[kJ] Exergy of steam at state 2
28 disp('Exergy of steam at state 1 = ',X1, 'kJ')
29 disp('Exergy of steam at state 2 = ', X2, 'kJ')
30 //(ii) Determine the exergy destruction
31 del_X = (X1-X2); //[kJ]
32 del_s_sys = m*(s2 - s1); //[kJ/K]
33 del_s_surr = Q/T0; //[kJ/K]
34 \text{ s_gen} = \text{del_s_sys} + \text{del_s_surr}; //[kJ/K]
35 X_destroyed = T0 * s_gen; //[kJ] exergy destroyed
36 disp('Exergy destroyed =',X_destroyed,'kJ')
37 //(iii) Determine the second law efficiency
38 X_expended = del_X; //[kJ]
39 eta_pi = (1 - (X_destroyed/X_expended) )*100; //[\%]
       efficiency
40 // work potential of the steam is called second law
      efficiency
41 disp(' Therefore, the work potential of the steam is
      ', eta_pi,'\%')
  // The answer vary due to round off error
```

```
Console
 "W_max = "
  121.66698
 "kJ"
 "W_act = "
 71.8
 "kJ"
 "Change in availability = "
 58.666981
 "kJ"
 "Irreversibility = "
  49.866981
 "kJ"
 "Efficiency = "
 59.013546
 "%"
```

Figure 9.5: Calculate following question on air expansion in turbine

Scilab code Exa 9.5 Calculate following question on air expansion in turbine

```
1 / Example 9.5
2 // Calculate following question on air expansion in
      turbine
3 clear
4 clc
5 m = 1; //[kg]
6 Cv = 0.718; //[kJ/kg K]
7 \text{ T1} = 400; //[kPa]
8 T2 = 300; //[kPa]
9 p1 = 500; //[kPa]
10 p2 = 100; //[kPa]
11 p0 = 100; //[kPa]
12 T0 = 273 +17; //[K]
13 Cv = 0.718; //[kJ/kg K]
14 R = 0.287;
15 v1 = 0.23; //[m^3/kg] At p1 and T1
16 v2 = 0.86; //[m^3/kg] At P2 and T2
17 //(i) Calculate W_max(maximum work done)
18 / W_{max} = (u1 - u2) - T0(s1 - s2), where s2 - s1 =
      Cv*log(T2/T1) + R*log(v2/v1)
19 // (u1 - u2) = Cv(T1 - T2)
20 \text{ W_max} = \text{Cv*}(\text{T1} - \text{T2}) + \text{T0*}[\text{Cv*}\log(\text{T2/T1}) + \text{R*}\log(\text{v2})]
      /v1)]; //[kJ]
21 disp('W_max = ', W_max, 'kJ')
22 //(ii) Calculate W_act(actual work done)
23 //W_{act} = Q - del_{U} \Rightarrow -del_{U} = m*Cv*(T1 - T2)
24 W_{act} = m*Cv*(T1 - T2); //[kJ]
25 \operatorname{disp}('W_{act} = ',W_{act},'kJ')
26 //(iii) Calculate change in availability
27 Wu_max = W_max - p0*(v2 - v1); //[kJ]
28 disp('Change in availability = ', Wu_max, 'kJ')
29 //(iv) Calculate irreversibility
30 I = W_{max} - W_{act}; //[kJ]
                                    irreversibility
31 disp('Irreversibility = ',I,'kJ')
32 //(v) Calculate second—law efficiency
33 eta_pi = (W_act/W_max)*100; //[\%]
```

```
34 disp('Efficiency = ',eta_pi,'%')
35 //The answer vary due to round off error
```

Scilab code Exa 9.6 Determine temperature and rate of exergy destruction

```
1 / Example 9.6
2 //Determine temperature and rate of exergy
      destruction
3 clear
4 clc
5 mh = 800; //[kg/h] mass flow rate of oil
6 Cph = 2.1; //[kJ/kg K] specific heat of oil at
      constant pressure
7 \text{ Th1} = 440; //[K]
8 \text{ Th2} = 320; //[K]
9 mc = 3200; //[kg/h] mass flow rate of water
10 Cpc = 4.2; //[kJ/kg K] specific heat of water at
      constant pressure
11 Tc1 = 290; //[K]
12 //(i) Calculate temperature T
13 //Energy balance between oil and water, mh*Cph*(Th1
       - \text{Th}2) = \text{mc} \cdot \text{Cpc} \cdot (\text{Tc}2 - \text{Tc}1)
14 T = [ (mh*Cph*(Th1 - Th2))/(mc*Cpc)] + Tc1; //[K]
15 disp('The final temperature of water after heating,
       T = ', T, 'K'
16 //(ii) Calculate the rate of exergy destruction
17 // del_S_total = del_s_oil + del_s_water
18 function s = f (T)
       s = (mh*Cph)/T;
19
20 endfunction
21 del_s_oil = intg(Th1, Th2, f); //[kJ/K]
22 function s1 = f1 (T)
23
       s1 = (mc*Cpc)/T;
```

```
Console

"The final temperature of water after heating , T = "
305.

"K"

"Rate of exergy destruction = "
41.408637

"MJ/h"
```

Figure 9.6: Determine temperature and rate of exergy destruction

```
24 endfunction
25 del_s_water = intg(Tc1, T, f1); //[kJ/K]
26 del_S_total = del_s_oil + del_s_water;
27 X_destroyed = (Tc1 * del_S_total)/1000; //[MJ/h]
28 disp('Rate of exergy destruction = ',X_destroyed,'MJ/h')
```

Scilab code Exa 9.7 Estimate the increase in unavailable energy

```
1 / Example 9.7
2 //Estimate the increase in unavailable energy
3 clear
4 clc
5 m = 1; //[kg]
6 L = 1404; //[kJ/kg] latent heat of vapourization of
      water
  Tw = 273 + 300; //[K]
8 Tg_1 = 273 + 1500; //[K] initial temperature of
     combustion gas
9 \text{ Tg}_2 = 273 + 350; //[K] final temperature of
     combustion gas
10 Cpg = 1.2; //[kJ/kg K] specific heat of combustion
      gas at constant pressure
11 Ts = 273 + 25; //[K]
12 //Heat lost by combustion = Heat gained by water =
     Latent heat L
13 / m_* Cpg * del_T_g = mw * Cpw * del_T_w = 1 * 1404 kJ/kg
14 mg = (m * L)/(Cpg * (Tg_1 - Tg_2)); //[kg] mass of
15 del_s_water = (m*L)/Tw; //[kJ/kg K] entropy
     increase of water due to evaporation
16 \text{ function } s = f(T)
17
      s = (mg*Cpg)/T;
```

```
Console

"Loss in (available energy) exergy = "

349.66621

"kJ"
```

Figure 9.7: Estimate the increase in unavailable energy

Scilab code Exa 9.8 Estimate the exergy destroyed

```
1 / \text{Example } 9.8
2 //Estimate the exergy destroyed
3 clear
4 clc
5 \text{ mI} = 10; //[kg]
6 CpI = 0.55; //[kJ/kg K]
7 t1_I = 300; //[C]
8 \text{ T1_I} = 273 + \text{t1_I}; //[K]
9 mw = 80; //[kg]
10 Cpw = 4.18; //[kJ/kg K]
11 t1_w = 27; //[kJ/kg K]
12 \text{ T1}_{w} = 273 + 27; //|K|
13 T0 = 273 + 25; //[K]
14 // dQ = dW + dU and dU = 0 \& dW = 0, therefore dQ =
15 // so the equation is, m1*Cp1*(tf - t1_1) + mw*Cpw*(
      tf - t1_w) = 0
16 tf = (mI*CpI*t1_I + mw*Cpw*t1_w)/(mI*CpI + mw*Cpw);
      //[ C ] final equilibrium temperature
17 Tf = 273 + tf; //[K]
18 CvI = CpI; //[kJ/kg K]
19 E_{loss_{iron}} = mI*CvI*(T1_I - Tf) - mI*CvI*T0*log(
      T1_I/Tf); //[kJ] exergy loss of iron block
```

Console "Exergy loss of the system =" 461.10633 "kJ"

Figure 9.8: Estimate the exergy destroyed

Chapter 10

Vapor and Advanced Power Cycles

Scilab code Exa 10.1 Determine cycle efficiency and thermal efficiency in both cas

```
1 //Example 10.1
2 // Determine cycle efficiency and thermal efficiency
      in both case
3 clear
4 clc
5 //(i) Determine cycle efficiency
6 p1 = 2.5*10^3; //[kPa]
7 \text{ t1} = 300; //[K]
8 //From superheated stem tables at p1 and t1
9 \text{ h1} = 3009.6; //[kJ/kg]
10 s1 = 6.645; //[kJ/kg K]
11 p2 = 15; //[kPa]
12 //From saturated steam tables at p2
13 sf2 = 0.7549; //[kJ/kg K]
14 sfg2 = 7.252; //[kJ/kg K]
15 vf = 0.001014; //[m^3/kg]
16 hf2 = 225.94; //[kJ/kg]
```

```
Console

"Cyle efficiency = "
30.693123

"%"

"Therml efficiency if steam is superheated to 500°C ="
33.473725

"%"

"Thermal efficiency if boiler pressure is raised to 5MPa and turbine inlet temp is 500°C 36.341206

"%"
```

Figure 10.1: Determine cycle efficiency and thermal efficiency in both case

```
17 hfg2 = 2373.2; //[kJ/kg]
18 s2 = s1; //[kJ/kg K]
19 x2 = [(s2 - sf2)/sfg2]; //[\%]
    h2 = hf2 + x2*hfg2; //[kJ/kg]
20
21
    h3 = 225.94; //[kJ/kg]
22
    v3 = vf; //[m^3/kg]
    wp = v3*(p1 - p2); //[kJ/kg]
23
24
    h4 = wp + h3; //[kJ/kg]
    q1 = h1 - h4; //[kJ/kg]
25
    q2 = h2 - h3; //[kJ/kg]
26
    eta_cycle = [1 - (q2/q1)]*100; //[\%] \text{ cycle}
27
       efficiency
28
    disp('Cycle efficiency = ',eta_cycle,'%')
29
    //(ii) Determine thermal efficiency if steam is
       superheated to 500 C
    p1_1 = 2.5*1000; //[kPa]
30
31
    t1_1 = 500; //[C]
    // at p1_1 and t1_1
33 h1_1 = 3462.8; //[kJ/kg]
34 \text{ s1\_1} = 7.33; //[kJ/kg K]
35 s2_1 = s1_1; //[kJ/kg K]
36 \text{ x2\_1} = [(s2\_1 - sf2)/sfg2]; //[\%]
37 \text{ h2\_1} = \text{hf2} + \text{x2\_1*hfg2}; //[kJ/kg]
38 q1_1 = h1_1 - h4; //[kJ/kg]
39 q2_1 = h2_1 - h3; //[kJ/kg]
40 eta_cycle_1 = [1 - (q2_1/q1_1)]*100; //[kJ/kg]
41 disp('Thermal efficiency if steam is superheated to
      500 \text{ C} = ', \text{eta_cycle_1}, '\%')
  //(iii) Determine thermal efficiency if boiler
      pressure is raised to 5 MPa and turbine inlet
      temperature is at 500 C
43 p1_2 = 5*1000; //[kPa]
44 \text{ t1}_2 = 500; //[C]
45 // at p1_2 and t1_2
46 h1_2 = 3434.7; //[kJ/kg]
47 \text{ s1\_2} = 6.987; //[kJ/kg K]
48 s2_2 = s1_2; //[kJ/kg K]
49 	ext{ x2_2} = [(s2_2 - sf2)/sfg2];
```

