Scilab Textbook Companion for Electrical Measurements And Measuring Instruments by J. B. Gupta¹

Created by Gundla Keerthi Vani Mba Others Princeton P.g College College Teacher None Cross-Checked by None

July 31, 2019

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electrical Measurements And Measuring Instruments

Author: J. B. Gupta

Publisher: S.k. Kataria & Sons.

Edition: 5

Year: 2015

ISBN: 8188458260

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Measurements and Measurement systems	5
3	Error in Measurement and Their Analysis	16
4	Measuring system fundamentals	40
5	Analog ammeters and voltmeters	47
6	Extensions of instrument range	83
7	Analog measurement of power and wattmeters	117
8	Measurement of energy and energy meters	144
9	Measurement of Speed and Frequency and Power factor	154
10	Measurement of Resistance	158
11	Potentiometers	181
12	AC bridges	190
13	Magnetic measurements	217

14 Digital Measurement of Electrical Quantities	232
15 Signal Analyzers	242
16 Cathode Ray Oscilloscope	244

List of Scilab Codes

Exa 1.1	calculate the static sensitivity and deflection	
	factor	5
$Exa \ 1.2$	determine the efficiency of the instrument .	6
Exa 1.3	Find the range of the instrument and scale	
	range	7
Exa 1.4	determine the measurement sensitivity of the	
	$instrument \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	8
$Exa \ 1.5$	Calculate the non linearity as a percent of full	
	scale deflection	8
$Exa \ 1.6$	Determine the maximum error	9
Exa 1.7	Determine the temperature	10
Exa 1.8	Find the error in measurment	11
Exa 1.9	Also find the percentage error	12
Exa 1.10	calculate the resistance of voltage measuring	
	device	13
Exa 1.11	Determine actual value of current measured	
	value of current and percentage error in the	
	measurement and accuracy	14
$Exa \ 3.1$	Determine the absolute error of measurement	16
Exa 3.2	Determine the true value of power	17
Exa 3.3	Determine the relative error	17
Exa 3.4	Determine the limits of inductance	18
$Exa \ 3.5$	calculate the limiting value of current	19
Exa 3.6	Determine the limiting error in per cent	20
Exa 3.7	calculate the limiting error	20
Exa 3.9	Calculate the power dissipated in the resistor	
	and the uncertainty in power	21

Exa 3.10	calculate the limiting error in the computed
	value of power dissipation
Exa 3.11	Determine the resolution in the instrument in
	volt
Exa 3.12	Determine the limiting error of the resultant
	capacitance
Exa 3.13	calculate the uncertainty in the combined re-
	sistance
Exa 3.14	find the resistance in series and parallel
Exa 3.15	power and limiting error of the power
Exa 3.16	calculate the nominal power and limiting er-
	ror of power
Exa 3.17	calculate the nominal value of unknown resis-
	tance and error in percent and limiting error
	in ohm
Exa 3.18	calculate the absolute error
Exa 3.19	determine the magnitude of unknown induc-
	tance
Exa 3.20	determine the uncertainty in the measurement
	of Z
Exa 3.21	calculate the standard deviation
Exa 3.22	find mean and standard deviation and prob-
	able error
Exa 3.23	find mean and standard deviation and proba-
	ble error and probable error of mean and range
Exa 3.24	determine arithmetic mean and average devi-
	ation and variance and probable error of one
	reading and probable error of the mean
Exa 4.1	find the torque
Exa 4.2	determine deflection
Exa 4.3	determine the suitable dimensions for spring
Exa 4.4	determine the deflection
Exa 4.5	find the deflection when spring controlled and
	gravity controlled
Exa 4.6	determine the value of current when spring
	controlled and gravity controlled
Exa 4.7	find the deflecting torque
Exa 5.1	calculate the deflection

Exa 5.2	Determine the spring constant	48
Exa 5.3	find the reading of the voltmeter	49
Exa 5.4	find the effect of the inductance of the meter	50
Exa 5.5	find the percentage error	51
Exa 5.6	Find the value of capacitance	51
Exa 5.7	find the capacitance	53
Exa 5.8	estimate the rate of change of self deflection	53
Exa 5.9	determine the current passing in a moving	
	iron instrument	54
Exa 5.10	calculate the percentage increase of resistance	55
Exa 5.11	find the deflection	56
Exa 5.12	determine the control constant of spring	57
Exa 5.13	calculate the value of current in the wire	58
Exa 5.14	Finding the minimum resistance	59
Exa 5.15	Find the total inductance	60
Exa 5.16	Find the difference in the readings	61
Exa 5.17	Determine the range of the instrument and	
	current and deflection	62
Exa 5.18	Calculate the reading of an electro dynanome-	
	ter	63
Exa 5.19	Find the magnification	64
Exa 5.20	Determine the magnification	65
Exa 5.21	Determine the current	66
Exa 5.22	Determine the form factor of the current wire	67
Exa 5.23	Estimate the peak and rms values of current	
	and calculate the error	68
Exa 5.24	Determine the capacitance	69
Exa 5.25	determine the reading of moving coil amme-	
	ter and moving iron ammeter and hot wire	
	ammeter	69
Exa 5.26	find the reading on hot wire and moving coil	
	in the circuit	70
Exa 5.27	Determine the reading of the ammeter	71
Exa 5.28	Calculate the power dissipated in the rectify-	
	0	72
Exa 5.29		74
Exa 5.30	Find the potential difference	75
Exa 5.31	Find the change in capacitance	76

Exa 5.32	Finding the capcaitance	77
Exa 5.33	Determine the pd for different deflections	78
Exa 5.34	Determine the pd for required to pull the plate	
	three quarter way in	79
Exa 5.35	Calculate the spring constant	80
Exa 5.36	Determine the deflection of the instrument .	81
Exa 5.37	Determine the voltage	82
Exa 6.1	Finding the value of shunt resistance	83
Exa 6.2	Find the current range of instrument and the	
	value of resistance	84
Exa 6.3	Find the shunt resistance required	85
Exa 6.4	Calculate the resistance parallel and series .	86
$Exa \ 6.5$	Finding the current range of instrument	87
$Exa \ 6.6$	Finding the shunt current and the value of R	88
$Exa \ 6.7$	Finding the resistance that must put in series	90
$Exa \ 6.8$	Calculate the error	91
Exa 6.9	Calculate the error	92
Exa 6.10	Determine the ratio of R and r \ldots .	93
Exa 6.11	Finding the reading of instruments	94
Exa 6.12	Finding the series resistance would be neces-	
	sary to increase its range	95
Exa 6.13	Determine the capacitance of the condenser	
	multiplier required	96
Exa 6.14	Calculating the necessary values of resistor .	97
$Exa \ 6.15$	Explaining conversion of multi range voltmeter	98
Exa 6.16	Calculate the flux density and current ratio	
	and phase angle \ldots \ldots \ldots \ldots \ldots	99
$Exa \ 6.17$	Calculate the flux in the core and ratio error	100
$Exa \ 6.18$	Determine the ratio and phase angle errors	101
Exa 6.19	Finding the primary current and ratio error	
	and number of turns of winding \ldots .	102
Exa 6.20	Determine the primary current and phase an-	
	gle of the transformer	104
Exa 6.21	Calculate the ratio error and phase angle er-	
	ror	105
Exa 6.22	Find the ratio and phase angle errors	106
Exa 6.23	Estimate CT ratio and phase angle error	108
Exa 6.24	Find the ratio and phase angle errors	109

$Exa \ 6.25$	Determine the phase angle and ratio error .	110
Exa 6.26	Determine the phase angle and ratio error .	111
$Exa \ 6.27$	Estimate the iron loss	112
Exa 6.28	Find the phase angle error at no load and load	
	in VA at unity power factor	113
Exa 6.29	Calculate the ratio and phase angle errors .	115
Exa 7.1	Calculate the power	117
Exa 7.2	Calculate the percentage error	118
Exa 7.3	Estimate the percentage error in the wattmeter	119
Exa 7.4	Calculate the percentage error in wattmeter	
	reading	120
Exa 7.5	Finding the error in wattmeter	121
Exa 7.6	Find the actual reading reading on the wattmete	er 122
Exa 7.7	Calculate the percentage errors	123
Exa 7.8	Calculate the actual power and current	124
Exa 7.9	Estimate the torque	126
Exa 7.10	Calculate the power factor of inductive load	127
Exa 7.11	Calculate the power absorbed by the load and	
	load impedance and power factor	128
Exa 7.12	Write the suitable transformation ratio7	129
Exa 7.13	Calculate the new multiplying factor of wattmet	er 129
Exa 7.14	Calculate the percentage error	130
Exa 7.15	Calculate the input power and power factort	131
Exa 7.16	Calculate the power and power factor of the	
	load	132
Exa 7.17	Find the reading of the each instrument	133
Exa 7.18	Find the reading OF TWO wattmeters	134
Exa 7.19	Determine the values of Rand L connected in	
	the phase	135
Exa 7.20	Find the wattage shown by three wattmeters	
	and power taken by the load	136
Exa 7.21	Find the current and reading of two wattmeters	
	connected to measure the power	137
Exa 7.22	Find the power factor of the system and the	
	value of capacitance	138
Exa 7.23	value of capacitance	
Exa 7.23		

Exa 7.25	Calculate the wattmeter reading	1
Exa 8.1	Determine the meter constant in revolution	1
Exa 8.2	Calculate the power	1
Exa 8.3	Calculate the error and state whether the me-	
	ter is fast or slow	1
Exa 8.4	Calculate the full load speed of the meter .	1
Exa 8.5	Determine the load in kWh	1
Exa 8.6	Find out the percentage error	1
Exa 8.7	Calculate the percentage error	1
Exa 8.8	Calculate how many units are recorded as error	1
Exa 8.9	Determine the speed of the disc	1
Exa 8.10	Find out the error in registration and error in	
	rpm of the meter]
Exa 8.11	Calculate the power factor]
Exa 9.1	Determine the frequency of output pulses]
Exa 9.2	Determine the speed of the shaft]
Exa 9.3	Determine the speed of the shaft]
Exa 9.4	Find the frquency	-
Exa 10.1	Calculate the apparent resistance and actual	
	resistance and the error]
Exa 10.2	Determine the resulting error]
Exa 10.3	Determine the value of unknown resistance.]
Exa 10.4	Determine the value of resistor under test .]
Exa 10.5	Determine the value of resistor under test .]
Exa 10.6	Calculate the unknown resistance]
Exa 10.7	Determine the value of unknown resistance]
Exa 10.8	Determine the value of unknown resistance]
Exa 10.9	Determine the dials required to adjusted for	
	obtaining the required acuracy	1
Exa 10.10	Calculate the limiting values of unknown re-	
	sistance	1
Exa 10.11	Find the magnitude and direction of the cur-	
	rent flowing through galvanometer	1
Exa 10.12	Determine the sensitivity of the bridge	1
Exa 10.13	Determine the ratio of galvanometer sensitiv-	
	ities]
Exa 10.14	Determine the smallest change in the resis-	
	tance]

Exa 10.15	Determine the value of resistance	171
Exa 10.16	Determine the maximum value of the resis-	
	tance and internal resistance	172
Exa 10.17	Calculating how far are the balance positions	173
Exa 10.18	Calculate the insulation resistance of the cable	174
Exa 10.19	Calculate the insulation resistance of the cable	175
Exa 10.20	Calculate the insulation resistance of the cable	175
Exa 10.21	Calculate the value of R	176
Exa 10.22	Calculate the insulation resistance of the cable	177
Exa 10.23	Determine Rsh AND Rse AND maximum value	
	of Rsh and scale error	178
Exa 10.24	Determine the value of current	179
Exa 11.1	Determine emf and current and voltage and	
	percentage error in ammeter and voltmeter .	181
Exa 11.2	Calculate the resolution of potenetiometer .	182
Exa 11.3	Calculate the working current and resistance	
	and measurement range and the resolution of	
	the instrument	183
Exa 11.4	Calculate the inductance of the coil	185
Exa 11.5	Calculate the resistance and reactance of the	
	coil	185
Exa 11.6	Calculate the resistance and reactance of the	
	coil	186
Exa 11.7	Determine the core loss in the choke coil	187
Exa 11.8	Determine the true reading of the wattmeter	
	and the load powre factor	188
Exa 12.1	Determine whether to balance the bridge	190
Exa 12.2	Determne whether or not the bidge is com-	
	plete balance	191
Exa 12.3	Find the resistance and inductance of the coil	193
Exa 12.4	Find the resistance and inductance	194
Exa 12.5	Find the resistance and inductance of the un-	
	known resistance	194
Exa 12.6	Find the resistance and inductance	195
Exa 12.7	Find the resistance and inductance	196
Exa 12.8	Find the resistance and inductance	197
Exa 12.9	Find the Resistance and Capacitance	198

Exa 12.10	Find the series equivalent inductance and re-	
	sistance of the network	198
Exa 12.11	Find the resistance and inductance of the choke	
	coil	199
Exa 12.12	Derive the balance condition and calculate	
	the effective impedance of the specimen	200
Exa 12.13	Find out the phase angle error and unknown	
	capacitance	201
Exa 12.14	Calculate the resistance and capacitance and	
	also the dissipation factor of the unknown ca-	
	pacitor	202
Exa 12.15	Calculate the power factor	203
Exa 12.16	Derive the variable resistance	204
Exa 12.17	Find the equivalent resistance	205
Exa 12.18	Find the dissipation factor	206
Exa 12.19	Calculate the capacitance and dielectric loss	
-	angle of bushing	207
Exa 12.20	Calculate the power factor and equivalent se-	
	ries resistance of the capacitor	207
Exa 12.21	Find the resistance and inductance of the coil	208
Exa 12.22	Calculate the value of L and C	209
Exa 12.23	Determine the resistive and reactive compo-	
	nent of unknown impedance	210
Exa 12.24	Determine the self capacitance and inductance	
	of the coil	211
Exa 12.25	Determine the self capacitance	211
Exa 12.26	Determine the self capacitance of the coil	212
Exa 12.27	Determine the effective inductance and resis-	
	tance of unknown coil	213
Exa 12.28	Determine the percentage error	214
Exa 12.29	Determine the self capacitance	214
Exa 12.30	Determine the self capacitance	215
Exa 13.1	Find the magnetic field strength	217
Exa 13.2	Find the constant of the galvanometer	218
Exa 13.4	Find the capacity of the condenser	210
Exa 13.5	Calculate the shunt required for the use with	-10
	search coil	219

Exa 13.6	Find the resistance of the shunt to be con-	
	nected in parallel with the flux meter	220
Exa 13.7	Calculate the flux density in the core	221
Exa 13.8	Find the relative permeability of the specimen	222
Exa 13.9	Compute the flux density and relative perme-	
	ability	223
Exa 13.10	Calculate the relative permeability	224
Exa 13.11	Find the quantity of the electricity	225
Exa 13.12	Calculate the hysteresis loss in watts per kg	226
Exa 13.13	At what frequency will the iron loss be dou-	
	bled if the flux density is kept the same	227
Exa 13.14	Estimate the hysteresis and eddy current losses	
		228
Exa 13.15	Calculate the eddy current loss per kg	229
Exa 13.16	Calculate the percentage change in hysteresis	
	loss	229
Exa 13.17	Calculate the iron in watts loss per kg	230
Exa 14.1	Determine the full scale output	232
Exa 14.2	Find out the voltage	233
Exa 14.3	Determine the display indication	234
Exa 14.4	Calculate the frequency of the system	235
Exa 14.5	Find the maximum likely errors	236
Exa 14.6	Calculate the resolution	237
Exa 14.7	Find the resolution	238
Exa 14.8	Find the resolution	239
Exa 14.9	Find the resolution	240
Exa 15.1	Find the dynamic range	242
Exa 15.2	Find the minimum detectable signal of a spec-	
	$\operatorname{trum}\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	242
Exa 16.1	Find the rms value and also the electrostatic	
	deflection sensitivity	244
Exa 16.2	Find the input voltage	245
Exa 16.3	Calculate the maximum velocity of electrons	246
Exa 16.4	Find the beam speed and deflection sensitiv-	
	ity of the tube and deflection factor	246
Exa 16.5	Determine the deflection sensitivity	247
Exa 16.6	Deduce the formula used	248
Exa 16.7	Calculate the deflection voltage	249

Find the Phase angle	249
Find the pulse duration	251
Find the ratio of frequencies of vertical and	
horizontal signals	251
Find out the frequency of vertical signal	252
Determine the frequency of vertical input	253
Determine the mark to space ratio of the pulse	253
	Find the ratio of frequencies of vertical and horizontal signals

Chapter 1

Measurements and Measurement systems

Scilab code Exa 1.1 calculate the static sensitivity and deflection factor

```
1 //
2 // chapter 1 example 1
3
4 clc;
5 clear all;
6
7 //variable declaration
                              //magnitude of output
8 d =2.4;
     response in mm
                              //magnitude of input in
9 R
     = 6;
10
11 //calculations
11// curculations12S= d/(R);13D= R/(d);// deflection factor in /mm
14
15 // result
16 mprintf("static sensitivity = %3.2 f mm/",S);
```

```
17 mprintf("\n deflection factor = %3.2 f /mm",D);
18
19 //
```

Scilab code Exa 1.2 determine the efficiency of the instrument

```
1 //
              2 //chapter 1 example 2
3
4 \text{ clc};
5 clear all;
6
7 //variable declarations
8 If = 5; //full-scale reading of instrument
     in A
     = 0.01; //ammeter resistance in ohm
9 Ra
10
11
12 //calculations
13 Pf = ((If)^2)*(Ra);
                                  //power
     sonsumption for full-scale deflection is W
        = (If)/(Pf); //instrument
14 n
     efficiency in A per watts
15
16 // result
17 mprintf("power sonsumption for full-scale deflection
     = \%3.2 f W', Pf);
18 mprintf("\ninstrument efficiency = \%3.0 f A per watts
    ",n);
19
20
```

21 //

Scilab code Exa 1.3 Find the range of the instrument and scale range

```
2 // chapter 1 example 3
3
4 \, \text{clc};
5 clear all;
6
7 //variable declaration
                              //highest mutiplier switch
8 n = 100;
      in mA
                             //number of divisions
     = 100;
9 N
10
11
12 //calculations
13 R = (N*10^{-3})*n;
                                      //Range of
     instrument in A
                             //scale range
     = 0 - n;
14 S
15
16 // result
17 mprintf("Range of instrument = %3.2 f A", R);
18 mprintf("\ NScale Range = 0\%3.2 f",S);
19
20 //
```

Scilab code Exa 1.4 determine the measurement sensitivity of the instrument

1 //

```
2 //chapter 1 example 4
 3
 4 clc;
 5 clear all;
 6
 7 //variable declaration
8 T1 = 200; //Tempperature in

9 T2 = 225; //Tempperature in

10 R1 = 305; //Resistance in

11 R2 = 310; //Resistance in
                                                 C
                                                  С
12
13 //calculations
14 S = (R2-R1)/(T2-T1); //dr/dt in per C
15
16 // result
17 mprintf("measurement sensitivity S = \%3.2 f
                                                      per
      C ",S);
18
19
20 //
```

Scilab code Exa 1.5 Calculate the non linearity as a percent of full scale deflect

1 //

2 //chapter 1 example 5 3

```
4 clc;
5 clear all;
6
7 //variable declaration
8 RO
           = 100;
                                      //resistance in
                                      //resistance in
9 R100
          = 138.50;
10 R200
         = 175.83;
                                      //resistance in
11 T1
                                      //Tempperature in
          = 0;
      С
12 T2
           = 200;
                                      //Tempperature in
      С
13 T3
           = 100;
                                      //Tempperature in
      C
14
15 //calculations
16 T
           = ((T2-T1)/(R200-R0))*(R100-R0); //change
      in temperatre in C
17 D
           = T - T3;
                                                  //
      deviation in C at T3 temperature
           = (D/(T2))*100;
                                              //per cent
18 p
      full scale deflection non linearity in \%
19
20 // result
21 mprintf("per cent full scale deflection %3.4f
      percent",p);
22
23
24 //
```

Scilab code Exa 1.6 Determine the maximum error

```
2 // chapter 1 example 6
3
4 \, \text{clc};
5 clear all;
6
7 //variable declaration
       = 0.2;
8 1
                         //percent liearity
       = 300;
                         //full-scale reading
9 r
       = 20;
                         //resistance in k
10 R
       = 2;
                         //voltage in V
11 V
12
13 //calculations
     = (l*r)/(100); //maximum displacement
14 d
     deviatio in
         = (1*R)/(100); //maximum resistance
15 R1
     displacement in
  //a displacement of 300 corresponds to 2V , therfore
16
      0.6 corresponds to a voltage of (0.6/300)*2
17
     = (d/(r))*V; //maximum voltage error in
  ev
      mV
18
19 //result
20 mprintf("maximum displacement deviation = \%3.1 f
                                                     ",
     d);
21 mprintf("\nmaximum resistance displacement %3.2 f k
     ",R1);
  mprintf("\n maximum voltage error %3.2 f mV",(ev
22
     *10^3));
23
24 //
```

Scilab code Exa 1.7 Determine the temperature

1 // 2 //chapter 1 example 7 3 4 clc; 5 clear all; 6 7 //variable declaration 8 t1 =500; //temperature in C 9 t2 =1250; //temperature in C 10 r = 0.12; //dead space in pyrometer in per cent of span 11 12 //calculations 13 S' = t2-t1; //span the algebric difference between the upper and lower range values 14 d = (r/(100))*S; //dead space in C 1516 // result17 mprintf(" a change of %3.2f C must occur before it is detected",d); 1819 //

Scilab code Exa 1.8 Find the error in measurment

```
2 //chapter 1 example 8
3
4 \text{ clc};
5 clear all;
6
7 //variable declaration
8 E0 = 12; //open -circuit voltage in V

9 R0 = 1; //output resistance in k

10 RL = 25; //output resistance in k
11
12
13 //calculations
14 EL = EO/(1+(RO/RL)); //measured value of
      voltage in V
                                               //errorin
15 \text{Er} = \text{EL}-\text{EO};
   measurement in V
16 p = ((EL-E0)/(E0))*100; //percentage
      error in %
17
18 //result
19 mprintf("measured value of voltage = \%3.3 f V", EL);
20 mprintf("\nerror in measurement= %3.3 f V", Er);
21 mprintf("\npercentage error = \%3.3 f percent low",p)
      ;
22
23
24 //
```

Scilab code Exa 1.9 Also find the percentage error

```
2 //chapter 1 example 9
3
4
5 \, \text{clc};
6 clear all;
 7
 8 //variable declaration
9 s = 4000; //instrument sensitivity in k

10 R = 10; //range of scale

11 R0 = 20; //output resistance in k

12 E0 = 7.5; //open circuit voltage
13
14 //calculations
15 RL =s*R; //instrument resistance in k
16 RL1
          = RL * 10^{-3};
17 EL = EO/(1+(RO/(RL1))); //measured value of
      voltage in V
18 \text{ p} = ((EL-E0)/(E0))*100;
                                                   //percentage
      error in %
19
20 // result
21 mprintf("measured value of voltage = \%3.2 f V", EL);
22 mprintf("\npercentage error = %3.2 f V percentage
      low",p);
```

Scilab code Exa 1.10 calculate the resistance of voltage measuring device

```
2 //chapter 1 example 10
3
4 clc;
5 clear all;
6
```

```
7 //variable declaration
                     //internal voltage source in V
          = 50;
8 EO
                 // resitance in k
         = 100;
9 RO
                      //accuracy in %
         = 99;
10 r
11
12 //calculations
13 //\text{Em} = \text{E0}/(1+(\text{R0}/\text{RL}))
14 \ //Em = E0*(r \ in \ \%)
15 / E0 / (1 + (R0/RL)) = E0 * (r in \%)
16 \text{ Em} = (E0*r)/(100);
17 x
        =E0/(Em);
18 y
        = x - 1;
19 Rm
        = RO/(y); //resistance of voltage in k
20
21 // result
22 mprintf("resistance of voltage = \%3.2 \text{ f k}", Rm);
```

Scilab code Exa 1.11 Determine actual value of current measured value of current a

```
1 //
2 //chapter 1 example 11
3
4
5 \, \text{clc};
6 clear all;
7
8 //variable declaration
          = 20; //voltage in V
= 2; //resistance in k
= 2; //resistance in k
9 E
10 R1
         = 2;
11 R2
          = 1;
12 R3
                         //resistance in k
13 R
          = 200;
                         //resistance whe current is
      connected to terminals in
```

```
14
15
16 //calculations
          = (E/(R1+((R2*R3)/(R2+R3))))*(R2/(R2+R3));
17 Io
         //nortons equivalent current in k
18 Rout
          = R3+((1/(R1))+(1/(R2)));
                                                 //output
      resistance in k
          = Io*((R1*1000)/((R1*1000)+R));
19 IL
                                                    11
     measured value of current in mA
                                                       11
          = ((IL-Io)/(Io))*100;
20 e
      percentage error in %
                                 //accuracy of
          = 100 + e;
21 A
     measurement in \%
22
23 // result
24 //mprintf("resistance of voltage = %3.2 f k ",Rm);
25
26 mprintf("actual value of current flowing through
      1000 is %3.2 f mA", Io');
27 mprintf("\nmeasured value of current when 200
                                                      i s
      connected is %3.2 f mA", IL);
28 mprintf("\npercentage error = %3.1f percentage(low)
     ",e);
29 mprintf("\naccuracy of measurement = \%3.1 f
      percentage ",A);
```

Chapter 3

Error in Measurement and Their Analysis

Scilab code Exa 3.1 Determine the absolute error of measurement

```
1 //
2 // chapter 3 example 1
3
4 \text{ clc};
5 clear all;
6
7 //variable declaration
                                    //measured value in
8 \text{ Am} = 10.25;
9 A = 10.22;
                                    //True value in
10
11 //calculations
12 dA = Am - A;
                                    //absolute error in
13
14 // result
15 mprintf("abslotue error = \%3.2 f ",dA);
```

Scilab code Exa 3.2 Determine the true value of power

```
1 clc;
2 clear all;
3
4 // variable declaration
                                     //measured value in
5 \text{ Am} = 25.34;
     watts
6 \, dA = -0.11;
                                     //absolute error in
      watts
7
8
9 //calculations
10 A = Am - dA;
                                     //True value in
    wtts
11
12 // result
13 mprintf("abslotue error = \%3.2 f watts",A);
```

 ${
m Scilab\ code\ Exa\ 3.3}$ Determine the relative error

1 //

```
2 //chapter 3 example 2
3 
4 clc;clear all;
5 
6 
7 //variable declaration
8 Am = 205.3*10**-6;
value in
```

//measured

```
9 A = 201.4*10**-6; //True value
in
10
11 //calculations
12 e0 = Am-A; //absolute error in
13 r = (e0/(A))*100; //relative error in
%
14
15 //result
16 mprintf("abslotue error = %3.2e F ",e0);
17 mprintf("\nrelative error = %3.2f percentage",r);
```

Scilab code Exa 3.4 Determine the limits of inductance

```
1 //
2 //chapter 3 example 4
3 \, clc;
4 clear all;
5
6 //variable declaration
7 ep = 5;
8 Am = 20;
                          //percentage error
                          //measuredd value in H
9
10 //calculations
11 er = ep/(100); //relative error
12 / A = Am + dA
13 //dA = er *Am
14 A = Am * (1+er);
                                //limiting value of
     inductance in H
15 \ A1 = Am*(1-er);
                                //limiting value of
     inductance in H
16
```

```
17 // result
18 mprintf("limits of inductance =%3.2 f H", A);
19 mprintf("\n and = %3.2 f H", A1);
```

Scilab code Exa 3.5 calculate the limiting value of current

```
2 //chapter 3 example 5
3 clc;
4 clear all;
5
6 //variable declaration
                                            //accuracy
7 er = 1.5*10^{-2};
                                              //current
8 A1
           = 10;
     in A
         = 2.5;
                                             //current in
9 A2
      Α
10
11 //calculations
12 \text{ dA}
      = er*A1;
                                             //magnitude
      of limiting error of the instrument
                                        //magnitude of
13 er1
            = dA/(A2);
     current
                                              //current
14 A11
            = A2*(1+er1);
     in A
15 A12
           = A2*(1-er1);
                                              //current
     in A
            = (dA/(A2)) * 100;
                                              //limiting
16 er2
     error in %
17
18 // result
19 mprintf("limiting values of current = \%3.2 f A and
     \%3.2 f", A11, A12);
```

Scilab code Exa 3.6 Determine the limiting error in per cent

1 //

```
2 //chapter 3 example 6
3
4 clc;clear all;
5
6 //variable declaration
7 e = 0.01; //acuuracy
8 v = 150; //voltage in V
9 v1 = 83; // measured voltage in V
10
11 //calculations
12 dV = e * v;
                                    //magnitude of the
     limiting error of the instrument in V
13 er = (dV/(v1))*100; //percentage limiting
     error at v1 voltage in \%
14
15 //result
16 mprintf("limmiting error in case of 83V is = %3.2 f
      percentage ', er);
```

Scilab code Exa 3.7 calculate the limiting error

1 //

2 //chapter 3 example 7 3

```
4
5 clc;clear all;
6
7 //variable declaration
8 \text{ er} = 0.01;
                              // limiting error
9 P
                              //power in watts
        = 1000;
                              // true power in watts
10 P1 = 100;
11
12 //calculations
13 dP = er*P;
                              //magnitude of
     instrument error of the instrument watts
14 eP = (dP/(P1))*100; //percentage limiting
     error at 100 W power in \%
15
16 // result
17 mprintf("percentage limiting error at 100 W power =
     %3.2f percentage', eP);;
```

Scilab code Exa 3.9 Calculate the power dissipated in the resistor and the uncerta

```
1 //
```

```
2 //chapter 3 example 9
3
4 clc;clear all;
5
6 //variable declaration
7 v = 110.2;
                           //voltage drop in V
                           //current in A
8 i
        = 5.3;
                           //uncertainity in
9 v1 = 0.2;
     measurements in V
         = 0.6;
                           //uncertanity in
10 i1
     measurments in A
11
```

```
12 //calculations
       = (v1/(v))*100; //limiting error to
13 erv
      voltage drop in \%(ranging + to -)
       = (i1/(i))*100; //limitng error in
14 eri
      current in \%(ranging + to -)
15 P
           = v*i;
                                      //power dissipated
      in the resistor in W
                                      //limting error in
           = (erv+eri);
16 eP
      the power dissipation in \%(ranging + to -)
           = eP*P*10^{-2};
                                             //power with
17 p
       limiting error in W
           = erv+eri;
                                             //limiting
18 e
      error in power dissipation
                                      //power
19 P1
           = P+p;
      dissipation is given in W
                                       //power
20 P11
       = P-p;
      dissipation is given in W
21
22 // result
23 mprintf("power dissipated = \%3.2 \text{ f W}, P);
24 \text{ mprintf}("\mbox{nlimiting error in the power dissipation} =
      %3.1f percentage", e)
25 mprintf("\nuncertanity in power ranging in %3.2f W
     to %3.2f",P11,P1);
```

