Scilab Textbook Companion for Sears And Zemansky'S University Physics With Modern Physics by Hugh D. Young, Roger A. Freedman¹

Created by
Mohammad Usaid
BTech
Electrical Engineering
Aligarh Muslim University
Cross-Checked by
Scilab TBC Team

June 3, 2020

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Sears And Zemansky'S University Physics With Modern Physics

Author: Hugh D. Young, Roger A. Freedman

Publisher: Addison-Wesley, Usa

Edition: 13

Year: 2010

ISBN: 9780321696861

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		
2	Motion along a straight line	5
3	Motion in two or three dimensions	13
4	Newtons Laws Of Motion	20
7	Potential Energy And Energy Conservation	26
8	Momentum Impulse and Collisions	33
9	Rotation of rigid bodies	43
13	Gravitation	52
14	Periodic motion	64
16	Sound and Hearing	72
17	Temperature and Heat	88
18	Thermal properties of matter	106

List of Scilab Codes

Exa 2.1	Average and Instantaneous velocities	-
Exa 2.3	Average and Instantaneous accelerations	6
Exa 2.4	Constant acceleration calculations	8
Exa 2.6	A freely falling coin	Ĉ
Exa 2.7		10
Exa 3.6		13
Exa 3.7	Height and range of a projectile 1 A batted	
		15
Exa 3.11	1	16
Exa 3.12	±	17
Exa 3.14	Flying in a crosswind	18
Exa 4.1	Superposition of forces	2(
Exa 4.4	Determining acceleration from force	21
Exa 4.5	Determining force from acceleration	22
Exa 4.7	Mass and weight	24
Exa 7.1	Height of a baseball from energy conservation	26
Exa 7.4	Speed at the bottom of a vertical circle	27
Exa 7.5	A vertical circle with friction	28
Exa 7.6		26
Exa 7.9	Motion with gravitational elastic and frictional	
	forces	32
Exa 8.2	A ball hits a wall	33
Exa 8.3	Kicking a soccer ball	34
Exa 8.4		36
Exa 8.5		37
Exa 8.6		38
Exa 8.7		40
Exa 8.9		42

Exa 9.1	Calculating angular velocity
Exa 9.3	Rotation with constant angular acceleration
Exa 9.4	Throwing a discus
Exa 9.5	Designing a propeller
Exa 9.6	Moments of inertia for different rotation axes
Exa 9.7	An unwinding cable 1
Exa 9.9	Using the parallel axis theorem
Exa 13.1	Calculating gravitational force
Exa 13.2	Acceleration due to gravitational attaraction
Exa 13.3	Superposition of gravitational forces
Exa 13.4	Gravity on Mars
Exa 13.5	From the Earth to the Moon
Exa 13.6	A satellite orbit
Exa 13.8	Kepler third law
Exa 13.9	Comet Halley
Exa 13.11	Black hole calculations
Exa 14.1	Period frequency and angular frequency
Exa 14.2	Angular frequency frequency and period in
	SHM
Exa 14.4	Velocity acceleration and energy in SHM
Exa 14.6	Vertical SHM in an old car
Exa 14.7	Molecular vibration
Exa 14.8	A simple pendulum
Exa 14.9	Physical pendulum VS simple pendulum
Exa 16.1	Amplitude of a sound wave in air
Exa 16.3	Wavelength of sonar waves
Exa 16.4	Speed of sound in air
Exa 16.5	Intensity of a sound wave in ear
Exa 16.6	Same intensities different frequencies
Exa 16.8	Temporary or permanent hearing loss
Exa 16.9	A bird sings in a meadow
Exa 16.11	A tale of two pipes
Exa 16.14	Doppler effect 1 wavelengths
Exa 16.15	Doppler effect 2 frequencies
Exa 16.16	Doppler effect 3 A moving listener
Exa 16.17	Doppler effect 4 moving source moving listener
Exa 16.18	Doppler effect 5 A double doppler shift
Exa 16 19	Sonic boom from a supersonic airplane

Exa 17.1	Body temperature	88
Exa 17.2	Length change due to temperature change .	89
Exa 17.3	volume change due to temperature change .	90
Exa 17.4	Thermal stress	91
Exa 17.5	Feed a cold starve a fever	93
Exa 17.6	Overheating electronics	94
Exa 17.7	A temperature change with no phase change	95
Exa 17.8	Changes in both temperature and phase	96
Exa 17.9	Whats cooking	97
Exa 17.10	Combustion temperature change and phase	
	change	99
Exa 17.11	Conduction into a picnic cooler	100
Exa 17.12	Conduction through two bars I	101
Exa 17.13	Conduction through two bars II	102
Exa 17.14	Heat transfer by radiation	103
Exa 17.15	Radiation from the human body	104
Exa 18.1	Volume of an ideal gas at STP	106
Exa 18.5	Atomic and molecular mass	106
Exa 18.6	Molecular kinetic energy and Vrms	108
Exa 18.7	Calculating rms and average speeds	109
Exa 18.8	Calculating mean free path	110

Chapter 2

Motion along a straight line

Scilab code Exa 2.1 Average and Instantaneous velocities

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 2: MOTION ALONG A STRAIGHT A LINE
3 //EX 2.1: AVERAGE AND INSTANTANEOUS VELOCITIES
4 clear;
5 clc;
6 deff('[X]=x(t)', 'X=20+5*t^2'); //function of
     displacement
7 t1=1; //given time in sec
8 t2=2; //given time in sec
9 x1=x(t1); //displacement at t=1s
10 x2=x(t2); //displacement at t=2s
11 delta_x=x2-x1; //displacement in meters
12 mprintf('(a) Displacement between t1=1s and t2=2s: %d
      m', delta_x);
13 Vav_x=(x2-x1)/(t2-t1); //average\ velocity\ in\ m/s
14 mprintf('\n(b) Average speed between t1=1s and t2=2s:
      \%d \text{ m/s}, Vav_x;
15 	 x2=x(t1+0.001);
16 Vav_x = (x2-x1)/((t1+0.001)-t1); //instantaneous speed
```

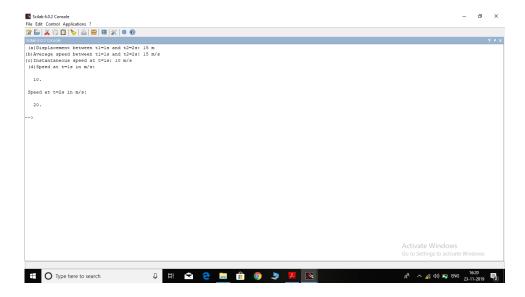


Figure 2.1: Average and Instantaneous velocities

Scilab code Exa 2.3 Average and Instantaneous accelerations

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 2: MOTION ALONG A STRAIGHT A LINE
3 //EX 2.3 AVERAGE AND INSTANTANEOUS ACCELERATIONS
4 clear;
5 clc;
```

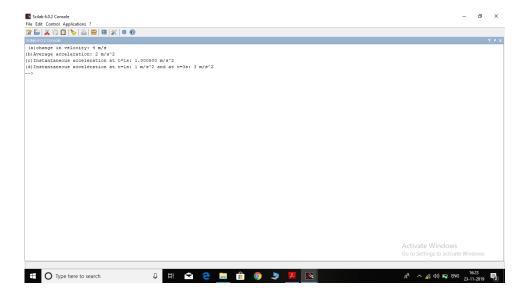


Figure 2.2: Average and Instantaneous accelerations

```
6 deff('[V_x]=v_x(t)', V_x=60+0.5*t^2'); //given
      function of velocity
7 t1=1; //given time instant in sec
8 t2=3; //given time instant in sec
9 v_1x = v_x(t1);
10 v_2x = v_x(t2);
11 delta_v_x=v_2x-v_1x;
12 mprintf('(a) change in velocity: %d m/s', delta_v_x);
13 a_av_x=(v_2x-v_1x)/(t2-t1); //average acceleration b
     /w t=1 and t=3 sec
14 mprintf(' \setminus n(b)) Average acceleration: %d m/s^2',a_av_x
     );
15 t2=t1+0.001;
16 v_2x=v_x(t2); // velocity at t=2 sec
17 v_1x=v_x(t1); // velocity at t=1 sec
18 a_av_x=(v_2x-v_1x)/(t2-t1); //acceleration at t=1
      sec
19 mprintf('\n(c)Instantaneous acceleration at t=1s: \%f
      m/s^2, a_av_x);
20 a_x=numderivative(v_x,1); //instantaneous x
```

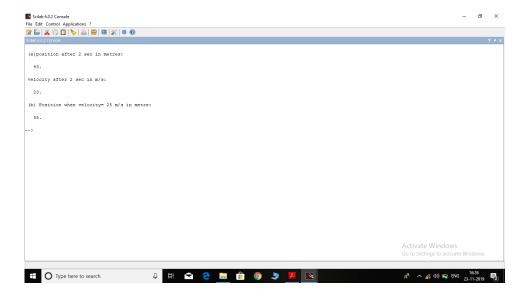


Figure 2.3: Constant acceleration calculations

Scilab code Exa 2.4 Constant acceleration calculations

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 2: MOTION ALONG A STRAIGHT LINE
3 //EX 2.4: CONSTANT ACCELERATION CALCULATIONS
4 clc;
5 clear;
6 a_x=4; //acceleration in ms^-2
```

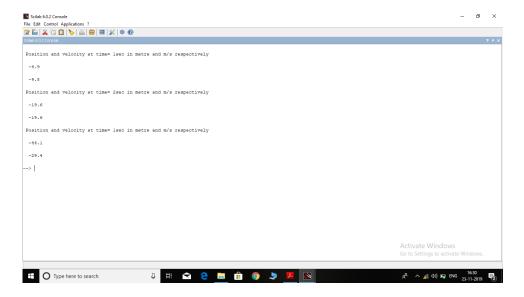


Figure 2.4: A freely falling coin

```
7 x_0=5; //initial displacement in m
8 v_0x=15; //initial velocity in m/s
9 t=2; //time in sec
10 x= x_0+v_0x*t+0.5*a_x*t^2; //displacement after 2
    sec
11 v_x=v_0x+a_x*t; //velocity after 2 sec
12 disp(x, '(a) position after 2 sec in metres: ');
13 disp(v_x, 'velocity after 2 sec in m/s: ');
14 v_x=25; //given velocity in ms^-1
15 x=x_0+(v_x^2-v_0x^2)/(2*a_x); //position when velocity=25 m/s
16 disp(x, '(b) Position when velocity= 25 m/s in metre: ');
```

Scilab code Exa 2.6 A freely falling coin

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 2: MOTION ALONG A STRAIGHT LINE
3 //EX 2.6: A FREELY FALLING COIN
4 clc;
5 clear;
6 g=9.8; //acceleration due to gravity in ms^-2
7 y_0=0; //given initial position in m
8 t_0=0; //given time instant in sec
9 t1=1; //given time instant in sec
10 t2=2; //given time instant in sec
11 t3=3; //given time instant in sec
12 v_0y=0; //given initial velocity in m/s
13 a_y=-g; //given initial acceleration in m/s^2
14 deff('[Y]=y(t)', 'Y=y_0+v_0y*t+0.5*a_y*t^2'); //
     kinematic equation for displacement
15 deff('[V_-y]=v_-y(t)', 'V_-y=v_-0y+a_-y*t'); //kinematic
     equation for velocity
16 y_1=y(t1); //position at t=1 sec
17 v_1y=v_y(t1); //velocity at t=1 sec
18 disp(y_1,v_1y, 'Position and velocity at time= 1 sec
     in metre and m/s respectively');
19 y_2=y(t2); // position at t=2 sec
20 v_2y=v_y(t2); //velocity at t=2 sec
21 disp(y_2, v_2y, 'Position and velocity at time= 2 sec
     in metre and m/s respectively'); //answer given
     in textbook is wrong
22 y_3=y(t3); //position at t=3 sec
23 v_3y=v_y(t3); //velocity at t=3 sec
24 disp(y_3, v_3y, 'Position and velocity at time= 3 sec
     in metre and m/s respectively'); //answer given
     in textbook is wrong
```

Scilab code Exa 2.7 Up and down motion in free fall

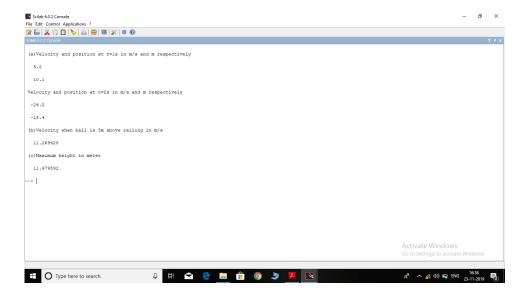


Figure 2.5: Up and down motion in free fall

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 2:MOTION ALONG A STRAIGHT LINE
3 //EX 2.7: UP AND DOWN MOTION IN FREE FALL
4 clc;
5 clear;
6 g=9.8; //acceleration due to gravity in ms^-2
7 y_0=0; //initial position in m
8 v_0y=15; //initial velocity in ms^-1
9 a_y=-g; //acceleration in y direction in m/s<sup>2</sup>
10 deff('[Y]=y(t)', 'Y=v_0y*t+0.5*a_y*t^2'); //kinematic
       equation of motion
11 deff('[V_y]=v_y(t)', 'V_y=v_0y+a_y*t'); //kinematic
      equation of motion
12 t1=1; //given time instant in sec
13 t2=4; //given time instant in sec
14 \operatorname{disp}(y(t1), v_y(t1), '(a))  Velocity and position at t=1s
       in m/s and m respectively');
15 disp(y(t2), v_y(t2), 'Velocity and position at t=4s in
      m/s and m respectively');
16 y=5; //when ball is 5m above origin
```

```
17 v_y=sqrt(v_0y^2+2*a_y*y);
18 disp(v_y,'(b) Velocity when ball is 5m above railing
      in m/s');//answer vary due to roundoff error
19 y1=(v_0y^2)/(2*g); //position when v_y=0 ( y1-y_0=(
      v_y^2-v_0^2)/(2*a_y) )
20 disp(y1,'(c)Maximum height in meter'); //answer vary
      due to roundoff error
```

Chapter 3

Motion in two or three dimensions

Scilab code Exa 3.6 A body projected horizontally

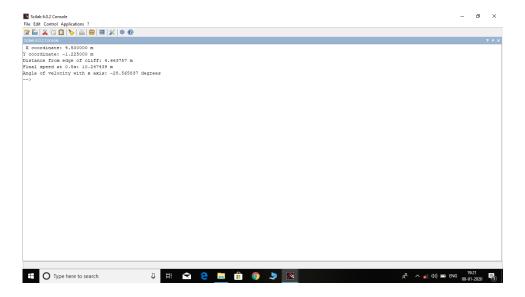


Figure 3.1: A body projected horizontally