```
50  h2_2 = hf2 + x2_2*hfg2; //[kJ/kg]
51  wp_2 = v3*(p1_2 - p2); //[kJ/kg]
52  h4_2 = wp_2 + h3; //[kJ/kg]
53  q1_2 = h1_2 - h4_2; //[kJ/kg]
54  q2_2 = h2_2 - h3; //[kJ/kg]
55  eta_cycle_2 = [1 - (q2_2/q1_2)]*100; //[%]
56  disp('Thermal efficiency if boiler pressure is raised to 5MPa and turbine inlet temp is 500 C = ',eta_cycle_2,'%')
57  //The answer vary due to round off error
```

Scilab code Exa 10.2 Estimate reheat pressure and efficiency and steam rate

```
1 //Example 10.2
2 //Estimate reheat pressure and efficiency and steam
     rate
3 clear
4 clc
5 p1 = 150; // [bar]
6 T1 = 550; //[ C ]
7 h1 = 3448; //[kJ/kg] At p1 and T1
8 h2 = 2740; //[kJ/kg] From Mollier chart
9 //At state 4
10 p4 = 0.1; //[bar]
11 \times 4 = 0.95;
12 sf4 = 0.1; //[bar]
13 sfg4 = 7.602; //[kJ/kg K]
14 hf4 = 191.83; //[kJ/kg]
15 hfg4 = 2392.8; //[kJ/kg K]
16 s4 = sf4 + x4*sfg4; //[kJ/kg K]
17 // At state 3
18 T3 = 550; //[C]
19 s3 = s4; //[kJ/kg K]
```

Console "Reheat pressure = " 13. "bar" "eta_cycle = " 43.397694 "%" "Steam rate = " 2.0655703 "kg/kW h"

Figure 10.2: Estimate reheat pressure and efficiency and steam rate

```
20 p3 = 13; //[bar] By interpolation //(i)
21 h3 = 3500; //[kJ/kg]
22 sg = 5.3; //[kJ/kg K]
23 h4 = hf4 + x4*hfg4; //[kJ/kg K]
24 h5 = hf4; //[kJ/kg K]
25 v5 = 0.001; //[m^3/kg]
26 wp = v5*(p1 - p4); //[kJ/kg]
27 h6 = wp+h5; //[kJ/kg]
28 wT = (h1 - h2) + (h3 - h4); //[kJ/kg]
29 w_net_out = wT - wp; //[kJ/kg]
30 q1 = (h1 - h6) + (h3 - h2); //[kJ/kg]
31 eta_cycle = [(wT - wp)/q1]*100; //[\%]
                                             //( i i )
32 Steam_rate = 3600/w_net_out; //[kg/kW h] //(iii)
33 disp('Reheat pressure = ', p3 , 'bar')
34 \operatorname{disp}('\operatorname{eta\_cycle} = ',\operatorname{eta\_cycle},'\%')
35 disp('Steam rate = ', Steam_rate , 'kg/kW h')
36 //The answer vary due to round off error
```

Scilab code Exa 10.3 Compute thermal efficiency of plant

```
1 //Example 10.3
2 //Compute thermal efficiency of plant
3 clear
4 clc
5 s1 = 6.569; //[kJ/kg K] s1 = s2 = s3 = s4
6
7 p = 3.5; //[bar]
8 // At p = 3.5 bar
9 sg = 6.9; //[kJ/kg K]
10 s2 = s1; //[kJ/kg K]
11 sf = 1.7275; //[kJ/kg K]
12 sfg = 5.213; //[kJ/kg K]
13 hf2 = 584; //[kJ/kg K]
```

```
Console

"Thermal efficiency of plant ="
36.044793
"%"
```

Figure 10.3: Compute thermal efficiency of plant

```
14 hfg2 = 2148; //[kJ/kg K]
15 	ext{ x2 = (s2 - sf)/sfg;}
16 h2 = hf2 + x2*hfg2; //[kJ/kg K]
17
18 p1 = 0.7; //[bar]
19 // At p1 = 0.7 bar
20 sf3 = 1.2; //[kJ/kg K]
21 sfg3 = 6.2; //[kJ/kg K]
22 hf3 = 384; //[kJ/kg]
23 hfg3 = 2278; //[kJ/kg]
24 s3 = s1; //[kJ/kg K]
25 \times 3 = (s3 - sf3)/sfg3;
26 h3 = hf3 + x3*hfg3; //[kJ/kg]
27
28 p2 = 0.08; //[bar]
29 // \text{ At } p2 = 0.08 \text{ bar}
30 sf4 = 0.576; //[kJ/kg K]
31 sfg4 = 7.67; //[kJ/kg K]
32 hf4 = 168; //[kJ/kg]
33 hfg4 = 2406; //[kJ/kg]
34 s4 = s1; //[kJ/kg K]
35 x4 = (s4 - sf4)/sfg4; //[kJ/kg]
36 h4 = hf4 + x4*hfg4; //[kJ/kg]
37 h5 = 168; //[kJ/kg] // h5 = hf4 at 0.08 bar
38 h6 = h5; //[kJ/kg K]
39 h7 = 375; //[kJ/kg K] at pressure 0.7 bar
40 h8 = h7; //[kJ/kg K] at pressure 0.7 bar
41 h9 = 584.34; //[kJ/kg K] at pressure 3.5 bar
42 h10 = h9; //[kJ/kg] at pressure 3.5 bar
43 m1 = (h9 - h8)/(h2 - h8); //[kg]
44 h1 = 2993; //[kJ/kg K]
45 \text{ m2} = [(1 - \text{m1})*(\text{h7} - \text{h6})]/(\text{h3} - \text{h6}); //[\text{kg}]
46 \text{ wT} = (h1 - h2) + (1 - m1)*(h2 - h3) + (1 - (m1 + m2))
       )*(h3 - h4); //[kJ/kg] work of turbine
47 q1 = h1 - h9; //[kJ/kg] heat input
48 wp = 0; //\text{pump work is negligible}
49 eta = [(wT - wp)/q1]*100; //[\%]
50 disp('Thermal efficiency of plant =', eta, '%')
```

Scilab code Exa 10.4 Calculate following question on regenerative cycle

```
1 //Example 10.4
2 // Calculate following question on regenerative cycle
3 clear
4 clc
5 //From steam tables at 50 bar and 350 C
6 h1 = 3068; //[kJ/kg]
7 s1 = 6.45; //[kJ/kg K] s1 = s2 = s3
8 s2 = s1;
9 // At 7 bar
10 sg = 6.708; //[kJ/kg K]
11 hf2 = 697.22; //[kJ/kg]
12 hfg2 = 2066.3; //[kJ/kg]
13 sf2 = 1.992; //[kJ/kg K]
14 sfg2 = sg - sf2; //[kJ/kg K]
15 	ext{ x2 = (s2 - sf2)/sfg2;}
16 h2 = hf2 + x2*hfg2;
17 //At 0.5 bar
18 sf3 = 1.091; //[kJ/kg K]
19 sg3 = 7.593; //[kJ/kg K]
20 sfg3 = 6.502; //[kJ/kg K]
21 s3 = s1; //[kJ/kg K]
22 \times 3 = (s3 - sf3)/sfg3;
23 hf3 = 340.49; //[kJ/kg]
24 hfg3 = 2305.4; //[kJ/kg]
25 h3 = hf3 + x3*hfg3; //[kJ/kg]
26 h4 = hf3; //[kJ/kg] at 0.5 bar
27 h5 = h4; //[kJ/kg]
28 s4 = sf3; // at 0.5 bar
29 h6 = 697.22; // at 7 bar
```

```
Console
 "Efficiency of cycle with regeneration = "
 34.570558
 "%"
 "Efficiency of cycle without regeneration = "
 30.334665
 "Steam rate with regeneration = "
 4.3924300
 "kg/kW h"
 "Steam rate without regeneration = "
 4.3510788
 "kg/kW h"
 "Mean temperature of heat addition with regeneration = "
 531.80350
 "Mean temperature of heat addition without regeneration = "
 508.95876
 "Increase in Tm with regeneration = "
 22.844738
 "K"
 "Increase in steam rate with regeneration = "
 0.0413513
 "kg/kW h"
```

Figure 10.4: Calculate following question on regenerative cycle

```
30 h7 = h6; //[kJ/kg]
31 // Energy balance for heater \Rightarrow m1*h2 + (1 - m1)*h5
32 \text{ m1} = (384.39 - \text{h5})/(\text{h2} - \text{h5}); //[\text{kg}]
33 q1_with_reg = h1 - h6; //[kJ/kg] with regeneration
34 q1_without_reg= h1 - h4; //[kJ/kg] without
      regeneration
35 \text{ wT_with_reg} = (h1 - h2) + (1 - m1)*(h2 - h3); //[kJ/m]
          with regeneration
36 wT_without_reg = h1 - h3; //[kJ/kg] without
      regeneration
37 	 s7 = sf2;
38 //(i) Find efficiency of cycle
39 eta_with_reg = (wT_with_reg/q1_with_reg)*100; //[\%]
       Efficiency of cycle with regeneration
40 disp('Efficiency of cycle with regeneration = ',
      eta_with_reg, '%')
41 eta_without_reg = (wT_without_reg/q1_without_reg)
      *100; //[%] Efficiency of cycle without
      regeneration
42 disp('Efficiency of cycle without regeneration = ',
      eta_without_reg, '%')
43 // (ii) Find steam rate
44 S_rate_with_reg = 3600/wT_with_reg; //[kg/kW h]
     Steam rate with regeneration
45 disp('Steam rate with regeneration = ',
      S_rate_with_reg, 'kg/kW h')
46 S_rate_without_reg = 3600/wT_without_reg; //[kg/kW]h
     Steam rate without regeneration
47 disp('Steam rate without regeneration = ',
      S_rate_without_reg, 'kg/kW h')
  //(iii) Find the mean temperature of the heat
48
      addition
49 Tm_with_reg = (h1 - h7)/(s1 - s7); //[K]
      regeneration
50 disp ('Mean temperature of heat addition with
      regeneration = ',Tm_with_reg,'K')
51 Tm\_without\_reg = (h1 - h4)/(s1 - s4); //[K] without
```