Scilab code Exa 3.10 calculate the limiting error in the computed value of power d

1 //

2 //chapter 3 example 10
3
4 clc;clear all;
5
6 //variable declaration

```
= 100; //resistance in
7 R
                    //resistancce error in (
         = 0.2;
8
 dR
     ranging + to -)
                       //current in A
9 I
      = 2;
                     //error in current in A(ranging
10 \, dI = 0.01;
     + to -)
11
12 //calaculatons
13 eR = (dR/(R))*100; //percentage limiting
     error to resistance in \%(ranging + to -)
14 eI = (dI/(I))*100; //percentage limiting
     error to current in \%(ranging + to -)
15 P
         = (I^2) * R;
                                //power dissidation in
     W
         = (2 * eI) + eR;
                                 //worst ossible
16 eP
     combination of errors the limiting error in the
     power dissipation in %
         = (eP*10^{-2})*P;
                                         //error in
17 p
     power in watts
                                 //power dissipation
18 P1
        = P+p;
     in W
                                 //power dissipation
19 P2
        =P-p;
     in W
20
21 //result
22 mprintf("limiting error = %3.2f percentage', eP);
23 mprintf("\npower dissipation %3.2f W %3.2f W", P2, P1)
```

Scilab code Exa 3.11 Determine the resolution in the instrument in volt

1 //

2 // chapter 3 example 11

```
3
4 clc;clear all;
5
6 //variable declaration
                         //full-scale reading i V
7 V
           = 200;
                      //number of divivsions of scale
          = 100;
8 n
9
10 //calculations
          = V/(n); //1 scale division in V
= n1/(5); //1/5 th of scale division in V
11 n1
12 R
13
14 // result
15 mprintf("resolution = \%3.2 f V", R);
```

Scilab code Exa 3.12 Determine the limiting error of the resultant capacitance

```
2 //chapter 3 example 12
3
4 clc;clear all;
5
6 //variable declaration
                      //capacitance in uF
7 u
       = 150;
                      //capacitance in uF
       = 2.4;
8 du
                     //capacitance in uF
       = 120;
9 v
10 dv
       = 1.5;
                      //capacitance in uF
11
12 //calculations
                      //resultant capacitance when
13 y
       = u + v;
     capacitors are connectedd in parallel in uF
14 dy = du+dv; //limiting error in uF(ranging +
      to -)
      = (dy/(y))*100; //relative limiting error in %
15 er
```

```
(ranging + to -)
16
17 //result
18 mprintf("limiting error of the resultant capacitance
                     = %3.2 f percentage', er);
```

Scilab code Exa 3.13 calculate the uncertainty in the combined resistance

```
1 //
2 //chapter 3 example 13
3 clc;clear all;
4
5 //variable declaration
                         //resistance in
6 R1 = 1000;
7 R2 = 500; //resistance in
8 eR1 = 1; //error resistance
      = 1;
                      //error resistance
9 eR2
10
11 //calculations
12 R = (R1*R2)/(R1+R2); //resistance in
13 X
       = R1 * R2;
14 Y
      = R1 + R2;
15 \, dX = (eR1+eR2);
                               //error in X
16 //dY = (dR1/Y) + (dR2/Y);
17 //dY = (R1/Y) * (dR1/R1) + ((R2/Y) * (dR2/R2))
18 dY = ((R1/(Y))*(eR1))+((R2/(Y))*(eR2));
                                                   11
     error in Y
19 eP = dX + dY;
                                                  11
     percentage error in equivaent parallel resistance
      in %
                                             //error(
        = R*(eP/(100));
20 e
     maximum ossible) in equivalent parallel
     resistance in
```
Scilab code Exa 3.14 find the resistance in series and parallel

```
1 //
2 //chapter 3 example 14
3
4 clc;clear all;
\mathbf{5}
6 //variable declaration
         = 200;
                                   //resistancce in
7 R1
         = 100;
                                   //resistancce in
8 R2
9 R3
         = 50;
                                    //resistancce in
10 dR1
         = 5;
                                  //change in
     resistancce (dR1/R1) in %
                                  //change in
11 \, dR2 = 5;
     resistancce (dR2/R2) in %
          = 5;
                                   //change in
12 dR3
     resistance (dR3/R3) in %
13 y1
        = 20000;
14 y2
         = 5000;
15 y3
         = 10000;
16
17
18 //calculations
19 Rse = R1+R2+R3;
                                   //equivalent
     resistance in
         = ((R1/(Rse))*(dR1))+((R2/(Rse))*(dR2))+((R3
20 R
```

```
/(Rse))*(dR3));
21 e
                = Rse*(R/(100));
                                                                            11
         relative limiting error of series equivalent in
22 X
                = R1 * R2 * R3;
23 Y
                = (R2*R3) + (R1*R3) + (R1*R2);
                                                                         11
24 RP
                = X/(Y);
         equivalent resistance in
                = dR1+dR2+dR3;
25 eX
                                                                                      //
         error in X in %
                 = dR1+dR2;
26 dy1
         \operatorname{error}(dy1/y1) n y1 in %
27 dy2
                 = dR2 + dR3;
                                                                                      | |
         \operatorname{error}(dy2/y2) in y2 in %
                 = dR3 + dR1;
                                                                                      11
28 dv3
         \operatorname{error}(dy3/y3) in y3 in %
29 eY
                 = ((y1/(Y))*(dy1))+((y2/(Y))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y)))*(dy2))+((y3/(Y))))*(dy2))+((y3/(Y)))*(dy2)))*((y3/(Y))))*((y3/(Y)))*((y3/(Y))))*((y3/(Y))))*((y3/(Y))))*((y3/(Y)))))
         )*(dy3));
                                //percentage error in %
                    = eX + eY;
30 pemax
         percentage error (maximum possible) in equivalent
          parallel resistance in %
               = RP*(pemax/(100));
                                                                            //error
31 emax
         maximum possible in equivalent parallel
         resistance in
32
33 //result
34 mprintf("equivalent resistance = %3.2 f ", Rse);
35 mprintf("\nrelative limiting error of series
         resistance = \%3.2 f percentage", R);
36 mprintf("\nrelative limiting error of series
         equivalent = \%3.2 \,\mathrm{f} ",e);
37 mprintf("\npercentage error (maximum possible) in
         equivalent parallel resistance= %3.2 f percetage",
         pemax);
38 mprintf("\nerror maximum possible in equivalent
         parallel resistance = \%3.4 f ', emax);
```

Scilab code Exa 3.15 power and limiting error of the power

```
2 //chapter 3 example 15
3
4 clc;clear all;
5
6 //variable decelaration
7 \text{ er} = 0.015;
                                   //limiting error
8 V = 100;
                                   //range of
     voltmeter in V
     = 150;
                                   //range of ammeter
9 I
     in mA
10 V1
      = 70;
                                   //magnitude of
     voltage being measured in V
11 I1
         = 80;
                                   //magnitude of
     current being measured in mA
12
13 //calculations
14 dV = er*V;
                                  //magnitude(dV/V of
     limiting error of the voltmeter in V
     = (dV/(V1))*100; //percentage(dI/I)
15 eV
     limitng error at this voltage in \%
16 dI
         = er*I;
                                 //magnitude of
     limitng error off the ammeter in mA
         = (dI/(I1))*100; //percentage limitng
17 eI
     error at this current in %
         = V1*(I1/(1000));
                                           //power in
18 P
     W
19 dPx
         = eV + eI;
                  //relative limiting error(
     dPx/Px) in power measurement in \%
20
```

```
21 // result
22 mprintf("relative limitng error in power measurement
                       = %3.4 f percentage",dPx);
```

Scilab code Exa 3.16 calculate the nominal power and limiting error of power

```
1
2 //
3 //chapter 3 example 16
4
5 clc; clear all;
6
7 //variable declaration
8 E =200; //limiting voltage in V

9 R = 1000; //resistance in

10 eE = 1; //relative limiting error(dE/E)
10 eE = 1;
      in %
                   //relative limting error(dR/R)
11 eR = 5;
     in %
12
13 //calculations
14 P = (E**2)/(R); //normal power consumed in
     W
15 \text{ eP} = ((2 * eE) + eR);
                                    //relative limiting
     error (dP/P) in measurement of power in \%
16 dP
         = P*(eP/(100));
                                             //limitng
      error of power in watts
17
18 //result
19 mprintf("Normal power consumed = %3.2 f W",P);
20 mprintf("\nrelative limitng error in power
      measurement= \%3.2 f percentage ranging +eP to -eP",
      eP);
```

```
21 mprintf("\nlimitng error of power = %3.2f percentage
    ",dP);
```

Scilab code Exa 3.17 calculate the nominal value of unknown resistance and error i

1 //

```
2 //chapter 3 example 17
3 \text{ clc};
4 clear all;
5
6 //variable declaration
          = 500; //resistance in
7 R1
                     //resistance in
//resistance in
                        //resistance in
8 R2
          = 615;
                   //limiting error(dR1/R1) in %
//limiting error(dR1/R1) in %
//limiting error(dD1/D1)
9 R3
          = 100;
10 dR1
          = 1;
          = 1;
11 dR2
                        //limiting error(dR1/R1) in %
12 dR3
          = 0.5;
13
14 //calculations
15 R4 = (R1*R2)/(R3); //unknown resistance in
         =dR1+dR2+dR3; //relative error of
16 dR4
     unknown resistance in \% ranging - to +
      = R4*(dR4/(100)); //limitng error in
17 e
18
19 //result
20 mprintf("unknown resistance = \%.2 f ", R4);
21 mprintf("\nrelative error of unknown resistance
     ranging - to + = \%3.2 f percentage ",dR4);
22 mprintf("\nlimitng error = \%3.2 f ",e);
```

Scilab code Exa 3.18 calculate the absolute error

```
2 //chapter 3 example 18
3
4 clc;clear all;
5
6 //variable declartaion
      = 0.5 * 10^{-3};
7 r
                            //in mm
                     //in Pa
        = 200;
8 p1
       = 150; //in Pa
9 p2
        = 4 * 10^{-7};
                           //in m**3/s
10 Q
11 1
        = 1;
                            //length in m
       = 0.01;
12 dr
13 dp1
        = 3;
14 dp2
        = 2
15 dQ
         =0
16 dl
         =0;
17
18 //calculations
19 u = ((%pi)*((r^4)*((p1*10^3)-(p2*10^3)))/((8*Q*1))
     ); //absolute error inkr/m-s
20 er = (dr/((r/(10^{-3}))))*100;
                                                      11
     dr/r in %
       = (dp1/(p1))*100;
                                              //dp1/p1
21 ep1
     in %
                                              //dp2/p2
22
  ep2
      = (dp2/(p2))*100;
     in %
       = (dQ/(Q)) * 100;
                                           //dQ/Q in %
23 eQ
       = (d1/(1))*100;
                                           //dl/l in %
24 el
       = p1 - p2;
                                  //dp/p in Pa
25 p
        = (((p1/(p))*(ep1))+(p2/(p))*(ep2));
26 ep
                                                   11
     percentage error in \% anging - to +
      = (4*er)+(ep+eQ+el);
                                           //percentage
27
  eu
      error in \% ranging - to +
          = u*(eu/100);
                                         //absolute
28 ua
     error in kg/m-s
29
```

```
30 // result
31
32 mprintf("absolute error = %3.3 e kg/m-s",u);
33 mprintf("\nxabsolute error = %3.2 e kg/m-s",ua);
```

Scilab code Exa 3.19 determine the magnitude of unknown inductance

```
1 //
 2 //chapter 3 example 19
 3
 4 clc;clear all;
 5
 6 //variable declaration
         = 1*10^{-6}; // capacitance in F
 7 C
         = 1; //error capacitance in %
= 1000; //resistance in
8 dC
9 P
10 dP = 0.4; //error in resistance in %
11 Q = 2000; //resistance in
                   //error in resistance in %
12 \, dQ = 1;
13 S = 2000; //resistance in

14 dS = 0.5; //error in resistance in %

15 r = 200; //resistance in
         = 0.5; // \text{error in resistance in }\%
16 dr
17
18 //calcukations
19 Lx
        = ((C*P)*((r*(Q+S))+(Q*S)))/(S);
                                                        //
      unknown inductance in Henry
20 u
          =Q+S;
                                        //in
          = ((Q/(u))*(dQ))+((S/(u))*(dS));
                                                     11
21 du
      percentage error in %
22 v
          = r*(Q+S);
                             //percentage error of v in \%
          = dr + du;
23 dv
24 x
         = Q*S;
```

```
25 dx = dQ+dS; //percentage error of x in %
26 y = (r*(Q+S))+(Q*S);
27 dy = ((v/(y))*(dQ))+((x/(y))*(dx)); //
    percentage error in %
28 dLx = dC+dP+dS+dy;
29
30 //result
31 mprintf("unknown inductance = %3.2f henry",Lx);
32 mprintf("\npercentage error on inductance = %3.1f
    percentage",dLx);
```

Scilab code Exa 3.20 determine the uncertainty in the measurement of Z

```
1 //
```

```
2 //chapter 3 example 20
3
4 clc;clear all;
5
6 //variable declaration
       = 100; //resistance in
= 5; //error (dR/R) in %
7 R
8 \, \mathrm{dR}
                //inductance
9 L
       = 2;
       = 50;
10 r
                // error (dl/L) in %
11 dL
        = 10;
12
13 //calculations
14 u
       = R * * 2;
         = 2*dR; //percentage error(du/u) in %
15 du
       = ((2*(%pi)*(r))**2)*(L**2);
16 v
       =2*dL; //percentage error(dv/v) in %
17 dv
18 x
         = u + v;
19 dx
         =((u/(x))*(du))+((v/(x))*(dv));
                                             percentage error (dx/x) in %
```

Scilab code Exa 3.21 calculate the standard deviation

```
1 //
 2 //chapter 3 example 21
 3 clc;clear all;
 4
 5 //variable declaration
                        //voltage in V
 6 x1 = 49.7;
                         //voltage in V
//voltage in V
7 x2 = 50.1,
8 x3 = 50.2; //voltage in V
9 x4 = 49.6; //voltage in V
- 49.7; //voltage in V
          = 50.1;
 7 x2
10 x5
11 n
          =5;
12
13 //ccalculations
14 x = (x1+x2+x3+x4+x5)/(5); //arthimetic mean
       =x-x1; // deviation
=x-x2; // deviation
15 d1

      16
      d2
      =x-x2;

      17
      d3
      =x-x3;

      18
      d4
      =x-x4;

                        // deviation
// deviation
          =x-x5; //deviation
19 d5
20 d = (d1**2)+(d2**2)+(d3**2)+(d4**2)+(d5**2);
21 sigma = sqrt(d/(n-1)); //standard devation
22
23 // result
24 mprintf("arthimetic mean = \%3.2 f",x);
```

Scilab code Exa 3.22 find mean and standard deviation and probable error

```
2 //chapter 3 example 22
3 clc;clear all;
4
5 //variable declaration
        = 41.7; //voltage in V
6 x1
        = 42;
                  //voltage in V
7 x2
       = 41.8; //voltage in V
= 42; //voltage in V
8 x3 = 41.8;
9 x4
                   //voltage in V
//voltage in V
//voltage in V
10 x5 = 42.1;
11 x6 = 41.9;
12 x7 = 42.5;
        = 42;
                  //voltage in V
13 x8
14 x9 = 41.9; //voltage in V
       = 41.8;
                     //voltage in V
15 x10
16 n
         =10;
17
18 //ccalculations
      =(x1+x2+x3+x4+x5+x6+x7+x8+x9+x10)/(10);
19 x
                                                    arthimetic mean
20 d1
        =x-x1; // deviation
                // deviation
// deviation
21 d2
        =x-x2;
22 d3
        =x-x3;
                    //deviation
        =x - x4;
23 d4
                   //deviation
24 d5
        =x-x5;
                    //deviation
25 d6
        =x-x6;
                    //deviation
26 d7
        =x - x7;
                   //deviation
27 d8
        =x - x8;
                     //deviation
28 d9
        =x - x9;
```

Scilab code Exa 3.23 find mean and standard deviation and probable error and proba

```
2 // chapter 3 example 23
3
4 clc; clear all;
5
6 // variable declaration
7 x1 = 41.7; // voltage in V
8 x2 = 42; // voltage in V
9 x3 = 41.8; // voltage in V
10 x4 = 42; // voltage in V
11 x5 = 42.1; // voltage in V
12 x6 = 41.9; // voltage in V
13 x7 = 42.5; // voltage in V
14 x8 = 42; // voltage in V
15 x9 = 41.9; // voltage in V
16 x10 = 41.8; // voltage in V
17 n =10;
18
19 // ccalculations
```

```
=(x1+x2+x3+x4+x5+x6+x7+x8+x9+x10)/(10);
20 x
                                                      11
      arthimetic mean
21 d1
        =x - x 1;
                      // deviation
                    // deviation
22 d2
        =x - x2;
                    // deviation
// deviation
23 d3
        =x-x3;
24 d4
        =x - x4;
                     //deviation
25 \, d5 = x - x5;
                    // deviation
// deviation
26 \ d6 = x - x6;
27 \, d7 = x - x7;
28 \, d8 = x - x8;
                     //deviation
                     //deviation
29 d9
        =x - x9;
                      //deviation
30 d10
        =x - x 10;
31 d
         = (d1**2) + (d2**2) + (d3**2) + (d4**2) + (d5**2) + (d6
      **2) + (d7**2) + (d8**2) + (d9**2) + (d10**2);
32 sigma = sqrt(d/(n-1)); //standard devation
          = 0.6745*sigma; //probable error of one
33 r
       reading
          = r/(sqrt(n-1)); //probable error of mean
34 rm
       in V
          = x7-x1; //range in V
35 R
36 // result
37 mprintf("arthimetic mean = \%3.2 f",x);
38 mprintf("\nstandard deviation = \%3.3 f", sigma);
39 mprintf("\nprobable error of one reading = \%3.3 f",r)
40 mprintf("\nprobable error of mean = \%3.5 f V', rm);
41 mprintf("\nRange = \%3.2f V',R);
```

Scilab code Exa 3.24 determine arithmetic mean and average deviation and variance

1 //

2 //chapter 3 example 24 3 clc;clear all;

```
4
   5 //variable declaration
   6 x1
                                         = 1.570;
                                                                                                                    //voltage in V
                                                                                                                    //voltage in V
   7 x2
                                         = 1.597;
   8 x3
                                         = 1.591;
                                                                                                                     //voltage in V
                                                                                                                //voltage in V
   9
              x4
                                         =1.562;
                                                                                                               //voltage in V
10 x5
                                         =1.577;
                                                                                                                   //voltage in V
11 x6
                                         = 1.580;
12 x7
                                         = 1.564;
                                                                                                                   //voltage in V
                                                                                                                   //voltage in V
13 x8
                                         = 1.586;
                                                                                                                   //voltage in V
                                         = 1.550;
14 x9
15 x10
                                              = 1.575;
                                                                                                                          //voltage in V
16 n
                                               =10;
17
18 //ccalculations
                                    =(x1+x2+x3+x4+x5+x6+x7+x8+x9+x10)/(10);
19 x
                                                                                                                                                                                                                                                                         arthimetic mean
20 d1
                                         = x1 - x;
                                                                                                               //deviation
                                         = x2 - x;
                                                                                                               //deviation
21 d2
22 d3
                                         =x3-x;
                                                                                                               //deviation
23 d4
                                         = x4 - x;
                                                                                                               //deviation
24 d5
                                         = x5 - x;
                                                                                                               //deviation
25 d6
                                         = x6 - x;
                                                                                                               //deviation
26 d7
                                         = x7 - x;
                                                                                                               //deviation
                                                                                                               //deviation
27 d8
                                         = x8 - x;
                                                                                                               //deviation
28 d9
                                         = x9 - x;
29 d10
                                               = x 10 - x;
                                                                                                                          //deviation
                                               = (abs(d1)+abs(d2)+abs(d3)+abs(d4)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+abs(d5)+a
30 D
                             d6) + abs(d7) + abs(d8) + abs(d9) + abs(d10))/(n);
                                               = ((d1^2) + (d2^2) + (d3^2) + (d4^2) + (d5^2) + (d6^2) 
31 d
                              d7^2 + (d8^2) + (d9^2) + (d10^2) ;
32 sigma
                                                    = sqrt(d/(n-1));
                                                                                                                                                                              //standard devation
33 r
                                                     = 0.6745*sigma;
                                                                                                                                                                         //probable error of one
                                   reading
34 v
                                                    = sigma^2;
                                                   = r/(sqrt(n-1));
                                                                                                                                                              //probable error of mean
35 rm
                                   in V
36
```

```
37 // result
```

- 38 mprintf("arthimetic mean = %3.3 f",x);
- 39 mprintf("\naverage deviation = %3.3 f gramme",D);
- 40 mprintf("\nstandard deviation = %3.5f gramme*2", sigma);
- 41 mprintf("\nprobable error of one reading = %3.5 f
 gramme",r);
- 42 mprintf("\n variance= $\%3.3 \,\text{e}$ gramme²",v);
- 43 mprintf("\nprobable error of mean = %3.4 f gramme",rm
);

Chapter 4

Measuring system fundamentals

Scilab code Exa 4.1 find the torque

```
1 //
 2 // chapter 4 example 1
 3 \, \text{clc};
 4 clear all;
 5
 6
 7 //variable decalartion
8 L =0.4; //length of the strip in r

9 W = 0.0005; //width of the strip in m

10 t = 0.0008 //thickness in m

11 E = 1.2*10^10; //young's modulus in kg/m**2

//deflection in
                                    //length of the strip in m
12 d = 90;
                                                //deflection in
        degrees
13
14 // calucaltions
15 theta = %pi/(2); //deflection in radians
16 T = ((E*W*(t^3))/(12*L*2))*(%pi);
                                                              //
```

```
torque exerted in Kg-m
17
18 //result
19
20 mprintf("torque exerted T = %3.2e Kg-m",T);
```

Scilab code Exa 4.2 determine deflection

1 //

```
2 // chapter 4 example 2
3 \, \text{clc};
4 clear all;
5
6
7 //variable decalartion
                             //controlling weight
8 W = 0.005;
    in Kg
9 L = 0.024;
                             //length in m
10 Td = 1.05*10**-4; // deflecting Torque in
     kg-m
11
12 //calculations
13 x = Td/(W*L);
14 //Td = W*L*sin(theta)
15 theta = asin(x);
16 theta1 = (theta*180)/(%pi);
17
18 // result
19 mprintf ("deflection = \%3.0 \,\text{f} ", theta1);
```

Scilab code Exa 4.3 determine the suitable dimensions for spring

```
2 //chapter 4 example 3
3
4 clc;
5 clear all;
6
7
8 //variable decalartion
9 Smax = 3.0*10^{6}; //maximum stress in kg/m**2
         = 1.2 * 10^{10};
                                  //young's modulus
10 E
     in kg/m**2
11 \quad w = 0.0006;

12 \quad Td = 1.2*10^{-4};
                             //width of spring in m
                             //deflecting torque in
     kg–m
                                      //deflection in
13 d = 90;
     degrees
14
15 //calucaltions
16 theta = %pi/(2); //deflection in radians
17 // since T = ((E*W*(t*3))/(12*L))*theta
18 //t^3/l = (12*Tc)/(E*W*theta)
19 Tc
                                      //controlling
               = Td/(2);
     torque of each spring in kg-m
20 / x = t * * 3 / 1
            = (12*Tc)/((E*w*theta));
21 x
                                              //
     equation 1
22 //y =1/t
23 y = (E*theta)/(2*Smax);
                                      //equation 2
24 //by multiplying equations 1 and 2 (x*y = t**2 = z)
25 z = x * y;
26 t = sqrt(z);
                             //thickness of spring
     strip in mm
                              //length on m
27 1
     = y*t;
28
29 //result
30 mprintf("thickness of spring strip = \%3.2 f mm",(t
```

```
*10^3));
31 mprintf("\nlength in = %3.2f m",1);
```

Scilab code Exa 4.4 determine the deflection

```
2 //chapter 4 example 4
3 \text{ clc};
4 clear all;
5
6 //variable declaration
7 theta1 = 90; //deflection in
8 x = 0.5; //I2/I1
9
10 //calculations
11 //Td proprtional to I
12 //theta proprtional to I
13 theta2 = theta1*(x); //deflection for the
     current equal to the half of the current in
     spring controlled instrument in
14 //Tc proprtional to sin(theta)
15 //sin(theta) proprtional to I
16 \ y = sin((\%pi/(2)))
           = asin(x*y); //deflection for the
17 theta21
     current equal to the half of the current in
     gravity controlled instrument in
18 theta22 = (theta21*180)/(%pi);
19
20 //result
21 mprintf("deflection for the current equal to the
     half of the current in spring controlled
     instrument = \%3.2 f ", theta2);
22 mprintf("\ndeflection for the current equal to the
```

half of the current in gravity controlled instrument = %3.2 f ",theta22);

Scilab code Exa 4.5 find the deflection when spring controlled and gravity control

```
2 // chapter 4 example 5
3 clc;
4 clear all;
5
6
7 //variable decelaration
8 theta1 = 90; //deflection in
9 I1
              = 10;
10 I2
              =5;
11
12 //calculations
13 //Td proprtional to I^2
14 //Theta proprtional to I^2
15 theta2 = theta1*((I2/(I1))^2);
                                                   deflection for I1 A spring controlled instrument
      in
16 //Tc proprtional to sin(theta)
17 //\sin(\text{theta}) proprtional to I**2
18
19 x = (I2/((I1)))
          = asin(x**2)*(sin(%pi/(2))); //
20 theta21
     deflection for I1 A Gravity controlled
     instrument in
21 theta22 = (theta21*180)/(%pi);
22
23 // result
24 mprintf("deflection for I1 A spring controlled
```

```
instrument = %3.2 f ",theta2);
25 mprintf("\ndeflection for I1 A Gravity controlled
instrument = %3.1 f ",theta22);
```

Scilab code Exa 4.6 determine the value of current when spring controlled and grav

```
2 //chapter 4 example 6
 3
 4 clc;
 5 clear all;
 6
 7 //Variable declaration

      8
      I1
      = 10;
      //current in A

      9
      theta1
      = 60;
      //deflection in

      10
      theta2
      = 40;
      //deflection in

11
12
13 //calculations
14 I2 = (I1)*(theta2/(theta1));
                                                         //current in
         case spring controlled ammeter in A
          = sin(((theta2*%pi)/(180)));
15 x
             = sin((theta1*%pi)/(180));
16 y
17 I21
              = (I1)*(x/y); //current in case
       gravity controlled ammeter in A
18
19
20 // result
21 mprintf("current in case spring controlled ammeter =
        %3.2 f A", I2);
22 mprintf("\ncurrent in case gravity controlled
       ammeter = \%3.2 \, \text{f} \, \text{A}", I21);
```

Scilab code Exa 4.7 find the deflecting torque

```
1 //
2 //chapter 4 example 7
 3
4 \text{ clc};
5 clear all;
 6
 7
8 //variable declaration
9 Td = 1.13*10^{-3}; //defelecting torque in
     Nm
10 \text{ m} = 5 * 10^{-3};
                                                         11
weight in kg
11 g = 9.81; //gravity
12 theta = 60; //deflection in
13
14 //calculations
15 d = Td/(m*g*sin(((theta*%pi)/(180)))); //
      distance of the controlling weight from spindle
      in mm
16
17 // result
18 mprintf("distance of the controlling weight from
      spindle = \%3.1 \, \text{f} \, \text{mm}", (d*10^3));
```

Chapter 5

Analog ammeters and voltmeters

Scilab code Exa 5.1 calculate the deflection

```
1 //
2 // chapter 5 example 1
3
4 clc;clear all;
5
6 //variable declaration
7 K = 24*10^{-6}; //spring constant in Nm/
    radian
8 I = 5; //current in A
9
10 //calculations
      = 20+10*theta - 2*(theta^2)
11 //L
12 //partial differentiate w.r.t to theta
13 //dL/dtheta = x = 10 - 4 * theta
14 //dL/dtheta = 2*K*theta/(I^2)
= 10 - 4 * theta
```

```
17 y = ((I^2)/(2*K))*10^-6;

18 theta = (10*y)/(1+(4*y)); //defelction for

        current in radians

19 theta1 = ((theta*180)/(%pi));

20

21 //result

22

23 mprintf("deflection = %3.1f', theta1);
```

Scilab code Exa 5.2 Determine the spring constant

```
1 //
```

```
2 //chapter 5 example 2
3
4 clc;clear all;
5
6 //Variable declaration
7 I = 5; //current in A
8 \, d = 30;
                                               11
      deflection
9 I2
          = 10;
10
11 //calculations
12 //L = 10+5*theta -2*(theta<sup>2</sup>)
                                              11
      inductancein uH
13 //partial differentiate w.r.t to theta
14 //dL/dtheta = x = 5 - 4 * theta
15 //dL/dtheta = 2*K*theta/(I^2)
                   = 10 - 4 * theta
16 / x
17 theta = %pi/(6);
18 K
            = (((5-(4*theta))*10^{-6})*(1^{2}))/(2*theta)
          //spring constant in Nm/radian
             = ((2*K)/(I2<sup>2</sup>))*10<sup>6</sup>;
19 x
```

```
20 theta2 = (5)/(x+4);
21
22 //result
23
24 mprintf("spring constant = %3.4e Nm/radian",K);
25 mprintf("\ndeflection for 10 A current = %3.3f
radian",theta2);
```

Scilab code Exa 5.3 find the reading of the voltmeter

```
2 //chapter 5 example 3
3 \, \text{clc};
4 clear all;
5
6 //variable declaration
7 R = 500; //resistance in
    = 2000;
                          //non inductive resistance
8 r
     in
              //voltage in V
9 V
     = 250;
                          //frequency in Hz
     = 50;
10 f
       = 1;
                      //inductance in H
11 L
12
13
14 //calculations
15 x
     = (r+R)^{2};
16 W
       = (2*%pi*f*L)^2;
17 Z
    =sqrt(x+W);
                         //impedance of the
     instrument circuit
18 I
       = V/(Z);
                          //current drawn by
     instrument in A
19 I2
       = V/(R+r);
                          //since voltmeter reads
     correctly on dc supply on 250 V, corresponding
```

```
current in A
20 V1 = V*(I/(I2)); //voltmeter reading
when connected to 250V ,50Hz supply
21
22 //result
23 mprintf("voltmeter reading = %3.1d V",V1);
```