```
14 v_y=-g*t; //final vertical speed of motorcycle at t
      =0.5 \,\mathrm{s} in \mathrm{m/s}
15 v=sqrt(v_x^2+v_y^2); //final speed of motorcycle at
      t = 0.5 s in m/s
16 alpha=atand(v_y/v_x); //angle of final velocity of
      motorcycle with horizontal axis in degrees
17 mprintf('X coordinate of motorcycle: %f m',x);
18 mprintf('\nY coordinate of motorcycle : %f m',y); //
      answer vary due to roundoff error
19 mprintf('\nDistance of motorcycle from edge of cliff
      : %f m',r); //answer vary due to roundoff error
20 mprintf('\nFinal speed of motorcycle at 0.5s: %f m/s
      ',v); //answer vary due to roundoff error
21 mprintf('\nAngle of velocity of motorcycle with x
      axis: %f degrees', alpha); //answer vary due to
      roundoff error
```

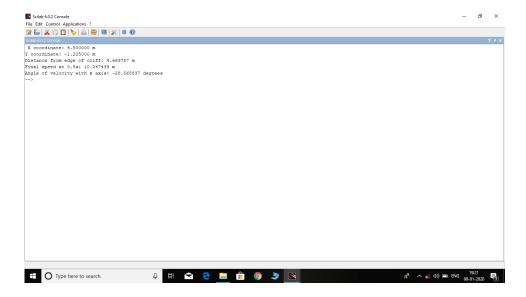


Figure 3.2: Height and range of a projectile 1 A batted baseball

Scilab code Exa 3.7 Height and range of a projectile 1 A batted baseball

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 3: MOTION IN 1 OR 2 DIMENTIONS
//Ex 3.7: HEIGHT AND RANGE OF A PROJECTILE 1: A
BATTLED BASEBALL

clear;
clc;
v_0=37; //initial speed of projectile in m/s
alpha_0=53.1; //angle of projection in degrees
g=9.8; //acceleration due to gravity in m/s^2
t=2; //time interval in sec
v_0x=v_0*cosd(alpha_0); //initial horizontal speed in m/s
v_0y=v_0*sind(alpha_0); //initial vertical speed in m/s
x=v_0x*t; //x component of position in m
```

```
13 y=v_0y*t-0.5*g*t^2; //y component of position in m
14 v_x=v_0x; //horizontal velocity after 2s in m/s
15 v_y=v_0y-g*t; //vertical velocity after 2s in m/s
16 v=sqrt(v_x^2+v_y^2); //total speed after 2s in m/s
17 alpha=atand(v_y/v_x);
18 mprintf('(a)X coordinate after 2 sec: %f m',x);
19 mprintf('\nY coordinate after 2 sec: %f m',y);
20 mprintf('\nTotal speed after 2 sec: %f m\nAngle of
      velocity with x axis in degres: %f', v, alpha);
21 t1=v_0y/g; //time at v_y=0 in sec
22 h=v_0y*t1-0.5*g*t1^2; //Maximum height in m
23 mprintf('\n(b)Time taken to reach maximum height: %f
      sec',t1);
24 mprintf('\nMaximum height: \%f m',h);
25 t=poly(0, 't') //polynomial for y
26 y=(v_0y*t)-0.5*g*t^2; //y=v_0y*t2-(1/2)*g*t^2
27 t2=roots(y); //solving for two values of t2 when y=0
28 if(t2(1)~=0) then //considering only non zero value
     of t2, since t2=0 implies that horizontal range R
     =0 which is trivial
29 R=v_0x*t2(1); //horizontal range of projectile in m
30 else R=v_0x*t2(2);
31 end
32 mprintf('\n(c) Horizontal range of projectile: %f m'
     ,R); //answer vary due to round off error
```

Scilab code Exa 3.11 Centripetal acceleration on a curved road

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 3: MOTION IN 1 OR 2 DIMENTIONS
3 //Ex 3.11: CENTRIPETAL ACCELERATION ON CURVED ROAD
4 clear;
5 clc;
```

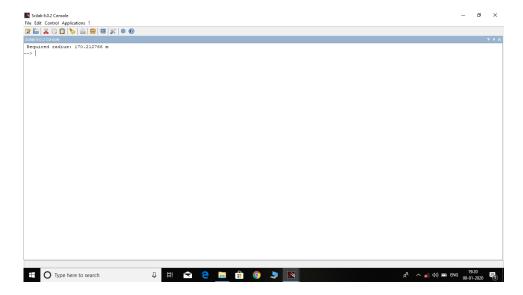


Figure 3.3: Centripetal acceleration on a curved road

```
6 v=40; //linear velocity in m/s
7 a_rad=9.4; //centripetal acceleration in m/s^2
8 R=(v^2)/a_rad; //Radius of acceleration in m/s^2
9 mprintf('Required radius: %f m',R); //answer vary
due to roundoff error
```

Scilab code Exa 3.12 Centripetal acceleration on a carnival ride

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 3: MOTION IN 1 OR 2 DIMENTIONS
3 //Ex 3.12: CENTRIPETAL ACCELERATION ON A CARNIVAL RIDE
4 clear;
5 clc;
6 R=5; //radius in m
7 T=4; //time taken in 1 revolution
```

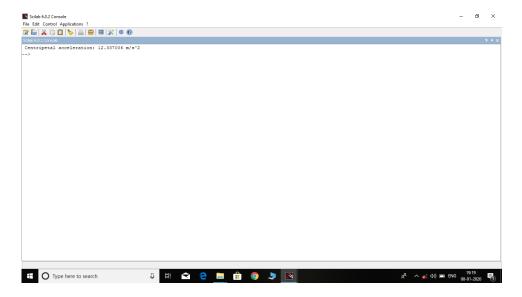


Figure 3.4: Centripetal acceleration on a carnival ride

Scilab code Exa 3.14 Flying in a crosswind

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 3: MOTION IN 1 OR 2 DIMENTIONS
//Ex 3.14: FLYING IN A CROSSWIND
clear;
clc;
v_pa=240; //speed of plane wrt to air in km/h
v_ae=100; //speed of air wrt to Earth in km/h
v_pe=sqrt((v_pa)^2+(v_ae)^2); //speed of plane wrt to Earth
```

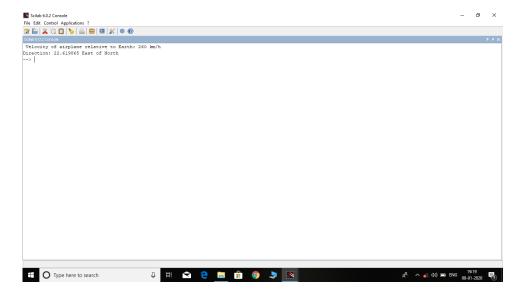


Figure 3.5: Flying in a crosswind

9 alpha=atand(v_ae/v_pa); //angle with vertical axis(
 North axis) in degrees
10 mprintf('Velocity of airplane relative to Earth: %d
 km/h',v_pe);
11 mprintf('\nDirection: %f degrees East of North',
 alpha); //answer vary due to roundoff error

Chapter 4

Newtons Laws Of Motion

Scilab code Exa 4.1 Superposition of forces

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 4: NEWTON'S LAWS OF MOTION
3 //EXAMPLE 4.1: SUPERPOSITION OF FORCES
4 clc;
5 clear;
6 F1=250; //magnitude of force F1 in Newton
7 F2=50; //magnitude of force F2 in Newton
8 F3=120; //magnitude of force F3 in Newton
9 theta_1=127; //angle of force F1 with +ve x axix in
     degrees
10 theta_2=0; //angle of force F2 with +ve x axix in
     degrees
11 theta_3=270; //angle of force F3 with +ve x axix in
     degrees
12 F1x=F1*cosd(theta_1); //x component of force F1 in
     newton
13 F1y=F1*sind(theta_1); //y component of force F1 in
14 F2x=F2*cosd(theta_2); //x component of force F2 in
```

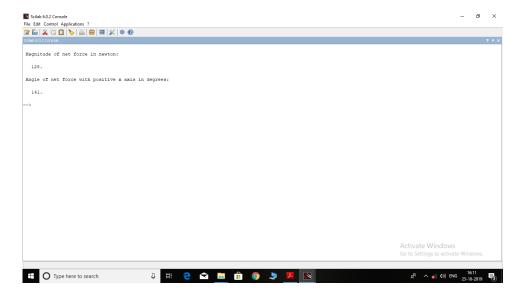


Figure 4.1: Superposition of forces

Scilab code Exa 4.4 Determining acceleration from force

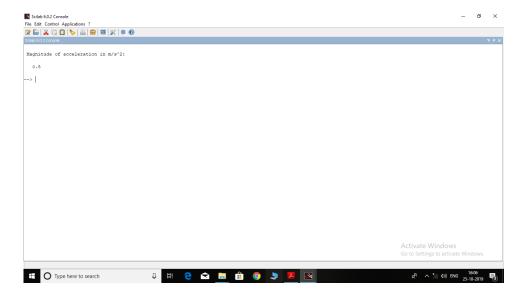


Figure 4.2: Determining acceleration from force

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 4: NEWTONS LAWS OF MOTION
//EXAMPLE 4.4: //DETERMINING ACCELERATION FROM FORCE
clc;
clear;
F_x=20; //magnitude of force in newton
m=40; //mass in kg
a_x=F_x/m; //magnitude acceleration im m/s^2
disp(a_x,'Magnitude of acceleration in m/s^2: ');
```

Scilab code Exa 4.5 Determining force from acceleration

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 4: NEWTON'S LAWS OF MOTION
3 //EXAMPLE 4.5: DETERMINING FORCE FROM ACCELERATION
4 clear;
```

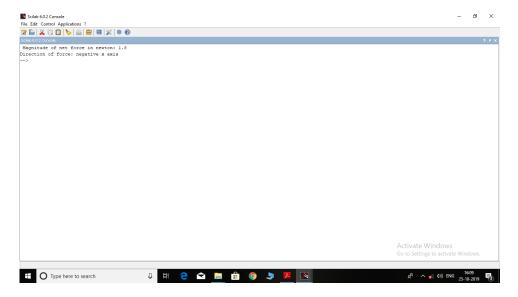


Figure 4.3: Determining force from acceleration

```
5 clc;
6 \text{ m=0.45} //\text{mass of bottle in kg}
7 v_0x=2.8 //initial velocity of bottle in m/s
8 x_0=0; //initial position of bottle in m
9 v_x=0; //final velocity of bottle in m/s
10 x=1; //displacement of bottle in metres
11 a_x=(v_x^2-v_0x^2)/(2*(x-x_0)); //kinematic equation
       for acceleration
12 f_x=m*a_x; //x component of force in newton(-ve sign
       because bottle's acceleration is in -ve x dir.)
13 mprintf('Magnitude of friction force in newton: %0.1
      f', abs(f_x));
14 if f_x>0 then mprintf('\nDirection of force:
      positive x axis');
15 else mprintf('\nDirection of force: negative x axis'
     );
16 \text{ end}
```

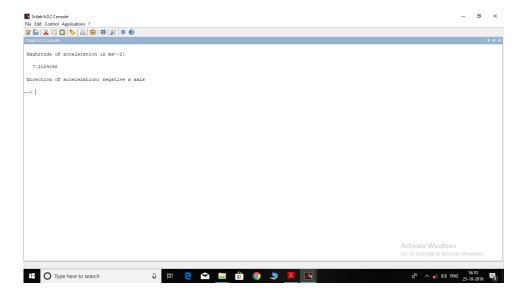


Figure 4.4: Mass and weight

Scilab code Exa 4.7 Mass and weight

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 4: NEWTON'S LAWS OF MOTION
3 //EXAMPLE 4.7 MASS AND WEIGHT
4 clear;
5 clc;
6 w=2.49*10^4; //weight of car in newton
7 g=9.8; //acceleration due to gravity in m/s<sup>2</sup>;
8 \text{ m=(w/g); } // \text{ mass of car in kg}
9 F_x=-1.83*10^4; //given retarding force in newton
10 a_x=(F_x/m); //acceleration of car in m/s<sup>2</sup>
11 disp(abs(a_x), 'Magnitude of acceleration in m/s^2: '
      ); //answer vary due to roundoff
12 if a_x > 0 then disp('Direction of acceleration:
      positive x axis');
       else disp ('Direction of acceleration: negative x
13
```

axis');

Chapter 7

Potential Energy And Energy Conservation

Scilab code Exa 7.1 Height of a baseball from energy conservation

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 7 POTENTIAL ENERGY AND ENERGY CONSERVATION
3 //EX 7.1: HEIGHT OF BASEBALL FROM ENERGY
     CONSERVATION
4 clear;
5 clc;
6 m=0.145; //mass in kg
7 v_1=20; //initial velocity in m/sec
8 v_2=0; //final velocity in m/sec
9 g=9.8; //acceleration due to gravity in m/s<sup>2</sup>
10 y1=0; //initial position in m
11 U_grav1=m*g*y1; //initial kinetic energy in J
12 K1=(1/2)*m*v_1^2; //initial kinetic energy in J
13 K2=(1/2)*m*v_2^2; //final kinetic energy in J
14 y2=(K1)/(m*g); //height in m, since(K1 + U_grav1 =
     K2+ U_grav2)
15 disp(y2, 'Height of baseball in meters: ');
```

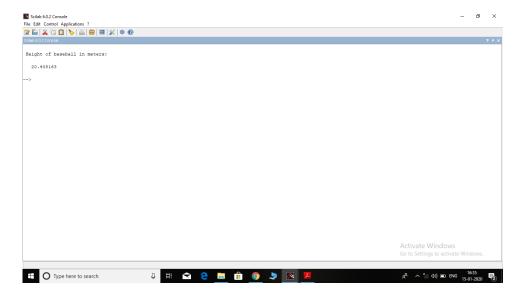


Figure 7.1: Height of a baseball from energy conservation

Scilab code Exa 7.4 Speed at the bottom of a vertical circle

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 7 POTENTIAL ENERGY AND ENERGY CONSERVATION
//EX 7.4: SPEED AT THE BOTTOM OF A VERTICAL CIRCLE
clear;
clc;
m=25; //total mass of throcky and skateboard in kg
R=3; //radius of circle in meters
g=9.8; //acceleration due to gravity in m/s^2
w=m*g //total weight of throcky and skateboard in N
K1=0; //initial kinetic energy in J
U_grav1=m*g*R; //initial gravitational potential energy in J
```

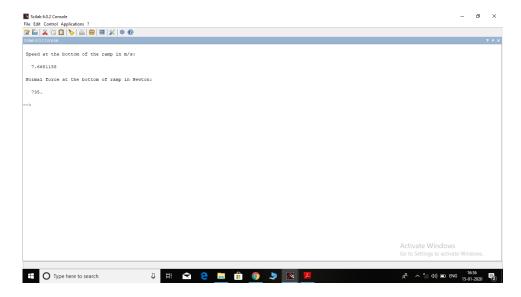


Figure 7.2: Speed at the bottom of a vertical circle

Scilab code Exa 7.5 A vertical circle with friction

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 7 POTENTIAL ENERGY AND ENERGY CONSERVATION
3 //EX 7.5: A VERTICAL CIRCLE WITH FRICTION
4 clear;
```

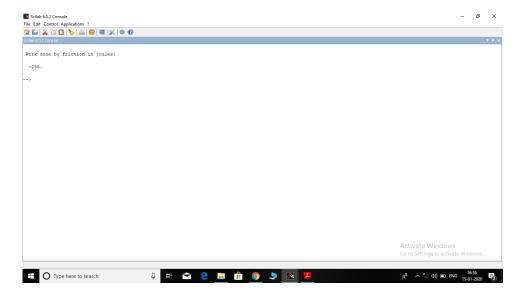


Figure 7.3: A vertical circle with friction

```
5 clc;
6 m=25; //mass in kg
7 v1=0; //initial velocity in m/s^2
8 v2=6; //final velocity in m/s^2
9 R=3; //radius in meters
10 g=9.8; //acceleration due to gravity in m/s^2
11 K1=(1/2)*m*v1^2; //initial kinetic energy in J
12 U_grav1=m*g*R; //initial gravitational potential energy in J
13 K2=(1/2)*m*v2^2; //final kinetic energy in J
14 U_grav2=0; //final gravitational potential energy in J
15 W_other=(K2+U_grav2)-(K1+U_grav1); //work done by friction in J
16 disp(W_other,'Work done by friction in joules: ');
```