```
regeneration

52 disp('Mean temperature of heat addition without regeneration = ',Tm_without_reg,'K')

53 //(iv)Find increase in Tm and steam rate with regeneration

54 del_Tm = Tm_with_reg - Tm_without_reg; //[C]
    Increase in Tm with regeneration

55 disp('Increase in Tm with regeneration = ',del_Tm,'K')

56 S_rate_inc = S_rate_with_reg - S_rate_without_reg; //[kg/kW h] Increase in steam rate with regeneration

57 disp('Increase in steam rate with regeneration = ', S_rate_inc,'kg/kW h')

58 // The answer vary due to round off error
```

 ${f Scilab\ code\ Exa\ 10.5}$ Compute kg of Hg per kg of cycle and efficiency of combined of

```
1 //Example 10.5
2 //Compute kg of Hg per kg of water and efficiency of
      combined cycle
3 clear
4 clc
5 //(i) Compute kg of Hg per kg of water
6 p = 10; //[bar]
7 t = 515; //[C]
8 // at p1 and t1
9 hg = 363; //[kJ/kg]
                       hg = ha
10 ha = hg; //[kJ/kg]
11 sa = 0.5167; //[kJ/kg K]
12 sb = sa; //[kJ/kg K]
13 p1 = 0.2; //[bar]
14 // at p1 = 0.2 bar
```

Console "Mass of mercury per kg of water = " 11.906451 "kg" "Overall efficiency of cycle =" -760.67551 "%"

Figure 10.5: Compute kg of Hg per kg of cycle and efficiency of combined cycle

```
15 // sb = sf_1 + xm * sfg1
16 sf_1 = 0.0967; //[kJ/kg K]
17 sg_1 = 0.6385; //[kJ/kg K]
18 sfg_1 = sg_1 - sf_1; //[kJ/kg K]
19 xm = (sb - sf_1)/sfg_1;
20 hf_1 = 38.35; //[kJ/kg]
21 hfg_1 = 336.5; //[kJ/kg K]
22 hb = hf_1+ xm*hfg_1; //[kJ/kg]
23 hc = hf_1; //[kJ/kg]
24 hd = hc; //[kJ/kg]
25 q1 = ha - hd; //[kJ/kg]
26 W_net_out_m = ha - hb; //[kJ/kg]
27 eta_m = (W_net_out_m/q1)*100; //[\%] Efficiency of
      mercury cycle
28 // For steam cycle at 40 bar and 400 C
29 h1 = 3273.4; //[kJ/kg]
30 hf = 167.57; //[kJ/kg]
31 s1 = 6.77; //[kJ/kg]
32 sf = 0.5725; //[kJ/kg K]
33 sfg = 8.257; //[kJ/kg K]
34 hfg = 2406.7; //[kJ/kg]
35 s2 = s1; //[kJ/kg K]
36 \times w = (s2 - sf)/sfg;
37 h2 = hf + xw*hfg; //[kJ/kg]
38 h3 = hf; //[kJ/kg]
39 h4 = h3; //[kJ/kg]
40 q2 = h1 - h4; //[kJ/kg] Heat rejected by topping
      cycle and recieved by bottoming cycle
41 W_net_out_st = h1 - h2; //[kJ/kg]
42 m = (h1 - h4)/(hb - hc); //[kg] Mass of mercury per
       kg of water
43 disp('Mass of mercury per kg of water = ',m,'kg')
44 //(ii) Efficiency of combined cycle
45 eta_st = (W_net_out_st/q2)*100; //[\%] Efficiency of
      steam cycle
46 \text{ eta_o} = \text{eta_m} + \text{eta_st} - (\text{eta_m*eta_st}); // [\%]
      Overall efficiency of cycle
47 disp('Overall efficiency of cycle =',eta_o,'%')
```

Scilab code Exa 10.6 Calculate Work Efficiency of cycle Steam rate and Isentropic

```
1 //Example 10.6
2 // Calculate Work, Efficiency of cycle, Steam rate
     and Isentropic efficiency
3 clear
4 \,\,\mathrm{clc}
5 p1 = 2.5; //[bar]
6 // From steam tables at p1 = 2.5 bar
7 h1 = 2716.9; //[kJ/kg]
8 \text{ sg} = 7.052; //[kJ/kg K]
9 s1 = sg; //[kJ/kg]
10 	 s2 = s1;
11 hf = 125.77; //[kJ/kg] at 30 C
12 hfg = 2430.5; //[kJ/kg] at 30 C
13 x = 0.85; //given in question
14 h2 = hf + x*hfg; //[kJ/kg]
15 h3 = hf; //[kJ/kg] at 30 C
16 p2 = 0.0562; //[bar] Saturation pressure at 30 C
17 vf = 1.006*10^-3; //[m^3/kg] value of vf at p2 =
      0.0562 bar at 30 C
18 wp = vf*(p1 - p2); //[kJ/kg] // wp = h4 - h3 = vf
      *(p1 - p2)
19
    s2_dash = s1;
20
    sf = 0.4369; //[kJ/kg K] at 30 C
    sfg = 8.0164; //[kJ/kg K] at 30 C
21
22
    x2_dash = (s2_dash - sf)/sfg;
    h2_dash = hf + x2_dash*hfg; //[kJ/kg K]
23
   h4 = wp + h3; //[kJ/kg K]
24
   q1 = h1 - h4; //[kJ/kg]
25
26
    wT = h1 - h2; //[kJ/kg]
```

Console "w_net_out = " 525.20254 "kJ/kg" "eta_cycle = " 20.269266 "%" "Steam rate = " 6.8544984 "kJ/kW h" "Isentropic efficiency of turbine = " 89.703268 "%"

Figure 10.6: Calculate Work Efficiency of cycle Steam rate and Isentropic efficiency

```
27
    //(i) Estimate w_net_out
28
    w_net_out = wT - wp; //[kJ/kg K]
    disp('w_net_out = ',w_net_out,'kJ/kg')
29
    //(ii) Estimate eta_cycle
30
31
    eta_cycle = (w_net_out/q1)*100; //[\%]
    disp('eta_cycle = ',eta_cycle,'\%')
32
    //(iii) Estimate steam rate
33
    St_rate = 3600/w_net_out; //[kg/kW h]
34
    disp('Steam rate = ',St_rate,'kJ/kW h')
35
    //(iv) Estimate isentropic efficiency of turbine
36
    eta_isentropic = [(h1 - h2)/(h1 - h2_dash)]*100; //
37
       [\%]
38
    disp('Isentropic efficiency of turbine = ',
       eta_isentropic, '%')
```

 ${\it Scilab\ code\ Exa\ 10.7\ Compute\ steam\ generation\ capacity\ and\ rate\ of\ heat\ input\ and}$

```
1 //Example 10.7
2 //Compute steam generation capacity and rate of heat input and rejected
3 clear
4 clc
5 WT= 5600; //[kW] Power of cogeneration plant
6 p1 = 40; //[bar]
7 t1 = 500; //[ C ]
8 h1 = 3450; //[kJ/kg] at 40 bar and 500 C
9 h2 = 2700; //[kJ/kg] enthalpy at state 2 , from mollier diagram by drawing line from 40 bar to 2 bar
10 h3 = 2230; //[kJ/kg] extending same line from 2 bar to 0.06 bar
11 // From saturated steam tables, at 0.06 bar
12 p4 = 0.06; //[bar]
```

Console "Steam generation capacity of boiler =" 4.7941899 "kg/s" "Rate of heat input to the boiler =" 15.844605 "MW" "Rate of heat rejected in the condenser =" 8.8916714 "MW"

Figure 10.7: Compute steam generation capacity and rate of heat input and rejected $\,$

```
13 h4 = 145; //[kJ/kg] h4 = hf at 0.06 bar
14 v4 = 0.0010055; //[m^3/kg]
15 // From saturated steam tables at 2 bar
16 p6 = 2; //[bar]
17 h6 = 504; //[kJ/kg] h6 = hf at 2 bar
18 v6 = 0.001061; //[m^3/kg] v6 = vf at 2bar
19 // pump work
20 p5 = p1;
21 p7 = p1;
22
    wp1 = v4*(p5 - p4); //[kJ/kg]
    wp2 = v6*(p7 - p6); //[kJ/kg]
23
24
    h5 = h4 + wp1; //[kJ/kg]
25
    QH = 1.163*1000; // [kW] Heat input
    m1 = QH/(h2 - h6); //[kg/s] rate of steam flow
26
27
    //(i) Compute steam generation capacity of boiler
    // W\Gamma = m*(h1 - h2) + (m - m1)*(h2 - h3)
28
29
    // final equation becomes \Rightarrow m = [WT + m1(h2 - h3)]
      ]/(h1 - h3)
    m = [WT + m1*(h2 - h3)]/(h1 - h3); //[kg/s]
30
        generation capacity of boiler
   disp('Steam generation capacity of boiler =',m,'kg/s
31
32
    //(ii) Compute rate of heat input to boiler
33
    h8 = h5; //[kJ/kg]
    Q1 = m*(h1 - h8); //[kW] Rate of heat input to
34
       boiler
35
    disp('Rate of heat input to the boiler =',Q1/1000,'
      MW')
    //(iii) Compute rate of heat rejected in the
36
       condenser
    Q2 = (m - m1)*(h3 - h4); //[kW] Rate of heat
37
       rejected in condenser
38
    disp('Rate of heat rejected in the condenser =', Q2
      /1000, 'MW')
```

Console "Exergy destruction =" 855.36743 "kJ/kg" "The second law efficiency is =" 50.022528 "%"

Figure 10.8: Calculate exergy destruction and second law efficiency

Scilab code Exa 10.8 Calculate exergy destruction and second law efficiency