1 //

Scilab code Exa 5.4 find the effect of the inductance of the meter

```
2 //chapter 5 example 4
3 clc;clear all;
4
5 //variable declaration
6 Vac = 500; // \operatorname{voltage} in V
7 Iac = 0.1; // current in A

8 f = 50; // frequency in Hz

9 L = 0.8; // inductance in H

10 Vdz = 200; // upltage in V
10 \, \text{Vdc} = 300;
                               //voltage in V
11 Z
        =5000;
12
13 //calculations
14 W = 2*(%pi)*f*L;
            = (sqrt((Z^2)-(W^2))); //resistance in
15 R
16 Idc = Vdc/(R);
                                  //instrument current in
      Α
          = (Vac/(Iac))*(Idc); //Reading of
17 V
      instrument when connected to 300V in V
18
19 // result
20 mprintf("Reading of instrument when connected to 300
      V = \%3.1 f V", V);
```

Scilab code Exa 5.5 find the percentage error

1 //

```
2 //chapter 5 example 5
 3 clc;clear all;
 4
 5 //variable decalaration
6 Iac = 0.1; //current in A

7 f = 50; //frequency in Hz

8 L = 0.8; //inductance in H

9 Vac = 300; //voltage in V

10 V = 200; //true value in V
                                    //current in A
11
12 //calculations
12// calculations13XL = 2*%pi*f*L;14Z = Vac/(Iac);// instrument impedance in
        = sqrt((Z^2)-(XL^2)); //instrument resistance(
15 R1
      R+r) in
16 Idc = V/(R1); //instrument current when
    connected to 200V dc supply
                                    //reading of the
17 V1 = (Idc*Vac)/(Iac);
      instrument when connected to 200V dc supply
18 e = ((V1-V)/(V))*100;
19
20 // result
21 mprintf("percentage error = %3.2f percentage",e);
```

Scilab code Exa 5.6 Find the value of capacitance

1

```
3 // Chapter 5 example 6
 4
 5 clc;clear all;
 6
 7 //variable declaration
                              //resistance of the magnetic
           = 50;
 8 R
       coil in
9 Rt
          = 500;
                              //resistance in
          = 0.09;
                              //inductance of the
10 L
      voltmeter in H
11 f
          = 50;
12 I
           = 1;
13
14
15 //calculations
16 r
          = Rt - R;
                              //swamping resistance in
          = (2*%pi*f*r)^2;
17 X
18 Y
           = L * X;
              = I*L;
19 Y1
               = C * r^{2} / (I + w^{2} * C^{2} * r^{2})
20 //L
21 //C*r^2 = L*I+L*w^2*C^2*r^2
22 //C*r^2 =y1+x*(C^2)
23 //x * (C^2) - C * r^2 + y1;
24 a
       = X;
           = -r^{2};
25 b
26 c
            = Y1;
27 x = (-b-sqrt((b^2)-(4*a*c)))/(2*a);
      //we consider the positive value
28
29
30
31 // result
32 mprintf("swamping resistance = \%3.2e",x);
```

2 / /

Scilab code Exa 5.7 find the capacitance

1 //

```
2 //chapter 5 example 7
3 clc;clear all;
4
5 //variable declaration
                   //resistance of the magnetic
6 R = 50;
coil in

7 Rt = 500; //resistance in

8 L = 0.09; //inductance of the

voltmeter in H
9
10 //calculations
11 r =Rt-R;

12 C = (L/(r^2)); //capacitance to be
    placed in u F
13
14 //result
15 mprintf("capacitance to be placed to make the
      instrument read correctly bot dc as well as ac =
      \%3.3\,{
m fe}~{
m uF}",(C*10^6));
```

Scilab code Exa 5.8 estimate the rate of change of self deflection

```
2 //chapter 5 example 8
3 clc;clear all;
```

```
4
5 //variable decalaration
                          //full-scale defelcting
6 Td = 4*10^{-5};
     torque in N-m
                              //full-scale current in
7 I
            = 10;
     A
8
9 //calculations
10 //Td = (1/2) * (I^2) * (dL/dtheta);
11 //dL/dtheta = x
12 x = (2*Td)/(1^2);
13
14 // result
15 mprintf('rate of change of selfinductance = \%3.1 f uH
     /rad",(x*10^6));
```

Scilab code Exa 5.9 determine the current passing in a moving iron instrument

```
2 //chapter 5 example 9
3 clc;clear all;
4
5 //variable declaration
6 //dL/dtheta = x
7 y = 2.3 \times 10^{-6};
8 Td1
         = 5 * 10 * * -7;
9 t
           = 52;
10
11 //calculations
12 x
       = y*(180/%pi);
13 Td
         = Td1*t;
         = (1/2) * (I * * 2) * (dL/dtheta);
14 //Td
              = sqrt((Td*2)/(x)); //current in A
15 I
```

```
16
17 //result
18 mprintf("current = %3.2 f A",I);
```

Scilab code Exa 5.10 calculate the percentage increase of resistance

```
2 //chapter 5 example 10
3
4 clc;clear all;
5
6 //variable declaration
      = 400;
7 R
                //resistance in
       = 150; //voltmeter reading in V
8 V
9 I = 0.05; //current in A
10 alphac = 0.004; //temperature coefficient of
     copper
         = 0.00001; //temperature coefficient of
11 alphas
      eureka
12 f
         = 100; //frequency in Hz
13 L = 0.75; //inductance in H
14
15
16 //calculations
17 / R1 = R+r;
        = V/(I); //total reistance in
= R1-R; //swamping resistancein
18 R1
19 r
20 R11 = (R*(1+alphac))+(r*(1+alphas)); //total
     resistance for 1 C rise in temperature in
          = ((R11-R1)/(R1))*100; //percentage
21 e
      rise in resistance per degree rise in
     temperature
                                    //inductive
22 W = 2*%pi*f*L;
```

```
reactance in
23 Z = sqrt((R1^2)+(W^2)); //impedance in
24 v = V*(R1/(Z)); //reading indicated on
100 Hz in V
25
26
27 //result
28 mprintf("R1 =%3.0 f",W);
29 mprintf("percentage rise in resistance per degree
rise in temperature = %3.4 f percentage",e);
30 mprintf("\nreading indicated on 100 Hz= %3.1 f V",v);
```

Scilab code Exa 5.11 find the deflection

```
1 //
2 //chapter 5 example 11
3 clc;clear all;
4
5 //variable declaration
                        //voltage in V
6 V
         = 300;
        = 12000; //coil resistance in
7 R
         = 6*10<sup>-2</sup>; //flux density in Wb/m**2
8 B
           = 0.04; //length in m
91
         = 0.03; //width in m
10 r
11 N
        = 100;
12 Tc
        = 25*10^-7; //torque in Nm per degree
13
14 //calculations
14 // calculations
15 i = V/(R); // current in A
16 Td = N*B*i*l*r; // deflecting Torque in Nm
17 //Tc=Td;
18 //Tc = (25*10^{-7})*theta
```

```
19 theta = Td/(Tc); //defelction in
20
21 //result
22 mprintf('defelction = %3.0 f ",theta);
```

Scilab code Exa 5.12 determine the control constant of spring

```
1 //
2 //chapter 5 example 12
3 clc;clear all;
4
5 //variable declaration
                // VOIDAS
// coil resistance in
// flux density in Wb/m^2
// length in m
// width in m
6 V = 0.1;
       = 200;
7 R
       = 0.2;
8 B
       = 0.03;
91
      = 0.025;
10 r
11 N
       = 100;
12 Tc = 25*10^{-7}; //torque in Nm per degree
13 theta = 100; //deflaction in
14 p = 1.7*10^{-8}; // specific resistance of
    coil in —m
        = 30;
15 d
16 d1 = 25;
17
18
19 //calculations
20 i = V/(R);
                                 //current in A
21 Td = N*B*i*l*r;
                                 //deflecting Torque
    in Nm
                              //control constant
22 K = Td/(theta);
  of spring in N-m
23 l = (d+d1)*2*100*10^-3; //length of copper
```

```
coil in m
24 R1 = (R*20)/(100);
25 a = (p*1)/(R1); //area of x-section of
    copper wire inm^2
26 D = sqrt((4*a)/(%pi)); //diameter of
    wire in mm
27
28 //result
29
30 mprintf("diameter fo wire = %3.3 f mm",(D*10^3));
```

Scilab code Exa 5.13 calculate the value of current in the wire

```
1 //
```

```
2 //chapter 5 example 13
3
4 clc;clear all;
5
6 //variable declaration
                         //voltage in V
7 V1 = 50 * 10^{-3};
8 I1 = 5;
                         //current in A
                         //current in A
9 I2 = 10;
10 v1
       =4;
11 v2
       =4.2;
12
13 //calculations
14 / v1 = (r+R1)*I1
15 / v1 = (r+R1) * I2
16 //since potential difference is same in both cases
17 / v1 = v2
18 R1 = V1/(I1);
19 R2 = V1/(I2);
       = ((v2*R2) - (v1*R1))/(v1-v2);
20 r
```

21 v = (r+R1)*v1; // potential difference in V 22 I = v/(r); // current when neither meter in the circuit in A 23 24 // result 25 mprintf("current when neither meter in the circuit = %3.2 f A", I);

Scilab code Exa 5.14 Finding the minimum resistance

```
2 //chapter 5 example 14
3 clc;clear all;
4
5 //variable declaration
6 V
      =
             250; //voltage in V
       = 100; //resistance in
= 400; //resistance in
7 R.A
8 RB
        = 0.005; //resistance in
//error in measuring voltage
9 x
     in
10
11
12 //calculations
13 I = V/(RA+RB); //current flowing through
     resistance in A
14 VB = I * RB;
                            //potential drop acreoss
     resitance in V
15 //Req = RA+((r*RB)/(r+RB))
18 //V1 = Ieq * (r * RB) / (r + RB)
19 // V1 = (V*(r+RB))*(r*RB))/((r+RB)*((RA*(r+RB))+(r*RB)))
```

```
RB)))
20 //V1 = (V*r*RB) /((r+RB)*((RA*(r+RB))+(r*RB)))
21 //V1 = (200*r)/(80+r)
22 V1 = VB*(1-x); //voltage measured with 0.5%
error
23 r = (V1*80)/(200-V1); //solving equations
we get minimum resistance in
24
25 //result
26 mprintf("minimum resistance = %3.2 f ",r);
```

```
Scilab code Exa 5.15 Find the total inductance
```

```
1 //
```

```
2 //chapter 5 example 15
3 clc; clear all;
4
5 //variable decalartaion
6 C = 1*10**-7;
                                //spring torsion
 constant in N-m/degree
7 I = 10; //current in A

8 theta = 110; //full-deflection in

9 L1 = 2*10**-6; //initial inductance in
    uH
10
11 //calculations
12 Td =C*theta;
                                    //full-scale
      deflecting torque in N-m
13 //dM/dtheta = x
14 x = Td/(I^2);
15 theta1 = ((theta*%pi)/(180)); //conversion of
radians to degrees
16 dM = x*theta1; //change in inductance
```

```
in uH
17 M = L1+dM; //total inductance in uH
18
19 //result
20
21 mprintf("total inductance = %3.3f uH",(M*10^6));
```

Scilab code Exa 5.16 Find the difference in the readings

```
1 //
2 //chapter 5 example 16
3
4 clc;clear all;
5
6 //variable declaration
            = 90;
                           //full-deflection in
7 theta
            = 0.4 * 10^{-4};
8 Td
                              //full-scale
     deflecting torque in Nm
9 I
            = 0.05; //current in A
                              //initial inductance in
10 M
            = 0.25;
     Η
                          //voltage in V
11 V
            = 50;
                              //current in A
12 I
            = 0.05;
                           //frequency in Hz
13 f
            =50;
14 V2
            = 25;
15 R
           = 1000;
16
17
18 //calculations
19 //dM/dtheta = x
20 x = (Td/(I^2)); //change in inductance in
      Η
         = (Td/(I^2))*((theta*%pi)/(180));
21 dM
```
```
//change in inductance in H
22 M1
          = M+dM;
                            //total mutual inductance in
      Η
            = V/(I);
                                 //the resistance of
23 R
      voltmeter in
24 Z
            =sqrt((R**2)+((2*%pi*f*M1)**2));
                                                       11
      toatal impedance in
           = (V/(Z))*R; //voltmeter reading in
= V-V1; //difference in reading in
          = (V/(Z)) * R;
                                 //voltmeter reading in V
25 V1
26 d
      V
                                 //current through
27 I1
            = V2/(R);
      instrument in A
  theta1
          = ((theta*%pi)/(180))*((I1/(I))^2);
28
               //defelction
                                     //total mutual
          = M+(x*theta1);
29
  M2
      inductance in H
         = sqrt((R**2)+((2*%pi*f*M2)**2));
                                                      11
30 Z1
      toatal impedance in
                                     //voltmeter reading
           = (V2*R)/(Z1);
31 V21
      in V
             = V2 - V21;
                                //difference in
32 d1
      voltmeter reading in V
33
34 // result
35 mprintf("impedancewhile measuring the voltage = \%3.3
      f ",Z1);
36 mprintf("\ndifference in reading = \%3.1 \text{ f V}",d);
37 mprintf("\ndifference in reading when 25v is used =
       \%3.2 f V, d1);
```

Scilab code Exa 5.17 Determine the range of the instrument and current and deflect
1 //

```
2 //chapter 5 example 17
3 \text{ clc};
4 clear all;
5
6 //variable declaration
9 theta3 = 180; // defelction in

10 I1 = 30; // current
7 theta1 = 90; //defelction in
                           //defelction in
                                //current in A
10 I1
                                //current in A
11 I4
               = 25;
12
13 //T is proportional to I * 2
14 //T is proportional to theta
15 //theta is proportional to math.sqrt (I)
16 //calculations
17 I2 = I1*sqrt((theta2/(theta1)));
                                              //current
      corresponding to deflection of 360
  I3 = I1*sqrt((theta3/(theta1)));
                                              //current
18
      corresponding to deflection of 180
19 theta4 = theta1*((I4/I1)^2);
                                          //defelction
      corresponding tocurrent of 25 A
20
21 //result
22 mprintf("current corresponding to deflection of 360
         = \%3.2 \text{ f A}", I2);
23 mprintf("\ncurrent corresponding to deflection of
      180 = \%3.2 \text{ f A}^{"}, \text{I3});
24 mprintf("\ndefelction corresponding tocurrent of
      25 \ \mathrm{A} = \% 3.2 \ \mathrm{f} ",theta4);
```

```
Scilab code Exa 5.18 Calculate the reading of an electro dynanometer
```

```
2 //Chapter 5 example 18
3
4 \, \operatorname{clc};
5 clear all;
6
7 //variable declaration
            = 80;
8 p
9 q
           = 60
10
         = 80-60* \operatorname{sqrt}(2)* \sin(\operatorname{theta}+\% \operatorname{pi}/6)
11 //i
12 // i ^2
                 = x = (80)^2 - ((2*80*60*sqrt*sin(theta+(
      \% pi/6) ) 0^2 + ((80<sup>2</sup>) * (sin (theta + (\% pi/6))^2))
  //x = a-b*(sin(theta+(\%pi/6))^2)+(c)*(sin(theta+(
13
      %pi/6))^2)
14 //x = (80)^2 - ((2*80*60*sqrt*sin(theta+(\%pi/6)))^2)
      +(((80^2)/2)*(1-(\cos(\text{theta}+(\% \text{pi}/6))^2)))
            = a - (b + sin (theta + (\% pi/6))) + (c/2) - cos (theta)
15
  //x
      +((pi/6)^{2}))
            = p^{2};
16
    а
            =(2*(q<sup>2</sup>)*(sqrt(2)));
17
    b
18
             = (q*sqrt(2))^2;
    С
            = (1/2*\%pi)*{(integral(x*dtheta))}(0-2*\%pi)
19
    //x
    //applying integration
20
            =(a+(c/2));
21
    у
22
            = (1/%pi)*y*(%pi);
                                               //\mathrm{Irms}^2
    х
23
    Irms
          =sqrt(x); //reading in A
24
25
    //result
26
    mprintf("electrodynamometer instrument indicates
27
        the rms value of the current therefore the
        dreading will be equla ")
    mprintf("Irms = \%3.2 f A", Irms);
28
```

Scilab code Exa 5.19 Find the magnification

```
1 //
```

```
2 //chapter 5 example 19
3 \text{ clc};
4 clear all;
5
6 //variable declaration
7 L
                        //length of working wire at
          = 150;
     room temperature in mm
8 \text{ alpha} = 16*10^{-6};
                           //coefficient of linear
      expansion
9 T
             = 85;
                           //temperature in
                                                  С
                        //initial sag in mm
10 Si
           =1;
11 //calculations
12 dL
          = alpha*L*T;
                        //increase in length of the
      wire when gets heated through 85 C in mm
         = sqrt(L/(2*dL)); //magnification with no
13 M
      intial sag
14 S
          = sqrt((L*dL)/(2)); //Sag in mm
15 Sn
         = S-Si;
                            //net increase in Sag in mm
        = Sn/(dL);
                            //magnification with initial
16 M1
       Sag of 1 mm
17
18 //result
19 mprintf("magnification with no initial sag = \%3.2 f",
     M);
20 mprintf("\nSag = \%3.2 f mm", S);
21 mprintf("\nnet increase in Sag =%3.2f mm", Sn);
22 mprintf("\nmagnification with initial Sag of 1 \text{ mm} =
     %3.2 f",M1);
```

Scilab code Exa 5.20 Determine the magnification

```
2 //chapter 5 example 20
3 \, \text{clc};
4 clear all;
5
6 //variable declaration
7 L
      = 170;
                   //length of the wire in mm
         = 0.2; //increase in length in mm
8 dL
         =100; //length of the second wire in mm
9 L1
10
11 //calculations
12 S= sqrt((L*dL)/(2));//Sag i13 S1= sqrt((L1*S)/(2));//Sag in mm
12 S = sqrt((L*dL)/(2));
                                            //Sag in mm
     = S1/(dL);
                              //magnification
14 M
15
16 //result
17 mprintf ("magnification = \%3.1 f", M);
```

Scilab code Exa 5.21 Determine the current

```
1 //
```

```
2 //Chapter 5 example 21
3
4 clc;
5 clear all;
6
7 //variable declaration
8 I = 10; //current in A
9 //e = (alpha*(dt))+(b(dt^2))= alpha*dt
10 //dt = (K1*(I^2)*R)
11 //theta = K2*e
12 //theta = K2*e = K2*K1*alpha*dt = K2*K1*alpha
```

```
*(I^2)*R

13 //thetaF = K3*(I^2)

14 //K3 = (thetaF)/(I^2);

15 x = 1/(I^2);

16 mprintf("K3 = %3.2f *thetaf",x);

17 //K3 =thetaF*x

18 mprintf("\ntheta = theatF/3");

19 //I = sqrt((thetaF/3)*((K3)))

20 //I = sqrt((thetaF/3)/K3)

21 I = sqrt((1/3)*((1/x)))

22

23

24 //result

25 mprintf("\ncurrent = %3.2f A",I);
```

Scilab code Exa 5.22 Determine the form factor of the current wire

```
1 //
2 // chapter 5 example 22
3
4 clc;
5 clear all;
6
7 //variable declaration
  Irms = 32; //measured reading
8
     reading in A
                   //rectifier ammeter
   Ir = 30;
9
     reading in A
            = 1.11; //form factor for sinusoidal
10 Ks
    wave
11
12 //calculations
13 Iav = Ir/(Ks); //average value of current
```

```
under measurement in A
14 e = ((Irms)/(Iav)); //percentage
errror in %
15
16 //result
17
18 mprintf("form factor = %3.3 f ",e);
```

1 //

Scilab code Exa 5.23 Estimate the peak and rms values of current and calculate the

```
2 // chapter 5 example 23
3 \, \text{clc};
4 clear all;
5
6 //variable declaration
7 Ir = 2.22; //measured reading
    reading in A
            = 1.11; //form factor for sinusoidal
8 Ks
     wave
9
10 //calculations
11 Iav = Ir/(Ks); //average value of current
     under measurement in A
12 Imax = 2*Iav; //peak value of current in A
13 Irms = Imax/(sqrt(3)); //RMS value of
     current in
            = ((Ir-Irms)/(Irms))*100;
14 e
                                           percentage errror in %
15
16 // result
17 mprintf("peak value of current = %3.2 f A", Imax);
18 mprintf("\nRMS value of current = \%3.3 f A", Irms);
```

19 mprintf("\npercentage error = %3.2f percentage(low)"
 ,e);

Scilab code Exa 5.24 Determine the capacitance

1 //

```
2 //chapter 5 example 24
3
4 clc; clear all;
5
6 //variable declaration
7 Iav = 40*10^{-3}; //average value of current
     in mA
8 Ks = 1.11; //assuming form factor for
     sinusoidal wave
         = 50; //frequency in Hz
9 f
         = 10^{5}; //voltage in V
10 V
11
12 //calculations
13 Irms = Iav*Ks; //RMS value of current in A
14 //Irms = V/Xc = 2*\% pi*f*C*V
             = Irms/(2*%pi*f*V); //capacitance to
15 C
      be connected in pF
16
17 // result
18
19 mprintf("capacitance to be connected = \%3.0 \,\mathrm{f} pF",(C
     *10^12));
```

Scilab code Exa 5.25 determine the reading of moving coil ammeter and moving iron

```
1 //
2 // chapter 5 example 25
3
4 clc;clear all;
5
6 //variable declaration
         = 200; //emf of peak value in V
= 10; //resistance in
7 Emax
8 R
9
10 //calculations
11 Imax = Emax/(R); //peak value of current
     in A
              = (2*Imax)/(%pi); //reading of moving
12 Iav
     -coil ammeter in A
13 Irms = Imax/(sqrt(2)); //reading of moving
     -iron ammeter in A
14
15 //result
16 mprintf("reading of moving -coil ammeter = \%3.2 f A",
     Iav);
17 mprintf("\nreading of moving -iron ammeter = \%3.2 f
     A", Irms);
18 mprintf("\nreading of hot-wire ammeter = \%3.2 f A",
     Irms);
```

Scilab code Exa 5.26 find the reading on hot wire and moving coil in the circuit

```
2 //Chapter 5 example 26
3
4 clc;
```

```
5 clear all;
6
7 //variable declaration
                                  //maximum value of
8 Vmax
               = 100;
      applied voltage in V
9 R
               = 2;
                                  //resistance in
10
11
12 //calculations
13 Imax
                = Vmax/R;
                                       //maximum value of
      current flowing through instruments in A
14 mprintf("x = (Imax^2) * ((sin(theta))^2)");
15 // Irms = \operatorname{sqrt}((1/2*\% \operatorname{pi})*\{(\operatorname{integral}(x*dtheta))\}
      (0 - \% pi))
16 Irms = sqrt(((Imax<sup>2</sup>)/(2*%pi))*((%pi/2)));
17 mprintf("\n y = (\text{Imax} * \sin(\text{theta}))");
18 //Iav = sqrt ((1/2*\% pi)*{(integral(y*dtheta))}
      (0 - \% pi)
            = Imax/%pi;
19 Iav
20
21
22 / result
23 mprintf("\nthe hot-wire ammeter reads rms value = %3
      .2 f A", Irms);
24 mprintf("\nmoving coil ammeter reads average value =
       %3.2 f A", Iav);
```

Scilab code Exa 5.27 Determine the reading of the ammeter

```
2 //Chapter 5 example 27
3
4 clc;
```

```
5 clear all;
6
7
8 //variable declaration
9 //V
        = (5 * \sin(\text{theta})) + (0.6 * \sin(3 * \text{theta})) \setminus
10
11 a
             = 5;
12 b
             = 0.6;
                                //resistance in
13 rd
                  = 35;
                  = 30;
                                //resistance in
14 ra
15
16 //calculations
17 R
            = (3*rd)+ra;
                                          //resitance in
               = v/R
18 //i
                 = (5 * \sin( \text{theta}) / \text{R}) + (0.6 * ( \sin( 3 * \text{theta}) / \text{R}))
19 // i
      )
20 x1
                  = a/R;
21 y1
                 =b/R;
                 = (x_1 * \sin(theta)) + (y_1 * \sin(3 * theta))
22 //i
                 = ((1/\% pi) * \{(integral(i*dtheta))\}(0-\% pi)
23 //Iav
      ))
                 = (1/\% pi) * ((0.5 * sin (theta)) - (0.006/3) * (
24 //Iav
      \cos(3 * \text{theta})))
25 // solving above equation we get (1/\% pi) * (1)
                  = (-0.05*((cos((180*%pi/180))-cos(0))))
26 p
       -((0.002*((cos(3*180*%pi/180))-cos(3*0))));
27 z
             = (1/%pi)*p;
                                          //average value in
      mA
28
29
30 //result
31 mprintf("average value reading of PMMC ammeter = \%3
       .1 f mA",(z*10^3));
```

Scilab code Exa 5.28 Calculate the power dissipated in the rectifying device

```
//Chapter 5 example 28
2
3
4 clc;
5 clear all;
6
7
8 //variable declaration
                = 230;
                                 //RMS value of voltage
9 V
      applied in volts
10 r1
               = 115;
                             //resistance in
11 r2
              = 115;
                              //resistance in
                              //resistance in
12 r3
                = 575;
13
14
15
16 //calculations
17 Vmax
             =230*sqrt(2);
           =r1+r2;
                                 //resiatance in one
18
  R1
      directions in
19 R2
           =r2+r3;
                                //resiatance in other
      directions in
                = Vmax/R1;
                                     //current(maximum
20
  Imax1
      value) in one direction in A
21
  Imax2
                = Vmax/R2;
                                     //current(maximum
      value) in other direction in A
               = Iav1 - Iav2
22 //Iav
23 //x
               = (Imax1 * sin(theta))
               = ((1/2*\% pi)*{(integral(x*dtheta))})(0-
24 //Iav
      %pi)))
25 / y
               = (Imax2*sin(theta))
               = ((1/2*\% pi)*{(integral(y*dtheta))}(0-
26 //Iav
      %pi)))
                =-((\cos(180*\% pi/180))-\cos(0))
27 z1
                = -((cos(180*%pi/180))-cos(0))
28 z2
             = ((Imax1*z1) - (Imax2*z2));
29 A
```

1 / /

```
= A/(2*%pi);
30 Iav
31 / x1
                 = (Imax1 * sin(theta))^2
               = ((1/2*\% pi)*{(integral(x1*dtheta))})(0-
32 / I1
      %pi)))
33 / y1
                 = (Imax2*sin(theta))^2
34 / I2
               = ((1/2*\% pi)*({(integral((1-\cos(2*theta))))})
      /2*dtheta)) (0-\%pi))) - {(integral((1-cos(2*theta))))}
      /2*dtheta)) \} (0-\%pi)))
  //\text{Irms} = \text{I1} + \text{I2}
35
36 //Irms = ((1/2*\%pi)*{(integral(y1*dtheta))}(0-\%pi))
                =-((cos(2*180*%pi/180))-cos(180*%pi/180)
37 Z1
      );
                = -((cos(2*180*%pi/180))-cos(180*%pi
38 Z2
      /180));
                = (((Imax1^2)/(2*2*%pi))*(%pi-0))+(((
39
  Irms1
      Imax2^2)/(2*2*%pi))*(%pi-0))-Z1+Z2
                =sqrt(Irms1);
40 Irms
41 P
                = (1/2) * (((V^2)/R1) + ((V^2)/R2));
42 Irms11
                     1;
                =
                = 1/3;
43 Irms22
                = (((Irms11<sup>2</sup>)*r2)+((Irms22<sup>2</sup>)*r3))/2;
44 Pd
45
46
47 //result
48 mprintf("Iav = \%3.2 f A", Irms1);
49 mprintf("\npower taken from the mains = \%3.2 f",P);
50 mprintf("\npower dissipated in rectifying device = 33
      .2 f W', Pd);
```

Scilab code Exa 5.29 Determine the value of v

```
2 //Chapter 5 example 29
3
4 clc;
5 clear all;
6
7
8 //variable declaration
9 V1 = 1000;
                   //potential of vane in volts
10
11 //calculations
12 / v = VA-VB
13 mprintf("theta 10 S D");
14 mprintf("\ntheta praportional to Tt praportional to
      2\!*\!\mathrm{V1}\!*\!\mathrm{V"} )
15 mprintf("\n10 praportional to 2 praportional to 1000
     ");
16 mprintf("\ndividing above expressions ")
17 v = (10/25) * (2500/2000);
18
19 / result
20 mprintf("v = \%3.2 \text{ f volt}",v);
```

Scilab code Exa 5.30 Find the potential difference

```
2 //chapter 5 example 30
3
4 clc;clear all;
5
6 //variable declaration
7 d = 0.08; //diameter in m
8 D = 0.004; //distance between plates in m
9 F = 0.002; //force in Newton
```

```
10
11 //calculations
12 e0 = 8.85*10<sup>-12</sup>; //permittivity in N
13 A = (\pi/4)*(d^2); //area of the plates in
     m**2
14 x
         = (F*2*(D^2))/(e0*A);
                               //potential diference in
15 V =
          sqrt(x);
      V
16
17 //result
18 mprintf("potential diference = \%3.1 \text{ f V}", V);
19 mprintf("\nNote: final answer in textbook is wrong
     printed")
```

Scilab code Exa 5.31 Find the change in capacitance

```
2 //chapter 5 example 31
3
4 clc;
5 clear all;
6
7 //variable declaration
8 d
        = 0.1;
                       //diameter in m
         = 0.005; //force in Newton
9 F
       = 10000; //potential diference in V
10 V
       = 8.85*10^-12; //permittivity in N
11 eO
12 d2
           = 26.4*10<sup>-3</sup>; //distance between plates in
      mm
13 d1
           = 25.4*10<sup>-3</sup>; //distance between plates in
      mm
14
15 //calculations
```

```
16
      = (\%pi/4)*(d^2); //area of the plates in
17 A
     m**2
        = sqrt((e0*A)/(2*F));
18 x
19 d2
         = x * V;
                              //distance between
     plates in mm
20 //C
        = e0 * A/d
         = 1/d1;
21 x1
22 x2
        = 1/d2;
        = e0*A*(x1-x2); //change in capacitance
23 C
     in uF
24
25 // result
26 mprintf("change in capacitance due to change in
     distance between plates from 26.4 to 25.4 mm = \%3
     .2f u uF",(C*10^12));
```

Scilab code Exa 5.32 Finding the capcaitance

```
1 //
2 // chapter 5 example 32
3
4 \, \text{clc};
5 clear all;
6
7 //variable declaration
8 K = 0.0981 * 10^{-6};
          = 80;
                                //full scale of
9 theta
               on in
= 1000; //voltage in V
= 10*10^-12; //capa
      deflection in
10 V
11 C
                                           //capacitance in
       F
12
```

```
13 // calculations
14 //x =dC/dtheta = (2*K*theta)/V^2
15 x = (2*K*theta)/V^2; //rate of change
        of capacitance
16 dC = x*(theta/180)*%pi;
17 C1 = C+dC;
18
19 //result
20 mprintf("capacitance when reading 1kV = %3.3 e F",C1)
        ;
```