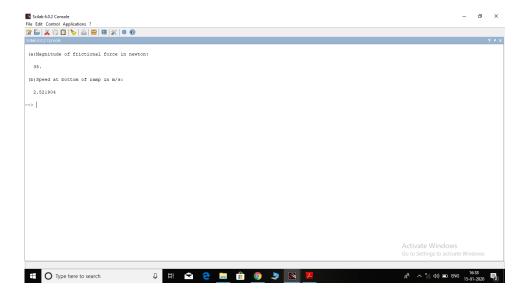


Figure 7.4: An inclined plane with friction

Scilab code Exa 7.6 An inclined plane with friction

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 7 POTENTIAL ENERGY AND ENERGY CONSERVATION
3 //EX 7.6: AN INCLINED PLANE WITH FRICTION
4 clear;
5 clc;
6 m=12; //mass in kg
7 g=9.8; //acceleration due to gravity in ms^-2
8 v1=5; //initial speed in ms^-1
9 theta=30; //angle of inclination in degrees
10 s=1.6; //slant length in meter
11 y1=0;
12 y2=s*sind(theta); //vertical height in meter
13 y3=0;
14 K1=0.5*m*(v1^2); //initial kinetic energy at bottom
     in J
15 U_grav1=0; //initial gravitational potential energy
     at bottom in J
16 U_grav2=m*g*y2; //gravitational potential energy at
```

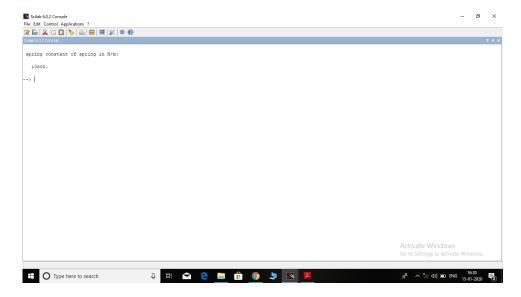


Figure 7.5: Motion with gravitational elastic and frictional forces

```
top in J
17 K2=0; ///final kinetic energy at top in J
18 W_other=(K2+U_grav2)-(K1+U_grav1); //work done by
    friction in J ()
19 f=W_other/s; //frictional force in N
20 W_other=(2*W_other); //work done by frictional force
    in part(b) in J
21 U_grav3=0;
22 K3=K1+U_grav1-U_grav3+W_other; //kinetic energy at
    bottom (K1+U_grav1+W_other=K3+U_grav3)
23 v3=sqrt((2*K3)/m); //speed at bottom of ramp in ms
    ^-1
24 disp(abs(round(f)), '(a) Magnitude of frictional force
    in newton: ');
25 disp(v3, '(b) Speed at bottom of ramp in m/s: '); //
    answer vary due to roundoff error
```

Scilab code Exa 7.9 Motion with gravitational elastic and frictional forces

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 7: Potential Energy and Energy
      Conservation
3 //EXAMPLE: 7.9: Motion with gravitational, elastic,
     and friction forces
4 clear;
5 clc;
6 m=2000; //mass in kg
7 g=9.8; // accleration due to gravity in m/s<sup>2</sup>
8 v1=4; //initial velocity in ms^-1
9 K1=0.5*m*v1^2; //initial kinetic energy in J
10 K2=0; //final kinetic energy in J
11 y1=0; //initial position in m
12 Ugrav=0; //initial gravitational potential energy
13 Uel=0; //initial elastic potential energy in J
14 U1=Ugrav+Uel; //initial total energy in J
15 y2=-2; //final position in m
16 U2=m*g*y2; //final gravitational potential energy in
      J.
17 f=17000; //frictional force in N
18 W_other=f*y2; //work done by friction in J
19 k=2*(K1+W_other-m*g*y2)/y2^2; //spring constant in N
     /m (K1+U1+W_other=K2+U2)
20 disp(k, 'spring constant of spring in N/m: ');
```

Chapter 8

Momentum Impulse and Collisions

Scilab code Exa 8.2 A ball hits a wall

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 8: MOMENTUM AND IMPULSE
3 //EX 8.2: A BALL HITS A WALL
4 clc;
5 clear;
6 m=0.4; //mass in kg
7 v1x=-30; //initial velocity in -x direction
8 v2x=20; //final velocity in +x direction
9 p1x=m*v1x; //initial momentum in -x direction
10 p2x=m*v2x; //final momentum in -x direction
11 Jx=p2x-p1x; //impulse in units N.s
12 delta_t=0.010; //time interval in sec
13 F_avx=Jx/delta_t; //Average impulsive force in N
14 mprintf('(a) Magnitude of impulse: %d N.s', Jx);
15 if Jx>0 then
16
       mprintf('\nDirection: +x axis')
17
       else mprintf('\nDirection: -x axis')
```

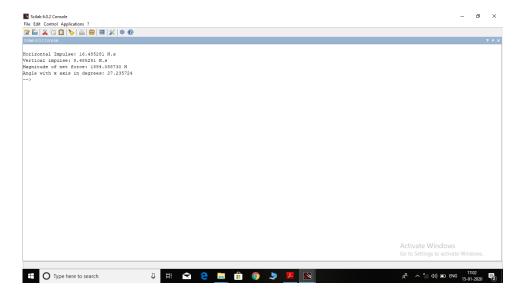


Figure 8.1: A ball hits a wall

Scilab code Exa 8.3 Kicking a soccer ball

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 8: MOMENTUM AND IMPULSE
//EX 8.3: KICKING A SOCCER BALL
clc;
clear;
m=0.4; //mass in kg
```

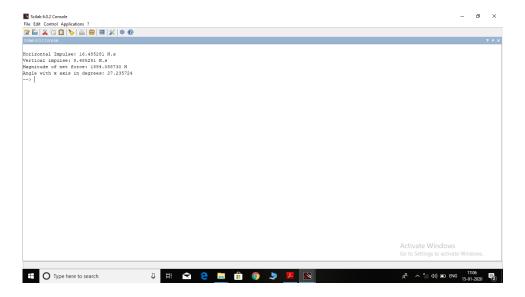


Figure 8.2: Kicking a soccer ball

```
7 v1x=-20; //initial horizontal velocity in -x dir in
8 v1y=0; //intial vertical velocity
9 v2=30; //final speed in m/s
10 alpha=45; //angle between v2 and +ve x axis
11 v2x=v2*cosd(alpha), v2y=v2*cosd(alpha); //x and y
     component of final velocity in m/s
12 Jx=m*(v2x-v1x); // Horizontal impulse
13 Jy=m*(v2y-v1y); //Vertical impulse
14 delta_t=0.010; //time interval in sec
15 Fav_x=Jx/delta_t; //horizontal force in N
16 Fav_y=Jy/delta_t; //vertical force in N
17 Fav=sqrt(Fav_x^2+Fav_y^2); //average force in N
18 theta=atand(Fav_y/Fav_x); //angle in degrees
19 mprintf('\nHorizontal Impulse: %f N.s',Jx); //answer
      vary due to roundoff error
20 mprintf('\nVertical impulse: %f N.s',Jy); //answer
     vary due to roundoff error
21 mprintf('\nMagnitude of net force: %f N',Fav); //
     answer provided in textbbok is wrong
```

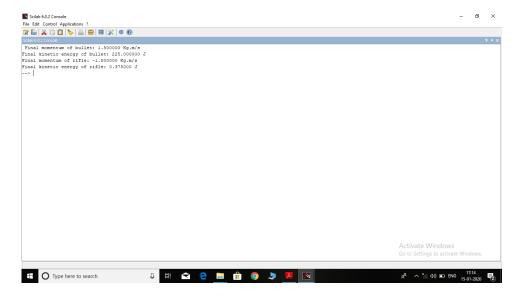


Figure 8.3: Recoil of a rifle

```
22 mprintf('\nAngle with x axis in degrees: %f',theta); //answer provided in textbbok is wrong
```

Scilab code Exa 8.4 Recoil of a rifle

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 8: MOMENIUM AND IMPULSE
//EX 8.4: RECOIL OF A RIFLE

clc;
clear;
m_R=3; //mass of rifle inkg
m_B=0.005; //mass of bullet in kg
v_Bx=300; //velocity of bullet in m/s
v_Rx=-(m_B/m_R)*v_Bx; //recoil velocity of rifle in m/s
p_Bx=m_B*v_Bx; //momentum of bullet in Kg.m/s
```

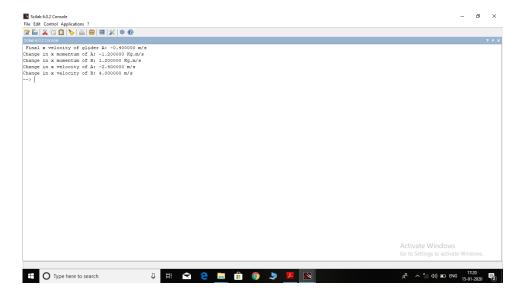


Figure 8.4: Collision along a straight line

```
11 K_B=0.5*m_B*v_Bx^2; //kinetic energy of bulley in J
12 p_Rx=m_R*v_Rx; //momentum of rifle in Kg.m/s
13 K_R=0.5*m_R*v_Rx^2; //kinetic energy of rifle in J
14 mprintf('Final momentum of bullet: %f Kg.m/s',p_Bx);
15 mprintf('\nFinal kinetic energy of bullet: %f J',K_B
);
16 mprintf('\nFinal momentum of rifle: %f Kg.m/s',p_Rx)
;
17 mprintf('\nFinal kinetic energy of rifle: %f J',K_R)
;
```

Scilab code Exa 8.5 Collision along a straight line

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 8: MOMENTUM AND IMPULSE
3 //EX 8.5: COLLISION ALONG A STRAIGHT LINE
```

```
4 clc;
5 clear;
6 m_A=0.5; //mass of A in kg
7 m_B=0.3; //mass of B in kg
8 v_A1x=2; //initial velocity of A in m/s
9 v_B1x=-2; //initial velocity of B in m/s
10 v_B2x=2; //final velocity of B in m/s
11 Px = (m_A * v_A 1x) + (m_B * v_B 1x); // initial total momentum
       in Kg.m/s
12 v_A2x = (Px - m_B * v_B2x) / m_A; // final velocity of A in m
13 mprintf('Final x velocity of glider A: %f m/s',v_A2x
14 mprintf('\nChange in x velocity of A: \%f m/s',(v_A2x)
      -v_A1x));
15 mprintf('\nChange in x velocity of B: \%f m/s',(v_B2x
     -v_B1x));
16 mprintf('\nChange in x momentum of A: %f Kg.m/s',m_A
      *(v_A2x-v_A1x));
17 mprintf('\nChange in x momentum of B: %f Kg.m/s',m_B
      *(v_B2x-v_B1x));
```

Scilab code Exa 8.6 Collision in a horizontal plane

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 8: MOMENTUM AND IMPULSE
//EX 8.6: COLLISION IN A HORIZONTAL PLANE
clc;
clear;
m_A=20; //mass of A in kg
m_B=12; //mass of B in kg
alpha=30; //angle between v_A1 and v_A2 in degrees
v_A1x=2; //velocity of A before collision in x dir
```

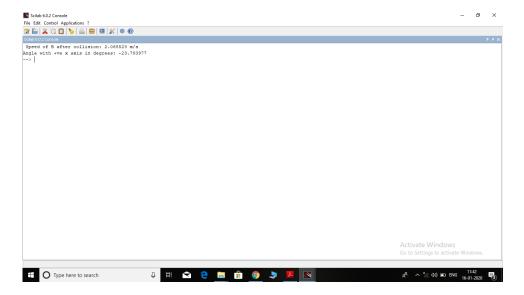


Figure 8.5: Collision in a horizontal plane

```
in m/s
10 v_A1y=0; //velocity of A before collision in y dir
     in m/s
11 v_B1x=0; //velocity of B before collision in x dir
     in m/s
12 v_B1y=0; //velocity of B before collision in y dir
      in m/s
13 v_A2=1; //speed of A after collision in m/s
14 v_A2x=v_A2*cosd(alpha); // velocity of A after
      collision in x dir in m/s
15 v_A2y=v_A2*sind(alpha); // velocity of A after
      collision in y dir in m/s
16 \quad v_B2x = (m_A*v_A1x + m_B*v_B1x - m_A*v_A2x) / m_B; //
      velocity of B after collision in x dir in m/s
17 v_B2y = (m_A*v_A1y + m_B*v_B1y - m_A*v_A2y) / m_B; //
      velocity of B after collision in y dir in m/s
18 v_B2 = sqrt(v_B2x^2 + v_B2y^2); //speed of B after
      collision in m/s
19 Beta=atand(v_B2y/v_B2x); //angle between v_B1 and
      v_B2 in degrees
```

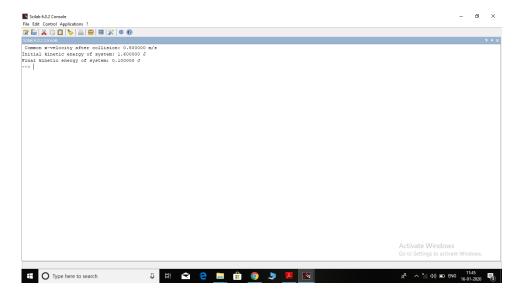


Figure 8.6: A completely inelastic collision

```
20 mprintf('Speed of B after collision: %f m/s',v_B2);
    //answer given in textbook is wrong
21 mprintf('\nAngle with +ve x axis in degrees: %f',
    Beta); //answer given in textbook is wrong
```

Scilab code Exa 8.7 A completely inelastic collision

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 8: MOMENIUM AND IMPULSE
//EX 8.7: A COMPLETELY INELASTIC COLLISION
clc;
clear;
m_A=0.5; //mass of A in kg
m_B=0.3; //mass of B in kg
v_A1x=2; //x-velocity of A before collision in m/s
```

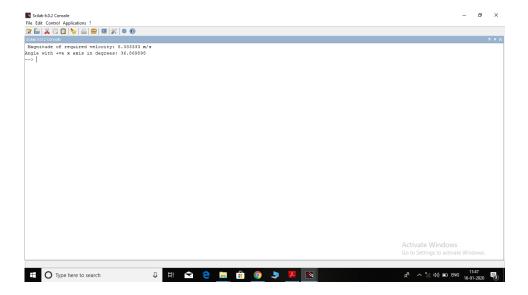


Figure 8.7: An automobile collision

Scilab code Exa 8.9 An automobile collision

```
1 //OS: WINDOWS 10; SCILAB— 6.0.2
2 //CHAPTER 8: MOMENTUM AND IMPULSE
3 //EX 8.9: AN AUTOMOBILE COLLISION
4 clc;
5 clear;
6 m_C=1000; //mass of car in kg
7 m_T=2000; //mass of truck in kg
8 M=m_C+m_T; //total combined mass of car and truck in
9 v_Cx=0; //velocity of car before collision in x dir
     in m/s
10 v_Tx=10; //velocity of truck before collision in x
     dir in m/s
11 v_Cy=15; //velocity of car before collision in y dir
      in m/s
12 v_Ty=0; //velocity of truck before collision in y
     dir in m/s
13 P_x=m_C*v_Cx+m_T*v_Tx; //momentum of system before
      collision in x dir in Kg.m/s
14 P_y=m_C*v_Cy+m_T*v_Ty; //momentum of system before
     collision in y dir in Kg.m/s
15 P=sqrt(P_x^2+P_y^2); //magnitude of momentum of
     system before collision in Kg.m/s
16 theta=atand(P_y/P_x); //angle of momentum with +ve x
      axis
17 V=P/M; //magnitude of velocity after collision in m/
18 mprintf('Magnitude of required velocity: %f m/s',V);
      //answer vary due to roundoff error
19 mprintf('\nAngle of velocity with +ve x axis in
     degrees: %f', theta); //answer vary due to
     roundoff error
```