```
1 //Example 10.8
2 // Calculate exergy destruction and the second law
      efficiency
3 clear
4 clc
5 p1 = 2.5*1000; //[kPa]
6 	 t1 = 300; //[C]
7 //From superheated steam tables at p1 and t1
8 h1 = 3009.6; //[kJ/kg]
9 \text{ s1} = 6.645; //[kJ/kg K]
10 p2 = 15; //[kPa]
11 // From saturated steam tables at p2 = 15 kPa
12 sf2 = 0.7549; //[kJ/kg K]
13 sfg2 = 7.252; //[kJ/kg K]
14 hf2 = 225.94; //[kJ/kg]
15 hfg2 = 2373.2; //[kJ/kg]
16 // s1 = s2 = sf2 + x2 * sfg2
17 	 s2 = s1;
18 	 x2 = (s2 - sf2)/sfg2;
19 h2 = hf2 + x2*hfg2; //[kJ/kg]
20 h3 = 225.93; //[kJ/kg] at p2 = 15 kPa hf3 = 225.94
21 	 s3 = sf2;
22 \text{ s4} = \text{sf2};
23 v3 = 0.001014; //[m^3/kg]
24 wp = v3*(p1 - p2); //[kJ/kg]
25 h4 = wp + h3; //[k/kg]
26 wT = h1 - h2; //[kJ/kg]
27 q1 = h1 - h4; //[kJ/kg]
28 q2 = h2 - h3; //[kJ/kg]
29 \text{ TO} = 298; //[K]
30 \text{ T2} = \text{T0}; //[K]
31 T1 = 773; //[K]
```

```
32 //(i) Calculate the exergy destruction
33 X_destroyed_23 = T0*[s3 - s2 + (q2/T2)]; //[kJ/kg]
34 \text{ X_destroyed\_41} = \text{T0*[s1 - s4 - (q1/T1)]; } //[kJ/kg]
35 // X_desroted=X_destroyed_12+X_destroyed_23+
      X_destroyed_34+X_destroyed_41
36 / X_destroyed_12 = 0 & X_destroyed_34 = 0
37 X_destroyed = X_destroyed_23 + X_destroyed_41; //[kJ
      / kg
38 disp('Exergy destruction =', X_destroyed, 'kJ/kg')
39 //(ii) Calculate the second law efficiency
40 \ X_{heat_in} = (q1 - q2) + X_{destroyed};
41 X_pump_in = wp; //[kJ/kg]
42 X_supplied = X_heat_in + X_pump_in; //[kJ/kg]
43 eta_pi = [1 - (X_destroyed/X_supplied)]*100; //[%]
44 disp('The second law efficiency is =',eta_pi,'%')
45 //The answer vary due to round off error
```

Chapter 11

Gas Power Cycles

Scilab code Exa 11.1 Calculation on air standard Otto cycle

```
1 //Example 11.1
2 // Calculation on air standard Otto cycle
3 clear
4 clc
5 p1 = 1.1*100; //[kPa] pressure before start of
      compression
6 T1 = 323; //[K] temperature before start of
      compression
7 eta_cycle = 0.45; // 45%
8 	ext{ q2} = 800; //[kJ/kg]
9 q1 = q2/(1 -eta_cycle); //[kJ/kg] eta_cycle = 1 -
10 //(i) Determine the work done per kg of air
11 W_net = eta_cycle*q1; //[kJ/kg] net work done
12 disp('Work done per kg of air =', W_net, 'kJ/kg')
13 //(iii) Determine the compression ratio
14 // \text{ eta_otto} = \text{eta_cycle} = 1 - [1/(\text{rk}^{\circ}(\text{gama}-1))]
15 \text{ gama} = 1.4;
16 rk = [1/(1-eta\_cycle)]^(1/(gama-1)); //compression
```

```
Console

"Work done per kg of air ="
654.54545

"kJ/kg"

"Compression ratio = "
4.4575198

"Temperature at the end of compression="
587.27273

"K"

"Pressure at the end of compression ="
891.50395

"kPa"

"The maximum pressure in the cycle ="
214.13947

"kPa"
```

Figure 11.1: Calculation on air standard Otto cycle

```
ratio
17 disp('Compression ratio = ',rk)
18 //(iii) Determine the pressure and temperature at
     the end of compression
19 // rk = (v1/v2)
20 // T2/T1 = (v1/v2)^{(gama-1)}
21 T2 = T1*((rk)^(gama-1)); //[K]
22 disp('Temperature at the end of compression=',T2,'K'
23 // Also p2/p1 = (v1/v2)^g
24 p2 = p1*(rk^gama); //[kPa]
25 disp('Pressure at the end of compression =',p2,'kPa'
26 //(iv) Determine the maximum pressure in the cycle
27 \text{ Cv} = 0.783;
28 T3 = (q1/Cv) + T2; //[K] since q1 = Cv*(T3 - T2)
29 // For process 2-3 (p2*v2)/T2 = (p3*v3)/T3 where v2
      = v3
30 p3 = (p2*T2)/T3; //[kPa]
31 disp('The maximum pressure in the cycle =',p3,'kPa')
32 // The answer provided in textbook is wrong
33 // eta_cycle given in question is 0.45 but in book
     it is taken as 0.50 then it is solved
```

Scilab code Exa 11.2 Calculation on air standard Diesel cycle

```
1 //Example 11.2  
2 //Calculation on air standard Diesel cycle  
3 clear  
4 clc  
5 p1 = 1.1*100; //[kPa]  
6 T1 = 273 + 35; //[K]  
7 // Compression ratio rk = 17:1 and rk = v1/v2
```

```
"The maximum temperature of the cycle = "
 2747.6446
"K"
"The work done per kg of air = "
 1052.4256
"kJ/kg"
"The maximum pressure = "
 5.8079273
"MPa"
"eta_cycle = "
 58.468090
"%"
"The temperature at the end of isentropic expansion = "
 1349.1899
"K"
"Cutoff ratio = "
 2.8723031
"The MEP of cycle = "
 1.4111588
"MPa"
```

Console

Figure 11.2: Calculation on air standard Diesel cycle

```
8 \text{ rk} = 17;
9 q1 = 1.8*1000; //[kJ/kg]
10 Cp = 1.005; //[kJ/kg K]
11 Cv = 0.718; //[kJ/kg K]
12 // T2/T1 = (v1/v2)^{(gama - 1)}
13 \text{ gama} = 1.4;
14 T2 = T1*[rk^(gama -1)]; //[K]
15 // Estimate maximum temperature of the cycle
16 T3 = (q1/Cp) + T2; //[K] Maximum temperature of the
       cycle Tmax = T3
17 // Estimate the cutoff ratio
18 // For process 2-3 (p2*v2)/T2 = (p3*v3)/T3 \& p2 = p3
19 // Cut off ratio (v3/v2) = T3/T2
20 C_R = T3/T2; //C_R = v3/v2 cutoff ratio
21 // Estimate the temperature at the end of isentropic
       expansion
22 //For process 3-4 \text{ T3/T4} = (v4/v3) (gama-1) = [(v1/v3)]
      v2)*(v2/v3)]^(gama-1)
23 T4 = T3/[(rk/C_R)^(gama-1)]; //[K] where rk=v1/v2
      and C_R = v3/v2
24 	ext{ q2} = Cv*(T4 - T1); //[kJ/kg]
25 // Estimate the work done per kg of air
26 W_net = q1 - q2; //[kJ/kg]
27 // Estimate eta_cycle
28 \text{ eta\_cycle} = [1-(q2/q1)]*100;
29 R = 0.283;
30 v1 = (R*T1)/p1; //[m^3/kg] p1*v1=R*T1
31 v2 = v1/rk; //[m^3/kg]
32 // Estimate the maximum pressure
33 p2 = (R*T2)/v2; //[kPa]
34 // Estimate the MEP of cycle
35 MEP = W_{net}/(v1 - v2); //[kPa]
36 disp('The maximum temperature of the cycle = ',T3,'K
      ') //(i)
  disp('The work done per kg of air = ', W_net, 'kJ/kg')
       //(ii)
38 disp('The maximum pressure = ',p2/1000, 'MPa') //(iii)
```

```
disp('eta_cycle = ',eta_cycle,'%') //(iv)
disp('The temperature at the end of isentropic
        expansion = ',T4,'K') //(v)
disp('Cutoff ratio = ',C_R) //(vi)
disp('The MEP of cycle = ',MEP/1000,'MPa') //(vii)
// The answer vary due to round off error
```

Scilab code Exa 11.3 Calculate following question on Brayton cycle gas turbine pla

```
1 //Example 11.3
2 // Calculate following question on Brayton cycle gas
       turbine plant
3 clear
4 clc
5 p1 = 1; //[bar]
6 \text{ T1} = 298; //[K]
7 rp = 8; //pressure ratio rp = p2/p1
8 eta_T = 0.85; //turbine efficiency
9 eta_c = 0.85; //compressor efficiency
10 // For process1-2 T2_1/T1 = (p2/p1)^((gama-1)/gama)
11 \text{ gama} = 1.4
12 T2_1 = T1*[(rp)^((gama-1)/gama)]; //[K]
13 T3 = 273+950; //[K] maximum temperature
14 // For process 3-4 T4_1/T3 = (p4/p3)^((gama-1)/gama
     ) & p4/p3 = p1/p2 = 1/rp
15 T4_1 = T3*[(1/rp)^((gama -1)/gama)]; //[K]
16 T2 = [(T2_1 - T1)/eta_c]+T1; //[K] eta_c = (T2_1 - T2_1)/[E]
     T1)/(T2 - T1)
17 \text{ Cp} = 1.005;
18 //Compute compressor work per kg of air
19 wc = Cp*(T2 - T1); //[kJ/kg] work input to
      compressor
20 //Compute turbine exhaust temperature
```

```
Console
 "The turbine work per kg of air = "
 468.00023
"kJ/kg"
 "The compressor work per kg of air = "
  285.90631
 "kJ/kg"
"Cycle efficiency = "
 28.287811
 "%"
 "Heat supplied per kg of air = "
 643.71869
"kJ/kg"
 "Turbine exhaust temperature = "
 757.32813
 "K"
 "Black work ratio = "
 61.091061
 "%"
```

Figure 11.3: Calculate following question on Brayton cycle gas turbine plant

```
21 T4 = T3 - eta_T*(T3 - T4_1); // [K]
22 // Compute turbine work per kg of air
23 wT = Cp*(T3 - T4); //[kJ/kg] work output of turbine
24 //Compute heat supplied per kg of air
25
   Q1 = Cp*(T3 - T2); //[kJ/kg]
26
   // Compute cycle efficiency
27
    eta_cycle = [(wT - wc)/Q1]*100;
    //Compute the black work ratio
28
29
    B_wr = (wc/wT)*100; //[\%] black work ratio
    disp('The turbine work per kg of air = ',wT, 'kJ/kg'
30
      ) //(i)
    disp('The compressor work per kg of air = ',wc,'kJ/
31
      kg') //(ii)
    disp('Cycle efficiency = ',eta_cycle,'%') //(iii)
32
    disp('Heat supplied per kg of air = ',Q1, 'kJ/kg')
33
    disp('Turbine exhaust temperature = ',T4,'K') //(v)
34
   disp('Black work ratio = ',B_wr,'%') //(vi)
35
```

 ${f Scilab\ code\ Exa\ 11.4}$ Calculate maximum temperature and percentage increase in effi