Scilab code Exa 5.33 Determine the pd for different deflections

```
1 //
```

```
2 //chapter 5 example 33
3
4 clc;
5 clear all;
6
7 //variable declaration
8 //x = dC/d(theta)
        = (1/2) * (V^2) * (dC/d(theta))
9 //Td
10 x = 0.5*10^{-12};
                                  //dC/d(theta) in
     pF/degree
    = 1.5*10^{-12};
11 y
                                  //dC/d(theta) in
     pF/degree
12 T = 8*10^{-6}; //torison constant in Nm
13 N1
         =100;
14 N2
         =35;
15
16 //calculations
17 x1 = x*(180/%pi);
                                 //dC/d(theta) in
    pF/radian
```

```
18 y1 = y*(180/%pi);
                                      //dC/d(theta) in
    pF/radian
\begin{array}{rcl} 19 & //Td & = Tc = T*N*(\% pi/180) \\ 20 & Td & = T*N1*(\% pi/180); \end{array}
                                              ||
    deflecting torque in N-m
          = sqrt((2*Td)/x1);
                                       //voltage
21 V1
     required in V
                = T*N2*(%pi/180);
22 Td1
                                               deflecting torque in N-m
23 V2 = sqrt((2*Td1)/y1); //voltage
      required in V
24
25 // result
26 mprintf("voltage deflection at 100 = \%3.0 \text{ f V}", V1);
27 mprintf("\nvoltage deflection at 100 = \%3.0 \text{ f V}", V2);
```

Scilab code Exa 5.34 Determine the pd for required to pull the plate three quarter

```
1 //
```

```
2 //chapter 5 example 34
3
4 clc;
5 clear all;
6
7 //variable declaration
8 eO
             =8.854*10^-12;
9 d
              =0.05;
10 er
              = 1;
              = 0.25;
11 a
12 V1
              = 12000;
                                  //voltage in V
                                  //voltage in V
13 V2
             = 32000;
14
15
```

```
16 //calculations
17 //x-x0 = (1/2) * ((V^2)/k) * (dc/dx)
18 //C =(2*e0*er*A)/d
19 //dC
         =(2*e0*er*a*x)/d
20 // y = dC/dx = (2*e0*er*a)/d
21 y
        = (2*e0*er*a)/d;
22 X1
          = 0.25/4;
23 // A =x1+x01 = (1/2) * ((V1^2)/k) * (dc/dx)
            = 0.25/2;
24 X2
25 //B = x^2 + x^0 = (1/2) * ((V^2) / k) * (dc/dx)
26 //C = B/A = (V2/V1)^2
27 C
         = (V2/V1)^{2};
28 x01
          = (X2 - (C * X1)) / (1 - C);
              = ((1/2)*((V1^2))*(y))/(X1-x01);
29 k
30 X3
          = (3/4) * 0.25;
31 V
       = sqrt(((X3-x01)*2*k)/y);
                                               //
     voltage in V
32
33 // result
34 mprintf("voltage required to pull the plate three
     quarte way in = \%3.3 \,\text{f KV}, (V*10^-3));
```

Scilab code Exa 5.35 Calculate the spring constant

```
2 //chapter 5 example 35
3 
4 clc;
5 clear all;
6 
7 //variable declaration
8 e = 8.85*10^-12;
9 V = 10000; //voltage in V
```

10 r = 40*10^-3; //radius in m
11
12 //calcaulations
13 d = (4/2)*10^-3; //voltage in V
14 theta = (100)*(%pi/180);
15 k = (2.5*e*(r^2)*(V^2))/(d*theta);
16
17 //result
18 mprintf("spring constant = %3.3e Nm per radian",k);

 $Scilab \ code \ Exa \ 5.36$ Determine the deflection of the instrument

```
2 //chapter 5 example 36
 3
4 \text{ clc};
 5 clear all;
 6
 7 //variable declaration
                  declaration
= 105; // deflection in
= 20; // current in A
= 20; // current in A
= 50; // frequency in Hz
= 75; // frequency in Hz
 8 theta1
9 I1
10 I2
11 f1
12 f2
13
14
15 //calculations
16 theta = (theta1)*((I2/I1)^2)*(f2/f1);
17
18 //result
19 mprintf("deflection of the instrument while
       measuring 20 \text{ A} = \%3.1 \text{ f} ",theta);
```

Scilab code Exa 5.37 Determine the voltage

```
2 // chapter 5 example 37
3 clc;
4 clear all;
5
6 //variable declaration
              = 240; //voltage in V
= 300; // defelection in
= 180; // defelection in
7 V1
8 theta1
9 theta2
10
11 //calculations
12 //T praportional to V^2/Z *(f*cos(alpha)*(sin(beta))
13 //T praportional V^2
14 //theta praportional to V^2
15 V2 = V1*sqrt(theta2/theta1);
16
17 // result
18 mprintf("voltage for deflection of 180 = 3.0 f",
     V2);
```

Chapter 6

Extensions of instrument range

Scilab code Exa 6.1 Finding the value of shunt resistance

```
2 //chapter 6 example 1
3
4 clc;
5 clear all;
6
7 //variable declaration
                                //full scale
8 Im = 50*10^{-6};
  deflection current in A
9 \text{ Rm} = 1000;
                            //instrument resistance in
                                //total current to be
10 I = 1;
     measured in A
11
12 //calculations
13 Rs = (\text{Rm}/((I/(Im))-1)); //resistance of
     ammeter in
14
15
```

Scilab code Exa 6.2 Find the current range of instrument and the value of resistan

```
2 //chapter 6 example 2
3 clc;clear all;
4
5 //variable declaration
6 \text{ Rm} = 1;
                                                     //
     instrument resistance in
7 \text{ Rse} = 4999;
     //series resistance in
        = 250;
8 V
                                                   //full
     -scale deflection voltage in V
9 Rs
         = 4999;
                               //Shunt resistance in
        (\text{Rs} = 1/(499))
       = 50;
10 I1
                                                      11
      full-scale defelction current in A
11
12 //calculations
13 Rs1 = 1/(Rs);
                                      //full-scale
      = V/(Rm+Rse);
14 Im
      deflection current in A
15 I
      = Im*(1+(Rm/Rs1));
                                    //current in A
16 N
        = I1/(Im);
17 Rsh = Rm/(N-1);
                                          //shunt
     resistance in
```

```
f ",Rsh);
```

Scilab code Exa 6.3 Find the shunt resistance required

```
2 //chapter 6 example 3
3
4 clc;clear all;
5
6 //variable declaration
7 \text{ Rm} = 10;
                                                        11
      instrument resistance in
                                                //full
8 \text{ Im} = 0.05;
      scale defelection current in A
9 I
                                                     //
        =100;
      current to be measured in A
10 V
        = 750;
                                                        11
      voltage to be measured in V
11
12 //calculations
        = (V/(Im))-Rm; //series resistance in
13 R
14 N
        = I/(Im);
                                                   //power
```

```
of shunt
15 Rs = Rm/(N-1); //resistance in
16
17
18
19 //result
20 mprintf("resistance to be connected in series to
      enable the instrument to measure current upto 1A
      is %3.5 f ",R);
21 mprintf("\nshunt resistance required for full-scale
      defelction with 10v is %3.4 f ",Rs);
```

Scilab code Exa 6.4 Calculate the resistance parallel and series

```
2 //chapter 6 example 4
3 clc;clear all;
4
5 //variable declaration
6 \text{ Rm} = 5;
                                                        11
     instrument resistance in
7 \text{ Im} = 15 * 10^{-3}:
                                                    //full
      scale defelection current in A
8 I
                                                   //
        =1;
      current to be measured in A
9 V
        = 10;
                                                        11
      voltage to be measured in V
10
11 //calculations
12 N = I/(Im);
                                                   //power
      of shunt
```

```
13 Rs = Rm/(N-1); //resistance in
14 R = (V/(Im))-Rm; //series resistance in
15
16
17 //result
18 mprintf("resistance to be connected in parallel to
enable the instrument to measure current upto 1A
is %3.5f ",Rs);
19 mprintf("\nshunt resistance required for full-scale
defelction with 10v is %3.4f ",R);
```

Scilab code Exa 6.5 Finding the current range of instrument

```
1 //
```

```
2 //chapter 6 example 5
3 clc;clear all;
4
5 //variable declaration
6 \text{ Rm} = 2;
                                                           //
      instrument coil resistance in
7 V = 250;
                                                        //
      full-scale reading in V
8 \text{ Rs} = 5000;
                                                     11
      series resistance in
9 Rsh = 2*10^{-3};
                                                           //
      shunt resistance in
10
11
12 //calculations
```

```
13 Im = V/((Rm+Rs));
     //current flowing through the instrument for full
     -scale deflection in A
                                    //current through
14 Is = (Im*Rm)/(Rsh);
     shunt resistance in A
15 I = Im+Is;
                                                11
     current range of instrument in A
16
17 // result
18 mprintf("current flowing through the instrument for
     full-scale deflection is %3.5fA", Im);
19 mprintf("\ncurrent through shunt resistance is %3.2 f
      A", Is);
20 mprintf("\ncurrent range of instrumentis %3.1f A",I)
     ;
```

Scilab code Exa 6.6 Finding the shunt current and the value of R

```
1 //
2 //chapter 6 example 6
3 clc;clear all;
4
5 //variable declaration
                                            //shunt
6 \text{ Rsh} = 0.02;
      resistance in
7 V
        = 0.5;
                                                 //potential
       difference across the shunt in V
        = 1000;
                                           //resistance in
8 Rm
        = 10;
                                                  //current
  I1
9
      in A
                                                  //current
10 \quad I2 = 75;
```

```
in A
    = 100; //current = 40; //deflection %
                          //current in A
11 I
12 x
13
14 //calculations
15 Is = V/(Rs);
                                               //
     current through shunt in A
16 Im
        = V/(Rm);
                                            //current
     through ammeter for full-scale defelction in A
17 V1
        = I1*Rsh;
     //voltage across shunt for 10A in V
        = V1/(Im);
                     //resistance for the
18 R1
     ammeter for a current of 10 A for full-scale
     defelction in
19 V2
       = I2*Rsh;
     //voltage across shunt for 75A in V
        = V2/(Im);
20 R2
                              //resistance for the
     ammeter for a current of 75 A for full-scale
     defelction in
         = I * (100 / (x));
21 I3
                                 //full-scale
     defelction current when 100 A gives 40%
     defelction
22 V3
       = I3*Rsh;
     //voltage across shunt for 250 A in V
23 R3
        = V3/(Im);
                              //resistance for the
     ammeter for a current of 250 A for full-scale
     defelction in
24
25
26 //result
27 mprintf("current through ammeter for full-scale
     defelction is \%3.2 \text{ f mA}",(Im*10^3));
28 mprintf("\nResistance for the ammeter for a current
     of 10 A for full-scale defelction is %3.2f ",R1
     ):
29 mprintf("\nResistance for the ammeter for a current
     of 75 A for full-scale defelction is %3.2 f ",R2
     );
```

```
30 mprintf("\nResistance for the ammeter for a current
        of 250 A for full-scale defelction is %3.2f ",
        R3);
```

Scilab code Exa 6.7 Finding the resistance that must put in series

```
2 //chapter 6 example 7
3
4 clc;clear all;
5
6 //variable declaration
                           //flux density of the
7 B
            = 0.5;
     magnetic field in Wb/m**2
                          //number of turns in coil
8 N
           = 100;
            = 0.04;
                              //length in m
91
                               //width in m
10 r
            =0.03;
           = 120*10^-6;
                                   //controlling torque
11 Tc
      in N-m
                      //volts per division in V
12 v
          = 1;
                          //number of division on full
      = 100;
13 n
     -scale
14 \text{ Rm} = 0;
15
16 //calculations
17 x
        =B*N*1*r;
                      //current for full-scale
18 I
        = Tc/(x);
     deflection in A
                          //full-scale reading of
19 V
         = n * v;
     instrument in V
        = (V/(I)) - (Rm);
                                   //External
20 R
     resistance required to be put in series with the
     coil in
```

Scilab code Exa 6.8 Calculate the error

```
1 //
2 //chapter 6 example 8
3 clc; clear all;
4
5
6 //variable decalaration
            = 5; //coil resistance in
7 Rm
            = 0.00075; //coil resistance in
8 Rm1
           = 0.015; //full-scale defelction
9
  Ιm
     current in A
10 I
               = 100; //current to be measured in
     А
             = 0.004; //temperature coeficient of
11 T1
     copper in / / C
                0.00015;
                                //temperature coeficient
             =
12 T2
                           / C
      of manganin in /
13 T
              =10;
                           //rise in temperature in C
14
15 //calculations
          = I/(Im); //multiplying power of shunt
= Rm/(N-1); //resistance of manganin shunt
16 N
17 Rs
     in
          = \operatorname{Rm}*(1+(T1*T)); //coil resitance with 10 C
18 Rc
     in temperature in
```

```
19 Rsh = Rm1*(1+(T2*T)); //shunt resitance with
10 C in temperature in
20 In = (Rsh/((Rc+Rsh)))*100; //new instrument
current in A
21 r = (In/(Im))*100; //new instrument
reading in A
22 e = ((r-I)/(I))*100; //percentage error
in %
23
24
25 //result
26 mprintf('percentage error %3.3f percentage",e);
```

Scilab code Exa 6.9 Calculate the error

```
1 //
2 //chapter 6 example 9
3 clc;clear all;
4
5 //variable declaration
                            //instrument resistance in
6 \text{ Rm} = 25;
7 V = 25*10^{-3}; //full-scale deflection
     voltage in V
                           //voltage to be measured in
8 V1 = 10;
      V
9 t
    = 10;
10 \text{ alphac} = 0.004;
11 alpham = 0.00015;
12
13 //calculations
14 Im = V/(Rm); //full-scale deflection in mA
       = (V1/(Im))-Rm; //external resistance in
15 R
```

```
16 Rt = \operatorname{Rm}+\operatorname{R};
17 Rm1 = Rm*(1+(alphac*t)); //instrument resistance
      with 10 C rise in temperature in
18 R1
      = R*(1+(alpham*t)); //series resistance with
      10 C rise in temperature in
19 R2 = Rm1+R1;
                              //total resistance in the
      voltmeter circuit in
      = V1*(Rt/(R2)); //reading of voltmeter at 10
20
  V2
      C rise in temerature in V
       = ((V2-V1)/(V1))*100; //percentage error in %
21 er
22
23 //reult
24 mprintf('percentage error = %3.2f percentage", er);
```

Scilab code Exa 6.10 Determine the ratio of R and r

```
2 //chapter 6 example 10
3
4 clc;clear all;
5
6 //variable declaration
7 \text{ alpha0} = 0.0043;
          = 25; //temperature in C
= 45; //temperature in C
8 t1
9 t2
         = 1.1; //percentage error in %
10 e
11
12 //calculations
13 R1 = ((1+(alpha0*t2))/(1+(alpha0*t2)));
14 / r1 = R1 * r
15 / I2 = V/r1+R
16 //e = (I1 - I2) / 100
17 / I2 = 0.989 I1
```

```
18 //I2 = V/1.0776r+R
19 //I1 = V/R+r
20 //V/(1.0776r+R) = 0.989V/R+r
21 //R/r = 5.96
22 x = 5.96;
23
24 //result
25 mprintf("R/r= %3.2f",x);
```

Scilab code Exa 6.11 Finding the reading of instruments

```
1 //
```

```
2 //chapter 6 example 11
3
4 clc;clear all;
5
6 //variable declaration
7 Rm1 = 1000; //resistance of ammeter of A1 in
8 Rs1 = 0.05; //resistance of shunt connected
      across ammeter A1 in
9 Rm2 = 1500; //resistance of ammeter of A2 in
10 Rs2 = 0.02; //resistance of shunt connected
      across ammeter A2 in
        =10; //current in A
11 I
12
13 //calculations
14 //in normal connection
15 I1 = (Rs1/(Rs1+Rm1))*I; //current through in
     Α
16 I2 = (Rs2/(Rs2+Rm2))*I; //current through in
     Α
```

```
17 //when shunts are interchanged

18 I11 = (Rs2/(Rs2+Rm1))*I; //current through

in A

19 I12 = (Rs1/(Rs1+Rm2))*I; //current through

in A

20 A1 = (I11/(I1))*I; //current through

ammeter in A

21 A2 = (I12/(I2))*I; //current through

ammeter in A

22

23 //calculations

24

25 mprintf("reading of ammeter A1 = %3.0d A",A1)

26 mprintf("\nreading of ammeter A2 = %3.0f A",A2);
```

Scilab code Exa 6.12 Finding the series resistance would be necessary to increase

```
1 //

2 //chapter 6 example 12

3

4 clc;clear all;

5

6 //variable declaration

7 Rv = 2400; //resistance in

8 L =0.6; //instrument inductace in H

9 f = 60; //frequency in Hz

10

11 //calculations

12 XL = 2*%pi*f*L; //instrument reactance

in

13 Z = sqrt((Rv^2)+(XL^2)); //instrument

impedance in

14 //when the instrument range is extended from 120V to
```

```
600V the impedance will have to be made 5 times
      in order to have the same current
15 / (math.sqrt((RV**2)+XL^2)) = 5*Z
16 x
     = (5*Z)^{2};
17 y
         = XL^2;
18 z
         = x - y;
       = (sqrt(z));
19 a
        = a-Rv; //series resistance in
20 R
21
22 / result
23 mprintf("instrument reactance = %3.1 f ",XL);
24 mprintf("\nseries resistance = %3.2 f ",R);
```

Scilab code Exa 6.13 Determine the capacitance of the condenser multiplier require

```
1 //
2 //chapter 6 example 13
3 clc;clear all;
4
5 //variable declaration
6 Cv = 70*10^{-12}; //capacitance in F
                         //electrostatic
7 V
        =10000;
                in V
     measurement
                       //reading in V
         = 100;
8 Vv
9
10 //calculations
11 Vc = V-Vv; //voltage across series capacitor
     in V
12 //since the capacitors are connected in series ,te
     charge on each is same
13 / Vv * Cv = Vc * C
    = (Vv*Cv)/(Vc); //capacitance in uuF
14 C
15
```

```
16 //result
17 mprintf("capacitance of the condenser = %3.4f uuF "
,(C*10^12));
```

Scilab code Exa 6.14 Calculating the necessary values of resistor

```
2 //chapter 6 example 14
3 clc;clear all;
4
5 //variable declaration
          =40;
                   //resistance in
6 Rm
                 //current in mA
          = 1;
7 Im
        = 10; //current in mA
8 I1
      = 20; //current in mA
= 30; //current in mA
9 I2
10 I3
                    //current in mA
11 I4
          = 40;
12 I5
          = 50; //current in mA
13
14 //calculations
15 R1
          = \text{Rm}/(((I1/(Im)))-1);
16 R2
          = (R1+Rm)/(((I2/(Im))));
          = (R1+Rm)/(((I3/(Im))));
17 R3
18 R4
          = (R1+Rm)/(((I4/(Im))));
          = (R1+Rm)/(((I5/(Im))));
19 R5
        = R1-R2; //resistance
= R2-R3; //resistance
20 r1
                                           in
21 r2
                                           in
         = R3-R4; //resistance
= R4-R5; //resistance
= R5; //resistance in
22 r3
                                           in
23 r4
                                           in
24 r5
25
26 / result
27 mprintf("resistance of various section of the
```
ayrtons shunt are = %3.4 f , r1,r2,r3,r4,r5);

Scilab code Exa 6.15 Explaining conversion of multi range voltmeter

```
2 //chapter 6 example 15
3 clc;clear all;
4
5 //variable declaration
6 Si = 0.1*10<sup>-3</sup>; //current sensitivity in mA
       = 500;
                         //meter resistance in
7 Rm
                         //full -scale voltage in V
8 V1
         = 10;
                         //volage range in V
9 V2
        =50;
10 V3 =100;
11 V4 =500;
                         //volage range in V
                          //volage range in V
12
13 //calculations
       = (1/(Si))*10^-3; //voltage sensitivity in
14 Sv
        /V
       =500*10**-3; //Rm in k
15 Rm1
                       //total resistance required
16 RT1
      = Sv * V1;
    in k
        = RT1-Rm1; //additional resistance in
17 R1
     k
18 RT2 = Sv*V2; //total resistance required
     in k
19 R2 = RT2-Rm1-R1; //additional resistance
     in k
        = Sv*V3; //total resistance required
20 RT3
     in k
21 R3
        = RT3 - Rm1 - R2 - R1; // additional
     resistance in k
```

```
22 RT4 = Sv*V4; //total resistance required
in k
23 R4 = RT4-Rm1-R1-R2-R3; //additional
resistance in k
24
25 //result
26 mprintf("additional resistance = %3.2 f k ",R1);
27 mprintf("\nadditional resistance = %3.2 f k ",R2);
28 mprintf("\nadditional resistance = %3.2 f k ",R3);
29 mprintf("\nadditional resistance = %3.2 f k ",R4);
```

Scilab code Exa 6.16 Calculate the flux density and current ratio and phase angle

```
1 //
```

```
2 //chapter 6 example16
 3
 4 clc;clear all;
 5
 6 //variable declaration
 7 Tp = 1; //number of turns on primary
            = 200; //numberof turns on secondary
 8 Ts
9 Is = 5; //secondary current in A
10 Zs = 1; // secondary burden in
11 f = 50; //frequency in Hz
           = 0.0011; //cross sectional area of core
12 a
         in m**2

      13
      S
      = 0.91;
      //stamping faactor

      14
      KT
      =200;
      //turns ratio

      15
      M
      =80;
      //ampere turns

      16
      Vs
      =5;
      //voltage

17
18 //calculations
19 Vs = Is*Zs; //secondary voltage in V
```

```
20 phimax = Vs/(4.44*f*Ts); //flux in the core in
     mWb
        = a*S; //net crss sectional area in m
21 A
     **2
22 Bmax = phimax/(A); //flux density in the core
     in T
        = M/(Tp); //magnetising current in A
23 Im
24 Ip = sqrt(((KT*Is)^2)+(Im**2)); //primary
  current in A
                   //current ratio
25 Ir
      = Ip/(Is);
26 b = ((180/(%pi))*(Im/(KT*Is))); //phase
     angle in (degrees)
27
28 //result
29 mprintf("flux density in the core = \%3.4 f T", Bmax);
30 mprintf("\ncurrent ratio = \%3.2 f", Ir);
31 mprintf("\nphase angle = \%3.2 \text{ f} ",b);
```

Scilab code Exa 6.17 Calculate the flux in the core and ratio error

```
1 //
```

```
2 //chapter 6 example 17
3
4 clc;clear all;
5
6 //variable declaration
7 Tp = 1; //number of turns in primary
8 KT = 200; //turns ratio
9 Is = 5; //secondary current in A
10 Rs = 1.5; //secondary burden in
11 f = 50; //frequency in Hz
12 L =1.5; //iron loss in Watts
13 Ie = 40; //current in A
```

```
14
15 //calculations
16Ts= KT*Tp;17Vs= Is*Rs;//secondary voltage in V
18 phimax = Vs/(4.44*f*Ts); //flux inn the core in
      mWb
          = L/(Vs); //iron-loss in the secondary
19 Il
      side in A
          = KT * II;
                        //iron-loss current in
20 Ip
     primary side in A
21 x =(KT*Is)+Ie;
         = ((-Ie/((x))))*100; //ratio error
22 e
                                                  in
     %
23
24 // result
25 mprintf("flux in the core = \%3.3 e percentage mWb",(
     phimax*10^3));
26 mprintf("\nratio error = \%3.4 f percentage",e);
```

Scilab code Exa 6.18 Determine the ratio and phase angle errors

```
2 //chapter 6 example 18
3
4 clc;
5 clear all;
6
7 //variable declraration
8 Ts = 300; //number of turns in secondary winding
9 Tp = 1; //number of turns in primary winding
10 Is =5; //current in A
11 Zs =(1.5)+(%i*1) //secondary impedance
12 MMF = 100;
```

```
13 Pi = 1.2; //iron loss in watts
                      //turn ratio
14 KN = 300;
15
16
17 //calculations
18 KT =Ts/Tp;
                //turn ratio
19 Es = Is*Zs; //secondary voltage in volts
20 Es1 = sqrt(((real(Es))^2)+((imag(Es))^2));
                                 //magnetising current
21 Im = MMF/Tp;
     in A
     = Pi/Es1;
                                  //energy compnent of
22 E
     exciting current on secondary side in A
23
  Ie = KT * E;
                                 //energy compnent of
      exciting current on primary side in A
                                 //exciting current on
  IO = Im + \%i * Ie;
24
     primary side in A
          =sqrt(((real(I0))^2)+((imag(I0))^2));
25 IO1
26 alpha = atan(Ie/Im);
27 alpha1 = (alpha*180)/%pi;
28 theta = atan(imag(Zs)/real(Zs));
29 theta1 = (theta*180)/%pi;
     = KT+((I01*sin(((theta1+alpha1)*%pi)/180))/Is);
30 KC
         //actual current ratio
      = ((KN - KC) / KC) * 100;
                                          //percentage
31 e
     ratio error in %
32 b
     = (I01*cos((((theta1+alpha1)*%pi)/180)))/(KT*Is)
               //phase angle in radians
33 \text{ b1} = b*(180/\% \text{pi});
34
35
36 //result
37 mprintf("percentage ratio error = \%3.2 f percentage
     ",e);
38 mprintf("\nphase angle = \%3.2 f ", b1);
```

Scilab code Exa 6.19 Finding the primary current and ratio error and number of tur

```
2 //chapter 6 example 19
    3 \text{ clc};
    4 clear all;
    5
    6 //variable declraration
   7 Ts = 200; //number of turns in secondary winding
   8 Tp = 1; //number of turns in primary winding
9 Is = 5; //current in A
10 Zs = (1.2+0.2) + (\%i * (0.5+0.3)); // secondary
                  impedance
11 MMF = 100;
12 Pi = 1.2; //iron loss in watts
13 Ie = 50; //energy component o
                                                                                   //energy component of eddy current
                           in A
14
15
16
17 //calculations
18 KT =Ts/Tp
                                                                                                              //turn ratio
//secondary voltage in
19 //Es = Is *Zs
                           volts
20 Im =MMF/Tp//magnetising current in A21 IO = Im+%i*Ie//exciting current on primary
                           side in A
 22 IO1 = sqrt(((real(I0))^2)+((imag(I0))^2))
 23 alpha = atan(Ie/Im)
24 alpha1 = (alpha*180)/%pi
 25
 26 theta = \frac{1}{2} \frac
27 theta1 = (theta*180)/%pi
 28 Ip = (KT*Is)+(I01*sin(theta+alpha))
                                                                                                                                                                                                                                                         //
                           primary current in A
29 e = ((-I01*sin(((theta1+alpha1)*%pi)/180))/Ip)*100
```

1

Scilab code Exa 6.20 Determine the primary current and phase angle of the transfor

```
2 / /
3 //chapter 6 example 20
4
5 \, \text{clc};
6 clear all;
7
8 //variable declraration
9 Ts = 300; //number of turns in secondary winding
10 Tp = 3; //number of turns in primary winding
11 Is = 5; //current in A
12 Zs = (0.583)+%i*(0.25); //secondary impedance
13 n1
       =10;
14 n2 =5;
15
16 //calculations
                    //turn ratio
17 KT = Ts/Tp;
17 KI -IZ, I
18 Es = Is*Zs;
                         //secondary voltage in volts
                         //total magnetising amp-turns
19 Nm = n1 * Es;
20 Ni =n2*Es; //total iron loss amp-turns
```

```
21 Im =Nm/Tp; //magnetising component of exciting
      current in A
22 Ie = Ni/Tp;
                      11
23 IO = Im+%i*Ie; //exciting current on primary side
     in A
24 I01 = sqrt(((real(I0))^2)+((imag(I0))^2))
25 alpha = atan(Ie/Im); //energy component of
     exciting current in A
26 alpha1 = (alpha*180)/%pi
27 theta = atan(imag(Zs)/real(Zs));
28 theta1 = (theta*180)/%pi
      = sin(((theta1+alpha1)*%pi)/180)
29 x
30 Ip = (KT*Is)+(I01*x); //primary current in A
31 y = cos(((theta1+alpha1)*%pi)/180);
    =(180/%pi)*((I01*y)/(KT*Is)); //phase
32 b
     angle
33
34
35 //result
36 mprintf("primary current = %3.0d A", Ip);
37 mprintf("\nphase angle = \%3.3 f ",b);
```

Scilab code Exa 6.21 Calculate the ratio error and phase angle error

```
2 //Chapter 6 Example 21
3
4
5 clc;
6 clear all;
7
8 //variable declaration
9 R = 25; //rate burden in VA
```

```
//current in A
10 Is
         = 5;
                          //Rs/Es ratio of resistance
11 r
          = 6;
     to reactance
12 IL
        = 0.2;
                          //iron loss in W
13 Im
             = 1.5;
                          //magnetising compnent of
     current in A
14
15
16 //calculations
17 KT
         = 100/5;
                              //turn ratio
                              // Secondary rated
        = R/Is;
18 Es
     voltage in V
19 Zs
          = Es/Is;
                              //total secondary
     impedance in
          = (atan(1/r))*180/\%pi; //angle in
20 theta
               = (Zs*cos(theta*%pi/180))+(Zs*sin(theta))
21 Zs1
     *%pi/180))*%i;
              = KT * 0.04;
                                   //energy component
22 Ie
     of exciting current on primary side
              = ((((Im*sin(theta*%pi/180))+(Ie*cos(
23 r
     theta*%pi/180)))/((KT*Is)+(Ie*cos(theta*%pi/180))
     +(Im*sin(theta*%pi/180))))*100; //percentage
      ratio error in %
              = (180/%pi)*(((Im*cos(theta*%pi/180))-(
24 beta
     Ie*sin(theta*%pi/180)))/(KT*Is)); //phase
     angle erro in
25
26 / result
27 mprintf("percentage ratio error = -\%3.1 f percentage
     ",r);
28 mprintf("\nphase angle error = \%3.4 f ", beta);
```

 $Scilab \ code \ Exa \ 6.22$ Find the ratio and phase angle errors

```
1 //
```

```
2 //Chapter 6 Example 22
3
4
5 \, \text{clc};
6 clear all;
7
8 //variable declaration
          = 12.5;
9 r
                           //rate burden in VA
                          //secondary rated curret in
10 Is
          = 5'
     А
        = 50;
11 f
                          //frequency in Hz
             = 0.96 * 10^{-3};
12 L
              = 16;
                               //magnetising component
13 Im
     of exciting current in A
                               //energy component of
14 Ie
              = 12;
     exciting current in A
                               //secondary rated
15 Is
              = 5;
     current in A
16
17
18 //calculations
19 KN
                              ///nominal ration
          = 1000/5;
                              //turn ratio
20 KT
          = 196/1;
21 Es
         = r/Is;
                              //secondary rated
     voltage in V
         = Es/Is;
                              //secondary impedance in
22 Zs
         = 2*%pi*f*L;
                              //secondary reactance in
23 Xs
24 theta
              = (asin(Xs/Zs))*180/%pi;
                                               //
     secondary circuit phase angle in
              = KT+(((Ie*cos(theta*%pi/180))+(Im*sin(
25
 KC
     theta*%pi/180)))/Is);
              = ((KN-KC)/KC)*100; //ratio error
26 e
              = (180/%pi)*(((Im*cos(theta*%pi/180))-(
27 beta
```

```
Ie*sin(theta*%pi/180)))/(KT*Is)); //phase
angle erro in
28
29 //result
30 mprintf("ratio error = %3.2f percentage ",e);
31 mprintf("\nphase angle error = %3.2f ",beta);
```