Chapter 9

Rotation of rigid bodies

Scilab code Exa 9.1 Calculating angular velocity

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 9: ROTATION OF RIGID BODIES
3 //EX 9.1: CALCULATING ANGULAR VELOCITY
4 clc;
5 clear;
6 deff('[Theta]=theta(t)', 'Theta=2*t^3');
7 r=0.18; //radius in meter
8 t1=2; //given time instant in sec
9 t2=5; //given time instant in sec
10 theta1=theta(t1);
11 theta2=theta(t2);
12 mprintf('(a) Angle at t1=2s: %f radian = %f degrees '
      ,theta1,(180/\%pi)*theta(t1)); //answer vary due
     to roundoff error
13 mprintf('\nAngle at t2=5s: %f radian = %f degrees ',
     theta2, (180/\%pi)*theta(t2); //answer vary due to
      roundoff error
14 s=r*(theta2-theta1);
15 mprintf('\n(b) Distance travelled between t=2s and t
```

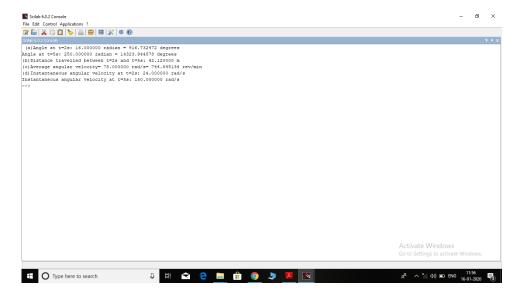


Figure 9.1: Calculating angular velocity

```
=5s: %f m',s); //answer vary due to roundoff
error

16 omega_av_z=(theta2-theta1)/(t2-t1);

17 mprintf('\n(c)Average angular velocity= %f rad/s= %f
rev/min',omega_av_z,30*omega_av_z/%pi); //answer
vary due to roundoff error

18 omega_1z=numderivative(theta,t1); //Instantaneous
angular velocity at t=2s (omega_z=d(theta)/dt)

19 omega_2z=numderivative(theta,t2); //Instantaneous
angular velocity at t=5s

20 mprintf('\n(d)Instantaneous angular velocity at t=2s
: %f rad/s',omega_1z);

21 mprintf('\nInstantaneous angular velocity at t=5s:
    %f rad/s',omega_2z);
```

Scilab code Exa 9.3 Rotation with constant angular acceleration

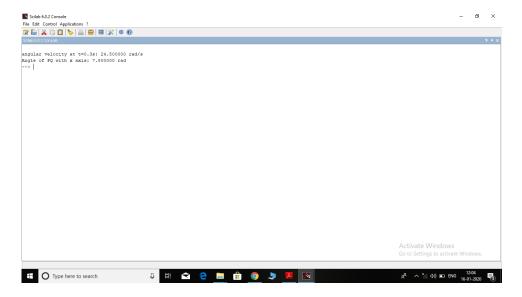


Figure 9.2: Rotation with constant angular acceleration

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 9: ROTATION OF RIGID BODIES
3 //EX 9.3: ROTATION WITH CONSTANT ANGULAR
     ACCELERATION
4 clc;
5 clear;
6 omega_0z=27.5; //initial angular velocity in rad/s
7 alpha_z=-10; //angular acceleration in rad/s^2
8 t=0.3; //time in sec
9 theta_0=0; //initial angle of PQ with x axis
10 omega_z=omega_0z+alpha_z*t;
11 theta=theta_0+omega_0z*t+0.5*alpha_z*t^2;
12 mprintf('\nangular velocity at t=0.3s: %f rad/s',
     omega_z);
13 mprintf('\nAngle of PQ with x axis: %f rad or %f rev
     ',theta,theta/(2*%pi));
```

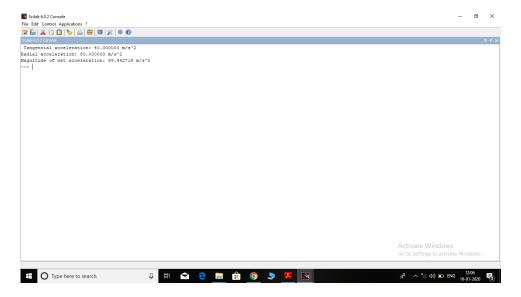


Figure 9.3: Throwing a discus

Scilab code Exa 9.4 Throwing a discus

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 9: ROTATION OF RIGID BODIES
//EX 9.4: THROWING A DISCUS
clear;
clear;
mega=10; //angular velocity in rad/s
alpha=50; //angular acceleration in rad/s^2
r=0.8; //radius in m
a_tan=r*alpha; //tangential acceleration in m/s^2
a_rad=(omega^2)*r; //radial acceleration in m/s^2
a=sqrt(a_tan^2+a_rad^2);
mprintf('Tangential acceleration: %f m/s^2',a_tan);
mprintf('\nRadial acceleration: %f m/s^2',a_rad);
mprintf('\nRadial acceleration: %f m/s^2',a_rad);
mprintf('\nMagnitude of net acceleration: %f m/s^2',a_rad);
a);
```

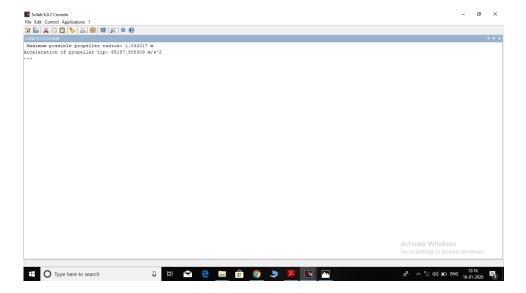


Figure 9.4: Designing a propeller

Scilab code Exa 9.5 Designing a propeller

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 9: ROTATION OF RIGID BODIES
//EX 9.5: DESIGNING A PROPELLER
clc;
clear;
omega=2400; //angular velocity of airplane propeller
    in rpm
omega=omega*(2*%pi/60);
v_tip=270; //maximum speed of tip of propeller in m/
s
v_plane=75; //speed of plane in m/s
r=sqrt(v_tip^2-v_plane^2)/omega; //maximum propeller
    radius in m
```


Figure 9.5: Moments of inertia for different rotation axes

Scilab code Exa 9.6 Moments of inertia for different rotation axes

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 9: ROTATION OF RIGID BODIES
3 //EX 9.6: MOMENT OF INERTIA FOR DIFFERENT ROTATION
         AXES
4 clc;
5 clear;
6 m_i=[0.3 0.1 0.2] //in the order m_A=0.3, m_B=0.1,
         m_C=0.2 as given in textbook
```

```
7 omega=4; //angular velocity in rad/s
8 r_i=[0; 0.5; 0.4] //perpendicular distance of m_A,
     m_B, m_C from axis passing through center of A
     and perpendicular to plane of diagra respectively
9 I_A=sum(m_i*r_i^2); //moment of inertia about axis
      passing through center of A
10 r_i = [0.4; 0; 0]; //perpendicular distance of m_A,
     m_B, m_C from axis passing through centers of B
     and C and perpendicular to plane of diagram
      respectively.
11 I_BC = sum(m_i * r_i^2)
12 K_A = 0.5 * I_A * omega^2;
13 mprintf ('Moment of inertia about axis passing
     through center of A and perpendicular to plane:
     \%f kg.m<sup>2</sup>',I_A);
14 mprintf('\nMoment of inertia about axis passing
     through centers of B and C: %f kg.m^2', I_BC);
15 mprintf('\nkinetic energy of body if it rotates
      about axis passing through A with omega=4rad/s:
     %f J', K_A);
16 //answer vary due to roundoff error
```

Scilab code Exa 9.7 An unwinding cable 1

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 9: ROTATION OF RIGID BODIES
3 //EX 9.7: AN UNWINDING CABLE 1
4 clc;
5 clear;
6 m=50; //mass in kg
7 R=0.12/2; //radius in m
8 F=9; //force in N
```

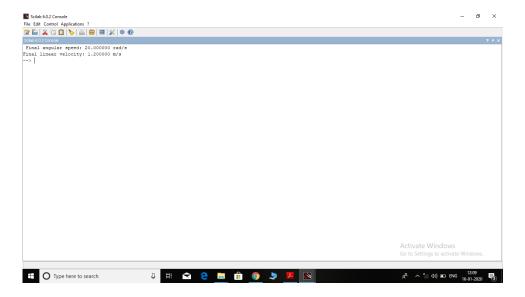


Figure 9.6: An unwinding cable 1

Scilab code Exa 9.9 Using the parallel axis theorem

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 9: ROTATION OF RIGID BODIES
3 //EX 9.9: USING THE PARALLEL AXIS THEOREM
4 clc;
5 clear;
```

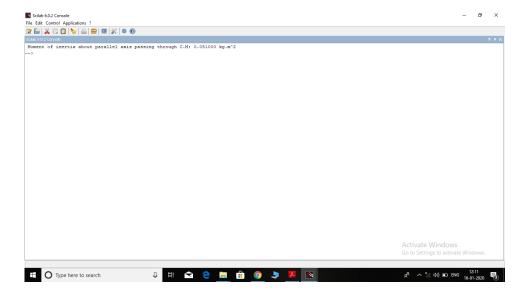


Figure 9.7: Using the parallel axis theorem

```
6 M=3.6; //mass in kg
7 I_p=0.132; //moment of inertia about parallel axis
8 d=0.15; //distance in m
9 I_cm=I_p-M*d^2; //moment of inertia about center of mass
10 mprintf('Moment of inertia about parallel axis passing through C.M: %f kg.m^2', I_cm);
```

Chapter 13

Gravitation

Scilab code Exa 13.1 Calculating gravitational force

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 13: GRAVITATION
//EX13.1: CALCULATING GRAVITATIONAL FORCE
clear;
clc;
m1=0.5; //mass in kg
m2=0.01; //mass in kg
r=0.05; //distance between masses in m
G=6.67*10^-11; //universal gravitational constant in Nm^2/kg^2
Fg=(G*m1*m2)/r^2; //Gravitational force in N
mprintf('Gravational force: %e N',Fg);
```

Scilab code Exa 13.2 Acceleration due to gravitational attaraction

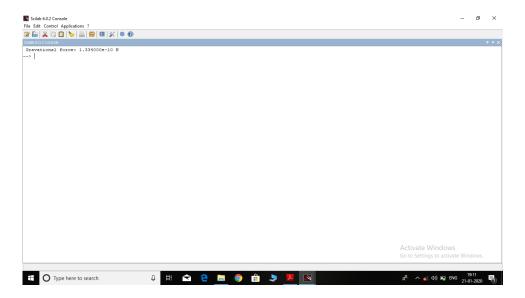


Figure 13.1: Calculating gravitational force

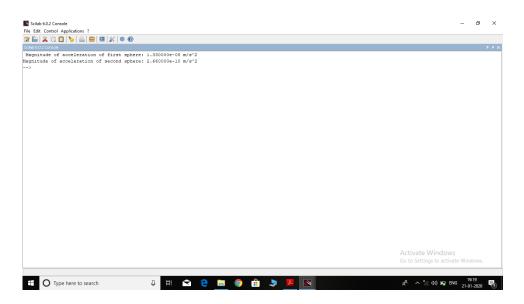


Figure 13.2: Acceleration due to gravitational attaraction

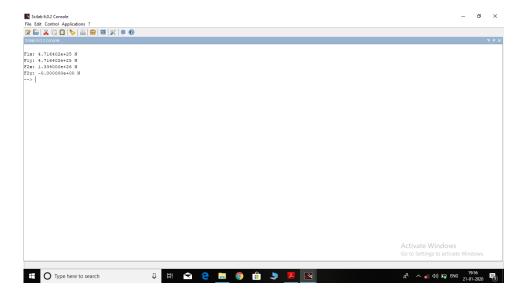


Figure 13.3: Superposition of gravitational forces

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 13: GRAVITATION
3 //EX 13.2: ACCELERATION DUE TO GRAVITATIONAL
     ATTARACTION
4 clear;
5 clc;
6 Fg=1.33*10^-10; //given gravitational force in N (
      refer to Ex13.1)
7 m1=0.01; //mass of first sphere in kg
8 m2=0.5; //mass of second sphere in kg
9 a1=Fg/m1; //acceleration of first sphere in m/s<sup>2</sup>
10 a2=Fg/m2; //acceleration of second sphere in m/s^2
11 mprintf('Magnitude of acceleration of first sphere:
     \%e m/s^2',a1);
12 mprintf('\nMagnitude of acceleration of second
     sphere: \%e \text{ m/s}^2, a2);
```

Scilab code Exa 13.3 Superposition of gravitational forces

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 13: GRAVITATION
3 //EX13.3: SUPERPOSITION OF GRAVITATIONAL FORCES
4 clear;
5 clc;
6 m1=1*10^30; //mass of small star in kg
7 m2=8*10^30; //mass of large stars in kg
8 m3=m2;
9 G=6.67*10^-11; //universal gravitational constant in
      Nm^2/kg^2
10 theta1=45; //angle of force F1 with + x axis in
     degrees
11 theta2=0; //angle of force F2 with + x axis in
     degrees
12 r=2*10^12; //length of 2 equal side of right
      isoceles star triangle system in m
13 F1=(G*m1*m2)/(2*r^2); //magnitude of gravitational
     force on small star due to second large star in N
14 F2=(G*m1*m3)/(r^2); //magnitude of gravitational
     force on small star due to third large star in N
15 F1x=F1*cosd(theta1); //x component of force F1 in N
16 F1y=F1*sind(theta1); //y component of force F1 in N
17 F2x=F2*cosd(theta2); //x component of force F2 in N
18 F2y=F2*sind(theta2); //y component of force F2 in N
19 Fx=F1x+F2x; //x component of net force F in N
20 Fy=F1y+F2y; //y component of net force F in N
21 F=sqrt(Fx^2+Fy^2); //magnitude of net force F in N
22 theta=atand(Fy/Fx); //angle of net force F with +ve
     x axix
23 printf('Total gravitational force exerted on small
     star: %e N',F); //answer vary due to roundoff
     error
```

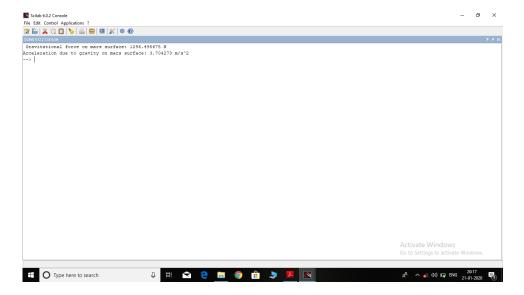


Figure 13.4: Gravity on Mars

```
24 printf('\nAngle of force F with +ve x axix: %f degrees',theta); //answer vary due to roundoff error
```