```
1 //Example 11.4
2 //Calculate maximum temperature and percentage increase in efficiency
3 clear
4 clc
5 p1 = 103; //[kPa]
6 T1 = 300; //[K]
7 q1 = 700; //[kJ/kg]
8 rp = 5; // pressure ratio (rp) = p2/p1
9 eta_T = 0.75; //turbine efficiency
10 eta_c = 0.75; //compressor efficiency
11 Cp = 1.005;
```

Console "Maximum temperature in the cycle = " 1230.0453 "K" "The percentage increase in efficiency of cycle due to regeneration = " 69.324213

"%"

Figure 11.4: Calculate maximum temperature and percentage increase in efficiency

```
12 \text{ gama} = 1.4;
13 // Without regenerator
14 / For process 1 - 2
                         T2_{-}1/T1 = (p2/p1)^{(gama - 1/gama)}
15 T2_1= T1*[(rp)^((gama -1)/gama)]; //[K]
16 T2 = [(T2_1 - T1)/eta_c] + T1; //[K] since eta_c = (
      T2_{-1} - T1)/(T2 - T1)
17 //(i) Compute maximum temperature in the cycle
18 T3 = (q1/Cp) + T2; //[K] as q1 = Cp*(T3 - T2) max
     temp
19 disp('Maximum temperature in the cycle = ',T3,'K')
20 //For process 3-4 T_3/T_4_1 = (p_2/p_1)^{(gama -1/gama)}
21 T4_1 = T3/[(rp)^((gama -1)/gama)]; //[K]
22 \text{ T4} = \text{T3} - [\text{eta}_T*(\text{T3} - \text{T4}_1)]; //[K]
23 wT = Cp*(T3 - T4); //[kJ/kg] turbine work
24 wc = Cp*(T2 - T1); //[kJ/kg] work input of
      compressor
  eta_cycle = [(wT - wc)/q1]*100; //[\%] cycle
      efficiency
26 //With regenerator
27 eta_r = 0.80; //regenerator effectiveness
28 T6 = eta_r*(T4 - T2) + T2; //[K] eta_r = (T6 - T2)
     /(T4 - T2)
29 q1_1 = Cp*(T3 - T6); //[kJ/kg]
30 eta_cycle_1 = [(wT - wc)/q1_1]*100; //[\%]
31 //(ii) Compute the percentage increase in efficiency
      of cycle due to regeneration
32 percent_inc = [(eta_cycle_1 - eta_cycle)/eta_cycle
      ]*100; //[%]
33 disp('The percentage increase in efficiency of cycle
       due to regeneration = ',percent_inc,'%')
34 //The answer vary due to round off error
```

```
Console

"The efficiency of the cycle = "
25.444596
"%"
```

Figure 11.5: Compute the efficiency of the cycle $\,$

Scilab code Exa 11.5 Compute the efficiency of the cycle

```
1 //Example 11.5
2 //Compute the efficiency of the cycle
3 clear
4 clc
5 p1 = 101.32; //[kPa]
6 \text{ T1} = 300; //[K]
7 T3 = 1023; //[K]
8 	ext{ T5} = 	ext{ T3}; //[K]
9 rp = 7; // rp = p2/p1
10 \text{ eta\_THP} = 0.85;
11 \text{ eta_TLP} = 0.85;
12 \text{ eta\_c} = 0.80;
13 \text{ gama} = 1.4;
14 \text{ Cp} = 1.005;
15 T2_1 = T1*[(rp)^((gama -1)/gama)]; //[K] For
      process 1-2 \text{ T2}_{-1}/\text{T1} = (rp)^{(gama -1/gama)}
16 T2 = [(T2_1 - T1)/eta_c] + T1; //[K] eta_c = (T2_1 - T2_1)
       T1)/(T2 - T1)
17 wc = Cp*(T2 - T1); //[kJ/kg] work of compression
18 w_out_HP = wc; //[kJ/kg] work output of high
      pressure turbine
19 T4 = T3 - w_out_HP/Cp; //[K]
20 \text{ T4\_1} = \text{T3} - (\text{T3} - \text{T4})/\text{eta\_THP}; //[K]
21 p2 = rp*p1; //[kPa]
22 p3 = p2; //[kPa]
23 p4 = p3/[(T3/T4)^{(gama/(gama -1))}]; //For process 3-4
24 p5 = p4; //[kPa]
25 p6 = p1; //[kPa]
26 \text{ T6}_1 = \text{T5}/[(p5/p6)^((gama -1)/gama)]; //[K] For
      process 5-6
27 T6 = T5 - eta_TLP*(T5 - T6_1); //[K]
28 w_out_LP = Cp*(T5 - T6); //[kJ/kg]
29 q1 = Cp*[(T3 - T2) + (T5 - T4)]; //[kJ/kg]
30 eta = (w_out_LP/q1)*100; //[\%]
31 disp('The efficiency of the cycle = ',eta,'%')
32 // The answer provided in textbook is wrong
```

```
33 // Due to round off error in initial calculations there is large difference in final solution
```

Scilab code Exa 11.6 Determine efficiency of the plant

```
1 //Example 11.6
2 // Determine efficiency of the plant
3 clear
4 clc
5 m = 1.2; //[kg/s]
6 	ext{ T1} = 273 + 27; //[K]
7 T3 = T1; //[K]
8 \text{ T5} = 273 + 723; //[K] \text{ Tmax}
9 pr = 6; //pressure ratio P4/P1
10 P2_1 = sqrt(pr); // P2/P1 = P4/P3
11 \text{ gama} = 1.4;
12 \text{ Cp} = 1.005;
13 T2_1 = T1*(P2_1)^( (gama -1)/gama ); //[K]
14 \text{ eta\_comp\_LP} = 0.85;
15 T2 = ((T2_1 - T1)/eta_comp_LP) + T1; //[K]
16 Wc = 2*m*Cp*(T2 - T1); //[kW]
17 P5_6 = pr; // P5/P6
18 T6_1 = T5/[P5_6^( (gama -1)/gama )]; //[K]
19 \text{ eta}_T = 0.90;
20 T6 = T5 - [(T5 - T6_1)/eta_T]; //[K]
21 WT = m*Cp*(T5 - T6); //[kW]
22 Wnet = WT - Wc; //[kW]
23 \text{ T4\_1} = \text{T2}; //[K]
24 \text{ T4} = ((T4_1 - T3)/eta_comp_LP) + T3; //[K]
25 Q1 = m*Cp*(T5 - T4); //[kJ/s]
26 eta = (Wnet/Q1)*100; //[\%]
27 disp('Cycle efficiency = ',eta,'%')
28 // The answer provided in textbook is wrong
```

Console "Cycle efficiency = " 41.311323 "%"

Figure 11.6: Determine efficiency of the plant ${\bf r}$

```
Console

"Pressure of exhaust gas at exit of turbine = "
194.42248

"kPa"

"Mass flow rate of air through compressor = "
2.0132376

"kg/s"

"Thrust = "
1201.6896

"N"

"Propulsive efficiency = "
22.728409

"%"
```

Figure 11.7: Calculate following question on turbojet aircraft

Scilab code Exa 11.7 Calculate following question on turbojet aircraft

```
1 //Example 11.7
2 //Calculate following question on turbojet aircraft
```

```
3 clear
4 clc
5 P1 = 35; //[kPa]
6 \text{ P2} = 45; //[\text{kPa}]
7 \text{ T1} = 240; //[K]
8 \text{ P3} = 400; //[\text{kPa}]
9 P4 = P3; //[kPa]
10 P6 = P1; //[kPa]
11 T4 = 1200; //[K]
12 \text{ gama} = 1.4;
13 \text{ Cp} = 1.005;
14 vi = 275; //[m/s]
15 // For process 1-2 [ T2/T1 = (P2/P1)^{(gama - 1/gama)}
16 T2 = T1*[(P2/P1)^( (gama -1)/gama )]; //[K]
17 //For process 2 -3 [ T3/T1 = (P3/P2)^{(gama -1/gama)} ]
18 T3 = T2*[(P3/P2)^( (gama -1)/gama )]; //[K]
19 // work of compression = work of turbine
20 / (\text{Cp}*(\text{T3} - \text{T2})) = \text{Cp}*(\text{T4} - \text{T5})
21 	ext{ T5} = 	ext{T4} - 	ext{T3} + 	ext{T2}; // [K]
22 //(i) Find pressure of exhaust gas at exit of
      turbine
  //For process 4-5 [P5/P4 = (T5/T4)^{(gama/(gama - 1))}]
23
      ) ]
24 P5 = P4*[(T5/T4)^(gama/(gama -1))]; //[kPa]
25 disp('Pressure of exhaust gas at exit of turbine = '
      ,P5, 'kPa')
   //(ii) Find mass flow rate of air through compressor
26
    Wc = 450; //[kW] work of compressor
27
28
    m = Wc/(T3 - T2); //[kg/s]
                                     Mass flow rate of air
29
    disp('Mass flow rate of air through compressor = ',
       m, 'kg/s')
30
    //(iii) Find Thrust
    // For process 5-6 T6/T5 = (P5/P6)^{(gama -1/gama)}
31
    T6 = T5*[(P6/P5)^((gama -1)/gama)]; //[K]
32
33
    //Also h6 + v6^2/2 = h5 + v5^2/2, where v5 = 0
    v6 = sqrt(2*Cp*(T5 - T6)*1000); //[m/s] Velocity at
34
        nozzle exit
```

```
F = m*(v6 - vi); //[N] \quad Thrust
35
36
    disp('Thrust = ',F,'N')
37
   //(iv) Find propulsive efficiency
   Wp = [m*(v6 - vi)*vi]/1000; //[kW] propulsive
38
      power
39
    Q1 = m*Cp*(T4 - T3); //[kW] Rate of heat input
    eta_p = (Wp/Q1)*100; //[\%] propulsive efficiency
40
41
    disp('Propulsive efficiency = ',eta_p,'%')
42 // The answer vary due to round off error
```

Scilab code Exa 11.8 Calculate following question on simple Brayton cycle

```
1 //Example 11.8
2 // Calculate following question on simple Brayton
      cvcle
3 clear
4 clc
5 \text{ T1} = 300; //[K]
6 \text{ TO} = \text{T1}; //[K]
7 T3 = 1250; //[K]
8 rp = 10; // pressure ratio rp = P2/P1
9 Cp = 1.005; //[kJ/kg K] specific heat
10 \text{ gama} = 1.4
11 T_source = 1550; //[K]
12 T_{sink} = 310; //[K]
13 R = 0.287; //[kJ/kg K]
14 //For process 1-2 \text{ T2/T1} = (P2/P1)^{(gama -1/gama)}
15 T2 = T1*[(rp)^( (gama -1)/gama)]; //[K]
16 T4 = T3*[(1/rp)^( (gama -1)/gama )]; //[K]
17 q1 = Cp*(T3 - T2); //[kJ/kg]
18 q2 = Cp*(T4 - T1); //[kJ/kg]
19 s2 = 2.363; //[kJ/kg K] From ideal gas properties of
       air at T2
```

```
Console

"Exergy destruction in process 1-2 = "
0.