Scilab code Exa 6.23 Estimate CT ratio and phase angle error

```
1 //
2 //chapter 6 example 23
3
4 \text{ clc};
5 clear all;
6
7 //variable declaration
8 KT = 8; //turn ratio
9 Ie = 0;
                 //current in A
10 IO = 0.08;
11 R1 = 1.5; //resistance in
12 R2 = 0.4; // resistance in
13 L1 =60*10<sup>-3</sup>; //inductance in H
14 L2 =0.7*10^-3; //inductance in H
      = 50; //frequency in Hz
15 f
16 phi = 0;
                     //angle in
17
18 //calculations
19 Im = 0.01 * KT;
                //Im = 1\% of primary current =
     0.01 * Ip = 0.01 * KT * Is
20 alpha =atan(Ie/Im); //phase angle in radians
21 R = R1+R2; //resistance of burden
      = L1+L2; //inductance in H
22 L
23 theta = (atan((2*%pi*f*L)/R)*%pi/180); //phase
```

```
angle in
24 KC = KT+((I0*sin(theta+alpha))/Is);
25 KC = KT+((0.08*Is*sin(theta+alpha))/Is);
26 KC = KT+(0.08*sin(theta+alpha)); //actual
current ratio
27 b = (I0*cos(theta+phi))/(KT*Is);
28
29 //result
30 mprintf("actual current ratio = %3.1f",KC);
31 mprintf("\nphase angle error = %3.2d",b);
```

Scilab code Exa 6.24 Find the ratio and phase angle errors

```
1 //
```

```
2 //chapter 6 example 24
3 \, \text{clc};
4 clear all;
5
6 //variable declaration
7 KT = 201; //turn ration
                  //secondary current in A
8 Is = 5;
                   //magnetising component of exciting
9
  Im = 7;
     current in A
                   //cross-loss component of exciting
10 Ie = 3;
     current in A
11 delta =0:
12
13 //calculations
14Kn= 1000/5;//nominal ratio15alpha=atan(Ie/Im);//angle in
16 alpha1 = (alpha*180)/%pi;
17 theta = delta-(((acos(0.8))*180)/%pi);
                                                    11
     from figure taken the value of gamma
```

```
18 z = cos((theta*%pi)/180);
19 z1 = sin(((theta)*%pi)/180);
20 Kc = KT+(((Ie*z)+(Im*z1))/Is); //actual
current in A
21 e = ((Kn-Kc)/Kc)*100;//ratio error
22 b =(180/%pi)*(((Im*z)-(Ie*z1))/(KT*Is));
23
24 //result
25 mprintf("ratio error = %3.3f percentage",e);
26 mprintf("\nphase angle error = %3.3f ",b);
```

Scilab code Exa 6.25 Determine the phase angle and ratio error

```
  \begin{array}{c}
    1 \\
    2 \\
    //
  \end{array}
```

```
3 //chapter 6 example 25
4
5 clc;
6 clear all;
7
8 //variable declaration
9 KT = 201; //turn ration
                 //cross loss current in A
10 Ie = 3;
11 Im = 7;
                  //magnetising component of exciting
     current in A
12 delta =0;
13 Kn
         = 200;
14
15 //calculations
16
17 theta = delta+(((acos(0.8))*180)/%pi); //from
     figure taken the value of gamma
18 z = cos((theta*%pi)/180);
```

```
19 z1 = sin(((theta)*%pi)/180);
20 Kc = KT+(((Ie*z)+(Im*z1))/Is); //actual
current in A
21 e = ((Kn-Kc)/Kc)*100; //ratio error
22 b =(180/%pi)*(((Im*z)-(Ie*z1))/(KT*Is));
23
24 //result
25 mprintf("ratio error = %3.3f percentage",e);
26 mprintf("\nphase angle error = %3.4f ",b);
```

Scilab code Exa 6.26 Determine the phase angle and ratio error

```
\begin{array}{c}1\\2\end{array} //
```

```
3 //chapter 6 example 26
4 clc;
5 clear all;
6
7 //variable declaration
8 KT = 199; //turn ration
9 Is = 5;
                  //secondary current in A
10 Im = 7;
                  //magnetising component of exciting
     current in A
                  //cross-loss component of exciting
11 Ie = 4;
     current in A
12 delta =0;
13
14 //calculations
15 \text{ KN} = 1000/5
                           //nominal ratio
16 alpha = atan(Ie/Im) // angle in
17 alpha1 = (alpha*180)/%pi
18 theta = delta+(((acos(0.8))*180)/%pi) //from
     figure taken the value of gamma
```

```
19 z = cos((theta*%pi)/180)
20 z1 = sin(((theta)*%pi)/180)
21 Kc = KT+(((Ie*z)+(Im*z1))/Ie) // actual current in
    Α
22 e = ((KN-Kc)/Kc)*100 //ratio error
23 b
      =(180/%pi)*(((Im*z)-(Ie*z1))/(KT*Is))
24 theta1 = delta-(((acos(0.8))*180)/%pi)
                                             //from
     figure taken the value of gamma
25 z11 = cos((theta1*%pi)/180)
26 z12 = sin(((theta1*%pi)/180))
27 Kc1 = KT+(((Ie*z11)+(Im*z12))/Is) //actual current
     in A
28
 e1 = ((KN-Kc1)/Kc1)*100 //ratio error
29 b1 =(180/%pi)*(((Im*z11)-(Ie*z12))/(KT*Is))
30
31
32 / result
33 mprintf("ratio error = %3.2 f percentage",e);
34 mprintf("\nphase angle error = %3.1 f ",b);
35 mprintf("\nratio error = %3.2f percentage",e1);
36 mprintf("\nphase angle error = \%3.2 f ",b1);
```

Scilab code Exa 6.27 Estimate the iron loss

```
2 //chapter 6 example 27
3
4 clc;
5 clear all;
6
7 //variable declaration
8 KT = 198; //turn ratio
9 e =0; //ratio error
```

```
10 Is = 5; // secondary current in A
11 P = 5; //load in VA
12 Rs = 0.02; //resistance in
13 KN = 200; //KN = KC \text{ since } e=0
14 KC
      = 200;
15
16 //calculations
17 V2 = P/Is; //secondary voltage in V
18 Es = V2+(Is*Rs); //secondary induced emf in V
                       //primary induced emf
19 Ep = Es/KT;
20 Ie = (KC-KT)*Is; //eddy current loss in A
21 IL
     = Ep*Ie;
                       //iron loss in W
22
23 // result
24 mprintf("iron loss = \%3.3 f mW",(IL*10^3));
```

Scilab code Exa 6.28 Find the phase angle error at no load and load in VA at unity

```
1 //
2 //Chapter 6 Example 28
3
4
5 \text{ clc};
6 clear all;
7
8 //variable declaration
                = 100+0*\%i;
                                      //secondary terminal
9 Vs
       voltage in V
                                       //primary resistance
                = 97.5;
10 Rp
       in
                                       //primary reactance
                = 67.4;
11 Xp
      in
12 X1
                = 110;
                                       // total equivalent
```

```
reactance in
13 K
                =1000/100;
14
15
16
17 //calculations
18 / Es
                  = Vs+(Is*(Rs+Xs*\%i);
19 Es
                = Vs;
                = 10*(100+0*%i);
20 Ep
                                           //induced emf in
       primary winding in V
                = 0.02*(0.4-0.9165*\%i);
                                                     //no
21 IO
      load current in A
22 Zp
                = Rp + Xp * \%i;
23 Vd
                = I0 * Zp;
24 Vp
                = Ep+Vd;
                = (atan((imag(Vp))/real(Vp)))*180/%pi;
25 beta
                           //phase angle between primary
      and secondary voltage in
                = X1 - Xp;
                                       //reactance of
26 Xs1
      secondary winding in
                  = Vs+(Is *Zs);
                                              //induced emf
27
  //Es
      in secondary winding
28 / IP
                  = (Is / 10) + I0;
29 / V
                = Ip * Zp = (IS / 10) + 0.008 - 0.01833 * i
                = (9.75 * \text{Is}) + 2.015) - ((1.2478 - 6.74 * \text{Is}) * \% \text{i})
30 / V
      ..... equation 1
31 //Vp
                = K*(ES+IP*ZP)
                =(1002.015+18.35*\%i) - (1.2478-11*Is)*\%i
32 / VP
      \ldots equation 2
33 //comparing equation 1 and 2 we get
34 / / 1.2478 - 11 * Is = 0;
35 Is
      = 1.2478/11;
                                       //secondary current
      in A
36 v
               = Vs*Is;
37
38 // result
39 mprintf("phase angle between primary and secondary
      voltage = \%3.2 \,\text{f} lagging", beta);
```

Scilab code Exa 6.29 Calculate the ratio and phase angle errors

```
1 //
2 //Chapter 6 Example 29
3
4
5 \, \text{clc};
6 clear all;
7
8 //variable declaration
                          //secondary terminal
9 Vs = 63+0*\%i;
   voltage in V
10 \text{ Zs1} = 2+1*\%i;
                            //equivalent mpedance
     referred to prmary in
        = 100+200*%i;
                                //secondary burden
11 Zb
     in
12 KN =60.5;
13
14
15
16 //calculations
17 KT = 3810/63; //turn ratio
        = KT * Vs;
                           //primary induced emf in
18 Ep
     V
       = (KT^2) * Zs1;
                               //equivalent
19 Zp1
     impedance
20 Zs12 = sqrt(((real(Zp1))^2)+((imag(Zp1))^2));
                               //secondary current
21 Is
            = Vs/Zb;
```

```
in A
         = sqrt(((real(Is))^2)+((imag(Is))^2));
22 Is1
                 = Is/KT;
                                        //primary current in
23 Ip
       А
           = sqrt(((real(Ip))^2)+((imag(Ip))^2));
24 Ip1
25 Vp
                 = Ep+(Ip*Zp1);
                                  //applied voltage to
       primary in V
           = sqrt(((real(Vp))^2)+((imag(Vp))^2));
26 Vp1
                 = (atan((imag(Vp))/real(Vp)))*180/%pi;
27 beta
                            //phase angle error in
                 = (((KN*Vs)-Vp)/Vp)*100;
28 e
                                                           //
      ratio error in percentage
29
  //beta
                   = (\operatorname{atan}((\operatorname{imag}(\operatorname{Zp1}))/\operatorname{real}(\operatorname{Zp1}))) * 180/
      %pi;
30
31 // result
32 mprintf("phase angle error = %3.2 f ",beta);
33 mprintf("ratio error = %3.1f percentage ",e);
```

Chapter 7

Analog measurement of power and wattmeters

Scilab code Exa 7.1 Calculate the power

```
1 //
2 // chapter 7 example 1
3
4 clc;clear all;
5
6
7 //variable declaration
8 P = 250; //wattmeter reading in watts
9 Rp = 2000; //pressure coil circuit resistance
   in
10 VL = 200; //load voltage in V
11
12 //calculations
13 p = (VL^2)/Rp; //power lost in pressure coil in
      watts
14 P1 = P-p; //power lost in the pressure coil
      circuit in watts
```

Scilab code Exa 7.2 Calculate the percentage error

```
1 //
2 //chapter 7 example 2
3
4 clc;clear all;
5
6 //variable declaration
7 x = 0.004;
8 y = 0.707; //power factor lagging
9 y1 = 0.5; //power factor lagging
10
11 //calculaitons
12 theta = atan(x) //theta in degrees
13 a = \cos(\text{theta})
14 b = sin(theta)
15 phi = acos(y)
16 c = \cos(\text{phi})/(a \cdot \cos(\text{theta-phi})) // correction
      factor
17 A = \cos(\text{phi})/\sin(\text{phi});
18 e = (b/(A+b))*100 //percentage error in \%
19 phi1 = acos(y1)
20 c1 = \cos(\text{phi1})/(a \cdot \cos(\text{theta-phi1})) // \operatorname{correction}
      factor
21 B = \cos(\text{phi1})/\sin(\text{phi1});
22 e1
       = (b/(B+b))*100 //percentage error in %
23
```

Scilab code Exa 7.3 Estimate the percentage error in the wattmeter

```
2 //chapter 7 example 3
4 clc;clear all;
 5
 6 //variable declaration
7 V = 240; //\operatorname{voltage} in V
8 I = 8; //current in A

9 x = 0.1; //pf lagging

10 Rp = 8000; //resistance in

11 f = 50; //frequency in Hz
12 L = 63.6*10^{-3} //inductance
13
14 //calculations
15 phi = acos(x);
16 phi1 =(phi*180)/%pi;
17 P = V*I*x; //load power
18 Pl = (V^2)/Rp; //power lost in the pressure coil
      circuit in watts
19 Pt = P+P1;
                 //neglecting inductance of the
      voltage coil the reading of wattmeter would be in
       watts
20 Xp = 2*\%pi*f*L; //reactance in
```

```
21 theta = atan(Xp/Rp);
22 theta1 = (theta*180)/%pi;
23 A = cos(theta1);
24 B = cos(phi1-theta1);
25 C = cos(phi1);
26 w = Pt*(A)*(B/C); //wattmeter reading
27 e = ((w-P)/P)*100; //percentage error in %
28
29 //result
30 mprintf("phi value in textbook is taken wrong
correct is 84 .16 but value is 84 .26 so
textbook answer is coming wrong")
31 mprintf("\npercentage error in %3.2f percentage ",e)
;
```

Scilab code Exa 7.4 Calculate the percentage error in wattmeter reading

```
2 //chapter 7 example 4
3
4 clc;clear all;
5
6 //variable declaration
7 w = 23; //wattmeter reading in watts
8 Rp = 2000; //resistance in
9 f = 100; //frequency in Hz
10 L = 10*10^-3 //inductance
11 V = 240; //voltage in V
12 I = 4.5; //current in A
13
14 //calculations
15 Xp = 2*%pi*f*L; //reactance in
16 theta = atan(Xp/Rp);
```

```
17 theta1 =(theta*180)/(%pi)
18 / \cos(\text{phi}) = P/V * I
19 //phi = a\cos(P/V*I)
20 //w = Pt*(cos(theta))*(cos(phi-theta))/cos(phi);
      //wattmeter reading
21 W1
           = V * I;
                             //V*I in watts
22 //phi = a\cos(P/W) = a\cos(P/1080)
23 //W = P*\cos(theta)*(\cos(phi-theta))/\cos(phi)
24 //W = P*\cos(0.18)*\cos((a\cos(P/1080))-0.18)/(P
     /V*I)
25 //let \cos(a\cos(P/1080) - 0.18) = A
26 / B = \cos(0.18)
27 //W=23 = (P*B*A)/(P/(V*I))
28 // W= B*A*V*I
29 //A = W/(B*V*I)
          = cos((theta1*%pi)/180);
30 B
           = w/(B*V*I);
31 A
32 / \cos(a\cos(P/1080) - 0.18) = A
33 //C = a\cos(P/1080) = a\cos(A) + 0.18
34 A1
         =(acos(A))*(180/%pi);
          = A1 + 0.18
35 C
          = cos(C*%pi/180)
36 D
37 P
           =1080*D;
     = ((w-P)/P)*100; //percentage error in %
38 e
39
40 // result
41 mprintf("percentage error in %3.2f percentage ",e);
```

Scilab code Exa 7.5 Finding the error in wattmeter

```
2 //chapter 7 example 5
3 clc;clear all;
```

```
4
5 //variable declaration
6 f = 50;
               //frequency in Hz
7 L = 5*10^{-3} //inductance
8 V = 100;
                   //voltage in V
    = 10;
9 I
                   //current in A
10 R1
      = 3000;
                    //resistance in
11
12 //calculations
           = ((2*%pi*f*L)/R1);
13 x
                                            //\tan(\text{theta})
         = atan(x); //the angle by which the current
14 theta
       in pressure coil lags behind the voltage
  //W = V * I * sin(90 + theta) = V * I * cos(theta) = V * I * tan(
15
      theta)
16 //W=V*I*theta //since theta is small
17 W = V*I*x; //reading of wattmeter in watt
18
19 //result
20 mprintf("error = \%3.2 f watts", W);
```

Scilab code Exa 7.6 Find the actual reading reading on the wattmeter

```
1 //
```

```
2 //chapter 7 example 6
3 clc;clear all;
4
5 //variable declaration
6 RL = 2; //resistance in
7 f =50; //frequency in Hz
8 L = 0.25; //inductance in H
9 V = 200; //voltage in V
10 LP = 5.6*10<sup>-3</sup>; //inductance in H
11 RP =1000;
```

```
12
13 //calculations
14 XL = 2*\%pi*f*L; //load reactance in
15 ZL = RL+XL*%i; //load impedance
16 IL = V/ZL; //load current in A
17 XLP = 2*\%pi*f*LP; //reactance in
18 ZP = RP + XLP * \%i;
                      //pressure coil circuit
     impedance in
19 IP = V/ZP; //pressure coil current in A
20 theta = (atan(imag(IP)/real(IP)))*180/%pi;
21 IC = IL+IP;
          = sqrt(((imag(Ic))^2)+((real(Ic))^2))
22 Ic1
23 phi
          = (atan(imag(Ic)/real(Ic)))*180/%pi;
24 A
          = (phi-theta);
25 x = \cos((A*\%pi)/180);
26 y = cos((theta*%pi)/180);
      = V*Ic1*y*x; //actual reading of wattmeter in
27 W
      watts
28
29 //result
30 mprintf("actual reading of wattmeter = \%3.4 f watts"
     ,W);
```

Scilab code Exa 7.7 Calculate the percentage errors

```
2 //chapter 7 example 7
3 clc;clear all;
4 
5 //variable declaration
6 V = 250; //load voltage in V
7 I = 12; //load current in A
8 Rc = 0.1; //resistance in
```

```
9 Rp =6500; //resistance in
                  //pf cos(phi)
10 x
      = 1;
      = 0.4;
                  //pf cos(phi)
11 y
12
13 //calculations
14 P = V * I * x;
                  //power input to the apparatus
     in W
15 PL = (I^2) * Rc; //power lost in current coil in
    W
16 e = (PL/P) \times 100; //percentage error in %
17 Pc = (V^2)/Rp; //power lost in presuure coil in W
18 e = (Pc/P)*100; //percentage error in \%
19 P1 = V*I*y; //power input to the apparatus
     in W
20 PL1 = (I^2)*Rc; //power lost in current coil in
    W
21 e1 = (PL1/P1)*100; //percentage error in \%
22 Pc1 = (V^2)/Rp; //power lost in presuure coil in W
23 e1 = (Pc1/P1)*100; //percentage error in \%
24
25 // result
26 mprintf("percentage error when pf 1 lagging %3.2 f
     percentage",e);
27 mprintf("\npercentage error when pf 0.4 lagging
                                                   \%3
     .2f percentage",e1);
```

Scilab code Exa 7.8 Calculate the actual power and current

1 // 2 //Chapter 7 Example 8 3 4 5 clc;

```
6 clear all;
7
8 //variable declaration
9 theta1
                   =1;
                                   //pressure coil phase angle
       in
10 theta2
                   =2;
                                   //pressure coil phase angle
       in
                                         //wattmeter reading in W
11 P1
                   = 700;
                                         //wattmeter reading in W
                   = 620;
12 P2
                                         //voltage in V
13 V
                   = 240;
14
15
16
  //calculations
17 x
             = P1/P2;
18 //P1
                   =P*\cos(\text{theta2})*\cos(\text{phi}-\text{theta2})/\cos(\text{phi})
   //P2
                    = P * \cos(\text{theta1}) * \cos(\text{phi} - \text{theta1}) / \cos(\text{phi})
19
       )
   //P1/P2
                   = \cos(\text{theta2}) * \cos(\text{phi} - \text{theta2}) / \cos(\text{phi}) /
20
       cos(theta1)*cos(phi-theta1)/cos(phi)
                  = \cos(\text{theta2}) * \cos(\text{phi} - \text{theta2}) / \cos(\text{phi}) /
21
   / / x
       \cos(\text{theta1}) * \cos(\text{phi} - \text{theta1}) / \cos(\text{phi})
                   = (\cos(\text{theta2})/\cos(\text{theta1})) * (\cos(\text{phi} -
22
   //x
       theta2)/cos(phi-theta1))
                   = y * (\cos(phi-theta2)) / \cos(phi-theta1))
23 //x
24 //(\cos(\text{phi-theta2})/\cos(\text{phi-theta1}))
                                                        = x/y
25 	ext{ y}
                   = (cos(theta2*%pi/180)/cos(theta1*%pi
       /180));
26 z
                   = x/v;
  //(\cos(\text{phi-theta2})/\cos(\text{phi-theta1})) = ((\cos(\text{thet2}))
27
       \% pi/180) * cos (phi) + (sin (thet 2 * \% pi/180) * sin (phi)
       )/((cos(theta1*%pi/180))*cos(phi))+(sin(thet1*%pi
       (180) * sin (phi)
28 / z
              = ((\cos(\text{thet}2*\%\text{pi}/180))*\cos(\text{phi}))+(\sin(\text{thet}2))
       *%pi/180))*sin(phi))/((cos(theta1*%pi/180))*cos(
       phi))+(sin(thet1*\%pi/180))*sin(phi))
                   = ((z*cos(theta1*%pi/180))-(cos(theta2*
29 t
       %pi/180)))/((sin(theta2*%pi/180))-(z*sin(theta1*
       %pi/180)));
```

```
= (atan(t)) *180/%pi;
30 phi
                = cos(phi*%pi/180);
31 pf
                = (phi-theta2)
32 C
                   = cos(C*%pi/180);
33 c
34 a
                = (cos(theta2*%pi/180));
35 b
                = a*c;
36 B
                = P1*pf;
                = B/b;
37 P
                = P/(V*pf);
38 I
39
40 // result
41 mprintf("actual power = \%3.3 f W", P);
42 mprintf("\ncurrent drawn = \%3.2 f A",I);
```

Scilab code Exa 7.9 Estimate the torque

1 //

```
2 //chapter 7 example 9
3 clc;clear all;
4
5 //variable declaration
6 Np
               = 500;
     moving coil
               = 0.05;
7 Ip
       coil in A
8 B
               = 0.012;
      the air gap in T
9 d
               = 0.03;
10 theta1
               = 30;
11 theta2
               = 90;
12 x
               = 0.866;
      cos(phi)
13
```

//number of turns on //current through moving // flux density in //diameter in m //power factor

```
14 //calculations
15
                                             //area of x-
            = (\%pi/4)*(d^2);
16 A
      section of moving coilin m<sup>2</sup>
17 phimax
                 = B * A;
                                        //maximum flux
      through moving coil in Wb
                   = (phimax*Np)/Ic
18 / Mmax
                    = X
                            = phimax * Np
19 / Mmax + Ic
20 X
             = (phimax*Np);
                = Ip * Ic *Mmax* cos (phi) * sin (theta)
21 / T
                = Ip * Ic * (X/Ic) * cos(phi) * sin(theta)
22 / T
23 / T
                = Ip * (X) * cos (phi) * sin (theta)
24 T1
                = Ip*X*x*sin(theta1*%pi/180);
                  = Ip*X*x*sin(theta2*%pi/180);
25 T2
26
27 // result
28 mprintf("torque in when 30 = \%3.4 \,\mathrm{e} N-m", T1);
29 mprintf("\ntorque in when 90 = \%3.4 \,\text{e} N-m", T2);
```

Scilab code Exa 7.10 Calculate the power factor of inductive load

```
1 //
```

```
2 //chapter 7 example 10
3
4 clc;clear all;
5
6 //variable declaration
7 V1 = 200; //voltage across an inductive load
in volts
8 V2 = 180; //voltage across an nono- inductive
resistor in volts
9 V3 = 300; //voltage across the two in series
in volts
```

```
10
11 //calculations
12 x = ((V3^2)-(V1^2)-(V2^2))/(2*V1*V2); //cos(phi)
13
14 //result
15 mprintf("power factor cos (phi) = %3.3f lagging",x);
```

Scilab code Exa 7.11 Calculate the power absorbed by the load and load impedance a

```
1 //
2 //chapter 7 example 11
3
4 clc;clear all;
5
6 //variable declaration
7 I1 = 2.5; //current across an inductive load
     in A
8 I2 = 2.4; //current across an non- inductive
     resistor in A
9 I3 = 4.5; //current across the two in series
     in A
     = 250; //supply voltage in V
10 V
11
12
13 //calculations
14 R = V/I2; // non- inductive resistance in
15 P
      = ((13^2) - (11^2) - (12^2)) * (R/2); //power absorbed
      by the load in watts
                      //load impedance in
16 \ Z = V/I1;
      = ((I3^2) - (I1^2) - (I2^2)) / (2*I1*I2); / \cos(phi)
17 x
18
19 / result
20 mprintf("power absorbed by the load = \%3.2 f watts", P
```

```
);
21 mprintf("\nload impedance = %3.2 f ",Z);
22 mprintf("\npower factor cos (phi) = %3.4 f lagging",x
);
```

Scilab code Exa 7.12 Write the suitable transformation ratio7

```
1 //

2 //chapter 7 example 12

3 clc;clear all;

4

5 //variable declaration

6 V1 = 6600; //primary voltage in V

7 V2 = 110; //secondary voltage in V

8 I1 = 50; //primary current in A

9 I2 = 5; //secondary voltage in A

10

11 //calculations

12 r = V1/V2; //hence transformation ratio of CT

13 r1 = I1/I2; //transformation ratio of CT

14

15 //result

16 mprintf("transformation ratio of CT = %3.2f",r1);

17 // Calculation ratio of CT = %3.2f",r1);

18 // Calculation ratio of CT = %3.2f",r1);

19 // Calculation ratio of CT = %3.2f",r1);

10 // Calculation ratio of CT = %3.2f",r1);

11 // Calculation ratio of CT = %3.2f",r1);

12 // Calculation ratio of CT = %3.2f",r1);

13 // Calculation ratio of CT = %3.2f", r1);

14 // Calculation ratio of CT = %3.2f", r1);

14 // Calculation ratio of CT = %3.2f", r1);

15 // Calculation ratio of CT = %3.2f", r1);

16 // Calculation ratio of CT = %3.2f", r1);

17 // Calculation ratio of CT = %3.2f", r1);

18 // Calculation ratio of CT = %3.2f", r1);

19 // Calculation ratio of CT = %3.2f", r1);

19 // Calculation ratio of CT = %3.2f", r1);

10 // Calculation ratio of CT = %3.2f", r1);

10 // Calculation ratio of CT = %3.2f", r1);

10 // Calculation ratio of CT = %3.2f", r1);

11 // Calculation ratio of CT = %3.2f", r1);

11 // Calculation ratio of CT = %3.2f", r1);

11 // Calculation ratio of CT = %3.2f", r1);

12 // Calculation ratio of CT = %3.2f", r1);

13 // Calculation ratio of CT = %3.2f", r1);

13 // Calculation ratio of CT = %3.2f", r1);

14 // Calculation ratio of CT = %3.2f", r1);

14 // Calculation ratio of CT = %3.2f", r1);

15 // Calculation ratio of CT = %3.2f", r1);

15 // Calculation ratio of CT = %3.2f", r1);

15 // Calculation ratio rat
```

Scilab code Exa 7.13 Calculate the new multiplying factor of wattmeter

1 //

2 //chapter 7 example 13

```
3 clc;clear all;
4
5 //variable declaration
6 m = 10; //wattmeter multiplying factor
7
8 //calculations
9 x = 100/5; //CT ratio
10 y = 1000/100; //PT ratio
11 W = x*y*m; //new multiplying factor of
wattmeter
12
13 //result
14 mprintf("new multiplying factor of wattmeter = %3.2f
",W);
```

Scilab code Exa 7.14 Calculate the percentage error

```
1 //
2 //chapter 7 example 14
3 \, \text{clc};
4 clear all;
5
6 //variable declaration
7
8 V = 6000; //load voltage in V
9 I = 100; //load current in A
10 p = 0.5; //power factor cos(phi) lagging
                    //since wattmeter reads
11 theta = 0;
     correctly
12 x1 = 20;
                           // current transformers
     nominal ratio
13 x2 = 60;
                            // potenetial transformers
    nominal ratio
```

```
14 e1 =-0.005; // ration er
- 0.01: // ratio error
                            // ration error
16
17 //calculations
18 P = V*I*p;
                    //actual power consumed in W
19 phi =acos(p);
20 phi1 = (phi*180)/%pi;
      = -1; //phase angle in
= 2; //phase angle in
21 d
22 b
23 g = phi1+d-theta1-b; //phase angle in
24 theta1 =theta*180/%pi
25 g1 = g*180/%pi;
26 A
         =cos(phi1)
      = (cos(phi1*%pi/180))/((cos(theta1*%pi/180))*(
27 K
     cos(g*%pi/180)));
28 CT
      = x1*(1+e1);
                                  //actual
     transformation ratio of CT
29 PT
              = x2*(1+e2);
                                  //actual
     transformation ratio of PT
              = P/(K*CT*PT);
                                  //power indicated by
30 P1
      wattmeter in kW
              = P/(x1*x2); //true reading of
31 T
     wattmeter in kW
            = ((P1-T)/T)*100; //percentage
32 e
      errror in %
33 // result
34 mprintf("phase angle between the currents in CC and
     PC of wattmeter %3.2 f ",K);
35 mprintf("\npercentage error = \%3.0 f percentage ",e);
```

Scilab code Exa 7.15 Calculate the input power and power factort

```
2 //chapter 7 example 15
3 clc;
4 clear all;
5
6 //variable declaration
7 W1 = 300; //wattmeter reading in kW
8 W2 = 100; //wattmeter reading in kW
9
10 //calculations
11 P = W1+W2; //input power in kW
12 phi = atan(((W1-W2)/(W1+W2))*sqrt(3)); //phase
     angle in radians
13 phi1 = (phi*180)/%pi;
14 pf =cos((phi1*%pi)/180); //power factor
     lagging
15
16
17 //result
18 mprintf("input power = \%3.2 f kW", P);
19 mprintf("power factor = %3.3 f lagging", pf);
```

 $Scilab \ code \ Exa \ 7.16$ Calculate the power and power factor of the load

```
2 //chapter 7 example 16
3 
4 clc;clear all;
5 
6 //variable declaration
7 W1 = 20; //wattmeter reading in kW
8 W2 = -5; //wattmeter reading in kW
9 
10 //calculations
```