Scilab code Exa 13.4 Gravity on Mars

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 13: GRAVITATION
//EX13.4: GRAVITY ON MARS
clear;
clc;
w=3430; //weight on Earth in N
g=9.8; //acceleration due to gravity on Earth in m/s
^2
m=w/g; //mass of lander in kg
m_M=6.42*10^23; //mass of mars in kg
```

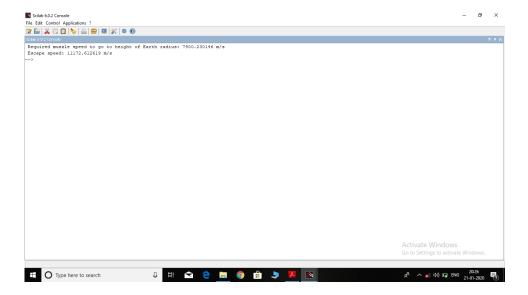


Figure 13.5: From the Earth to the Moon

Scilab code Exa 13.5 From the Earth to the Moon

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 13: GRAVITATION
```

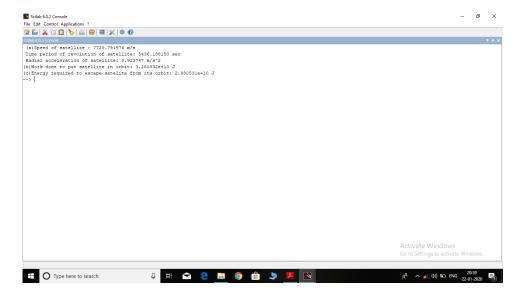


Figure 13.6: A satellite orbit

```
//EX13.5: FROM THE EARTH TO MOON
clear;
clc;
m_E=5.97*10^24; //mass of Earth in kg
G=6.67*10^-11; //universal gravitational constant in Nm^2/kg^2
R_E=6.38*10^6; //radius of Earth in m
v_1=sqrt(G*m_E/R_E);
printf('Required muzzle speed to go to height of Earth radius: %f m/s',v_1);
v_1=sqrt(2*G*m_E/R_E); //escape speed in m/s (from energy conservation K1+U1=K2+U2; in this case K2=U2=0)
printf('\n Escape speed: %f m/s',v_1); //answer given in textbook is wrong
```

Scilab code Exa 13.6 A satellite orbit

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 13: GRAVITATION
3 //EX13.6: A SATELLITE ORBIT
4 clear;
5 clc;
6 m=1000; //mass of satellite in kg
7 m_E=5.97*10^24; //mass of Earth in kg
8 G=6.67*10^-11; //universal gravitational constant in
      Nm^2/kg^2
9 r_orbit=3*10^5; //radius of orbit of satellite above
      Earth's surface in m
10 R_E=6.38*10^6; //radius of Earth in m
11 r=R_E+r_orbit; //net orbit radius in m
12 v=sqrt(G*m_E/r); //speed of satellite in m/s
13 T=(2*\%pi*r)/v; //time period of revolution of
      satellite in sec
14 a_rad=v^2/r; //Radial acceleration of satellite in m
     / s^2
15 printf('(a)Speed of satellite: %f m/s',v); //answer
      vary due to roundoff error
16 printf('\n Time period of revolution of satellite:
     %f sec',T); //answer vary due to roundoff error
17 printf('\n Radial acceleration of satellite: %f m/s
     ^2',a_rad); //answer vary due to roundoff error
18 E1=-(G*m_E*m)/R_E; //Initial total energy in J
19 E2=-(G*m_E*m)/(2*r); //Final total energy in J
20 W_required=E2-E1; // work done in J
21 printf('\n(b) Work done to put satellite in orbit: %e
      J', W_required);
22 printf('\n(c) Energy required to escape satelite from
      its orbit: %e J ',-E2);
```

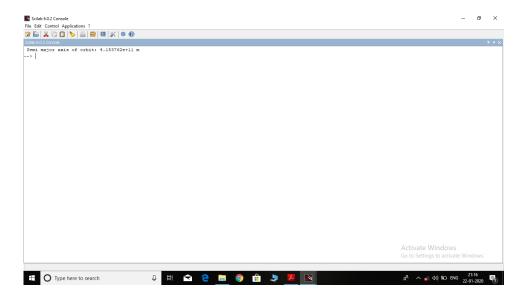


Figure 13.7: Kepler third law

Scilab code Exa 13.8 Kepler third law

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 13: GRAVITATION
//EX13.8: KEPLER'S THIRD LAW
clear;
clc;
m_S=1.99*10^30; //mass of asteroid in kg
T=4.62; //given time period in years
T=T*365.2425*24*3600; //time period in sec
G=6.67*10^-11; //universal gravitational constant in Nm^2/kg^2
a=((G*m_S*T^2)/(4*%pi^2))^(1/3);
printf('Semi major axis of orbit: %e m',a);
```

Scilab code Exa 13.9 Comet Halley

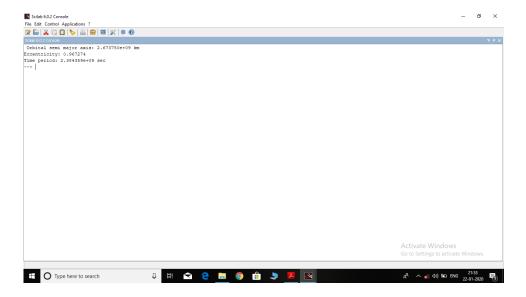


Figure 13.8: Comet Halley

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 13: GRAVITATION
3 //EX13.9: COMET HALLEY
4 clear;
5 clc;
6 distance_perihelion=8.75*10^7; //distance of comet
     halley from sun at perihelion in km
  distance_aphelion=5.26*10^9; //distance of comet
     halley from sun at aphelion in km
  a=(distance_perihelion+distance_aphelion)/2; //semi
     major axis in km
9 printf('Orbital semi major axis: %e km',a);
10 e=1-distance_perihelion/a; //eccentricity of ellipse
11 a=a*1000; //semi major axis in m
12 m_S=1.99*10^30; //mass of comet in kg
13 G=6.67*10^-11; //universal gravitational constant in
      Nm^2/kg^2
14 T=(2*\%pi*a^(3/2))/sqrt(G*m_S);
15 printf('\nEccentricity: %f',e);
16 printf('\nTime period: %e sec',T);
```

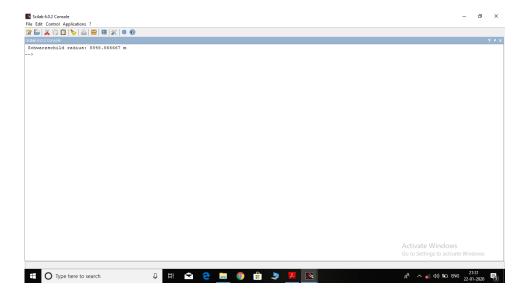


Figure 13.9: Black hole calculations

Scilab code Exa 13.11 Black hole calculations

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 13: GRAVITATION
//EX13.11: BLACK HOLE CALCULATIONS
clear;
clc;
m=1.99*10^30; //solar mass in kg
M=3*m; //mass of star in kg
G=6.67*10^-11; //universal gravitational constant in Nm^2/kg^2
c=3*10^8; //speed of light in m/s
Rs=(2*G*M)/c^2; //Schwarzschild radius in m
printf('Schwarzschild radius: %f m',Rs); //answer given in textbook is wrong
```

Chapter 14

Periodic motion

Scilab code Exa 14.1 Period frequency and angular frequency

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 14: PERIODIC MOTION
//EX 14.1: Period, frequency and angular frequency
clear;
clc;
f=6.7*10^6; //frequency of ultrasonic transducer
T=1/f; //time period in sec
omega=2*%pi*f; //angular frequency in rad/s
printf('Time period: %e sec',T);
printf('\nAngular frequency: %e rad/s',omega);
```

Scilab code Exa 14.2 Angular frequency frequency and period in SHM

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 14: PERIODIC MOTION
```

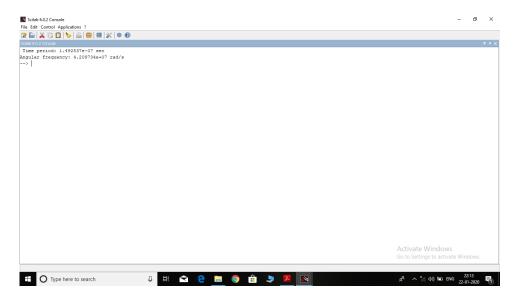


Figure 14.1: Period frequency and angular frequency

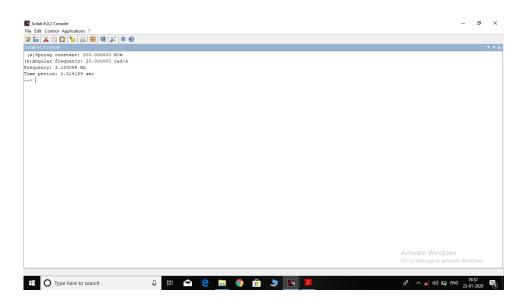


Figure 14.2: Angular frequency frequency and period in SHM

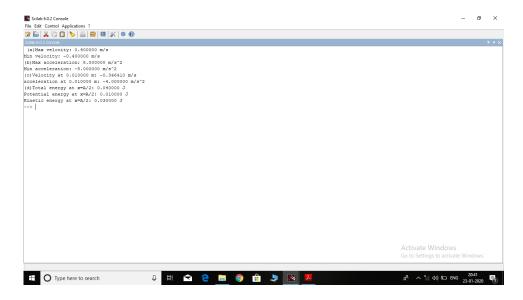


Figure 14.3: Velocity acceleration and energy in SHM

```
//EX 14.2: ANGULAR FREQUENCY, FREQUENCY AND PERIOD
IN SHM

clear;
clc;
F_x=-6; //given spring force in N
x=0.03; //displacement in m
k=-F_x/x; //spring constant in N/m
m=0.5; //mass of block in kg
omega=sqrt(k/m); //angular frequency in rad/s
f=omega/(2*%pi); //frequency in Hz
T=1/f; //time period of SHM in sec
printf('(a)Spring constant: %f N/m',k);
printf('\n(b)Angular frequency: %f rad/s \nFrequency: %f Hz \nTime period: %f sec',omega,f,T); //answer vary due to roundoff error
```

Scilab code Exa 14.4 Velocity acceleration and energy in SHM

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 14: PERIODIC MOTION
3 //EX 14.4: VELOCITY, ACCELERATION AND ENERGY IN SHM
4 clear;
5 clc;
6 k=200; //spring constant in N/m
7 m=0.5; //mass of block in kg
8 A=0.02; //amplitude in m
9 v_max=sqrt(k/m)*A; //max velocity in m/s
10 v_{min} = -v_{max}; //min velocity in m/s
11 printf('(a)Max velocity: %f m/s\nMin velocity: %f m/
      s', v_max, v_min);
12 a_max = (-k/m)*(-A); //max acceleration in m/s^2
13 a_min=-a_max; //\min acceleration in m/s<sup>2</sup>
14 printf('\n(b)Max acceleration: %f m/s^2\nMin
      acceleration: \%f m/s<sup>2</sup>, a_max,a_min);
15 x=A/2; //displacement of half the amplitude in m
16 v_x = -sqrt(k/m) * sqrt(A^2 - x^2); // velocity at x in m/s
17 a_x = -(k/m) *x; //acceleration at x in m/s^2
18 printf('\n(c) Velocity at %f m: %f m/s',x,v_x);
19 printf('\nacceleration at \%f m: \%f m/s^2',x,a_x);
20 E=0.5*k*A^2; //total energy in J
21 U=0.5*k*x^2; //potential energy at x=A/2 in J
22 K=0.5*m*v_x^2; //kinetic energy at x=A/2 in J
23 printf('\n(d) Total energy at x=A/2: %f J',E);
24 printf('\nPotential energy at x=A/2: %f J',U);
25 printf('\nKinetic energy at x=A/2: %f J',K);
```

Scilab code Exa 14.6 Vertical SHM in an old car

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
```

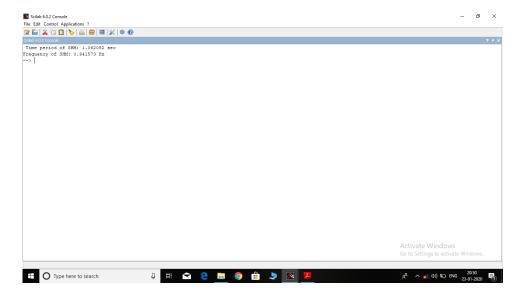


Figure 14.4: Vertical SHM in an old car

```
//CHAPTER 14: PERIODIC MOTION
//EX 14.6: VERTICAL SHM IN AN OLD CAR
clear;
clc;
m=1000; //mass of car in kg
F_x=980; //magnitude of force in N
x=-2.8*10^-2; //given compression of shockers in m
k=-F_x/x; //spring constant of shocker spring in N/m
T=2*%pi*sqrt(m/k); //Time period of SHM
f=1/T; //frequency of SHM
printf('Time period of SHM: %f sec',T); //answer given in textbook is wrong
printf('\nFrequency of SHM: %f Hz',f); //answer given in textbook is wrong
```

Scilab code Exa 14.7 Molecular vibration

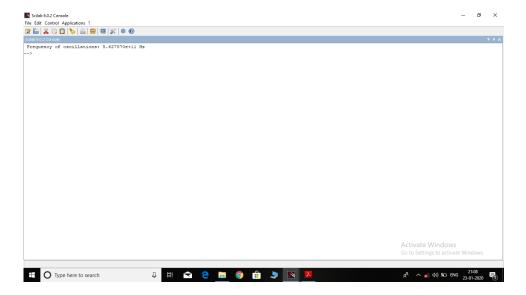


Figure 14.5: Molecular vibration

Scilab code Exa 14.8 A simple pendulum

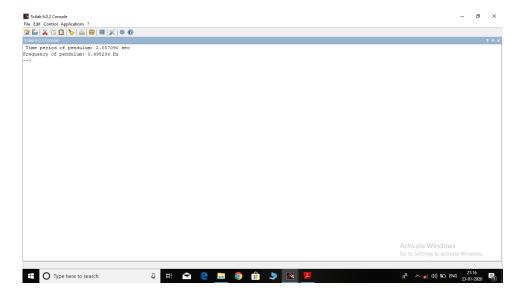


Figure 14.6: A simple pendulum

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 14: PERIODIC MOTION
//EX 14.8: A SIMPLE PENDULUM
clear;
clc;
g=9.8; //acceleration due to gravity on Earth in m/s
^2
L=1; //length of pendulum in m
T=2*%pi*sqrt(L/g); //time period of pendulum
f=1/T; //frequency of pendulum in Hz
printf('Time period of pendulum: %f sec ',T);
printf('\nFrequency of pendulum: %f Hz',f);
```

Scilab code Exa 14.9 Physical pendulum VS simple pendulum

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
```

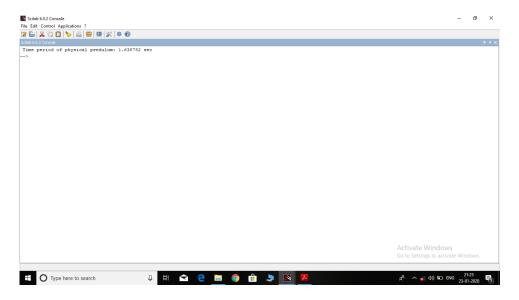


Figure 14.7: Physical pendulum VS simple pendulum

```
//CHAPTER 14: PERIODIC MOTION
//EX 14.9: PHYSICAL PENDULUM VS PHYSICAL PENDULUM
clear;
clc;
L=1; //length of stick in m
g=9.8; //acceleration due to gravity on Earth in m/s
^2
T=2*%pi*sqrt((2*L)/(3*g)); //time period of physical
pendulum in sec
printf('Time period of physical pendulum: %f sec',T)
;
```