"Exergy destruction in process 2-3 = "
128.42039

"kJ/kg"

"Exergy destruction in process 3-4 = "
0.

"Exergy destruction in process 4-1 = "
79.007910

"kJ/kg"

"Total exergy destruction = "
207.42830

"kJ/kg"

"Second-law efficiency of the cycle = "
61.846304

"%"
```

Figure 11.8: Calculate following question on simple Brayton cycle

```
20 s3 = 3.226; //[kJ/kg K] From ideal gas properties of
       air at T3
21 s1 = s2; //[kJ/kg K]
22 s4 = s3; //[kJ/kg K]
23 // For process 2-3 (s3_1 - s2_1)= del_s_32 = s3 -s2
     - R*log(P3/P2) where P3 = P2
24 del_s_32 = s3 - s2 - R*log(1); //s3_1 - s2_1 =
      del_s_32
25 \text{ del_s_14} = -\text{del_s_32}; // s1_1 - s4_1 = \text{del_s_14}
26 //(i) Find exergy destruction associated with each
      process of the cycle
27 X_destroyed_{12} = 0;
28 X_destroyed_34 = 0;
29 X_{destroyed_23} = T0*[(del_s_32) - (q1/T_source)];
      //[kJ/kg]
30 \text{ X_destroyed_41} = \text{T0*[(del_s_14)} + (q2/T_sink)]; //
     kJ/kg]
31 disp('Exergy destruction in process 1-2 = ',
      X_destroyed_12)
32 disp('Exergy destruction in process 2-3 = ',
     X_destroyed_23, kJ/kg)
33 disp('Exergy destruction in process 3-4 = ',
     X_destroyed_34)
34 disp('Exergy destruction in process 4-1 = ',
     X_destroyed_41, 'kJ/kg')
35 X_heat_in = [1 - (T0/T_source)]*q1; //[kJ/kg]
36 X_supplied = X_heat_in; //[kJ/kg]
37 //(ii) Find total exergy destruction of the cycle
38 X_destroyed = X_destroyed_12+X_destroyed_23+
      X_destroyed_34+X_destroyed_41; //[kJ/kg]
39 disp('Total exergy destruction = ',X_destroyed,'kJ/
     kg ')
40 //(iii) Find the second law efficiency of the cycle
41 eta_pi = [1 - (X_destroyed/X_supplied)]*100; //[%]
42 disp('Second-law efficiency of the cycle = ',eta_pi,
      '%')
```

Chapter 12

Refrigeration Cycles

Scilab code Exa 12.1 Determine COP and volume and power required

```
1 //Example 12.1
2 // Determine COP and volume and power required
3 clear
4 clc
5 p1 = 2.1912; //[bar]
6 h1 = 183.19; //[kJ/kg]
7 s1 = 0.7019; //[kJ/kg K]
8 v1 = 0.077; //[m^3/kg]
9 p2 = 7.067; //[bar]
10 s2 = s1; //[kJ/kg K]
11 h2 = 207; //[kJ/kg]
12 h4 = 62.63; //[kJ/kg]
13 h3 = h4; //[kJ/kg]
14 t2 = 40; //[C]
15 eta_v = 0.76; //volumetric efficiency
16 Ref_load = 2; //[kW]
17 m = Ref_load/(h1 - h4); //[kg/s]
18 //(i) Determine COP
19 COP = (h1 - h4)/(h2 - h1);
```

```
Console

"COP = "
5.0634187

"Swept volume of the compressor = "
0.0016808

"m^3/s"

"Power required to drive the compressor = "
0.3949900

"kW"
```

Figure 12.1: Determine COP and volume and power required

```
disp('COP = ',COP)
//(ii) Determine swept volume of compressor
va = m*v1; //[m^3/s]
vs = va/eta_v; //[m^3/s]
disp('Swept volume of the compressor = ',vs,'m^3/s')
//(iii) Determine power required to drive the compressor
P = m*(h2 - h1); //[kW]
disp('Power required to drive the compressor = ',P,' kW')
//The answer vary due to round off error
```

Scilab code Exa 12.2 Calculate following question on gas refrigerating system

```
1 //Example 12.2
2 // Calculate following question on gas refrigerating
     system
3 clear
4 clc
5 T1 = 273 - 12; //[K] Temperature at inlet to
      compressor
6 T3 = 273 + 27; //[K] Temperature at inlet to
     turbine
7 rp = 5; // pressure ratio (rp) = p2/p1
8 \text{ gama} = 1.4;
9 \text{ Cp} = 1.005;
10 R = 0.287;
11 p1 = 100; //[kPa]
12 Load = (10*14000)/3600; //[kJ/h] 1 ton = 14000 \text{ kJ/s}
13 T2 = T1*[(rp)^( (gama -1)/gama )]; //[K]
14 T4 = T3*[(1/rp)^( (gama -1)/gama )]; //[K] since p4
     = p1 and p3 = p2
15 RE = Cp*(T1 - T4); //[kJ/kg] Refrigerating effect
```

```
Console

"COP = "

1.7128579

"Air flow rate = "

0.5405558

"kg/s"

"Volume rate entering compressor = "

0.4049141

"m^3/s"

"Minimum temperature = "

-83.584489

"°C"

"Maximum temperature = "

140.37692

"°C"
```

Figure 12.2: Calculate following question on gas refrigerating system

```
16 W_net_in = Cp*[(T2 - T1) - (T3 - T4)]; //[kJ/kg] Net
       work input
17 //(i) Compute COP
18 COP = RE/W_net_in;
19 disp('COP = ',COP)
20 //(ii) Compute air flow rate in kg/s
21 m = Load/RE; //[kg/s] Mass flow rate of refrigerant
22 disp('Air flow rate = ',m,'kg/s')
23 //(iii) Compute volume rate entering compressor in m
      ^3/\mathrm{s}
24 vi = (R*T1)/p1; //[m^3/kg]
25 va = m*vi; //[m/s]
26 disp('Volume rate entering compressor = ',va, 'm^3/s'
     )
27 //(iv) Maximum and Minimum temperature
28 disp('Minimum temperature = ',T4-273,' C')
29 disp('Maximum temperature = ',T2-273, 'C')
30 //The answer vary due to round off error
```

 ${\it Scilab\ code\ Exa\ 12.3\ Calculate\ following\ question\ on\ food\ freezing\ system}$

```
Console
"Refrigerating effect = "
 118.232
"kJ/kg"
"Flow rate of R-12 ="
 0.6578403
"kg/s"
 "Length and diameter of cylinder are same"
"Length = "
 0.1108982
 "m"
 "Diameter ="
 0.1108982
"m"
 "Power required to drive the compressor ="
 22.712051
"kW"
"COP ="
 3.4245158
```

Figure 12.3: Calculate following question on food freezing system

```
12 T2 = 273 + 25; //[K]
13 h2 = 197.73; //[kJ/kg] h2 = hg
14 s2 = 0.6868; //[kJ/kg K] s2 = sg
15 h3 = 59.7; //[kJ/kg K] h3 = hf
16 del_T1 = 5; //Tsup - Tsat
17 Cpg = 1.235; //[kJ/kg K]
18 Cpl = 0.733; //[kJ/kg K]
19 eta_v = 0.80; //volumetric efficiency
20 N = 1500; //[rpm]
21 n = 6; //\sin \text{ cylinders}
22 Load = (20*14000)/3600; //[kJ/s]
23 h1_1 = h1 + Cpg*(del_T1); //[kJ/kg]
24 \text{ T1}_1 = \text{T1} + 5; //[K]
25
    s1_1 = s1 + Cpg*log(T1_1/T1); //[kJ/kg K]
    s2_1 = s1_1; // [kJ/kg K] s2_1 = s2 + Cpg*log(T2_1/T2)
26
27
    L_T2_1 = [(s2_1 - s2)/Cpg] + log(T2);
    T2_1 = \exp(L_T2_1); //[K]
28
    // Entahlpy of subcooled liquid refrigerant = h3_1
29
       = h3 + Cpl*(T3 - T3_1)
    h3_1 = h3 - Cpl*(4); //[kJ/kg]
30
    h2_1 = h2 + Cpg*(T2_1 - T2); //[kJ/kg]
31
32
    //(i) Determine refrigerating effect
33
    RE = h1 - h3_1; //[kJ/kg] Refrigerating effect, h1
       - h1 = h1 - h3_1
34
    disp('Refrigerating effect = ',RE,'kJ/kg')
35
    h4 = h3_1; //[kJ/kg]
    //(ii) Determine flow rate of R-12
36
    m = Load/RE; //[kg/s]
37
38
    disp('Flow rate of R-12 = ', m, 'kg/s')
    //(iii) Determine cylinder dimension
39
40
    va = m*v1; //[m^3/s]
    vs = (va/eta_v)*60; //[m^3/min]
41
42
    // Swept volume vs = (pi/4)*d^2*L*N*n, L = d
43
    d = [(vs *4)/(\%pi *N*n)]^(1/3);
     disp('Length and diameter of cylinder are same')
44
     disp('Length = ',d,'m')
45
     disp('Diameter =',d,'m')
46
```

```
47
    //(iv) Determine the power required to drive the
       compressor
     P = m*(h2_1 - h1_1); //[kW]
48
     disp('Power required to drive the compressor =',P,
49
        'kW')
     //(v) Determine COP
50
    COP = (h1 - h4)/(h2_1 - h1_1);
51
    disp('COP =',COP)
52
53
    // The answer for question (iv) and (v) are
       provided wrong in textbook due to calculation
       mistake in h2_1
```

Scilab code Exa 12.4 Determine the steam flow rate