Scilab code Exa 7.17 Find the reading of the each instrument

```
1 //
```

```
2 //chapter 7 example 17
3
4 clc;clear all;
5
6 //variable declaration
7 P = 30000; //total power in kW
8 pf = 0.4; //power factor assuming lagging
9
10 //calculations
11 phi = acos(pf); //phase angle in radians
12 phi1 = (phi*180)/%pi;
13 y = sqrt(3);
13 у
14 z
         =y*pf;
15 x = P/(y*pf); //VL*IL in VA
16
17 / W = VL*IL*cos(30-phi)
18 //VL*IL = x;
19 W1 = x*cos((30*%pi/180)-(phi1*%pi/180)); //
     reading of wattemeter in W
20 W2 = x*cos((30*%pi/180)+(phi1*%pi/180)); //
     reading of wattemeter in W
```
Scilab code Exa 7.18 Find the reading OF TWO wattmeters

```
2 //chapter 7 example 18
3
4
5 clc; clear all;
6
7 //variable declaration
8 VL =400;
                       //voltage in V
                       //current in A
9 IL = 10;
10 / r = W1/W2
                     = \operatorname{sqrt}(3) * ((W1-W2)/(W1+W2))
11 // \tan(\text{phi})
                     = \operatorname{sqrt}(3) * ((1 - (W2/W1)) / (1 + (W2/W1)))
12 // \tan(\text{phi})
                      = \operatorname{sqrt}(3) * ((1-r)/(1+r))
13 // \tan(\text{phi})
14 \ //\cos\left(\text{phi}\right)
                 = 1/\sec(\text{phi}) = 1/\operatorname{sqrt}(1+(\tan(\text{phi})))
       ^{2}) = 1/\operatorname{sqrt}(1+(3*((1-r)/(1+r))^{2}))
15 r = 0.5;
             = ((1-r)/(1+r))^2;
16 z
17 pf = 1/sqrt(1+(3*z));
18 phi = (acos(pf)*180/%pi);
19 W1 = VL*IL*cos((30*%pi/180)-(phi*%pi/180));
       //wattmeter reading in W
20 W2 = VL*IL*cos((30*%pi/180)+(phi*%pi/180));
```

```
//wattmeter reading in W
21
22 //result
23 mprintf("wattmeter reading = %3.2 f W', W1);
24 mprintf("\nwattmeter reading = %3.2 f W', W2);
```

Scilab code Exa 7.19 Determine the values of Rand L connected in the phase

```
1 //
2 //chapter 7 example 19
3
4 \text{ clc};
5 clear all;
6
7 //variable declaration
8 W1 = 3000; //wattmeter reading in W
9 W2 = 1000;
                  //wattmeter reading in W
10 f = 50; // frequency in HZ
11 V = 400; // voltage in V
12
13
14 //calculations
15 VP = V/sqrt(3);
                                      //voltage in V
16 P
             = W1 + W2;
                                             //input
     power in kW
17 phi = \frac{atan}{((W1-W2)/(W1+W2))*sqrt(3)};
                  //phase angle in radians
18 phi1 = phi*180/%pi;
     //phase angle in degrees
        =cos(phi1*%pi/180);
19 pf
                               //power factor lagging
20 IL = P/((sqrt(3))*V*pf);
```

```
//line current in A
            =VP/IL;
21 ZP
     //impedance of the circuit per phase in
            = ZP*pf;
                                            //resistance
22 R
      per phase
23 XL
          = sqrt((ZP^{2}) - (R^{2}));
                                                     reactance per phase in
             = XL/(2*%pi*f);
24 L
                                                      //
     inducatance per phase in H
25
26 // result
27 mprintf("resistance per phase = %3.2 f ",R);
28 mprintf("\ninducatance per phase in = %3.3 f H",L);
```

Scilab code Exa 7.20 Find the wattage shown by three wattmeters and power taken by

```
2 //chapter 7 example 20
3
4 clc;
5 clear all;
6
7 //variable declaration
8 IPR = 8; //current in line R in A
9 IPY = 10; //current in line Y in A
10 IPB = 6; //current in line B in A
11 VP =120; //voltage in V
12 pf = 1; //power factor
13
14 //calculations
15 W1 = VP*IPR*pf; //wattage shown by wattmeter
having current coil in line R in watts
16 W2 = VP*IPY*pf; //wattage shown by wattmeter
```

```
having current coil in line Y in watts
17 W3 = VP*IPB*pf; //wattage shown by wattmeter
     having current coil in line B in watts
     = W1+W2+W3; //power taken by lighting load in
18 p
     watts
19
20 / result
21 mprintf("wattage shown by wattmeter having current
      coil in line R = \%3.2 f watts", W1);
22 mprintf("\nwattage shown by wattmeter having current
       coil in line Y = \%3.2 f watts", W2);
23 mprintf("\nwattage shown by wattmeter having current
       coil in line B = \%3.2 f watts", W3);
24 mprintf("\npower taken by lighting load = \%3.2 f
     watts",p);
```

Scilab code Exa 7.21 Find the current and reading of two wattmeters connected to m

```
1 //

2 //chapter 7 example 21

3

4 clc;

5 clear all;

6

7 //variable declaration

8 R = 10; //resistance in

9 XL = 10; //resistance in

10 VL = 440; //load voltage in V

11

12 //calculations

13 Z = sqrt((R^2)+(XL^2)); //impedance of each

choking coil in

14 VP = VL/sqrt(3); //phase voltage in V
```

Scilab code Exa 7.22 Find the power factor of the system and the value of capacita

```
2 //chapter 7 example 22
3
4 \text{ clc};
5 clear all;
6
7 //variable declaration
8 W1 = 5000; //wattmeter reading in W
9 W2 = -1000; //wattmeter reading in W
10 VL = 440; //load voltage in V
                    //frequency in Hz
11 f
       = 50;
      = 440;
12 VP
13
14 //calculations
15 P = W1 + W2;
                        //total power in the load
      circuit in W
```

```
16 phi = atan(((W1-W2)/(W1+W2))*sqrt(3)); //phase
     angle in
17 phi1 = phi*180/%pi;
18 pf = cos(phi); //power factor
19 IP = P/((sqrt(3)*VL*pf)); //load current per phase
      in A
20 IP1 = IP/sqrt(3);
21 ZP = VP/IP1; //load impedance per phase
22 RP = ZP*pf; //load resistance per phase
    in
23 XP = ZP*sin(phi); //load reactance per phase
     in
24 pf1 = 0.5; //power factor
25 phi2 = (acos(pf1))*180/%pi;
26 //reading of wattmeter will be zero
27 XP1 = RP*tan((phi2)*%pi/180); //reactnace in
      circuit per phase in
28 \text{ XC} = \text{XP} - \text{XP1};
                           //value of capacitive
     reactance in troduced in each phase in
29 C = 1/(2*\%pi*f*XC); //value of capacitive
     reactance introduced in each phase of delta
     connected in uF
30
31 // result
32 mprintf("value of capacitive reactance introduced in
      each phase of delta connected = \%3.0 \,\text{f uF}",(C
     *10^6));
```

Scilab code Exa 7.23 Find the line currents and reading on wattmeters whose curren

```
2 //chapter 7 example 23
3
```

```
4 clc;
5 clear all;
6
7 //variable declaration
8 VAB1
             = 400+0*\%i;
                              //voltage in V
9 VBC1
           = -200 - 346.41 * \%i;
                                 //voltage in V
                                   //voltage in V
            = -200+346.41*\%i;
10 VCA1
11 VAB
                =400;
12 VBC
                = 400;
13 VCA
                = 400;
14 TVAB
                = 0;
                = -120;
15 TVBC
16 TVCA
                =120;
                                 //Wwattmetr readig VA
17 PAB
                = 20000;
                = 30000;
                                 //Wwattmetr readig VA
18 PBC
                                 //Wwattmetr readig VA
19 PCA
                = 20000;
20
21
22 //calculations
23 IAB
               = PAB/VAB;
                                     //magnitude of IABC
                                     //magnitude of IABC
24 IBC
               = PBC/VAB;
               = PCA/VAB;
                                     //magnitude of IABC
25 ICA
                = 0;
26 c1
27 c2
                = (acos(0.8)*180/%pi);
                = -(acos(0.6)*180/%pi);
28 c3
29 angle1
                = c1 - TVAB;
30 angle2
                = c2 - TVBC;
                = c3 - TVCA;
31 angle3
32 IAB1
                 = (IAB*cos(angle1))+(IAB*sin(angle1))*
      %i;
33 IBC1
                 = (IBC*cos(angle2*%pi/180))+(IBC*sin(-
      angle2*%pi/180))*%i;
                 = (ICA*cos(angle3*%pi/180))+(ICA*sin(-
34 ICA1
      angle3*%pi/180))*%i;
35 IA
                = IAB1 - ICA1;
36 IB
                = IBC1 - IAB1;
37 IC
                = ICA1 - IBC1;
                = -(VBC1) * IA;
38 W1
```

```
39 W2
                = VCA1 * IB;
40
41
42
43 // result
44 mprintf("line current IA = %3.2 f %3.2 f *j A",real
      (IA), imag(IA));
45 mprintf("\nline current IA = \%3.2 \, \text{f}\%3.2 \, \text{f}*\text{j} A", real
      (IB), imag(IB));
46 mprintf("\nline current IA = \%3.2 f + \%3.2 f*j A",
      real(IC), imag(IC));
47 mprintf("\nreading of wattmeter W1 = \%3.2 f W', W1
      );
48 mprintf("\nreading of wattmeter W2 = \%3.2 f W', W2
      );
```

Scilab code Exa 7.24 Find the power of the network

```
1 //
```

```
2 //chapter 7 example 24
3 clc;
4 clear all;
5
6 //variable declaration
7 W1 = 2000; //reading of wattmeter in watts
8 W2 = 1000; //reading of wattmeter in watts
9
10 //calculations
    = sqrt(3)*(W1-W2); //reactive power of the
11 Q
     network in V A
     = Q/(sqrt(3)); //wattmeter reading when
12 P
     current coil is connected in one phase and the
     potential coil across the two phases in VA
```

Scilab code Exa 7.25 Calculate the wattmeter reading

```
1 //
2 //chapter 7 example 25
3 clc;
4 clear all;
5
6 //variable declaration
7 VL = 415; //voltage in V
8 IL = 20; //current in A
9 pf = 0.8; //phase angle
10
11 //calculations
                    //phase angle in
12 phi =acos(pf)
13 phi1 = (phi*180)/%pi
14 x = cos((30-phi1)*%pi/180)
15 W1 = VL*IL*x //wattmeter reading in W
16 W2 = VL*IL*cos((30+phi1)*%pi/180) //wattmeter
      reading in W
17 // \text{total KVAR} = \text{sqrt}(3) * (W1-W2)
18 //W = totalKVAR/sqrt(3)
19 //W = (sqrt(3)) * (W1-W2)) / sqrt(3); //wattmeter
      reading
20 W = W1 - W2
                              //wattmeter reading
21
22 / result
23 mprintf("reading on wattmeter 1 = \%3.2 \,\mathrm{d} W", W1);
24 mprintf("\nreading on wattmeter 2 = \%3.2 \,\mathrm{d} W', W2);
```

25 mprintf("\nreading on wattmeter = %3.2 f W',W);

Chapter 8

Measurement of energy and energy meters

Scilab code Exa 8.1 Determine the meter constant in revolution

```
1 //
2 // chapter 8 example 1
3
4 clc;clear all;
5
6 //variable declaration
7 P = 360; //power in W
8 t = 100; //time in seconds
9 n = 10; //revolutions
10
11 //calculations
12 E = (P*(t/(3600)))/(1000); //energy
  consumed in kWh
13 M = n/(E);
                         //meter constant in
     revolutions/KWh
14
15 // result
```

16 mprintf("meter constant in revolutions/KWh = %3.2 f", M);

Scilab code Exa 8.2 Calculate the power

```
2 //chapter 8 example 2
3
4
5 clc;clear all;
6
7 //variable declaration
           = 220; //\operatorname{voltage} in V
8 V
         = 5;  //current in A
= 8800;  //resistance of pressure in
= 6;  //voltage excited in V
9 I
10 Rp
11 V1
12
13 //calculations
14 P1 = V * I;
                                     //power consumed in
     current coil circuit in W
      = (V^2)/(Rp);
                                          //power consumed
15 P2
      in pressure coil circuit in W
                                          //total power
           = P1+P2;
16 P
     consumed in W
17 P11
            = V1 * I;
                                     //power consumed in
     current coil circuit in W
                                         //power consumed
18 P21
            = (V^2)/(Rp);
     in pressure coil circuit in W
                                     //total power
             = P11+P21;
19 PP
     consumed in W
20
21 //result
22 mprintf("total power consumed for direct load
```

```
arrangement = %3.2 f W', P);
23 mprintf("\ntotal power consumed for phanton loading
with current circuit = %3.1 f W', PP);
```

Scilab code Exa 8.3 Calculate the error and state whether the meter is fast or slo

```
2 //chapter 8 example 3
3
4 clc;clear all;
5
6 //variable declaration
                         //time in hours
7 T
        = 0.5;
         = 220; //\operatorname{voltage} in V
8 V
        = 5;
= 525;
                         //current in A
9 I
10 P
                         //consumption registered in
     Wh
11 P1
      =0.525; //consumption registered in
     kWh
12
13 //calculations
14
     = ((V*I)/(1000))*T; //energy consumed in
15 E
      kWh
     = ((P1-E)/(E))*100; //percentage error
16 e
     in %
17
18 // result
19 mprintf("percentage error = %3.2f percentage(slow)
     ",e);
```

Scilab code Exa 8.4 Calculate the full load speed of the meter

```
1 //
2 //chapter 8 example 4
3
4
5 clc; clear all;
6
7 //variable declaration
8 M1 = 5; //meter constant in A-s/rev
        = 250; //voltage in V
9 V
       = 60; //time in minute
10 t
11
12 // calculations
13 M2 = M1*V; //meter constant in W-s/rev with
    rated voltage of 250V
14 M3 = M2/(1000*3600); //meter constant in
    kWh/rev
      = 1/(M3); //meter constant in rev/
15 M
    kWh
      = (M2/(t*1000)); //energy consumed in
16 E
    1 minute at full-load
       = M*E; //full-load speed in rpm
17 S
18
19 //result
20 mprintf("meter constant in revolutions per kWh = \%3
    .2d",M);
21 mprintf("\setminus nfull-load speed = \%3.2d rpm", S);
```

Scilab code Exa 8.5 Determine the load in kWh

```
2 //chapter 8 example 5
3
4 clc;clear all;
5
6 //variable declaration
                //number of revolutions made
7 n
    = 15;
               //meter constant in revolutions
8 M
        = 750;
     per kWh
9 T
      = 30;
                  //time in seconds
10
11 //calculations
12 E = n/(M); //Energy consumed in 30 seconds
        = (E*3600)/T; //load in kW
13 L
14
15 //result
16 mprintf("Energy consumed in 30 seconds = \%3.2 f kWh",
     E);
17 mprintf("\nLoad = \%3.2 f kW",L);
```

Scilab code Exa 8.6 Find out the percentage error

```
2 //chapter 8 example 6
3
4
5 clc;clear all;
6
7 //variable declaration
8 M = 500; //meter constant in revolutions
per kWh
9 n = 40; //number of revolutions made
10 T1 = 58.1; //time in seconds
```

```
11 P = 5; //power in kW
12
13 //calculations
14 x =P*T1;
15 E =(x/3600); //Energy consumed in 58.1
    seconds
16 E1 = n/(M); //energy consumption
    registeredin kWh
17 e = ((E1-E)/E)*100; //percentage error in %
18
19 //result
20 mprintf("percentage error = %3.2f percentage",e);
```

Scilab code Exa 8.7 Calculate the percentage error

```
1 //
2 //chapter 8 example 7
3 clc;clear all;
4
5 //variable declaration
           = 230; // voltage in V
6 V
           = 4.4; //current in A
= 3; //time in minutes
=1; //cos(0)=1
7 I
8 T
9 x
           = 10; //number of revolutions made
= 200; //meter constant in revolutions
10 n
11 M
      per kWh
12
13 //calculations
14 E = (V*I*(T/(60))*x)/(1000); //Energy
      consumed i3 minutes
15 E1
         = n/(M);
                               //energy consumption
      registeredin kWh
```

Scilab code Exa 8.8 Calculate how many units are recorded as error

```
1 //
2 //chapter 8 example 8
3
4 clc;clear all;
5
6 //variable declaration
       = 1; //Load in kW
7 L
       = 10.2; //speed of the disc in rpm
= 12; //time in hours
8 S
9 T1
       = 600; //meter constant in revolutions per
10 M
     kWh
11
12 //calculations
13 T2 = T1*60; //time in minutes
14 E
         = L*T1; //actual energy consumed in 12 hours
      in kWh
       = S*T2; //Revolutions made by the disc in 12
15 N
      hours
         = N/(M); //Energy consumption recorded by the
16 E1
      meter
      = E1-E; //error in kWh
17 e
18
19 //result
20 mprintf("error = \%3.2 f kWh more",e);
```

Scilab code Exa 8.9 Determine the speed of the disc

1 //

```
2 //chapter 8 example 9
3
4 clc;clear all;
5
  //variable declaration
6
 7
             = 240; //\operatorname{voltage} in V
8
  V
        = 8; //current in A
= 1; //time in minutes
=0.6; //power factor
= 600; //meter constant in revolutions per
9 I
10 T
11 x
12 M
      kWh
13
14 //calculations
15 E = (V*I*(T/(60))*x)/(1000); //Energy
       consumed 1 minute
                                     //speed of the disc in
16 S
      = E * M;
       rev/minute
17
18 // result
19 mprintf("speed of the disc = \%3.2 \text{ frev}/\text{minute}",S);
```

Scilab code Exa 8.10 Find out the error in registration and error in rpm of the me

```
2 //chapter 8 example 10
3
4 clc; clear all;
5
6 //variable declaration
7 V
          = 230; // voltage in V
8 I
           = 10;
                  //current in A
                      //time in minutes
         = 30;
9 T
                      //power factor
        =0.8;
10 x
                     //number of revolutions made
11 n
       = 890;
                    //meter constant in revolutions
12 M
       = 1200;
     per kWh
13 E
         = 58.25; //dial reading at the end of
     test
         = 57.35;
                          //dial reading at the start
14 E1
     of test
15
16 //calculations
     = (V*I*(T/(60))*x)/(1000); //Energy
17 Ea
     consumed 1 minute
18 Em
       = E - E1;
                           //energy consumption
     recorded by the meter in kWh
           = Em-Ea;
                              //error in registration
19 e
     in kWh
20 N
           = M * Em;
                               //actual revolutions
     required to be made by the meter for an energy
     consumption of 0.90kWh
          = (n-N)/(T);
                                  //error in rpm
21 e
22
23 // result
24 mprintf ("error = \%3.2 f rpm",e);
```

Scilab code Exa 8.11 Calculate the power factor

```
2 //chapter 8 example 11
3
4 clc;clear all;
5
6 //variable declaration
       = 230;
                         //voltage in volts
7 V
                      //current in A
       = 4;
8 I
                       //current in A
9 I1
        = 5;
10 cosphi = 1;
                       //power factor
                       //hours
            = 6;
11 h
                     //revolutios made by meter
//revolutios made by meter
12 R
            = 2208;
13 R1
            = 1472;
                         //energy consumption
14 E1
            = 400;
15 h1
             =4;
16
17 //calculations
18 E
        = (V*I*cosphi*h)/(1000); //energy
      consumption in kWh
19 M
         = R/(E);
                                      //meter constant in
       rev/kWh
             = (R1/(E1)*(1000/(V*I1*h1)));
20 cosphi2
                                                  //power
      factor of the load is cosphi2 for second
      measuremnet
21
22 / result
23 mprintf("meter constant = \%3.2 f revolutions/kWhr",M)
24 mprintf("\npower factor of the load is cosphi2 for
      second measuremnet = \%3.2 \text{ f}", cosphi2);
```

Chapter 9

Measurement of Speed and Frequency and Power factor

Scilab code Exa 9.1 Determine the frequency of output pulses

```
1 //

2 //chapter 9 example 1

3 

4 clc;clear all;

5 

6 //variable declaration

7 N = 1500; //speed of shaft in rm

8 T =120; //number of teeth on rotator

9 

10 //calculatins

11 f = (N/60)*T; //frequency of output pulses in pulses per second

12 

13 //result

14 mprintf("frequency of output pulses in pulses = %3.2 f pulses per second",f);
```

Scilab code Exa 9.2 Determine the speed of the shaft

1 //

```
2 //chapter 9 example 2
3
4 clc;clear all;
5
6 //variable declaration
7 R = 4; //digital counter reading
8 G = 0.001; //gatting period in s
9 T = 150; //number of teeth on rotor
10
11 //calculations
12 f = R/(G); //number of pulses per second
13 N = (f/T)*60; //rotational speed in rpm
14
15 //result
16 mprintf("rotational speed = %3.2 f rpm",N);
```

Scilab code Exa 9.3 Determine the speed of the shaft

```
1 //
2 //chapter 9 example 3
3 4 clc;clear all;
5 6 //variable declaration
```

```
7 H = 120; //number of holes on the rotating
disc
8 f = 5400; //frequency of output pulses in per
second
9
10 //calculations
11 N = (f/(H))*60; //rotational speed in rpm
12
13 //result
14 mprintf("rotational speed = %3.2f rpm",N);
```

```
Scilab code Exa 9.4 Find the frquency
```

```
1 //
```

```
2 //chapter 9 example 4
 3 \, \text{clc};
 4 clear all;
 5
 6 //variable declaration
7 f1 = 60; // frequency in Hz

8 f2 = 50; // frequency in Hz

9 C1 = 10<sup>-6</sup>; // inductance of circuit

10 R1 = 100; // resistance in
11 C2 = 1.5*10<sup>-6</sup>; //capacitance
12
13 //calculations
14 L1 = 1/(4*((%pi)^2)*((f1)^2)*C1); //inductance of
      circuit in H
15 w = 2*%pi*f2;
16 Z1 = R1+(\%i)*((w*L1)-(1/(w*C1))); //impedance
       of circuit at 50 Hz
17 //Z2 = R1 + (\%i) * ((w*L2) - (1/(w*C2))); //
       impedance of circuit at 50 Hz
```

Chapter 10

Measurement of Resistance

Scilab code Exa 10.1 Calculate the apparent resistance and actual resistance and t

```
2 //chapter 10 example 1
3
4
5 \, \text{clc};
6 clear all;
7
8 //variable declaration
9 V= 100;//voltmeter reading in V10 I=0.005;//ammeter reading in A11 S= 1000;//sensitivity of voltmeter in
10 I
11 S
       per volt
                     //voltmeter range in V
12 v = 150;
13
14 //calculations
                      //voltmeter resistance in
15 Rv = S * v;
16 Rm = V/I;
                             //apparent value of unknown
resistor in
17 y = V/(I*Rv);
```

```
18 x = I * (1-y);
         = V/x;
19 Rx
                                 //actual value of
     unknown resistor in
20 er = ((Rm-Rx)/Rx)*100;
                                           //error due
      to loading effect of voltmeter in %
21
22 / result
23 mprintf("apparent value of unknown resistor = \%3.2 f
       ",Rm);
24 mprintf("\nactual value of unknown resistor = \%3.2 f
       ",Rx);
25 mprintf("\nerror due to loading effect of voltmeter
      = %3.2 f percentage",er);
```

Scilab code Exa 10.2 Determine the resulting error

```
2 //chapter 10 example 2
3
4
5 clc; clear all;
6
7 //variable declaration
           = 2.5; //resistance of ammeter
= 6000; //resistance of voltmeter
= 38.4; //voltage in V
= 0.4; //current in A
8 RA
9 RV
10 V
11 I
12
13 //calculations
14 Rx
                = sqrt(RA*RV); //value of unknown
      resisitance in
                  = V/I; //measured value of unknown
15 Rm
      resistance in
```

```
16 Rx1 = V/(I*(1-(V/(I*RV)))); //true value
      of unknown resistance in
              = (1/2) * (1/100) * 1;
                                  //error on
17 EA
     ammeter reading in A
18 EV
              = (1/2) * (50/100);
                                          //error on
     voltmeter reading in V
              = (EA/I) * 100;
                                       //percentage
19 PEA
     error at 0.4 A reading in %
20 PEV
              = (EV/V) * 100;
                                       //percentage
     error at 38.4 A reading in %
              = sqrt((PEA^2)+(PEV^2));
                                               //error
21 E
     due to ammeter and voltmeter in %
22 AE
               = (E/100) * Rx1;
                                       //absolute error
      due to ammeter and voltmeter in
                                       //resistance in
23 R1
              = Rx1 + AE;
24 R2
                                       //resistance in
              = Rx1 - AE;
25
26 // result
27 mprintf("resistance is specified as %3.3f and %3.3f
       ",R1,R2);
```

Scilab code Exa 10.3 Determine the value of unknown resistance

```
2 //chapter 10 example 3
3
4 clc;
5 clear all;
6
7
8 //variable declaration
```

```
9 V
                    //voltage in V
     = 120;
                    //current in A
      = 8;
10 I
                    //resistance in
11 RA = 0.3;
12 AR
     = 0.01;
                    //maximum reading of ammeter in A
13 VR
     = 0.1;
                    //maximum reading of voltmeter in V
14 \text{ AR1} = 10;
                   //ammeter rane 0-10 A
15 \text{ AV1} = 150;
                    // voltmeter range in 0-150 V
16 EA
       = 0.25;
                    //constructional error of ammeter in
      %
     = 0.5;
                   //constructional error of voltmeter
17
  ΕV
     in %
18
19
20 //calculations
                        //measured value of unknown
21 Rm
           = V/I;
      resistance in
                            //true value of unknown
22 Rx
           = Rm - RA;
      resistance in
              (AR/AR1)*100; //reading error of
23 EA1
           =
     ammeter in %
24 EV1
           = (VR/AV1)*100; //reading of voltmeter in %
25 dI
           = EA+EA1;
                            //error in ammeter reading
     in %
           = EV + EV1;
                            //error in voltmeter reading
26
  dv
      in %
27
  d
           =dI+dv;
                        //total error in % ranging - to
     +
           = Rx+d;
                        //Value of Rx is specified as
28 R1
           = Rx - d;
                        //Value of Rx is specified as
29 R2
30
31 / result
32 mprintf("Value of Rx is specified = \%3.3 f, \%3.3 f
     R1,R2);
```

Scilab code Exa 10.4 Determine the value of resistor under test

```
1 //
2 //chapter 10 example 4
3 \, \text{clc};
4 clear all;
5
6 //variable declaration
7 S = 0.02; //resistance of standard resistor in
    = 0.98; //voltage drop across standard resistor in V
8 Vs = 0.98;
                       //voltage drop across resistor
9 Vx = 0.735;
     under test in V
10
11 //calculations
12 X = (S*Vx)/Vs; //Resistance of resistor under
     test in
13
14 //result
15 mprintf("Resistance of resistor under test= \%3.3 f
       ",X);
```

Scilab code Exa 10.5 Determine the value of resistor under test

```
2 //chapter 10 example 5
3 clc;clear all;
4 
5 //variable declaration
6 Vx1 = 0.835; //indicated calue of voltage
drop across the unknown resistance in V
7 emf = -25*10^-6; //thermal emf with unknown
```

```
resistance in V
8 S = 0.10025; //resistance of standard
resistor in
9 Vs = 0.984; //voltage drop across standard
resistor in V
10
11 //calculations
12 Vx = Vx1-emf;
13 X = (S*Vx)/Vs; //Resistance of resistor under
test in
14
15 //result
16 mprintf("unknown resistor = %3.5 f ",X);
```

Scilab code Exa 10.6 Calculate the unknown resistance

```
2 //chapter 10 example 6
3
4 clc;clear all;
5
6 //variable decalartion
7 p = 200.62; //resistance in
8 q = 400; //resistance in
9 P = 200.48; //resistance in
10 Q = 400; //resistance in
11 S = 100.03; //resistance in
12 r = 700; //resistance in
13
14 //calculations
15 X = ((P/Q)*S)+((q*r)/(p+q))*((P/Q)-(p/q));
16
17 //result
```

 $Scilab \ code \ Exa \ 10.7$ Determine the value of unknown resistacne

1 //

```
2 //chapter 10 example 7
3
4
5 clc;clear all;
6
7
8 //variable declaration
9 P = 100; //resistance in
10 Q = 10; //resistance in
11 S = 46; //resistance in
12
13 //calculations
14 R = (P/Q)*S; //unknown reistance in
15
16 //result
17 mprintf("unknown resistance = %3.2 f ",R);
```

Scilab code Exa 10.8 Determine the value of unknown resistance

1 //
2 //chapter 10 example 8
3 4 clc;clear all;
5

```
6 //variable declaration
7 S = 6; //resistance in
8 AB = 25; //length of AB in cm
9 BC = 75; //length of BC in cm
10
11 //calculations
12 R = (AB/BC)*S; //unknown reistance in
13
14 //result
15 mprintf("unknown resistance = %3.0 f ",R);
```

Scilab code Exa 10.9 Determine the dials required to adjusted for obtaining the re

```
1 //
```

```
2 //chapter 10 example 9
3
4 clc;clear all;
5
6 //variable decalartion
    =5000; //a resistance of apporximately
7 R.
     required to balance a bridge in
     = 0.1; //in per cent
8 E
9
10 //calculations
11 R2 = R+(R*(E/100)); //limiting value in
12 R1 = R-(R*(E/100)); //limiting value in
13
14 //result
15 mprintf("limiting value %3.0 f to %3.0 f ",R1,R2
     );
16 mprintf("\nThus dials of 1000,100,10,1 would have
      to be adjusted");
```

Scilab code Exa 10.10 Calculate the limiting values of unknown resistance

```
2 //chapter 10 example 10
3
4
5 \, \text{clc};
6 clear all;
7
8 //variable declaration
9 P = 100; //resistance in
10 \quad \psi = 100; \quad //resistance in \\ 11 \quad S = 230; \quad //resistance in \\ 12 \quad dP = 0.022 \quad (11)
%
                                             %
                                             %
15
16 //calculations
17 R = (P/Q) * S; //unknown reistance in
18 dR =dP+dQ+dS; //limiting error (dR/R) in \%
19 dR1 = (dR*R)/100;
                       //limitng values of unknown
20 R1 = R-dR1;
     resistance in
21 R2 = R+dR1;
                      //limitng values of unknown
     resistance in
22
23 //result
24 mprintf("unknown resistance = \%3.0 f ",R);
```