Chapter 16

Sound and Hearing

Scilab code Exa 16.1 Amplitude of a sound wave in air

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 16: SOUND AND HEARING
//EX 16.1: AMPLITUDE OF A SOUND WAVE IN AIR
clc;
clear;
p_max=3*10^-2; //max pressure variation in Pa
f=1000; //frequency of sound wave in Hz
v=344; //speed of sound in m/s
Beta=1.42*10^5; //bulk modulus in Pa
omega=2*%pi*f; //angular frequency in rad/s
k=omega/v; //wave number
A=p_max/(Beta*k); //maximum displacement in m
printf('Amplitude of sound wave in air: %e m',A); //answer given in textbook is wrong
```

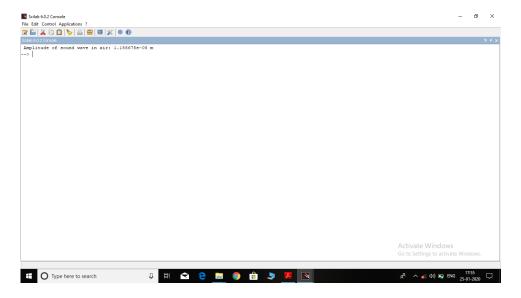


Figure 16.1: Amplitude of a sound wave in air

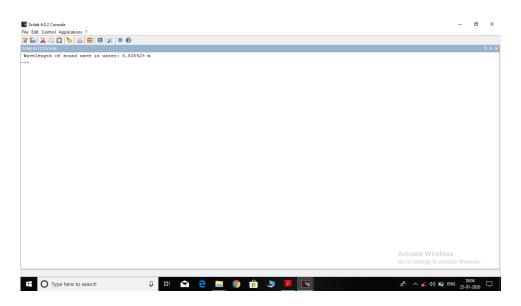


Figure 16.2: Wavelength of sonar waves

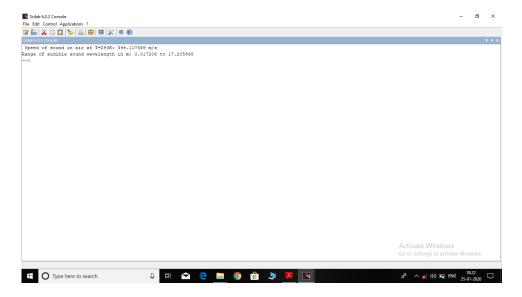


Figure 16.3: Speed of sound in air

Scilab code Exa 16.3 Wavelength of sonar waves

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 16: SOUND AND HEARING
//EX 16.3: WAVELENGTH OF SONAR WAVES
clc;
clear;
rho=1000; //density of water in kg/m^3
Beta=2.18*10^9; //bulk modulus of water in Pa
f=262; //frequency of sound wave in Hz
v=sqrt(Beta/rho); //speed of sound wave in water in m/s
lambda=v/f; //wavelength of sound wave in water in m
printf('Wavelength of sound wave in water: %f m',
lambda); //answer vary due to roundoff error
```

Scilab code Exa 16.4 Speed of sound in air

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 16: SOUND AND HEARING
3 //EX 16.4: SPEED OF SOUND IN AIR
4 clc;
5 clear;
6 T=293; //temperature of air in K
7 Gamma=1.4; //ratio of heat capacities in air
8 M=28.8*10^-3; //mean molar mass of air in kg/mol
9 R=8.314; //gas constant in J/K.mol
10 v=sqrt((Gamma*R*T)/M); //speed of sound in air in m/
11 printf('Speed of sound in air at T=293K: %f m/s',v);
      //answer vary due to roundoff error
12 f=20; //min audible sound frequency in Hz
13 lambda=v/f; //max audible sound wavelength in m
14 printf('\nMaximum audible wavelength: %f m',lambda);
      //answer vary due to roundoff error
15 f=20000; //max audible sound frequency in Hz
16 lambda=v/f; //min audible sound wavelength in m
17 lambda=lambda*100; //min audible sound wavelength in
18 printf('\nMinimum audible wavelength: %f cm',lambda)
     ; //answer vary due to roundoff error
```

Scilab code Exa 16.5 Intensity of a sound wave in ear

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 16: SOUND AND HEARING
3 //EX 16.5: INTENSITY OF SOUND WAVE IN AIR
4 clc;
5 clear;
```

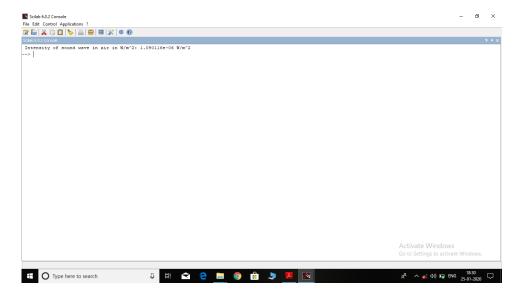


Figure 16.4: Intensity of a sound wave in ear

```
6 T=293; //temperature of air in K
7 rho=1.2; //density of air in kg/m^3
8 p_max=3*10^-2; //pressure amplitude of wave in m
9 v=344; //speed of sound in air in m/s
10 I=(p_max^2)/(2*rho*v); //intensity of sound wave in air in W/m^2
11 printf('Intensity of sound wave in air in W/m^2: %e W/m^2',I); //answer vary due to roundoff error
```

Scilab code Exa 16.6 Same intensities different frequencies

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 16: SOUND AND HEARING
3 //EX 16.6: SAME INTENSITIES, DIFFERENT FREQUENCIES
4 clc;
5 clear;
```

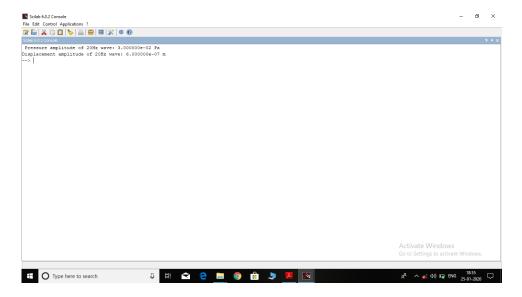


Figure 16.5: Same intensities different frequencies

```
6 f_1000=1000; //frequency of first sound wave in Hz
7 f_20=20; //frequency of second sound wave in Hz
8 A_1000=1.2*10^-8; //displacement amplitude of first sound wave in m
9 A_20=(f_1000/f_20)*A_1000; //displacement amplitude of second sound wave in m (since fA=constant)
10 p_max=3*10^-2; //given maximum pressure of 1000 Hz or 20 Hz sound wave (since it is independent of frequency)
11 printf('Pressure amplitude of 20Hz wave: %e Pa', p_max);
12 printf('\nDisplacement amplitude of 20Hz wave: %e m', A_20);
```

Scilab code Exa 16.8 Temporary or permanent hearing loss

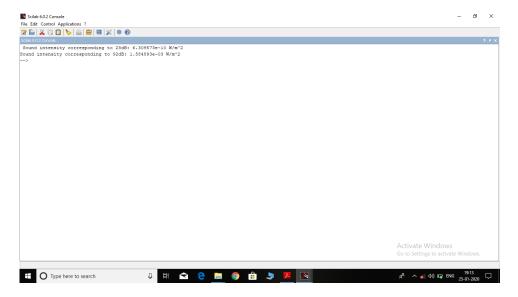


Figure 16.6: Temporary or permanent hearing loss

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 16: SOUND AND HEARING
3 //EX 16.8: TEMPORARY/ PERMANENT HEARING LOSS
4 clc;
5 clear;
6 I_0=1*10^-12; //reference intensity in W/m<sup>2</sup>
7 Beta=28; //first sound intensity level in dB
8 I_28_dB=I_0*10^(Beta/10); //sound intensity
      corresponding to 28dB in W/m<sup>2</sup>
9 Beta=92; //second sound intensity level in dB
10 I_92_dB=I_0*10^(Beta/10); //sound intensity
      corresponding to 92dB in W/m<sup>2</sup>
11 printf ('Sound intensity corresponding to 28dB: %e W/
     m^2', I_28_dB);
12 printf('\nSound intensity corresponding to 92dB: %e
     W/m^2', I_92_dB); //answer vary due to roundoff
      error
```

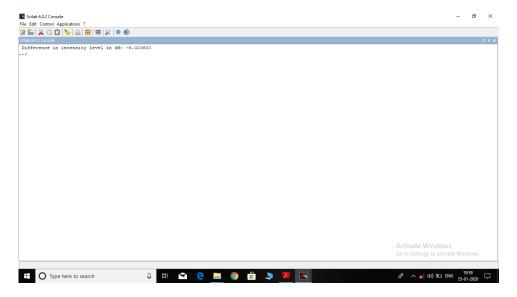


Figure 16.7: A bird sings in a meadow

Scilab code Exa 16.9 A bird sings in a meadow

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 16: SOUND AND HEARING
//EX 16.9: A BIRD SINGS IN A MEADOW
clc;
clear;
r1=1; //distances from sound source in m
r2=2;
I2_by_I1=(r1^2)/(r2^2); //ratio of intensities of sound wave (since I2/I1=r1^2/r2^2)
beta2_minus_beta1=10*log10(I2_by_I1); //Difference in intensity level in dB (B_diff=B2-B1)
printf('Difference in intensity level in dB: %f', beta2_minus_beta1); //answer vary due to roundoff error
```

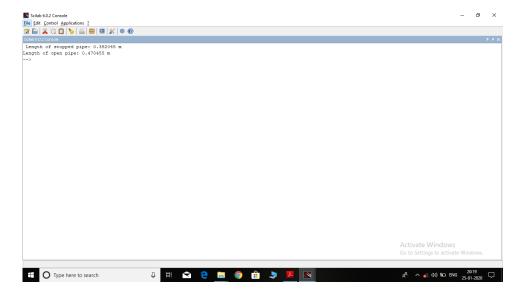


Figure 16.8: A tale of two pipes

Scilab code Exa 16.11 A tale of two pipes

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 16: SOUND AND HEARING
//EX 16.11: A TALE OF TWO PIPES
clear;
f1=220; //fundamental frequency of stopped organ pipe in Hz
v=345; //speed of sound in m/s
L_stopped=v/(4*f1); //length of stopped organ pipe in m
f5=5*f1; //frequency of second overtone of stopped pipe in Hz
L_open=(3*v)/(2*f5); //length of open pipe having
```

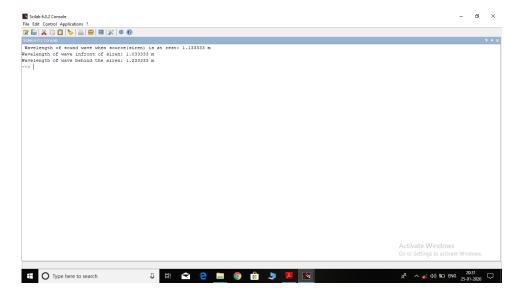


Figure 16.9: Doppler effect 1 wavelengths

```
third harmonic same as f5
11 printf('Length of stopped pipe: %f m', L_stopped);
12 printf('\nLength of open pipe: %f m', L_open);
```

Scilab code Exa 16.14 Doppler effect 1 wavelengths

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 16: SOUND AND HEARING
3 //EX 16.14: DOPPLER'S EFFECT 1: WAVELENGTHS
4 clc;
5 clear;
6 v=340; //speed of sound in air in m/s
7 f_s=300; //frquency of sound source(siren) in Hz
8 lambda=v/f_s; //wavelength of wave when source(siren) is at rest in m
```

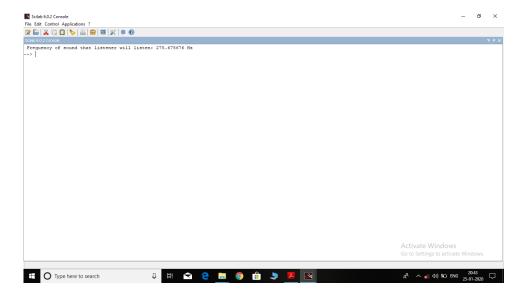


Figure 16.10: Doppler effect 2 frequencies

```
9 printf('Wavelength of sound wave when source(siren)
        is at rest: %f m',lambda);
10 v_s=30; //speed of siren in m/s
11 lambda_infront=(v-v_s)/f_s; //wavelength of wave
        infront of siren in m
12 lambda_behind=(v+v_s)/f_s; //wavelength of wave
        behind of siren in m
13 printf('\nWavelength of wave infront of siren: %f m'
        ,lambda_infront);
14 printf('\nWavelength of wave behind the siren: %f m'
        ,lambda_behind);
```

Scilab code Exa 16.15 Doppler effect 2 frequencies

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 16: SOUND AND HEARING
```

```
//EX 16.15: DOPPLER'S EFFECT 2: FREQUENCIES
clc;
clear;
f_s=300; //frequency of sound wave in Hz
v=340; //speed of sound in air in m/s
v_s=30; //speed of siren in m/s
f_l=(v/(v+v_s))*f_s; //frequency of sound that
    listener will listen in Hz
printf('Frequency of sound that listener will listen
: %f Hz',f_l); //answer vary due to roundoff
```

Scilab code Exa 16.16 Doppler effect 3 A moving listener

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 16: SOUND AND HEARING
//EX 16.16: DOPPLER'S EFFECT 3: A MOVING LISTENER
clc;
clear;
f_s=300; //frequency of sound wave in Hz
v=340; //speed of sound in air in m/s
v_l=-30; //speed of siren in m/s
f_l=((v+v_l)/v)*f_s; //frequency of sound that
listener will listen in Hz
printf('Frequency of sound that listener will listen
: %f Hz',f_l); //answer in textbook is wrong
```

Scilab code Exa 16.17 Doppler effect 4 moving source moving listener

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
```