```
1 //Example 12.4
2 //Determine the steam flow rate
3 clear
4 clc
5 //From steam tables at 1.5 bar and 0.85 dry
6 Tsat = 111.37; //[ C ]
7 hfg = 2265.5; //[kJ/kg]
8 x = 0.85;
9 T1 = 273 + 111.37; //[K] Generator temperature
10 T2 = 273 + 25; //[K] Codenser or absorber
     temperature
  Tr = 273 - 20; //[K] Evaporator temperature
12 Load = (10*14000)/3600; //[kJ/s]
    COP_max = [(T1 - T2)*Tr]/[(T2 - Tr)*T1];
13
    Q_E = Load/COP_max; //[kW] Refrigerating effect
14
   // Q = m*(h2 - h1), where h2 - h1 = hf - x*hfg - hf
15
        = h2 h1
16
    h2_h1 = x*hfg; //[kJ/kg] Heat transferred by 1 kg
      steam on condensation
```

Console "The rate of steam flow =" 0.0159853 "kg/s"

Figure 12.4: Determine the steam flow rate

```
Console

"COP = "

0.4895527

"Air mass flow rate ="

0.8532469

"kg/s"

"Driving power required = "

39.718794

"kW"
```

Figure 12.5: Determine COP and air mass flow rate and power

```
17 m = Q_E/h2_h1; //[kg/s] steam flow rate
18 disp('The rate of steam flow =',m,'kg/s')
```

 ${\bf Scilab} \ {\bf code} \ {\bf Exa} \ {\bf 12.5}$ Determine COP and air mass flow rate and power

```
1\ // \, Example \ 12.5 2\ // \, Determine \, COP and air mass flow rate and power
```

```
3 clear
4 clc
5 \text{ T1} = 273 + 5; //[K]
6 	ext{ T3} = 273 + 40; //[K]
   p1 = 100; //[kPa]
    p2 = 250; //[kPa]
    eta_comp = 0.80; // Isentropic efficiency of
       compressor
    eta_Turbine = 0.80; // Isentropic efficiency of
10
       turbine
    Cp = 1.005; //[kJ/kg K]
11
    Load = (5*14000)/3600; //[kJ/s]
12
13
    gama = 1.4;
14
    T2 = T1*[(p2/p1)^((gama -1)/gama)]; //[K] For
       process 1-2
15
    p3 = p2; //[kPa]
    p4 = p1; //[kPa]
16
    T4 = T3/[(p3/p4)^((gama -1)/gama)]; //[K]
17
18
    T2_1 = [(T2 - T1)/eta_comp] + T1; //[K]
19
    T4_1 = T3 - [eta_Turbine*(T3 - T4)]; //[K]
20
    //(i) Determine COP
21
    Q2 = Cp*(T1 - T4_1); //[kJ/kg]
22
    W_{\text{net}_{in}} = Cp*[(T2_1 - T1) - (T3 - T4_1)]; //[kJ/kg]
23
    COP = Q2/W_net_in;
    disp('COP = ',COP)
24
25
    //(ii) Determine air mass flow rate
26
    m = Load/Q2; //[kg/s]
27
    disp('Air mass flow rate =',m,'kg/s')
    //(iii) Determine driving power required
28
29
    P = m*W_net_in; // [kW]
    disp('Driving power required = ',P,'kW')
30
```

Scilab code Exa 12.6 Find total exergy destruction and in each process and efficient

```
Console
 "Exergy destruction in process 1-2 ="
 0.5088000
 "kW"
 "Exergy destruction in process 2-3 ="
 0.5834353
 "kW"
 "Exergy destruction in process 3-4 ="
 1.0800000
 "kW"
 "Exergy destruction in process 4-1 ="
 0.8169490
 "kW"
 "Second-law efficiency ="
 32.252381
 "Total exergy destruction ="
 2.9891843
"kW"
```

Figure 12.6: Find total exergy destruction and in each process and efficiency

```
1 //Example 12.6
2 //Find
           total exergy destruction and in each process
       and efficiency
3 clear
4 clc
5 //From properties table of R-134 a
6 	ext{ T1 = } 273 - 26.4; //[K]
7 h1 = 234.44; //[kJ/kg]
8 \text{ s1} = 0.9518; //[kJ/kg k]
9 P2 = 1017.1; //[kPa]
10 s2_1 = s1; //[kJ/kg K]
11 h2_1 = 281.32; //[kJ/kg]
12 P3 = P2; //[kPa]
13 h3 = 108; //[kJ/kg]
14 s3 = 0.392; //[kJ/kg K]
15 P4 = 100; //[kPa]
16 h4 = h3; //[kJ/kg]
17 s4 = 0.437; //[kJ/kg K]
18 m = 0.08; //[kg/s]
19 TO = 273 + 27; //[K] surrounding temperature
20 \text{ T2} = 273 - 10; //[K]
21 eta_c = 0.85; // Isentropic efficienccy
22 h2 = [(h2_1 - h1)/eta_c] + h1; //[kJ/kg]
23 s2 = 0.973; ///[kJ/kg K] at h2 and P2
24 \ Q1 = m*(h2 - h3); //[kW]
25 \ Q2 = m*(h1 - h4); //[kW]
26 \text{ W_in} = m*(h2 - h1); //[kW]
27 //(i) Find exergy destruction in each process
28 \text{ X_destroyed_12} = \text{T0*m*(s2 - s1); } // [kW]
29 X_{destroyed_23} = T0*[m*(s3 - s2) + (Q1/300)]; //[kW]
30 \text{ X_destroyed}_34 = \text{T0*m*(s4 - s3); } // [kW]
31 X_{destroyed_41} = T0*[m*(s1 - s4) - (Q2/T2)]; //[kW]
32 disp('Exergy destruction in process 1-2=',
      X_destroyed_12, 'kW')
33 disp('Exergy destruction in process 2-3 = ',
      X_destroyed_23, 'kW')
34 disp('Exergy destruction in process 3-4 = ',
      X_destroyed_34, 'kW')
```

Chapter 13

Thermodynamic Relations

Scilab code Exa 13.1 Verify the 4th Maxwell relation

```
1 //Example 13.1
2 // Verify the 4th Maxwell relation
3 clear
4 clc
5 \text{ P1} = 500; //[\text{kPa}]
6 P2 = 700; //[kPa]
7 \text{ T1} = 20; //[C]
8 T2 = 40; // C
9 s1 = 0.9713; //[kJ/kg K] At 500 kPa and 30 C
10 s2 = 0.9313; //[kJ/kg K] At 700 kPa and 30 C
11 v1 = 0.0343; //[m^3/kg] At 600 kPa and 20 C
12 v2 = 0.0378; //[m^3/kg] At 600 kPa and 40 C
13 del_s = s2 - s1; //[kJ/kg K]
14 del_P = P2 - P1; //[kPa]
15 del_T = T2 - T1; //[C]
16 del_v = v2 - v1; //[m^3/kg]
17 del_s_P = del_s/del_P;
18 \text{ del_v_T} = -(\text{del_v/del_T});
19 disp('The change in entropy with pressure at
```

Console

"The change in entropy with pressure at constant temperature ="

-0.0002000

"The change in specific volume with temperature at constant pressure="

-0.0001750

"Since both values are in close agreement with each other"

"The refrigerant R-134a satisfies 4th Maxwell relation at specified state"

Figure 13.1: Verify the 4th Maxwell relation

```
constant temperature =',del_s_P)

20 disp('The change in specific volume with temperature at constant pressure=',del_v_T)

21 disp('Since both values are in close agreement with each other')

22 disp('The refrigerant R-134a satisfies 4th Maxwell relation at specified state')

23 //The answer vary due to round off error
```

Scilab code Exa 13.2 Evaluate enthalpy of vaporization of water

```
1 //Example 13.2
2 //Evaluate enthalpy of vaporization of water
3 clear
4 clc
5 //From steam tables at 50 C
6 vf = 0.001012; //[m^3/kg]
7 vg = 12.026; //[m^3/kg]
8 \text{ vfg} = \text{vg} - \text{vf};
9 T = 273 + 50; //[K]
10 T1 = 45; //[C]
11 T2 = 55; //[C]
12 P1 = 9.595; //[kPa] At 45 C
13 P2 = 15.763; //[kPa] At 55 C
14 \text{ del}_{P} = P2 - P1;
15 \text{ del}_{T} = T2 - T1;
16 hfg = T*vfg*(del_P/del_T); //[kJ/kg] Value of hfg
      from clapeyron equation
17 hfg1 = 2382.0; //[kJ/kg] Value of hfg from steam
      tables
18 disp('The enthalpy of vapourization from Clapeyron
      equation = ',hfg,'kJ/kg')
19 disp('The value of hfg from steam tables is ',hfg1,'
```

Console

```
"The enthalpy of vapourization from Clapeyron equation = "
2395.6951

"kJ/kg"

"The value of hfg from steam tables is "
2382.

"kJ/kg"

"The difference between two values is around = "
0.5716533
```

Figure 13.2: Evaluate enthalpy of vaporization of water

```
kJ/kg')
20 x = [(hfg - hfg1)/hfg]*100; //[%]
21 disp('The difference between two values is around =
        ',x,'%')
22 //The answer vary due to round off error
```

Scilab code Exa 13.3 Develop an expression for entropy change of a gas that follow

 ${\bf Scilab\ code\ Exa\ 13.4}$ Determine the saturation pressure of the refrigerant R 134a

```
1 //Example 13.4
2 //Determine the saturation pressure of the refrigerant R 134a
3 clear
4 clc
5 //The Clausius-Clapeyron equation for determing saturation pressure is
6 // log(p2/p1) = (hfg/R)*((T2 - T1)/T1*T2)
7 T1 = 273 - 50;//[K]
8 T2 = 273 - 40; //[K]
```

Console

"Saturation pressure of the refrigerant R-134a at -50°C ="
30.062831

"kPa"

Figure 13.3: Determine the saturation pressure of the refrigerant R 134a

Chapter 14

Psychrometry

Scilab code Exa 14.1 Determine amount of heat transferred and amount of steam adde

```
1 //Example 14.1
2 // Determine amount of heat transferred and amount of
       steam added to air
3 clear
5 Cp = 1.005; //[kJ/kg K]
6 R = 0.287; //[kJ/kg K]
7 h1 = 31.5; //[kJ/kg]
8 \text{ h2} = 37; //[kJ/kg]
9 T1 = 15; //[C]
10 T2 = 20; //[C]
11 ma = 1; //[kg/s]
12 //From the psychrometric chart in Figure EX 14.1
13 // 1 = 0.00653; //[kg vapor/kg dry air]
14 \ // \ 2 = 1 \ ; //[kg \ vapor/kg \ dry \ air]
15 // 3 = 0.01308; //[kg \ vapor/kg \ dry \ air]
16 pg1 = 1.757; //[kPa] p_sat of water at 15 C
17 pg3 = 3.1698; //[kPa] p_sat of water at 25 C
18 hg1= 2528.3; //[kJ/kg] Enthalpy of saturated water
```

Console "The amount of heat transferred to the air in the heating section = " 5.1080506 "kJ/s" "The amount of steam added to air = " 0.0063710 "kg/s"

Figure 14.1: Determine amount of heat transferred and amount of steam added to air