Scilab code Exa 10.11 Find the magnitude and direction of the current flowing thro

```
//chapter 10 example 11
2
3
4 clc;clear all;
5
6 //variable declaration
      = 1000; //resistance in arm AC in
7 P
              //resistance in arm AD in
      = 1000;
8 Q
                  //resistance in arm CB in
9 S = 100;
     = 101; // resistance in arm BD in
= 50; // galvanometer resistance in
10 R = 101;
11 Rg
      = 2; //voltage in V
12 E
13
14 //calculations
15 R1
     = (Q*S)/P;
                      //resistance required in arm BD
     for balance bridge
16 \, dR = R - R 1;
                   //the deviation from balanced
     condition in
17 Eth = E*(((R1+dR)/(R1+dR+S))-(P/(P+Q)));
                                                11
     thevenin's open circuit voltage in V
  Rth = (((R1+dR)*S)/(R1+dR+S))+((P*Q)/(P+Q));
18
                                                   - / /
     thevenin's equivalent resistance of bridge in
  Ig = Eth/(Rth+Rg); //galvanometer current
19
     in A
20
21 // result
22 mprintf("galvanometer current = \%3.3 f uA",(Ig*10^6))
23 mprintf("\nsince the point B is at higher potential
     with respect to point A , current will floe from
```

Scilab code Exa 10.12 Determine the sensitivity of the bridge

```
2 //chapter 10 example 12
3 clc;clear all;
4
5 //variable declaration
7 Q = 1000,

8 S = 2000; //resistance in arm CD in

9 R = 202; //resistance in arm BD in
10 Rg = 200;
                  //galvanometer resistance in
11 E = 5; //voltage in V
12 Si = 5; //current sensitivity of the
      galavanometer in mm/uA
13
14 //calculations
15 \text{ Si1} = 5*10^9;
                   //current sensitivity of the
      galavanometer in mm
                   //resistance required in arm BD
16 \text{ R1} = (P*S)/Q;
      for balance bridge
17 \, dR = R - R 1;
                  //the deviation from balanced
      condition in
18 Eth = E*(((R1+dR)/(R1+dR+S))-(P/(P+Q)));
                                                thevenin's open circuit voltage in V
19 Rth = (((R1+dR)*S)/(R1+dR+S))+((P*Q)/(P+Q));
                                                    ||
      thevenin's equivalent resistance of bridge in
                        //galvanometer current
20 \text{ Ig} = \text{Eth}/(\text{Rth}+\text{Rg});
     in A
21 d = Si1*Ig;
                                 //deflection of the
      galvanometre theta in mm
```

```
22 S = d/dR; //sensitivity of the bridge
in mm/
23
24 //result
25 mprintf("galvanometer current = %3.2e A",Ig);
26 mprintf("\ndeflection of the galvanometre theta = %3
.1f mm",(d*10^-3));
27 mprintf("\nsensitivity of the bridge = %3.2f mm/ "
,(S*10^-3));
```

Scilab code Exa 10.13 Determine the ratio of galvanometer sensitivities

```
2 //chapter 10 example 13
3 \text{ clc};
4 clear all;
5
6 //variable declaration
7 P = 1000; //resistance in arm AB in
8 Q
        = 100;
                      //resistance in arm BC in
                   //resistance in arm BD in
        = 200;
9 R
                      //sensitivity
10 \text{ Si1} = 10;
11 Si2 = 5;
                      //sensitivity
12 Rg1 = 400;
13 Rg2 =100;
14
15 //calculations
16 S = R*Q/P; //resistance required in
                                                             arm
      CD in
17 Rth = ((R*S/(R+S))+(P*Q/(P+Q)));
                                                    //thevenin's
        equivalent resistance of bridge in
18 // \text{theta} = (\text{Si} \times \text{E} \times \text{S} \times \text{dR}) / ((\text{R} + \text{S})^2) \times (\text{Rth} + \text{Rg1}))
19 //theta2/theta1 = (Si * E * S * dR) / ((R+S)^2) * (Rth+Rg1))
```
```
*(((R+S)^2)*(Rth+Rg1)/(Si*E*S*dR))
20 r = (Si2/Si1)*((Rth+Rg1)/(Rth+Rg2)); //ratio
deflection of two galvanometer
21
22 //result
23 mprintf("ratio deflection of two galvanometer =
    %3.3f ",r);
24 mprintf("\nthe first galvanometer (internal
    resistance 400 and sensitivity 10 mm/uA) is
    less sensitive to a small unbalance on the given
    bridge ,through on its own it is more sensitive
    than the other galavanometer")
```

Scilab code Exa 10.14 Determine the smallest change in the resistance

```
1 //
```

```
2 //chapter 10 example 14
3
4 \text{ clc};
5 clear all;
6
7 //variable declaration
8 P = 500;
                   //resistance in arm AB in
                   //resistance in arm BC in
     = 500;

= 500; //resistance in .

100; //galvanometer in

//battery voltage
       = 500;
9 Q
                    //resistance in arm CD in
10 S
                      //resistance in arm BD in
11 R = 500;
12 Rg = 100;
13 E = 10;//battery voltage in V14 Rth = 500;//thevenin's equivalent resistanceof
       bridge
15 Ig = 10<sup>-9</sup>; //galavanometer capable of
      detecting Ig current in A
16
```

```
17 // calculations

18 //Eth = (E*dR)/(4*R);

19 x = E/(4*R); //thevenin or open -circuit

voltage in dR

20 //Ig = Eth/(Rth+Rg)

21 y = x/(Rth+Rg); //current through galvanometer

22 dR = (Ig*(Rth+Rg))/x; //the smallest change in

resistance that can be detected in

23

24 //result

25 mprintf("the smallest change in resistance that can

be detected = %3.2 f m ",(dR*10^3));
```

Scilab code Exa 10.15 Determine the value of resistance

```
1 //
2 //chapter 10 example 15
3 clc;clear all;
4
5 //variable declaration
      = 200;
6 P
                  //resistance in arm
                                        in
      = 200;
                  //resistance in arm
7 Q
                                        in
                  //resistance in arm in
8 S
      = 200;
9
10 R
      = 200;
                 //resistance in arm
                                        in
      = 0.5;
                  //power in W
11 p
12 r
      = 2;
                  //r is internal resistance of
     battery in
                  //voltage in V
13 E
      = 24;
14
15 //calculations
16 //P = (I^2) *R;
                  power disipation in W
17 I = sqrt(p/R);
```

18 V = I*2*R; //the maximum voltage ,that can be applied the bridge in V 19 I1 = 2*I; //current through series resistor in A 20 //E = V+(2*I*(r+R) battery emf E 21 R1 = ((E-V)/I1)-r; //series resistance in 22 //result 23 //result 24 mprintf("current = %3.2f A",I); 25 mprintf("\nseries resistance = %3.2f ",R1);

Scilab code Exa 10.16 Determine the maximum value of the resistance and internal r

```
1 //
```

```
2 //chapter 10 example 16

3

4 clc;clear all;

5

6 //variable declaration

7 P = 10000; //resistance in arm AB in

8 Q = 10; //resistance in arm BC in

9 S = 5000; //resistance in arm BD in

10 Si = 10^8; //sensitivity

11 Rg =100; //galvanometer resistance in

12 E = 12; //voltage in V

13 d = 2.5; //deflection in mm

14

15

16

17 //calculations

18 R = P*S/Q; //resistance required in arm

CD in

19 Rth = ((R*S/(R+S))+(P*Q/(P+Q))); //thevenin's
```

```
equivalent resistance of bridge in
20 dR = ((d*(Rth+Rg)*((R+S)^2))/(Si*E*S)); //
change in defelection in
21
22 //result
23 mprintf("the maximum value of resistance that can be
measured with the given arrangement = %3.2 f ",
R);
24 mprintf("\nchange in defelction = %3.2 f k ",(dR
*10^-3));
```

Scilab code Exa 10.17 Calculating how far are the balance positions

```
1 //
```

```
2 //Chapter 10 Example 17
3
4
5 clc; clear all;
6
7 //variable declaration
                        //resistance in
8 r
       = 0.0250;
      = 1.0125;
                       //resistance in
9 R
                //sensitivity
10 S = 1
11 P1 = 10;
                 //resistance in
12 Q1 = 10;
13 P2 = 9.95;
14 Q2 = 10.05;
                    //resistance in
                    //resistance in
                       //resistance in
      = 100;
15 l
16
17 //calculations
                    //resistance in per scale
18 r1 = r/100;
     division
19 x1 = P1/Q1;
```

```
20 x2 = P2/Q2;
21 //P/Q = (R+(l1*r))/(S+(l-l1)*r)
22 //(s*x) + ((1-l1)*r) = R+(l1*r)
23 //(S*x) + (1*r) - (11*r) = R + (L1*r)
24 //(S*x) + (1*r) - R = (11*r) + (11*r)
25 11
          = ((S*x1)+(1*r1)-R)/(r1+r1);
                                                //scale
      divisions
          = ((S*x2)+(1*r1)-R)/(r1+r1);
                                                //scale
26 112
      divisions
27
28 // result
29 mprintf("hence the balance is obtainde at %3.0f and
     75 scale divisions", 11);
30 mprintf("\nhence the balance is obtainde at %3.0f
     and 95 scale divisions", 112);
```

 $Scilab \ code \ Exa \ 10.18$ Calculate the insulation resistance of the cable

```
1 //
2 // chapter 10 example 18
3
4 clc; clear all;
5
6 // variable declaration
7 V1 = 250; // voltage in V
8 V2 = 92; // voltage in V
9 t = 60; // time in seconds
10 C = 600*10^-12; // capacitance in F
11
12 // calculations
13 //V2 = V1*e^(t/C*R)
14 R = t/(C*log(V1/V2))
15
```

```
16 // result
17 mprintf("insulation resistance = %3.0 f M ",(R
 *10^-6));
```

 $Scilab \ code \ Exa \ 10.19$ Calculate the insulation resistance of the cable

```
1 //
2 //chapter 10 example 19
3
4 clc;clear all;
5
6 //variable declaration
7 V1 = 100; //voltage in V
8 V2 = 80; //voltage in V
9 t = 20; //time in seconds
10 C = 300*10^{-12}; //capacitance in F
11
12 //calculations
13 / V2 = V1 * e^{(t/C*R)}
14 R = t/(C*\log(V1/V2))
15
16 // result
17 mprintf("insulation resistance = %3.2 e M ",(R
      *10^-6));
```

 $Scilab \ code \ Exa \ 10.20$ Calculate the insulation resistance of the cable

1 //

2 // chapter 10 example 20

```
3 clc;clear all;
 4 //variable declaration
5 V1 = 200; //voltage in V

6 V2 = 126; //voltage in V

7 t = 30; //time in seconds

8 V12 = 200; //voltage in V

9 V22 = 100; //voltage in V
10
11 //calculations
12 / | let CR = a
\begin{array}{rcl} 13 & //V2 & = V1 * e^{(t/C*R)} \\ 14 & a & = t/log(V1/V2); \\ 15 & //R1 & = (10*R)/(10+R) \\ 16 & a1 & = t/log(V12/V22); \\ \end{array} //C*R1 \end{array}
17 / a1/a = R1/R = x
18 x = a1/a;
19 // since R1 = (10*R)/(10+R)
20 / x * (10 + R) * R = 10 * R
21 / (x*10) + R*x = 10
22 R = (10 - (x + 10))/x; //Resistance in
23
24 // result
25 mprintf("resistance = \%3.2 f M ", R);
```

Scilab code Exa 10.21 Calculate the value of R

```
1 //
2 //chapter 10 example 21
3 clc;clear all;
4
5 //variable declaration
6 V1 = 450; //voltage in V
7 V2 = 280; //voltage in V
```

```
8 t = 15.2; //time in minutes
9 t1 = 10.8; //time in minutes
10 C = 2.5*10^-6; //capacitance in F
11
12 //calculations
13 t12 = t*60; //time in seconds
14 t22 = t1*60; //time in seconds
15 / V2 = V1 * e^{(t/C*R)}
16 x = V1/V2;
17 y = \log(x);
18 R = t12/(C*y);
19 R1 =t22/(C*y);
20 //R1 = t1/(C*\log(V1/V2));
21 //1/R' = (1/R1) - (1/R)

22 R11 = (R1*R)/(R-R1); //unknown resistance in
23
24 //result
25 mprintf("unknown resistance= %3.2d M ",(R11*10^-6)
    );
```

Scilab code Exa 10.22 Calculate the insulation resistance of the cable

```
1 //
```

```
2 //chapter 10 example 22
3 clc;
4 clear all;
5
6 //variable declaration
7 r = 250; //number of scale divisions
galvanometer can read
8 s = 2.5; //universal shunt multiplier
9 r1 = 350; //number of scale reading
```

```
10 s1 = 1000; //universal shunt multiplier when
     standard resistor is connecter
     = 1000000;
11 S
12
13 //calculations
14 //IR praportional to galvanometer*universal shunt
     multiplier
15 IR = r*s; //current through the circuit with
     unknown resistance Rconnected
  Is = r1*s1; //current through the circuit with
16
     standard resistance in S
17 R1 = (Is/IR)*S; //insulation resistance of cable
      in
18
19 //result
20 mprintf("insulation resistance of cable = \%3.2 f M "
      ,(R1*10<sup>-6</sup>));
```

 ${
m Scilab\ code\ Exa\ 10.23}$ Determine Rsh AND Rse AND maximum value of Rsh and scale err

```
1 //
```

```
2 //chapter 10 example 23
3 clc
4 clear all
5
6 //variable declaration
7 V = 3; //battery voltage in volts
8 Rm = 60; //resistance in
9 Ifm = 1.2; //full-scale deflection meter
current in mA
10 Rh = 1500; //half-scale deflection
resistance in
11 V1 = 0.3; //at 10 % drop in battery
```

```
voltage in V
12
13 //calculations
14 If = V/Rh; //battery current for full-scale
     deflection in A
15 \text{ If } 1 = \text{ If } * 10^3;
                            //battery current for
     full-scale deflection in mA
16 Ish = If1-Ifm; //current through zero
     adjuster resistor i.e., shunt resistor in mA
17 Rsh = (Ifm*Rm)/Ish; //resistance in
18 Rse = Rh-((Rsh*Rm)/(Rsh+Rm)); //current
     limiting resistor i.e, series resistor
19 V3 = V-V1; // voltage in V
      = V3/Rh; //battery current at full-
20 If2
    scale deflection in A
                            //battery current at full
21 If21
       = If2*10^3;
     -scale deflection in mA
22 Ish1
       =If21-Ifm; //current through shunt
     resistor in mA
23 Rsh1 = (Ifm*Rm)/Ish1; //shunt resistor in
       = Rse+((Rm*Rsh1)/(Rm+Rsh1));
24 Rh1
                                         //total
     internal circuit resistance in
       =((Rh-Rh1)/(Rh1))*100; //percentage
25 e
     error in %
26
27 //calculation
28 mprintf("resistance = \%3.2 f ", Rsh);
                                              "
29 mprintf("\ncurrent limiting resistor = \%3.2 f
     Rse);
30 mprintf("\nshunt resistor = \%3.2 f ", Rsh1);
31 mprintf("\npercentage error = \%3.3 f percentage ",e);
```

Scilab code Exa 10.24 Determine the value of current

```
2 //chapter 10 example 24
3
4 clc;
5 clear all;
6
7 //variable declaration
8 V = 3; //battery voltage in volts
9 Rm = 2; //meter resistance in
10 Ifm = 10; //full scale deflection meter current in
     mA
11 Rh = 0.5; //half scale deflection resistance in
12
13 //calculations
                               //half-scale deflection of
14 Im = 0.5* Ifm;
       the movement
15 Vm = Im * Rm;
                                //voltage across movement
      in mV
                                   //current through
16 Ix = (Vm * 10^{-3})/Rh;
      resistor in A
17 \text{ Ix1} = \text{Ix} * 10^3;
                                   //urrent through
     resistor in mA
18 IB = Im + Ix1;
                                //total battery current
      in mA
19 V1 = V - (Vm * 10^{-3});
                                   //voltage drop across
      current lo V
                                    //current limiting
20 Rse = V1/(IB*10^{-3});
      resistor in
21
22 //result
23 mprintf("current limiting resistor = %3.1 f ", Rse);
```

Chapter 11

Potentiometers

Scilab code Exa 11.1 Determine emf and current and voltage and percentage error in

```
2 // chapter 11 example 1

3

4 clc; clear all;

5

6 // variable declartion

7 v = 1.0186; // emf of standard cell in volts

8 l = 60; // length in cm

9 l1 = 75; // length in cm

10 l2 = 66; // length in cm

11 l3 = 84; // length in cm

12 l4 = 40; // length in cm

13 l5 = 72; // length in cm

14 S = 2; // resistance in

15 r = 100; // ratio of volt ratio box

16 S1 = 2.5; // resistance in

17 I = 0.28; // ammeter reading in ampere

18 v1 = 1.25; // voltmeter reading in volts

19
```

```
20 //calculations
21 v0 = v/1;
                  //the voltage drop per cm length of
     potentiometer wire in volt
22 V1 = v0*11;
                       //emf of cell which balances at
     75 cm in volts
23 V2 = v0*12;
                       //emf of cell which balances at
     66 cm in volts
24 I1 = v/S;
                   //current flowing through 2
     resistance in A
                       //emf of cell which balances at
25
  V3 = v0 * 13;
     84 cm in volts
26 v31 = V3*r;
               //voltage of supply main in volts
27 V4 = v0*14;
                       //emf of cell which balances at
     40 cm in volts
  I4 = V4/S1;
                  //current flowing through 2.5
28
     resistance in A
      = ((I-I4)/I4)*100; //percentage error in the
29
  е
     ammeter reading in %
30 V5 = v0*15;
                       //emf of cell which balances at
     72 cm in volts
  e1 = ((v1-V5)/V5)*100; //percentage error in the
31
     voltmeter reading in %
32
33 //result
34 mprintf("emf of cell which balances at 75 cm = %3.5
     f volts", V1);
35 mprintf("\ncurrent flowing through 2 resistance =
      %3.5 f A", I1);
36 mprintf("\nvoltage of supply main in volts = \%3.5 f
     volts",v31);
37 mprintf("\npercentage error in the ammeter reading =
      %3.1d percentage high",e);
38 mprintf("\npercentage error in the voltmeter reading
      = %3.2 f percentage ",e1);
```

Scilab code Exa 11.2 Calculate the resolution of potenetiometer

1 //

```
2 //chapter 11 example 2
 3 \, \text{clc};
 4 clear all;
 5
 6 //variable declaration
7 R = 10; //resistance of slide wire in
8 n = 15; //number of steps of dial
9 r = 10; //resistance of each dial in
10 I = 0.01; //working current in A
11 N = 100: //number of divisions of slide
11 N = 100; //number of divisions of slide
12 a = 0.2; //each division of slide can read
         upto a accurately of its span
13
14 //calculations
15 R1 = (n*r)+R; //total resistance of
         potentiometer in
16 V
        = I*R1; //voltage range of the potentiometer
          V
17 v = R*I; //voltage drop across slide wire V
18 x = v/N; //each division represents in V
19 y = x*a; //resolution of potentiometer in V
20
21 // result
22 mprintf("resolution of potentiometer = \%3.4 f V",y);
```

Scilab code Exa 11.3 Calculate the working current and resistance and measurement

```
2 //chapter 11 example 3
3 clc;
4 clear all;
5
6 //variable declaration
7 R
       = 400;
                   //total resistance of slide-wire of
      200 \text{ cmin}
8 L1 = 101.8;
                        //length of slide wire in cm
       = 200;
9 L
                    //length of wire in cm
     = 1.018;
                        //voltage drop across 101.8cm
10 v1
      length of slide wire in V
                   //battery voltage in V
11 v
       = 3;
12 a
       = 0.2;
                   //it is possible to read a of 1 mm
13
14 //calculations
15 \text{ R1} = (R/L) * L1;
                        //resistance of slide wire of
      101.8 cm in
                        //working current in A
16 I1 = v1/R1;
                    //total resistance of battery
17 RT = v/I1;
      circuit in
                   //resistance of series rheostat in
18 RR = RT-R;
                   //measuring range in V
19 r
       = I1 * R;
20 //since 200cm length represents 2 V
21 / / 1 \text{ mm length represents} = z
     = (r/L)*(1/10); //voltage represented for 1mm
22 z
      length
                   //resolution of instrument in mV
23 Ri
     = z*a;
24
25 //result
26 mprintf("working current = \%3.1 \text{ e A}",(I1*10^3));
27 mprintf("\nresistance of series rheostat = \%3.2 f
                                                         "
      , RR);
28 mprintf("\nmeasuring range = \%3.2 f V",r);
29 mprintf("\nresolution of the instrument = \%3.2 f mV"
      ,(Ri*10^3));
```

Scilab code Exa 11.4 Calculate the inductance of the coil

1 //

```
2 //chapter 11 example 4
 3
4 clc;
 5 clear all;
 6
 7 //variable declaration
8 R1 = 0.1; //standard resistance in
9 V2 = 0.613; //voltage drop across
                        //voltage drop across standard
      resistance in V
10 a = 100;
11 r = 0.781; //volt ration box
12 theta = 50.48;
13 theta1 = 12.6;
14 f = 50;
                          //frequency in in HZ
15
16 //calculations
17 I = V2/R1; //current through coil in A
18 V1 = a*r; //voltage drop across inductive
      coil in V
19 theta2 = theta -theta1;
20 L = V1*sin(theta2*180/%pi)/(2*%pi*f*I); //
      inducatance of coil in H
21
22 //result
23 mprintf("inductance of coil =%3.2 f H",L);
```

Scilab code Exa 11.5 Calculate the resistance and reactance of the coil

```
1 //
2 //chapter 11 example 5
3
4 clc;clear all;
5
6 //variable declaration
7 R1 = 1; //standard resistance in
8 V3 = 0.952 - 0.340 * \%i; //voltage through the coil
      in A
9 a = 10;
               //multiplying power of potential
      divider
10 V2 = 1.35+1.28*%i; //voltage across potential in A
11
12 //calculations
13 \times = \text{complex}([0.952, -0.342])
14 y = complex([1.35, 1.28])
15 I = x/R1;,
     = x/R1;, //current through coil
= x/R1 //current through coil in A
                        //current through coil in A
16 I
17 I1 = 0.952 - 0.340 * \%i;
18 V1 = a*y
                    //voltage across coil in V
19 V11 = 13.5+12.8*\%i;
20 Z
     = V11/I1
21 R
     = real(Z) //resistance of coil in
                       //reactance of coil
     = imag(Z)
22 X
23
24 // result
25 mprintf("\%g + \%gin", R, X);
26 mprintf("resistance of coil = \%3.4 f ",R);
27 mprintf("\nreactance of coil = \%3.2 f ",X);
27 mprintf("\nreactance of coil = \%3.2 f
```

Scilab code Exa 11.6 Calculate the resistance and reactance of the coil $\ensuremath{1}$ //

```
2 //chapter 11 example 6
3
4 clc;
5 clear all;
6
7 //variable declaration
          = 1;
                              //resistace in
8 R
          = 0.238 - \%i * 0.085;
9 V2
                                       //voltage across
      standard resistor in V
10 P
          = 10;
                               //multiplying ower of
     potential divider
          = 0.3375+%i*0.232; //voltage across
11 V1
     potential divider in V
12
13
14
15 //calculations
                               //current through coil
16 I = V2/R;
     in A
17 V2
          = P * V1;
                               //voltage across the
     coil in V
                               //impedance of coil in
18 Z
          = V2/I;
                                   // resistance of
19 R1
         = real(Z);
     coil in
                                //reactance of coil in
        =imag(Z);
20 X1
21
22 / result
23 mprintf("resistance = \%3.2 f ", R1);
24 mprintf("\nreactance = \%3.3 f ", X1);
```

Scilab code Exa 11.7 Determine the core loss in the choke coil

```
1 //
```

```
2 //chapter 11 example 7
3
4 clc;
5 clear all;
6
7 //variable declaration
8 R1
            = 1.0; //resistance in
      = 0.8-%i*0.75; //voltage drop
9 V1
   across the resistance in volt
      = 1.2+\%i*0.3; //voltage across the
10 V2
     coil in volt
11
12 //calculations
13 I = V1/R1; //current through coil in A
14 x
        = (atan(imag(V1)/real(V1)))*180/%pi;
15 y
        = (atan(imag(V2)/real(V2)))*180/%pi;
16 phi
        = y - x;
17 a
        =sqrt(((real(V2))^2)+((imag(V2))^2));
        =sqrt(((real(I))^2)+((imag(I))^2));
18 b
      = a*cos(phi*%pi/180); // resistive
19 V3
     drop the coil in V
         = a*b*cos(phi*%pi/180); //power loss
20 P
      in the coil in W
21
22
23 // result
24 mprintf("iron loss in the coil =%3.3f watt",P);
```

Scilab code Exa 11.8 Determine the true reading of the wattmeter and the load powr

```
2 //chapter 11 example 8
3
4 clc;
5 clear all;
6
7 //variable declaration
                       //standard resistance in
8 R1
       = 0.1;
9 V1 = 0.35 - \%i * 0.1;
                         //voltage drop across
     resistance in V
10 \quad V2 = 0.8 - \%i * 0.15;
                            //voltage across coil in V
11
12 //calculations
                       //current through coil in A
13 I
        = V1/R1;,
        = 300 * V2;
                         //apply voltage V
14 V
15 x1 = real(I);
16 y1 = abs(imag(I));
17 V1 = sqrt((x1^2)+(y1^2));
18 x = real(V);
19 y = imag(V);
20 I1
     = sqrt((x^2)+(y^2));
        = (x1*x)+(y1*y);
21 P
22 // pf = P/(V1*I);
                              //power factor of the
     load circuit in lagging
        = P/(V1*I1);
                                   //power factor of
23 pf
     the load circuit in cos(phi)
24
25 // result
26 mprintf("power factor of the load circuit = \%3.3 f
     lagging", pf);
```

Chapter 12

AC bridges

Scilab code Exa 12.1 Determine whether to balance the bridge

```
2 //Chapter 12 example 1
3 clc;clear all;
4
5 //variable declaration
                            //resistance of arm
6 Z1
              = 100;
                                                   in
                             //resistance of arm
7 Z2
              = 50;
                                                   in
                             //resistance of arm
8 Z3
              = 200;
                                                   in
                              //resistance of arm
9 Z4
                100;
                                                   in
              =
                = 30;
                             //phase angle in
10 theta1
                              //phase angle in
11 theta2
                = 0;
                              //phase angle in
12 theta3
                = -90;
                             //phase angle in
13 theta4
                = 30;
14
15 //calculations
```

```
16 x = Z1*Z4; //magnitude
17 y = Z2*Z3; //magnitude
18 thetax = theta1+theta4;
19 thetay
           = theta2+theta3;
20
21 // result
22 mprintf("x = %3.2 f",x)
23 mprintf ("\nx = \%3.2 \text{ f}",y);
24 mprintf("\nsince x = y \setminus n');
25 mprintf("\nthe first condition is satisfied');
26 mprintf("\ nthetax = \%3.2 f", thetax);
27 mprintf("\nthetay = \%3.2 f", thetay);
28 mprintf("\nsecond condition is not saatisfied ');
29 mprintf("\nIt means bridge is unbalancedthrough
     first condition for equality of magnitude product
      satisfied, obviously balance is not possible
     under above conditions");
```

Scilab code Exa 12.2 Determne whether or not the bidge is complete balance

```
2 //Chapter 12 Example 2
3
4 clc;
5 clear all;
6
7 //variable declaration
            = 1000;
                         //resistance of arm in
8 Z1
                          //resistance of arm
9 Z2
            = 500;
                                             in
10 Z3
       = 1000;
                          //resistance of arm
                                             in
```

```
11 Z4
                                      //resistance of arm
                = 509.9;
       in
12 ZX4
                =100+500*\%i;
                                 //angle in
13 theta1
                = -90;
14 theta2
                = 0;
                               //angle in
15 theta3
                = 0;
                               //angle in
                                 //angle in
16 theta4
                = -90;
17 theta41
                = 78.69;
18
19 //calculations
20
21 thetax
                = theta1+theta41;
22 thetay
                   = theta2+theta3;
23 x
                = Z2 * Z3;
            = Z2 * Z3
24 / Z1 * Z4
25 / / 1 / Z1
                = A = Z4/Z2*Z3
                                     = Z4/x
                = ZX4/x;
26 A
                = 1/R1 + (w*C1) *\%i
27 / 1/Z1
28 Zx3
                = (Z1*Z4)/Z2;
29 thetax3
                    = theta1+theta41-theta2;
                = (Zx3*cos(thetax3*%pi/180))+(Zx3*sin(
30 Z3
      thetax3*%pi/180));
31
32
33 //result
                           = \%3.2 \, f ", thetax);
34 mprintf("thetax
35 \text{ mprintf}(" \setminus \text{nthetax} = \%3.2 \text{ f} ",thetay);
36 mprintf("\nbalance can be restored by modifying the
      circuit so asto satisfy the phase angle condition
      ");
37 mprintf("\ncomparing equations 1 and 2 R1
                                                      = \%3
      .2 f",1/real(A));
38 mprintf("\ncomparing equations 1 and 2 1/w*C1
      \%3.2\,e^{"}, imag(A));
39 mprintf("\n1/w*C1 is already equal to 1000
                                                      \mathbf{SO}
      the bridge can be easily balanced by adding 5000
          accross capacitor in arm 1");
40 mprintf("\nsince R3 is already of 1000
                                              so the
```

bridge can be easily balanced by adding capacitance 200 in series across in arm 3"); 41 mprintf("Note: there was a possibility that with the addition of resistance R1 in armm 1 as first option or with teh addition of capacitance C3 in arm 3");

Scilab code Exa 12.3 Find the resistance and inductance of the coil

```
2 //Chapter 12 Example 3
3
4
5 clc; clear all;
6
7 //variable declaration
              = 100; // resistance of arm
= 32.7; // resistance of arm
= 100; // resistance of arm
8 R2
                                                      in
9 R3
                                                      in
                            //resistance of arm
              = 100;
10 R4
                                                      in
             = 1.36; // resistance of arm
= 47.8; //inducatance in mH
11 R
                                                      in
12 L
13
14
15 //calculations
      = ((R2*R3)/(R4))-R; //resistance of coil
16 R1
       in
           = (R2/(R4))*L; //in case of balanced
17 L1
      position of bridge in mH
18
19 //result
20 mprintf("Resistance pf the coil = %3.2 f ", R1);
21 mprintf("\ninductance in case of balanced bridge =
      %3.2 f mH",L1);
```

Scilab code Exa 12.4 Find the resistance and inductance

1 //

```
2 //Chapter 12 Example 4
3
4 clc;clear all;
5
6 //variable declaration
            = 1000; //resistance of arm in
= 1000; //resistance of arm in
= 1000; //resistance of arm in
= 0.5*10^-6; //capacitance in F
7 R2
                                                         in
8 R3
9 R4
                                                         in
                                                         in
10 C4
11
12 // calculations
13 R1 = ((R2*R3)/(R4)); //resistance of coil in
14 L1 = C4*R2*R3; //inductance of inductor
       in H
15
16 // result
17 mprintf("resistance of coil = \%3.2 f ",R1);
18 mprintf("\ninductance of inductor = \%3.2 f H",L1);
```