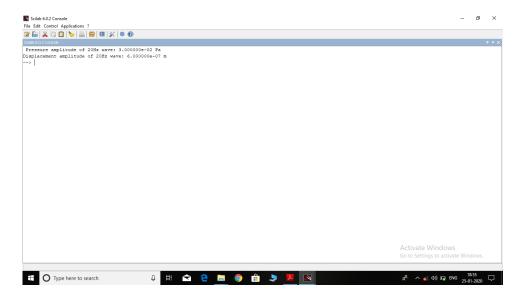


Figure 16.11: Doppler effect 3 A moving listener

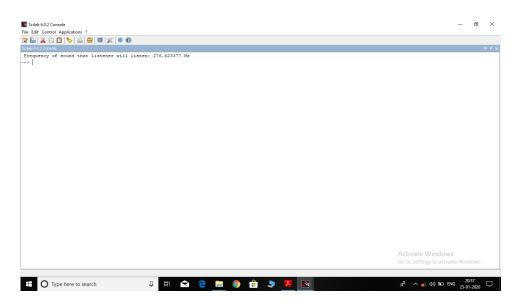


Figure 16.12: Doppler effect 4 moving source moving listener

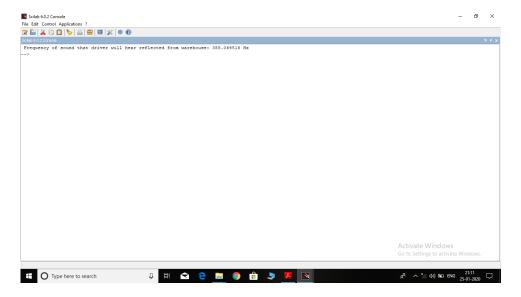


Figure 16.13: Doppler effect 5 A double doppler shift

Scilab code Exa 16.18 Doppler effect 5 A double doppler shift

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 16: SOUND AND HEARING
3 //EX 16.18: DOPPLER'S EFFECT 5: A DOUBLE DOPPLER
     SHIFT
4 clc;
5 clear;
6 f_s=300; //frequency of sound wave in Hz
7 v=340; //speed of sound in air in m/s
8 v_s = -30; //speed of police car in m/s
9 f_w=(v/(v+v_s))*f_s //frequency reaching the
     warehouse in Hz
10 v_1=30; //speed of listener in m/s
11 f_1=((v+v_1)/v)*f_w; //frequency heard by driver in
     Hz
12 printf ('Frequency reaching the warehouse: %f Hz',f_w
     ); //answer vary due to roundoff error
13 printf('\nFrequency of sound that driver will hear
     reflected from warehouse: %f Hz',f_1); //answer
     vary due to roundoff error
```

Scilab code Exa 16.19 Sonic boom from a supersonic airplane

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 16: SOUND AND HEARING
//EX 16.19: SONIC BOOM FROM A SUPERSONIC AIRPLANE
clc;
clear;
M=1.75; //Mach number
alpha=asin(1/M); //angle of shock cone
v=320; //speed of sound in air in m/s
v_s=v*M; //speed of supersonic plane in m/s
altitude=8000; //altitude of plane in m
t=altitude/(tan(alpha)*v_s); //time after which we
```

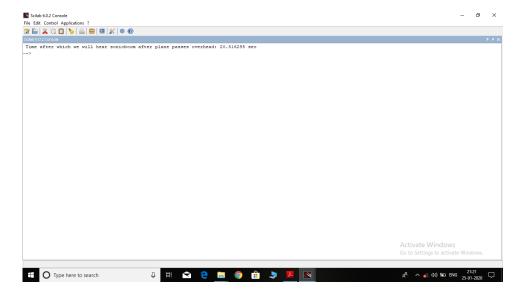


Figure 16.14: Sonic boom from a supersonic airplane

will hear sonicboom after plane passes overhead in sec

12 printf('Time after which we will hear sonicboom after plane passes overhead: %f sec',t);

Chapter 17

Temperature and Heat

Scilab code Exa 17.1 Body temperature

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 17: TEMPERATURE AND HEAT
3 //EXAMPLE 17.1: BODY TEMPERATURE
4 clear;
5 clc;
6 T1=32; //given temperature in fahrenheit
7 T2=98.6; //given temperature in fahrenheit
8 T1_celsius=(5/9)*(T1-32); //temperature in celsius
     Tc = (5/9) * (Tf - 32)
9 T2_{celsius} = (5/9) * (T2-32); //temperature in celsius
10 deltaT=T2_celsius-T1_celsius;
11 printf ('Temperature difference in celsius: %f
      celsius', deltaT);
12 T1_kelvin=273.15+T1_celsius; //temperature in kelvin
      (Tk=Tc+273.15)
13 T2_kelvin=273.15+T2_celsius; //temperature in kelvin
14 deltaT=T2_kelvin-T1_kelvin;
15 printf('\nTemperature difference in kelvin: %f
     kelvin',deltaT);
```

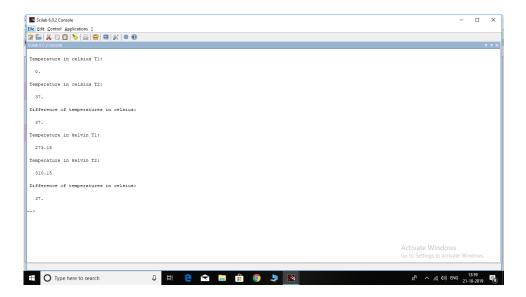


Figure 17.1: Body temperature

Scilab code Exa 17.2 Length change due to temperature change

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 17: TEMPERATURE AND HEAT
//EXAMPLE 17.2: LENGTH CHANGE DUE TO TEMPERATURE
CHANGE

clear;
clc;
L_0=50; //initial length in meters
T_0=293; //inital temperature in kelvin
T=308; //Final temperature in kelvin
deltaT=T-T_0; //temperature difference
alpha=1.2*10^-5; //coefficient of linear expansion in unit per kelvin
```

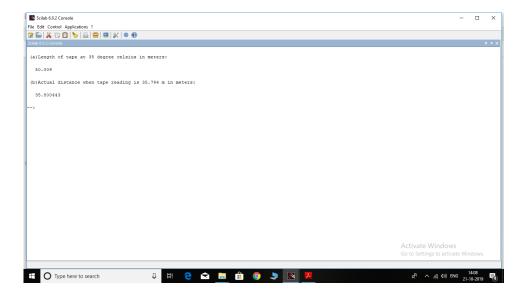


Figure 17.2: Length change due to temperature change

```
deltaL=alpha*L_0*deltaT; //change in length due to
    temperature change
l=L_0+deltaL;
printf('Length of the tape when the temperature is
    35 degree celsius: %f m',L);
factor=L/L_0; //true distance= factor*measured
    reading
measured_reading=35.794; //given measured reading in
    m
true_distance=Factor*measured_reading;
printf('\nActual distance: %f m',true_distance);
```

Scilab code Exa 17.3 volume change due to temperature change

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 17 TEMPERATURE AND HEAT
```

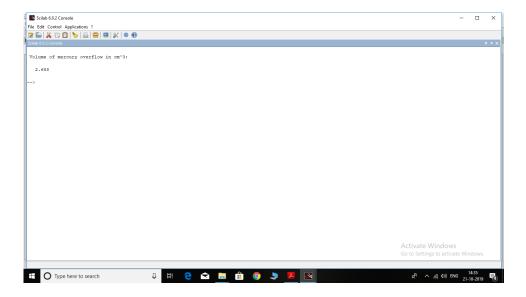


Figure 17.3: volume change due to temperature change

```
//EXAMPLE 17.3 VOLUME CHANGE DUE TO TEMPERATURE
CHANGE

clear;
clc;
V_0=200; //volume in cm^3
T1=20; // initial temperature in degree celsius
T2=100; //final temperature in degree celsius
deltaT=T2-T1;
Beta_Hg=18*10^-5; //coefficient of volume expansion
    of mercury in K^-1
Beta_glass=1.2*10^-5; //coefficient of volume
    expansion of glass in K^-1
V=V_0*deltaT*(Beta_Hg-Beta_glass);
disp(V,'Volume of mercury overflow in cm^3: '); //
    answer vary due to roundoff error
```

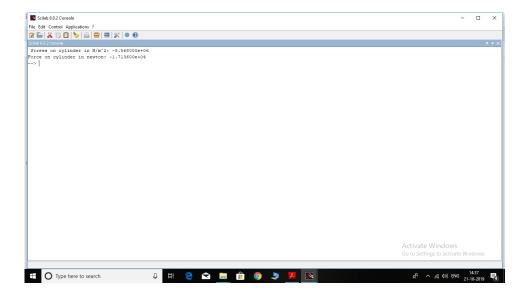


Figure 17.4: Thermal stress

Scilab code Exa 17.4 Thermal stress

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 17: TEMPERATURE AND HEAT
3 //EXAMPLE 17.4 THERMAL STRESS
4 clear;
5 clc;
6 A=20*10^-4; //Area in m^2
7 T1=17.2; //initial temperature in degree celsius
8 T2=22.3; //final temperature in degree celsius
  deltaT=T2-T1; //temperature difference in degree
      celsius
10 Gamma_Al=7*10^10; //young's modulus of aluminium
11 alpha=2.4*10^-5; //coeffficient of linear expansion
     of aluminium
12 F_by_A=-Gamma_Al*alpha*deltaT; //magnitude of stress
      in N/m^2
13 F=F_by_A*A; //force in N (Force=stress*Area)
14 mprintf('Stress on cylinder in N/m^2: %e', F_by_A);
     //answer vary due to round off error
```

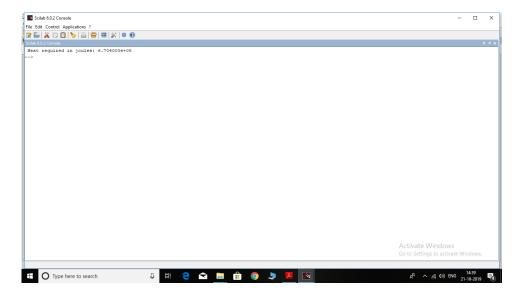


Figure 17.5: Feed a cold starve a fever

```
15 mprintf('\nForce on cylinder in newton: %e',F); // answer vary due to round off error
```

Scilab code Exa 17.5 Feed a cold starve a fever

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 17 TEMPERATURE AND HEAT
//EXAMPLE 17.5 FEED A COLD, STARVE A FEVER
clear;
clc;
m=80; //mass of body in kg
T_0=37; //initial body temperature in celsius
T=39; //final body temperature in celsius
deltaT=T-T_0; //difference in temperature in celsius
OR kelvin
c=4190; //specific heat capacity of water in J/kg.K
```

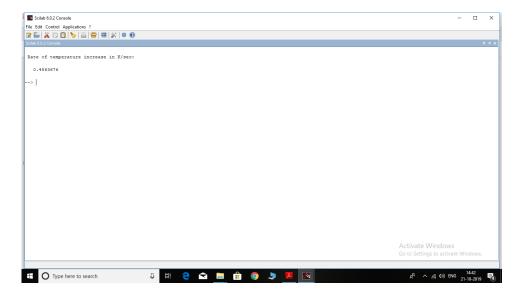


Figure 17.6: Overheating electronics

```
11 Q=m*c*deltaT; //heat required in J
12 mprintf('Heat required in joules: %e',Q);
```

Scilab code Exa 17.6 Overheating electronics

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 17 TEMPERATURE AND HEAT
//EXAMPLE 17.6 OVERHEATING ELECTRONICS
clear;
clc;
m=23*10^-3; //mass of silicon in grams
dQ_by_dT=7.4*10^-3; //rate of energy transfer in J/sec
c=705*10^-3; //specific heat capacity of silicon in J/g.K
```

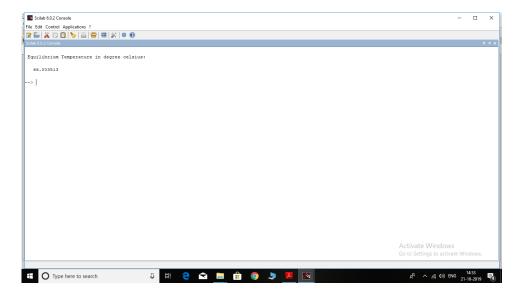


Figure 17.7: A temperature change with no phase change

Scilab code Exa 17.7 A temperature change with no phase change

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 17: TEMPERATURE AND HEAT
//EXAMPLE 17.7: A TEMPERATURE CHANGE WITH NO PHASE CHANGE

change
clear;
clc;
m_C=0.3; //mass of coffee in kg
m_Al=0.12; //mass of aluminium cup in kg
c_W=4190; //heat capacity of water in J/kg.k
```

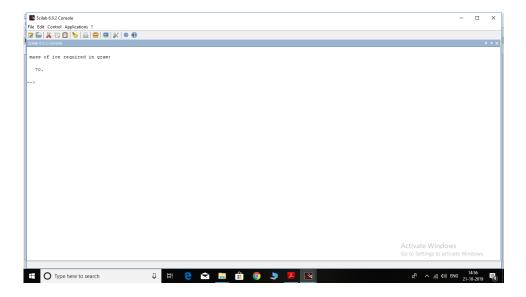


Figure 17.8: Changes in both temperature and phase

Scilab code Exa 17.8 Changes in both temperature and phase

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 17: TEMPERATURE AND HEAT
3 //EXAMPLE 17.8 CHANGES IN BOTH TEMPERATURE AND HEAT
4 clear;
```

```
5 clc;
6 m_c=0.25; //mass of Omni-cola(mostly water) in kg
7 c_W=4190; //specific heat capacity of water in J/kg.
     K
8 c_I=2100; //specific heat capacity of ice(near 0
      degree celsius) in J/kg.K
9 T=0; //final temperature in celsius
10 T=273.15+T; //final temperature in kelvin
11 T_OI=-20; //initial temperature of ice in celsius
12 T_OI=273.15+T_OI; //initial temperature of ice in
      kelvin
13 T_OC=25; //initial temperature of omni-cola in
      celsius;
14 T_OC=273.15+T_OC; //initial temperature of omni-cola
       in kelvin;
15 L_f=3.34*10^5; //latent heat of fusion of ice in J/
      kg
16 \text{ m_I} = (\text{m_c} * \text{c_W} * (\text{T_OC} - \text{T}) / (\text{c_I} * (\text{T-T_OI}) + \text{L_f})) * 1000; //
      mass of ice required in grams
17 disp(round(m_I), 'mass of ice required in gram: ');
```

Scilab code Exa 17.9 Whats cooking

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER TEMPERATURE AND HEAT
//EXAMPLE 17.9 WHAT'S COOKING
clear;
clc;
m_W=0.1; //mass of water in kg
m_cu=2; //mass of copper pot in kg
T_OW=25; //initial temperature of water in celsius
T_Ocu=150; //initial temperature of copper pot in celsius
```

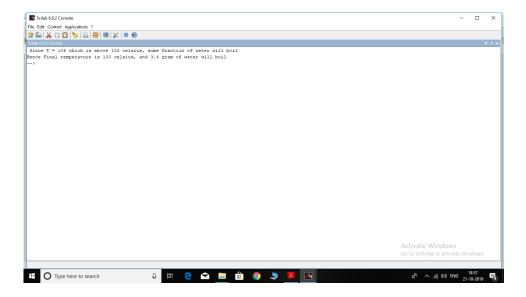


Figure 17.9: Whats cooking

```
10 c_W=4190; //specific heat capacity of water in J/kg.
    K
11 c_cu=390; //specific heat capacity of copper in J/kg
    .K
12 L_v=2.256*10^6; //latent heat of vapourization of
    water in J/kg
13 T=(m_W*c_W*T_0W+m_cu*c_cu*T_0cu)/(m_W*c_W+m_cu*c_cu)
    ; //final temperature in celsius
14 mprintf('Since T = %d which is above 100 celsius,
    some fraction of water will boil',T);
15 x=(-m_cu*c_cu*(100-T_0cu)-m_W*c_W*(100-T_0W))/(m_W*
    L_v); //fraction of water that will boil from
    energy conservation
16 m=x*m_W*1000; //mass of water that will boil in
    grams
17 mprintf('\nHence Final temperature is 100 celsius,
    and %0.1 f gram of water will boil',m);
```

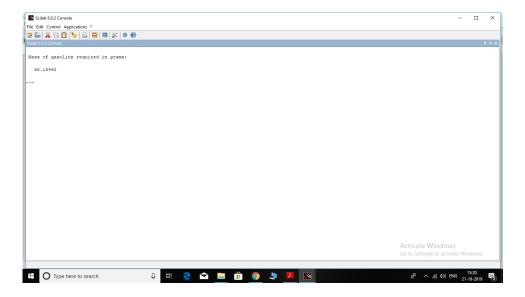


Figure 17.10: Combustion temperature change and phase change

Scilab code Exa 17.10 Combustion temperature change and phase change

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 17: TEMPERATURE AND HEAT
//EXAMPLE 17.10: COMBUSTION, TEMPERATURE CHANGE,
PHASE CHANGE

clear;
clc;
m=1; //mass of water in kg
c=4190; //specific heat capacity of water in J/kg.K
T1=20; //initial temperature of water in celsius
T2=100; //final temperature of water in celsius
Q1=m*c*(T2-T1); //heat required to change temp of water from T1 to T2
m=0.25; //mass of water in kg that will boil
L_v=2.256*10^6; //latent heat of vapourization of water in J/kg
```