```
vapor at 15 C
19 hg2 = 2541; //[kJ/kg] Enthalpy of saturated water
      vapor at 22 C
20
      = 0.60;
21 \text{ pw1} = *pg1; //[kPa]
22 p1 = 101.325; //[kPa]
23 pa1 = p1 - pw1; //[kPa]
24 	 1 = (0.622*pw1)/(p1 - pw1);
25 \quad 2 = 1 ;
26 h1 = Cp*T1 + 1 *hg1; // kJ/kg dry air
27 h2 = Cp*T2 + 2 *hg2; // kJ/kg dry air
28 //(i) Determine amount of heat transferred to air in
       heating section
29 Q_in = ma*(h2 - h1); //[kJ/s]
30 disp ('The amount of heat transferred to the air in
      the heating section = ',Q_in, 'kJ/s')
31 //(ii) Determine amount of steam added to air
32 \quad 3 = 0.65;
33 p3 = p1; //[kPa]
34 \quad 3 = (0.622* \ 3 *pg3)/(p3 - \ 3 *pg3);
35 mw = ma*( 3 - 2 ); //[kg/s]
36 disp('The amount of steam added to air = ',mw,'kg/s'
      )
```

Scilab code Exa 14.2 Determine capacity of cooling and heating coil and amount of

```
1 // Example 14.2
2 // Determine capacity of cooling and heating coil
    and amount of water vapor removed
3 clear
4 clc
5 //From psychrometric chart in Figure Ex 14.2
6 h1 = 61; //kJ/kg of dry air
```

Console "Cooling coil capacity = " 68.373245 "Tonnes" "Capacity of heating coil = " 80.924855 "kW" "Amount of water vapor removed = " 0.0578035 "kg/s"

Figure 14.2: Determine capacity of cooling and heating coil and amount of water vapor removed

```
7 h2 = 45; //kJ/kg of dry air
8 h3 = 38; //kJ/kg of dry air
9 h4 = 35; //kJ/kg of dry air
10 v1 = 0.865; // \text{ m}^3/\text{kg} \text{ dry air}
11 V = 10; //[m^3/s]
12 1 = 0.014; //kg \ vapor/kg \ dry \ air
    2 = 0.009; //kg \ vapor/kg \ dry \ air
13
14 \quad 3 = 2 ;
15 ma = V/v1; //[kg/s] Mass flow rate of air
16 //(i)
17 Cool_cap = ma*(h1 - h3); //[kJ/s] Cooling coil
      capacity
18 disp('Cooling coil capacity = ',(Cool_cap*3600)
      /14000, 'Tonnes')
19 //(ii)
20 Heat_cap = ma*(h2 - h3); //[kW] Capacity of heating
21 disp('Capacity of heating coil = ', Heat_cap, 'kW')
22 //(iii)
23 W_removed = ma*( 1 - 3 ); //[kg/s] Amount of water
       vapor removed
24 disp('Amount of water vapor removed = ', W_removed,'
      kg/s')
```

Scilab code Exa 14.3 Estimate Partial pressure Specific humidity Enthalpy and Mass

```
1 //Example 14.3
2 // Estimate Partial pressure, Specific humidity,
        Enthalpy and Mass
3 clear
4 clc
5 T = 273 + 27; //[K]
6 Va = 100; //[m^3] Volume of dry air
```

```
Console
"Partial pressure of dry air = "
 99.2718
"kPa"
"Specific humidity = "
 0.0128646
"kg vapor/kg of dry air"
"Enthalpy of dry air = "
 27.135000
"kJ/kg"
"Mass of dry air = "
 115.29826
"kg"
"Mass of water vapor = "
 1.4817060
"kg"
```

Figure 14.3: Estimate Partial pressure Specific humidity Enthalpy and Mass

```
7 Vw = Va; //[m^3] Volume of water vapor
8 p = 101.325; //[kPa]
      = 0.60; //Relative humidity
10 //From steam tables for water at 27 C
11 p_sat = 3.422; //[kPa]
12 hfg = 2551; //[kJ/kg]
13 //(i) Estimate partial pressure of dry air
          *p_sat; //[kPa]
14 pw =
15 pa = p - pw; //[kPa]
16 disp('Partial pressure of dry air = ',pa,'kPa')
17 //(ii) Estimate specific humidity
      = 0.622*pw/(p - pw); //[kg vapor/kg of dry air]
      Specific humidity
19 disp('Specific humidity = ', , 'kg vapor/kg of dry
      air')
20 //(iii) Estimate enthalpy of dry air
21 //Enthalpy of air-vapor mixture is Gh = Gha + m*hw
     or h = ha +
                    hw
22 ha = 1.005*27; //[kJ/kg]
23 hw = hfg; //[kJ/kg]
24 h = ha +
              *hw; // [kJ/kg] Enthalpy of air-vapor
     mixture
25 disp('Enthalpy of dry air = ',ha,'kJ/kg')
26 //(iv) Estimate mass of dry air and water vapor
27 \text{ Ra} = 0.287;
28 ma = (pa*Va)/(Ra*T); //[kg] Mass of dry air
29 \text{ Rw} = 0.4619;
30 mw = (pw*Vw)/(Rw*T); //[kg] Mass of water vapor
31 disp('Mass of dry air = ',ma,'kg')
32 disp('Mass of water vapor = ',mw,'kg')
```

Scilab code Exa 14.4 Using psychometric chart evaluate the following

```
1 //Example 14.42 //Using psychometric chart evaluate the following
```

```
Console

"Specific humidity = "

0.0098077

"kg/kg of dry air"
```

Figure 14.4: Determine the specific humidity

```
3
4 clear
5 clc
6
7 //The given example is theoretical and does not involve any numerical computation
8 //end
```

Scilab code Exa 14.5 Determine the specific humidity

```
1 //Example 14.5
2 //Determine the specific humidity
3 clear
4 clc
5 p = 101.32; //[kPa]
6 \text{ T1} = 273+20; //[K]
7 T2 = 273 + 25; //[K]
   1 = 0.25; // Relative humidity of 1st stream
   2 = 0.75; // Relative humidity of 2nd stream
10 ps1 = 2.339; //[kPa]
11 ps2 = 3.169; //[kPa]
12 pw1 = 1 *ps1; //[kPa]
13 1 = (0.622*pw1)/(p - pw1);
14 pw2 = 2 *ps2; //[kPa]
15 2 = (0.622*pw2)/(p - pw2);
16 v1 = 20; //[m^3/min]
17 v2 = 25; //[m^3/min]
18 \text{ Ra} = 0.287;
19 pa1 = p - pw1; //[kPa]
20 pa2 = p - pw2; //[kPa]
21 ma1 = (pa1*v1)/(Ra*T1); //[kg/min]
22 ma2 = (pa2*v2)/(Ra*T2); //[kg/min]
   3 = (1 * ma1 + 2 * ma2)/(ma1 + ma2); //kg/kg of
23
     dry air
24 disp('Specific humidity = ', 3 , 'kg/kg of dry air')
```

 ${\bf Scilab}\ {\bf code}\ {\bf Exa}\ {\bf 14.6}\ {\bf Calculate}\ {\bf following}\ {\bf question}\ {\bf when}\ {\bf air}\ {\bf water}\ {\bf vapor}\ {\bf mixture}\ {\bf is}$

```
1 //Example 14.6
2 //Calculate following question when air water vapor mixture is heated at constant pressure
```

"Initial specific humidity of mixture = " 0.00625 "kg/kg of dry air" "Final specific humidity of mixture = " 0.0048 "kg/kg of dry air" "Final relative humidity = " 24.5 "%" "Dew point temperature = " 8. "°C" "Amount of heat transferred per kg of dry air = " 15.400000 "kJ/kg of dry air" "Amount of water vapor condensed = " 0.0014500 "kg/kg of dry air"

Console

Figure 14.5: Calculate following question when air water vapor mixture is heated at constant pressure

```
3 clear
4 clc
5 //From psychrometric chart in Figure EX 14.6
6 1 = 0.00625; // [kg/kg \text{ of dry air}] Initial
      specific humidity
    2 = 1 ; //kg/kg \text{ of dry air}
    3 = 0.0048; // kg/kg of dry air
9 h1 = 32.6; //[kJ/kg \text{ of dry air}]
10 h2 = 48; //[kJ/kg \text{ of dry air}]
11 t_db = 8; //[ C ] Dew point temperature
12 2 = 24.5; //[\%] Final relative humidity
13 Q = h2 - h1; // [kJ/kg of dry air]
     transferred
14 m = 1 - 3; // [kg/kg \text{ of dry air}]
                                              Mass of
     vapor condensed
15 disp('Initial specific humidity of mixture = ', 1 ,'
     kg/kg of dry air')
16 disp('Final specific humidity of mixture = ', 3, 'kg
     /kg of dry air')
17 disp('Final relative humidity = ', 2, '%')
18 disp('Dew point temperature = ',t_db,' C')
19 disp('Amount of heat transferred per kg of dry air =
       ',Q,'kJ/kg of dry air')
20 disp('Amount of water vapor condensed = ',m,'kg/kg
     of dry air')
```

Scilab code Exa 14.7 Determine mass flow rate and heat removed

```
1 //Example 14.7
2 //Determine mass flow rate and heat removed
3 clear
4 clc
5 //From psychrometric chart in Figure Ex 14.7
```

Console "Mass flow rate of water vapor removed per hour = " 0.7522124 "kg/h" "Heat removed in the cooler per hour = " 2925.2704

"kJ/h"

Figure 14.6: Determine mass flow rate and heat removed

```
6 // At 27 C and 65% relative humidity
7 h1 = 65; //kJ/kg of dry air
8 1 = 0.017; // kg/kg of dry air
9 // At 23 C and 45% relative humidity
10 ha = 30; // kJ/kg of dry air
11 2 = 0.008; // kg/kg of dry air
12 m_aw = 85; //[kg/h] Mass flow rate of atmospheric
     air including moisture
13 m_a = m_aw/(1 + 1); //[kg/h] Mass flow rate of air
14 //(i) Determine mass flow rate of water vapor
     removed per hour
15 m_w = m_a*(1 - 2); //[kg/h] Mass flow rate of
     water vapor removed per hour
16 disp('Mass flow rate of water vapor removed per hour
      = ',m_w, 'kg/h')
17 //(ii) Determine heat removed in cooler per hour
18 Q = m_a*(h1 - ha); //[kJ/h]
19 disp('Heat removed in the cooler per hour = ',Q,'kJ/
     h')
```