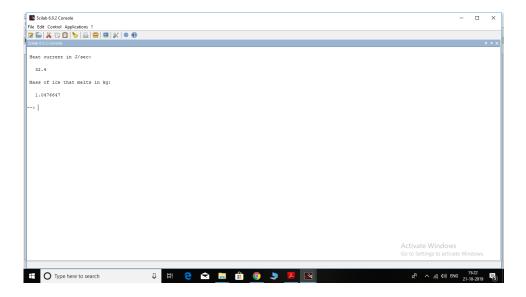


Figure 17.11: Conduction into a picnic cooler

```
13 Q2=m*L_v; //heat required for boiling
14 Q=Q1+Q2; //total heat required
15 Q_combus=46000; //given heat of combustion of
        gasoline in J/g
16 Q_gasoline=Q/0.3; //total heat of combustion of
        gasoline
17 M_gas=Q_gasoline/Q_combus; //mass of gasoline
        required
18 disp(M_gas, 'Mass of gasoline required in grams: ');
        //answer vary due to roundoff error
```

Scilab code Exa 17.11 Conduction into a picnic cooler

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 17: TEMPERATURE AND HEAT
3 //EXAMPLE 17.11 CONDUCTION INTO A PICNIC COOLER
```

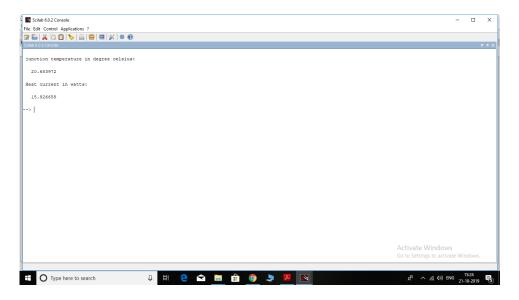


Figure 17.12: Conduction through two bars I

```
4 clear;
5 clc;
6 k=0.027; //heat conductivity in W/m.k
7 L=0.02; //length in meters
8 A=0.8; //area in m^2
9 T_H=30; //higher temperature in celsius
10 T_C=0; //lower temperature in celsius
11 H=k*A*(T_H-T_C)/L; //heat current in J/s
12 disp(H, 'Heat current in J/sec: ');
13 t=10800; //time in second
14 Q=H*t; //heat transfer in 3 hrs
15 L_f=3.34*10^5; //heat of fusion in J/kg
16 m=Q/L_f; //mass of ice melts
17 disp(m, 'Mass of ice that melts in kg: '); //answer vary due to roundoff
```

Scilab code Exa 17.12 Conduction through two bars I

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 17 TEMPERATURE AND HEAT
3 //EXAMPLE 17.12 CONDUCTION THROUGH TWO BARS-1
4 clear;
5 clc;
6 A=0.02^2; //Area of bar in m^2
7 L_s=0.1; //length of steel in meters
8 L_cu=0.2; //length of copper in meters
9 T_H=100; //higher temperature in celsius
10 T_c=0; //lower temperature in celsius
11 K_s=50.2; //heat conductivity of steel in W/m.K
12 K_cu=385; //heat conductivity of copper in W/m.K
13 T=((K_s/L_s)*T_H+(K_cu/L_cu)*T_c)/((K_s/L_s)+(K_cu/L_cu)*T_c)
     L_cu)); //junction temperature in degree celsius
14 H_s=K_s*A*(T_H-T)/L_s; //total heat current in watts
15 H_cu=K_cu*A*(T-T_c)/L_cu; //total heat current in
      watts
16 disp(T, 'junction temperature in degree celsius: ');
     //answer vary due to roundoff
17 disp(H_s, 'Heat current in watts: '); //since (H_s=
     H_cu) //answer vary due to roundoff
```

Scilab code Exa 17.13 Conduction through two bars II

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 17 TEMPERATURE AND HEAT
3 //EXAMPLE 17.13 CONDUCTION THROUGH TWO BARS-II
4 clear;
5 clc;
6 L=0.02; //length of each bar in m
7 A=L*L; //area of cross section of each bar in m^2
```

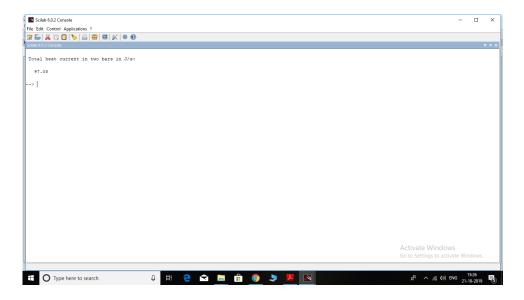


Figure 17.13: Conduction through two bars II

```
8 T_H=100; //higher temperature in celsius
9 T_c=0; //lower temperature in celsius
10 L_s=0.1; //length of steel bar in meters
11 L_cu=0.2; //length of copper bar in meters
12 K_s= 50.2; //thermal conductivity of steel in W/m.K
13 K_cu=385; //thermal conductivity of copper in W/m.K
14 H_s=K_s*A*(T_H-T_c)/L_s; //heat current in steel in J/s
15 H_cu=K_cu*A*(T_H-T_c)/L_cu; //heat current in cupper in J/s
16 H=H_s+H_cu; //total heat current in J/s
17 disp(H, 'Total heat current in two bars in J/s: ');
```

Scilab code Exa 17.14 Heat transfer by radiation

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
```

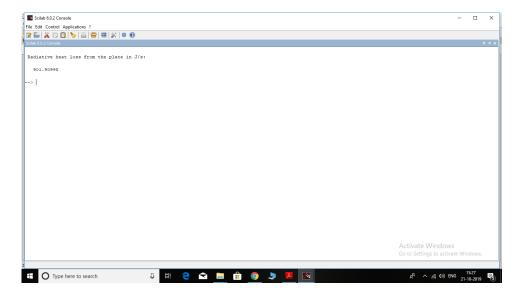


Figure 17.14: Heat transfer by radiation

```
//CHAPTER 17 TEMPERATURE AND HEAT
//EXAMPLE 17.14 HEAT TRANSFER BY RADIATION
clc;
clear;
L=0.1; //length of plate in meters
T=1073; //temperature of plate in K
e=0.6; //emissivity of plate
A=2*(L^2); //total surface area of plate in m^2;
sigma=5.67*10^-8; //stefan boltzmann constant in W/m^2.K^4
H=A*e*sigma*T^4; //radiative heat loss in J/sec
disp(H, 'Radiative heat loss from the plate in J/s: '); //answer vary due to roundoff error
```

Scilab code Exa 17.15 Radiation from the human body

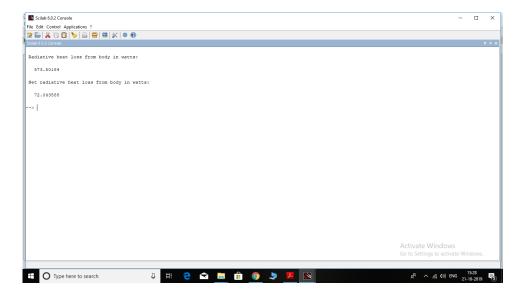


Figure 17.15: Radiation from the human body

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 17 TEMPERATURE AND HEAT
3 //EXAMPLE 17.15 RADIATION FROM HUMAN BODY
4 clear;
5 clc;
6 A=1.2; //surface area of body in m^2
7 T=303; //temperature of body in K
8 T_s=293; //surrounding temperature in K
9 e=1; // emissivity of human body
10 sigma=5.67*10^-8; //stefan boltzmann constant in W/m
      ^{2}.K^{4}
11 H=A*e*sigma*T^4; //radiative heat loss from body in
12 H_{net}=A*e*sigma*(T^4-T_s^4); // net radiative heat
     loss from body in watts
13 disp(H, 'Radiative heat loss from body in watts: ');
     //answer vary due to roundoff error
14 disp(H_net,'Net radiative heat loss from body in
     watts: ');
```

Chapter 18

Thermal properties of matter

Scilab code Exa 18.1 Volume of an ideal gas at STP

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 18: THERMAL PROPERTIES OF MATTER
//EX 18.1: VOLUME OF AN IDEAL GAS AT STP
clear;
clear;
T=273.15; //given temperature of ideal gas in K
P=1.013*10^5; //given pressure of ideal gas in Pa
n=1; //given no. of moles of ideal gas
R=8.314; //universal gas constant in J/K.mol
V=(n*R*T)/P; //volume of ideal gas at STP in m^3
V=V*1000; //volume of ideal gas at STP in litres
printf('Volume of an ideal gas at STP: %f litres', V)
;
```

Scilab code Exa 18.5 Atomic and molecular mass

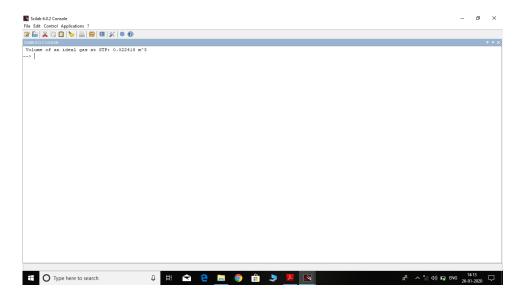


Figure 18.1: Volume of an ideal gas at STP

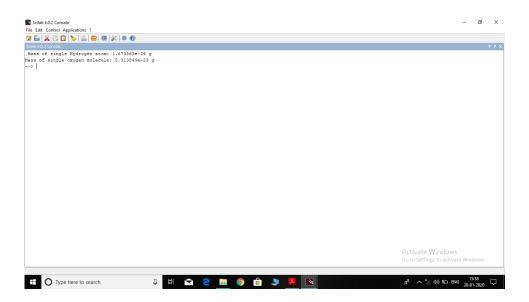


Figure 18.2: Atomic and molecular mass



Figure 18.3: Molecular kinetic energy and Vrms

```
//OS: WINDOWS 10, SCILAB-6.0.2
//CHAPTER 18: THERMAL PROPERTIES OF MATTER
//EX 18.5: ATOMIC AND MOLECULAR MASS
clc;
sclear;
Na=6.022*10^23; //avogadro's number
M_H=1.008; //molar mass of Hydrogen atom in g/mol
m_H=M_H/Na; //mass of single Hydrogen atom in g
M_o2=32; //molar mass of Oxygen molecule in g/mol
m_o2=M_o2/Na; //mass of single Oxygen molecule in g
printf('Mass of single Hydrogen atom: %e g',m_H);
printf('\nMass of single oxygen molecule: %e g',m_o2
);
```

Scilab code Exa 18.6 Molecular kinetic energy and Vrms

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 18: THERMAL PROPERTIES OF MATTER
3 //EX 18.6: MOLECULAR KINETIC ENERGY AND Vrms
4 clc;
5 clear;
6 T=300; //temperature of ideal gas molecule in kelvin
7 k=1.38*10^-23; //boltzman constant in J/K
8 Kavg_molecule=(3/2)*k*T; //Average translation
     kinetic energy of one molecule in J
9 n=1; //no. of moles of ideal gas
10 R=8.314; //universal gas constant in J/K.mol
11 Ktr=(3/2)*n*R*T; //average translation kinetic
     energy of 1 mole of ideal gas in J
12 M=32*10^-3; //Molar mass of oxygen molecule in kg/
     mol
13 v_{rms} = sqrt((3*R*T)/M); //rms speed of oxygen
     molecule in m/s (as calculated in second method
     in book: Vrms=sqrt(3RT/M))
14 printf('(a) Average translation kinetic energy of one
      molecule of ideal gas at T=300K: %e J',
     Kavg_molecule);
15 printf('\n(b) Average translation kinetic energy of
     one mole of ideal gas at T=300K: %f J', Ktr); //
     answer vary due to roundoff error
16 printf('\n(c) Average RMS speed of one molecule of
     oxygen gas at T=300K: %f m/s', v_rms); //answer
     vary due to roundoff error
```

Scilab code Exa 18.7 Calculating rms and average speeds

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 18: THERMAL PROPERTIES OF MATTER
3 //EX 18.7: CALCULATING RMS AND AVERAGE SPEEDS
```

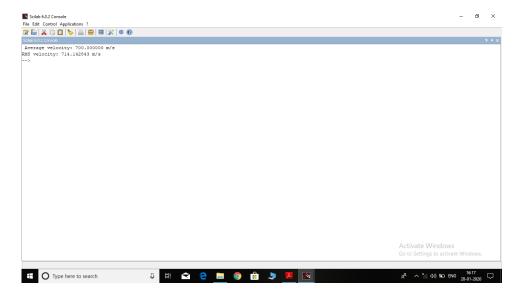


Figure 18.4: Calculating rms and average speeds

```
4 clc;
5 clear;
6 v=[500 600 700 800 900]; //given velocities of
    molecules in m/s
7 v_av=mean(v); //average velocity in m/s
8 printf('Average velocity: %f m/s',v_av);
9 v_square_av=mean(v^2); //mean square velocity in m/s
10 v_rms=sqrt(v_square_av); //RMS velocity in m/s
11 printf('\nRMS velocity: %f m/s',v_rms); //answer
    vary due to round off error
```

Scilab code Exa 18.8 Calculating mean free path

```
1 //OS: WINDOWS 10, SCILAB-6.0.2
2 //CHAPTER 18: THERMAL PROPERTIES OF MATTER
3 //EX 18.8: CALCULATING MEAN FREE PATH
```

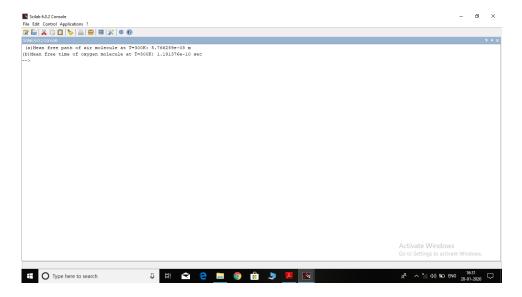


Figure 18.5: Calculating mean free path

```
4 clc;
5 clear;
6 k=1.38*10^-23; //boltzman constant in J/K
7 T=300; //temperature of air in K
8 p=1.01*10^5; //pressure of air in Pa
9 r=2*10^-10; //radius of air molecule in m
10 lambda=(k*T)/(4*\%pi*sqrt(2)*(r^2)*p); //mean free
     path of air molecule in m
11 v=484; //RMS speed of air molecule at T=300K (from
     Ex18.6)
12 t_mean=lambda/v; //mean free time of oxygen molecule
      in sec
13 printf('(a) Mean free path of air molecule at T=300K:
      %e m', lambda); //answer vary due to roundoff
14 printf('\n(b) Mean free time of oxygen molecule at T
     =300K: %e sec', t_mean); //answer vary due to
     roundoff error
```