 $Scilab \ code \ Exa \ 12.5$ Find the resistance and inductance of the unknown resistance

1 //

2 //Chapter 12 Example 5

```
3
4 clc;clear all;
5
9 R4
10 C4
           = 469;
11 r
12
13 //calculations
14 R1 = ((R2*R3)/(R4)); //resistance of coil in
15 x = (r*(R3+R4))+(R3*R4)
       = (C4*R2*x)/(R2);
                                //inductance of
16 L1
   inductor in H
17
18 //result
19 mprintf("resistance of coil = \%3.2 f ",R1);
20 mprintf("\ninductance of inductor = \%3.2 f H",L1);
```

Scilab code Exa 12.6 Find the resistance and inductance

1 // 2 //Chapter 12 Example 6 3 d clc;clear all; 5 6 //variable declaration 7 R2 = 400; //resistance of arm in 8 R3 = 400; //resistance of arm in 9 R4 = 400; //resistance of arm in 10 C4 = 2*10^-6; //capacitance in F

```
11 r = 500; //resistance in
12
13 //calculations
14 R1 = ((R2*R3)/(R4)); //resistance of coil in
15 x = (r*(R3+R4))+(R3*R4)
16 L1 = (C4*R2*x)/(R3); //inductance of
inductor in H
17
18 //result
19 mprintf("resistance of coil = %3.2f",R1);
20 mprintf("\ninductance of inductor = %3.2f Henry",L1)
;
```

Scilab code Exa 12.7 Find the resistance and inductance

```
2 //Chapter 12 Example 7

3

4 clc;clear all;

5

6 //variable declaration

7 R2 = 1000; //resistance of arm in

8 R3 = 500; //resistance of arm in

9 R4 = 1000; //resistance of arm in

10 C4 = 3*10**-6; //capacitance in F

11 r = 100;

12

13 //calculations

14 R1 = ((R2*R3)/(R4)); //resistance of coil in

15 x = (r*(R3+R4))+(R3*R4)

16 L1 = (C4*R2*x)/(R4); //inductance of
```

```
inductor in H
17
18 //result
19 mprintf("resistance of coil = %3.2 f ",R1);
20 mprintf("\ninductance of inductor = %3.2 fHenry",L1);
```

Scilab code Exa 12.8 Find the resistance and inductance

```
1 //
2 //Chapter 12 Example 8
3
4 clc;clear all;
5
6 //variable declaration
             = 1000; //resistance of arm in
= 16800; //resistance of arm
7 R2
8 R3
                                                    in
            = 833; //resistance of arm in
9 R4
10 C4
            = 0.38*10^{-6}; //capacitance in F
              = 50; //frequency in Hz
11 f
12
13 //calculations
14 w
         = 2*(%pi)*f;
         = (R2*R3*C4)/(1+((w^2)*(R4^2)*(C4^2)));
15 L1
     //inductance in H
         = (R2*R3*R4*(w^2)*(C4^2))/(1+((w^2)*(R4^2)*(
16 R1
     C4^2))); //resistance in
17
18
19 //result
20 mprintf("inductance of inductor = %3.2 fHenry", L1);
21 mprintf("\nresistance of coil = \%3.2 f ",R1);
```

Scilab code Exa 12.9 Find the Resistance and Capacitance

1 //

```
2 //Chapter 12 Example 9
3
4 clc;clear all;
5

6 //variable declaration

7 R2 = 1000; //resistance of arm

8 R3 = 1000; //resistance of arm

9 R1 = 500; //resistance of arm

10 L1 = 0.18; //inductance in H
5
                                                        in
                                                         in
                                                         in
10 L1
11
12 //calculations
       = 5000/(2*(%pi)); //frequency in
13 f
      Hz
             = 2*(%pi)*f;
14 w
15 x = R1/((w^2)*L1); //R4*C4 be x
16 z = ((w^2)*(x^2));
17 a = (1+z);
           = (L1*a)/(R2*R3);
18 C4
19 // from 1 and 2 equations
20 / R4 = R4 * C4 / C4 = x / C4
21 R4 = (x)/(C4); //resistance
                                               in
22
23 // result
24 mprintf("resistance = \%3.2 f ", R4);
```

Scilab code Exa 12.10 Find the series equivalent inductance and resistance of the

```
1 //
2 //Chapter 12 Example 10
3
4 clc;clear all;
5
6 //variable declaration
             = 1000; //resistance of arm in
= 10000; //resistance of arm
7 R2
8 R3
                                //resistance of arm
                                                        in
          = 2000; //resistance of arm in
= 1*10**-6; //capacitance in F
9 R4
10 C4
           = 3000; //radian per second
11 w
12
13 //calculations
14
15 L1
       = (R2*R3*C4)/(1+((w^2)*(R4^2)*(C4^2)));
      //inductance in H
16 R1 = (R2*R3*R4*(w^2)*(C4^2))/(1+((w^2)*(R4^2)*(
      C4<sup>2</sup>))); //resistance in
17
18 // result
19 mprintf("\ninductance of inductor = \%3.2 f H",L1);
20 mprintf("resistance of coil = \%3.2 f ",R1);
```

Scilab code Exa 12.11 Find the resistance and inductance of the choke coil

1 //
2 //Chapter 12 Example 11
3
4 clc;clear all;
5

```
6 //variable declaration
             = 2410; //resistance of arm in

= 750; //resistance of arm in

= 64.9; //resistance of arm in

= 0.4; //resistance in

= 0.35*10^-6; //capacitance in F

= 500; //frequency in Hz
7 R2
8 R3
9 R4
10 R
11 C4
12 f
13
14 //calculations
15w= 2*(%pi)*f;//radian per second16R41= R4+R;//resistance in
          = (R2*R3*C4)/(1+((w)*(R4^2)*(C4^2)));
17 L1
   //inductance in H
18 R1 = (R2*R3*R41*(w^2)*(C4^2))/(1+((w^2)*(R41^2)))
       *(C4^2))); //resistance in
19
20 // result
21 mprintf("resistance of coil = %3.2 f ", R1);
22 mprintf("\ninductance of inductor = \%3.4 f Henry",L1)
       ;
```

Scilab code Exa 12.12 Derive the balance condition and calculate the effective imp

```
1 //
```

```
2 //Chapter 12 example 12
3
4 clc;
5 clear all;
6
7 //variable declaration
8 R2 = 834; //resistance of arm in
9 R3 = 100; //resistance of arm in
10 R4 = 64.9; //resistance of arm in
```

```
= 0.4; //resistance in
= 0.1*10^-6; //capacitance in F
11 R
12 C4
                               //capacitance in F
13 C2
           = 0.124*10^{-6};
            = 2000;
                              //frequency in Hz
14 f
15
16 //calculations
17 L1
       = R2*R3*C4;
                                 //inductance in H
         = (R3*C4/C2);
                                 // resistance in
18 R1
              = R1+(2*%pi*f*L1)*%i;
19 Z
                                           effective impedance
              = sqrt(((real(Z))^2)+(((imag(Z))^2)));
20 Z1
                  = (atan((imag(Z))/real(Z)))*180/%pi;
21 angle
22
23 //result
24 mprintf("L1
                 = \%3.2 e^{"},L1);
25 mprintf("\nR1
                 = %3.2 f", R1);
26 mprintf("\neffective impedance of test specimen = \%3
     .2 f angle %3.2 f ",Z1,angle);
```

Scilab code Exa 12.13 Find out the phase angle error and unknown capacitance

```
2 //Chapter 12 example 13
3
4 clc;clear all;
5
6 //variable declaration
                           //resistance of arm
7 R1
              = 1000;
                                                in
                           //resistance of arm
8 R2
              = 1000;
                                                 in
                           //resistance of arm
9 R3
             = 2000;
                                                 in
             = 2000;
                           //resistance of arm
                                                 in
10 R4
11 C1
             = 1 * 10^{-6};
                              //capacitance in F
12 f
               = 1000;
```

```
=10; //resistance in
13 r1
14
15 //calculations
16 W = 2*%pi*f;
        = (C1*R1)/(R2); // capacitance in F
17 C2
18 r2 = ((R2*(R3+r1))-(R1*R4))/(R1);
                                               //
     Resistance in
19 d1 = (W*r1*C1)*(180/%pi);
                                       //phase
     angle error in
 d2 = (W*r2*C2)*(180/%pi);
                                       //phase
20
     angle error in
21
22 //calculations
23 mprintf("phase angle error = \%3.1 \,\text{f} ",d1);
24 mprintf("\nphase angle error = \%3.1 \,\text{f} ",d2);
```

Scilab code Exa 12.14 Calculate the resistance and capacitance and also the dissip

```
1 //
 2 //Chapter 12 example 14
 3
 4 clc;clear all;
 5
 6 //variable declaration
 7
                  = 4.8; //resistance of arm in
= 2000; //resistance of arm in
= 2850; //resistance of arm in
= 0.5*10^-6; //capacitance in F
 8 R2
 9 R3
10 R4
11 C2
                  = 500; //frequency in Hz
=0.4; //resistance in
12 f
                                     //resistance in
13 r2
                  =0.4;
14
15 //calculations
```

```
16 w = 2*(%pi)*f;
17 C1 = C2*(R4/(R3)); //unknown capacitance in
F
18 x = R2+r2
19 r1 = (R3/R4)*(x); //resistance in
20 D = w*C1*r1; //dissipation factor
21
22 //result
23 mprintf("unknown capacitance = %3.2e uF",(C1*10^6));
24 mprintf("\nresistance = %x3.2f ",x);
25 mprintf("\ndissipation factor = %3.5f",D);
```

Scilab code Exa 12.15 Calculate the power factor

```
2 //Chapter 12 example 15
3
4 clc;clear all;
5
6 //variable declaration
7 R2 = 100; //resistance of arm in

8 R4 = 309; //resistance of arm in

9 C4 = 0.5*10^{-6}; //capacitance in F

10 C3 = 109*10^{-12}; //capacitance in F
10 C3
                                        //frequency in Hz
11 f
            = 50;
12
13 //calculations
14 w
           =2*(%pi)*f;
15 Cx = (R4*C3)/(R2); //equivalent series
      capacitance in F
16 Rx = (C4*R2)/(C3);
                                         //series resistance
      in
                                         //power factor of
             = w * Rx * Cx;
17 p
```

```
the specimen (sind =tand)
18
19
20 //result
21 mprintf("power factor of the specimen = %3.5f",p)
;
```

Scilab code Exa 12.16 Derive the variable resistance

```
1 clc;clear all;
2
3 //variable decalaration
         = 1000; //resistance in
4 R4
5 C3
          = 50*10^{-12}; //capacitance in F
         = 314*10<sup>-4</sup>; // area in m**2

= 0.3*10<sup>-2</sup>; // thickness in m

= 2.3; // dielectric constant

= 8.854*10<sup>-12</sup>; // dielectric cons
6 A
7 D
8 er
                                  //dielectric constant
9 eO
                             //loss angle in
           = 9;
10 d
11 f
                = 50;
12
13 //calculations
14 //calculations
15 C1 = (er*e0*A)/D; // capacitance in F
           = 2*%pi*f;
16 w
                = tan(d*%pi/180);
17 x
           = 1/(w*C1*x); //resistance in
18 R1
19 C4 = 1/((w^2)*C1*R1*R4);
                                            //variable
      capacitor in F
           = (C3*R4*((cos(d*%pi/180))^2))/(C1); //
20
  R2
      variable resistance in
21
22 / result
23 mprintf("Variable capacitor = \%3.1 f M ",(R1*10^-6)
      );
```

Scilab code Exa 12.17 Find the equivalent resistance

```
2 // chapter 12 example 17
3
4
5
6 \, \operatorname{clc};
7 clear all;
8
9 //variable declaration
                           //resistance of arm in
      = 3100;
10 R1
11 R2 = 25000; //resistance of arm in
12 R4
          = 100000;
                            //resistance of arm
                                                  in
            = 5.2*10^-6;
                               //capacitance in F
13 C1
              = 25000; //frequency in Hz
14 f
15
16 //calculations
17 / C3
        = C1 * ((R2/R4) - (R1/R3))
18 //X
          = C1 * (R2/R4)
          = C1 * (R1/R3)
19 / Y
20 w
             = 2*%pi*f;
              =1/((w^2)*R1*C1);
21 x
22 / R3
             = x/C3
         = (C1*R2)/R4;
23 A
24 B
         = 1 + (C1 * R1 / x);
                             //capcitance in uuF
25 C3
         = A/B;
                             //equivalent parallel
26 R3
         = x/C3;
```
```
resistance in
27
28 //result
29 mprintf("equivalent parallel resistance = %3.2 f K
        ",(R3*10^-3));
```

Scilab code Exa 12.18 Find the dissipation factor

```
1 //
2 //Chapter 12 example 18
3
4 clc; clear all;
5
6 //variable declaration
               = 2000; //resistance of arm is
= 2950; //resistance of arm is
= 5; //resistance of arm is
= 0.4; //resistance in
= 0.5*10^-6; //capacitance in Hz
7 R3
                                                         in
8 R4
                                                          in
9 R2
                                                          in
10 r2
                                    //capacitance in F
11 C2
12 f
13
14 //calculations
15 r1 = (R3*(r2+R2))/R4 //resistance in
16 C1 = ((R4/R3)*C2) //capacitance in F
17 tand = 2*(%pi)*f*C1*r1 //dissipation power, C1
      in uF
18
19 //result
20 mprintf("resistace = \%3.2 f ",r1);
21 mprintf("\ncapacitance = \%3.2 \,\text{e} uF",(C1*10^6));
22 mprintf("\ndissipation factor = \%3.2e",(tand));
```

Scilab code Exa 12.19 Calculate the capacitance and dielectric loss angle of bushi

1 //

```
2 //Chapter 12 example 19
3
4 clc;clear all;
5
6 //variable declaration
             = 300; //resistance of arm in
= 72.6; //resistance of arm in
= 500*10^-12; //capacitance in F
= 0.148*10^-6; //capacitance in F
7 R3
8 R4
9 C2
10 C4
                = 50; //frequency in Hz
11 f
12
13 //calculations
14 Cx = (R4*C2)/(R3); //capacitance in F
                                 //resistance
        = (R3*C4)/(C2);
15 Rx
                                                 in
       = 2*(%pi)*f*Cx*Rx;
16 x
17 d = atan(x); //dielectric loss angle of
      bushing in
18 d1 = (d*180)/%pi;
19 //result
20
21 mprintf("\ncapacitance = \%3.2e uF",(Cx));
22 mprintf("resistace = \%3.2 f K ",(Rx*10^-3));
23 mprintf("\ndielectric loss angle of bushing = \%3.3 f
         ",d1);
```

Scilab code Exa 12.20 Calculate the power factor and equivalent series resistance

```
2 //Chapter 12 example 20
 3
 4 clc;clear all;
 5
 6 //variable declaration
            = 130; //resistance of arm in
= 318; //resistance of arm in
 7 R3
 8 R4
            = 106*10**-12; // capacitance in F
= 0.35*10**-6; // capacitance in F
9 C2
10 C4
                    = 50; //frequency in Hz
11 f
12
13 //calculations
14Cx= (R4*C2)/(R3);//capacitance in F15Rx= (R3*C4)/(C2);//resistance in16x= 2*(%pi)*f*Cx*Rx;//power factor
17
18
19 //result
20
21 mprintf("capacitance = \%3.2 \,\text{e} uF",(Cx));
22 mprintf("\nresistace = %3.2 f K ",(Rx*10^-3));
23 mprintf("\npower factor = %3.3 f ",x);
```

Scilab code Exa 12.21 Find the resistance and inductance of the coil

2 //

1

```
3 //Chapter 12 example 21
4
5 clc;clear all;
```

```
6
 7 //variable declaration
       = 15.9; //mutual inductance in mH
= 0.1; //mutual inductance in mH
= 25.9; //resistance in
= 12.63; //resistance in
8 M1
9 M2
10 r1
11 r2
12
13 //calculations
14 L1 = 2*(M1-M2); //self inductance in mH
          = r1-r2; //resistance in
15 R1
16
17 //result
18 mprintf("self inductance = %3.2 f mH",L1);
19 mprintf(" \setminus nresistance = \%3.2 f ", R1);
```

Scilab code Exa 12.22 Calculate the value of L and C

```
1 //
2 //Chapter 12 example 22
3
4 clc;clear all;
5
6 //variable declaration
7 fl = 2*10<sup>6</sup>; //frequency from second data in
     Hz
        = 1*10<sup>6</sup>; //frequency from first data in
8 f2
     Hz
9 C1
           = 230*10^{-12}; // capacitance in F
10 C2 = 8*10^{-12}; //capacitance in F
11
12 //calculations
13 C = C1+C2;
14 L = 1/(((((2*(%pi)*f1)^2)*C)); //inductance
```

```
in uH
15 Cx = 1/(((2*(%pi)*f2)^2)*L); //
capacitance in pF
16
17 //result
18 mprintf("inductance = %3.2f uH",(L*10^6));
19 mprintf("\ncapacitance = %3.2f pF",(Cx*10^12));
```

1 //

Scilab code Exa 12.23 Determine the resistive and reactive component of unknown im

```
2 //Chapter 12 example 23
3
4 clc;clear all;
5
6 //variable declaration
7 f = 165*10^3; //frequency in Hz
8 C1
         = 208*10<sup>-12</sup>; //capacitance in F
= 184*10<sup>-12</sup>; //capacitance in F
9 C2
10 Q1
          = 80;
                                //Q-factor
11 Q2
                                //Q-factor
          = 50;
12
13 //calculations
14 x
        = C2 * Q2;
       = C1*Q1;
15 y
16 w
        = 2*(%pi)*f;
17 Rm = (1/(w)) * ((1/(x)) - (1/(y)));
                                           //resistive
     component of unknown impedance in
18 Xm = (1/(w))*((1/C2)-(1/C1));
                                              //reactive
      component of unknown impedance in
19
20
21 // result
```

```
Scilab code Exa 12.24 Determine the self capacitance and inductance of the coil
1
2 //
3 //Chapter 12 example 21
4
5 clc;clear all;
6
7 //variable declaration
        = 15.9; //mutual inductance in mH
8 M1
          = 0.1;
                              //mutual inductance in mH
9 M2
          = 0.1; //mutual induc
= 25.9; //resistance in
= 12.63; //resistance
10 r1
11 r2
                                                 in
12
13 //calculations
        = 2*(M1-M2); //self inductance in mH
= r1-r2; //resistance in
14 L1
15 R1
16
17 //result
18 mprintf("self inductance = %3.2 f mH",L1);
19 mprintf(" \setminus nresistance = \%3.2 f ", R1);
```

Scilab code Exa 12.25 Determine the self capacitance

```
1 / /
2 //Chapter 12 example 25
3 clc;clear all;
4
5 //variable declaration
       = 3; //frequency in MHz
=6; //frequency in MHz
6 f1
7 f2
             = 251; //capacitance in pF
8 C1
             = 50; //capacitance in pF
9 C2
10
11 //calculations
12 Cd = (C1-(4*C2))/(3); // self capacitance
     of the coil in uuF
13 // since f1 = 2f2
14
15
16 // result
17 mprintf("self capacitance of the coil = \%3.2 f pF",Cd
     );
```

Scilab code Exa 12.26 Determine the self capacitance of the coil

```
2 //Chapter 12 example 26
3 clc;clear all;
4 
5 //variable declaration
6 C1 = 1530; //capacitance in pF
7 C2 = 162; //capacitance in pF
8 f1 = 3; //frequency in MHz
9 f2 = 1; //frequency in MHz
```

```
10
11 // calculations
12 // f1 = 1/((2*math.pi)*(math.sqrt(L*(C2+Cd))))
13 // f1 = 1/((2*math.pi)*(math.sqrt(L*(C2+Cd))))
14 // f2 = 3*f1
15 Cd = (C1-(9*C2))/(8); // self capacitance
        of the coil in pF
16
17 // result
18 mprintf("self capacitance of the coil = %3.2f pF",Cd
        );
```

Scilab code Exa 12.27 Determine the effective inductance and resistance of unknown

```
2 //Chapter 12 example 27
 3
 4 clc;clear all;
 5
 6 //variable declaration
7 f = 450*10^3; //resistance inHz

8 C = 250*10^{-12}; //capcaitance in F

9 Rsh = 0.75; //resistance in

10 Q = 105; //Q-factor
                             //Q-factor
10 Q
11
12 //calculations
13 w = 2*(%pi)*f;
14 L= 1/(((w)^2)*(C));//inductance in uH15 R= ((w*L)/(Q))-Rsh;//resistance of the
     coil in
16
17 //result
18 mprintf("inductance = \%3.2 f uH",(L*10^6));
```

```
19
20 mprintf("\n resistance of the coil = \%3.2 f ",R);
```

Scilab code Exa 12.28 Determine the percentage error

1 //

```
2 //Chapter 12 example 28
3
4 clc;clear all;
5
6 //variable declaration
7 f = 500*10^3; //resistance inHz
8 C = 120*10^-12; //capcaitance in F
     = 5; //resistance in
9 R
10 r = 0.02; //resistance across oscilltory
     circuit in
11
12 //calculations
13 w = 2*(%pi)*f;
14 Qt = 1/(w*C*R); //the true or effective Q of
      the coil
15 Qi = 1/(w*C*(R+r));
                             //the indicated or
     calculated Q of the coil
        = ((Qt-Qi)/(Qt))*100; //percentage error in \%
16 e
17
18 //result
19 mprintf("percentage error = \%3.2 f percentage ",e);
```

Scilab code Exa 12.29 Determine the self capacitance

```
1 //
2 //Chapter 12 example 29
3
4 clc;clear all;
5
6 //variable declaration
7 C1 = 95*10^{-12}; //capacitance in F
8 f1 = 800*10^{-3}; //frequency in Hz
9 f2 = 2.5*10^{-6}; //frequency in Hz
10
11 //calculations
12 w2 = 2*%pi*f;
13 L = 1/((w2)^2)*Cd;
14 L = 1/((w2)^2)*(C1+Cd)
15 //comparing above equations
16 // Cd = (((w1) * *2) *C1) / ((w2) * *2) - (w1) * *2)
17 Cd = (((f1)^2)*C1)/(((f2)^2)-((f1)^2));
                                                            11
      capcitance in pF
18
19 // result
20 mprintf("capacitance = \%3.2 f pF",(Cd*10^12));
```

Scilab code Exa 12.30 Determine the self capacitance

```
1 //
2 //Chapter 12 example 30
3 
4 clc;clear all;
5 
6 //variable declaration
7 f1 = 1*10^6; //frequency in Hz
```

```
8 f2 = 2*10<sup>6</sup>; //frequency in Hz
            = 480*10^{-12}; //capacitance in F
9 C1
           = 90 * 10^{-12};
10 C2
                              //capacitance in F
11 R
                  //resistance
         = 10;
12
13 //calculations
14 Cd = (C1-(4*C2))/3; //self capacitance of
     the coil in pF
       = 1/(2*%pi*f1*(C1+Cd)*R);
15 Q1
                                            //the
     indicated or effective Q of the coil
16 Q11 = 1/(2*\%pi*f1*(C1)*R); //the true Q
     of the first instrument
17 Q2
         = 1/(2*(%pi)*f2*(C2+Cd)*R);
                                           //the
     indicated or effective Q for the second
     instrument
18 Q22 = 1/(2*(%pi)*f2*(C2)*R);
                                           //the true
      Q of the second instrument
19
20 // result
21 mprintf("the indicated or effective Q of the coil
     = \%3.1 \, \text{f} ",Q1);
22 mprintf("\nthe true Q of the first instrument = \%3
     .3f",Q11);
23 mprintf("\nthe indicated or effective Q for the
     second instrument = \%3.3 f", Q2);
24 mprintf("\nthe true Q of the second instrument =
     %3.2 f",Q22);
```

Chapter 13

Magnetic measurements

Scilab code Exa 13.1 Find the magnetic field strength

```
2 //Chapter 13 example 1
3
4 clc;clear all;
5
6 //variable declaration
7 l = 0.6; //length of solenoid in m
8 N = 600; //number of turns
9 I = 2; //current passing through solenoid in
      А
10 ur = 1; //air coiled solenoid
11 r = 0.025; //radius in m
12
13 //calculations
14 H = (N*I)/(1); //magnetic field at the centre
      in AT/metre
15 u0 = 4*(%pi)*(10^-7); //flux
16 a = ((\%pi)/(4))*(r^2); //area
                      //flux passing through
17 phi = ur*u0*H*a;
```

```
thesecondary coil
18
19 //calculations
20 mprintf("magnetic field = %3.2 f AT/metre",H);
21 mprintf("flux = %3.2 e Wb",phi);
```

Scilab code Exa 13.2 Find the constant of the galvanometer

```
1 //
2 //Chapter 13 example 2
3 clc;clear all;
4
5 //variable declaration
       = 100; //number of turns
6 m
7 n = 1000; //turns per m
8 theta1 = 10; //first thro
8 theta1 = 10; //first throw in mm
9 theta2 = 9.5; //second throw in mm
        =10; //current in A
10 I
        = 500; // resistance in
11 R
12 A
        = 0.002; //area in m**2
13
14 //calculations
15 //Q = (8*(math.pi)*(10**-7)*N*N*I*A)/(1*R)
     //in columbs
16 //Q = (8*(math.pi)*(10**-7)*n*l*m*I*A)/(l*R)
17 //Q = (8*(math.pi)*(10**-7)*n*m*I*A)/(R)
18 lamda = log(theta1/(theta2));
19 theta = theta1*(1+(lamda/(2)));
        =(8*(%pi)*(10^-7)*n*m*I*A)/(R*theta);
20 K
                                                   | |
      galvanometer constant in C/mm
21
22 / result
23
```

Scilab code Exa 13.4 Find the capacity of the condenser

1 //

```
2 //Chapter 13 example 4
3
4
5 clc;clear all;
6
7 //variable declaration
       = 4; //time of swing in seconds
8 TO
      =0.001; //current in A
9 Ig
10 lamda = 0;
                  //steady deflection in scale
11 theta = 50;
     divisions
12 theta1 = 220; //maximum throw in scale division
          =100; //potential of the condenser in V
13 V
14
15 //calculations
16 Q
       = (T0/(2*%pi))*(Ig/theta)*(1+(lamda/2))*theta1;
          //quantity of electricity discharged in uC
       = Q/(V);
17 C
                    //capacity of the condenser in F
18
19 // result
20 mprintf("capacity of the condenser = \%3.2 \,\mathrm{d} uF",(C
     *10^6));
```

Scilab code Exa 13.5 Calculate the shunt required for the use with search coil

```
1 //
2 //Chapter 13 example 5
3 clc;clear all;
4
5 //variable declaration
6 N = 1; //number of turns on search coil
       = 0.025; //resistance of search coil in
7 Rc
8 Nw = 1.5*10<sup>-4</sup>; //number of wb-turns required
     for deflection of 1 division
9 M = 120000; //reluctane of magnetic circuit
10 MMF = 8000; //magnetic circuit is excited in
     ampere-turn
11 f = 1.5*10^{-4}; //fluxmeter without shunt (K
    /N = phi/theta)
12 theta =120;
13
14 //calculations
15 phi = (MMF/(M)); //flux produced in WB
16 //phi = ((Rs+Rc)/Rs)*((K*theta)/N)
17 Rs = (Rc*f*theta)/(phi-(f*theta));
                                          //
     resistance of shunt in
18
19 // result
20 mprintf("resistance of shunt = \%3.2e", Rs);
```

Scilab code Exa 13.6 Find the resistance of the shunt to be connected in parallel

1 //

2 //Chapter 13 example 6
3
4 clc;clear all;

```
5
6 //variable declaration
7 Rc = 1; //resistance in
8 N = 5; //multiplying factor
9
10 //calculations
11 //N = (Rs+Rc)/Rs
12 Rs = Rc/(N-1); //shunt resistance in
13
14 //result
15 mprintf("shunt resistance = %3.2f ",Rs);
```

Scilab code Exa 13.7 Calculate the flux density in the core

```
2 //Chapter 13 example 7
 3
 4 clc;clear all;
 5
 6 //variable declaration
7 R1 = 180; //resistance in
8 R2 = 20; //resistance in
9 A = 0.005; //area in m<sup>2</sup>

10 Ns = 1000; //number of turns on search coil

11 G1 = 100*10<sup>-6</sup>; //galvanometer constant C

12 G2 = 100; //galvanometer throw
13
14 //calculations
                        //total resistance of secondary
15 Rs = R1+R2;
       circuit in
                      //charge passed through ballistic
16 \ Q = G1*G2;
        galvanometer in C
17 //Q = i * t = (E/Rs) * t = ((2*phi*Ns)/(t*Rs)) * t =
```

```
(2*phi*Ns)/Rs
18 phi = (Q*Rs)/(2*Ns); //flux in Wb
19 B = phi/(A); //flux density in Wb/m^2
20
21 //result
22
23 mprintf("flux density = %3.2f Wb/m^2",B);
```

Scilab code Exa 13.8 Find the relative permeability of the specimen

```
2 //Chapter 13 example 8
4 clc;clear all;
 5
 6 //variable declaration
7 d = 0.1; //diameter in m
     = 33.5*10<sup>-6</sup>; //cross sectional area of iron
8 a
       ring in m^2
                  //number of turns on secondary
 9 \text{ Ns} = 220;
      coil
10 Nm = 320; //number of turns on magnetising
      winding
11 I = 10; //current in A

12 B = 2.5*10^{-3}; //flux in Wb

13 n = 102; //reading of scale

14 g = 272; //galvanometer throw
15
16
17 //calculations
18 1' = (\%pi)*d; //mean length of iron ring in m
19 H = (Nm*I)/(1); //magnetising force with 10 A
      current
```

```
20 K = B/(n);
21 //2*phi*Ns = K*g
22 phi = (K*g)/(2*Ns); //flux in Wb
23 B1 = phi/(a); //flux density in Wb/m**2
24 u0 = 4*%pi*10^-7;
25 //B = u0*ur*H
26 x = u0*H;
27 //B = x*ur
28 //ur = B/x
29 ur = B1/x; //relative permeability
30 
31 //result
32 mprintf("relative permeability = %3.1f",ur);
```

Scilab code Exa 13.9 Compute the flux density and relative permeability

```
2 //Chapter 13 example 9
3 clc;clear all;
4
5 //variable declaration
6 R = 2000; //resistance in
7 l = 1; //mean length of iron ring in m
8 A = 350*10^-6; //area in m**2
9 Ns = 200; //number of turns on secondary
     coil
10 G1 = 1*10^{-6}; //galvanometer constant C
                    //galvanometer throw
       = 100;
11 G2
12 N
       =100;
13
14 //calculations
15 u0 = 4*(%pi)*10^-7;
16 H = (N*I)/(1); //magnetising force with 10 A
```

```
current
17 Q = G1*G2; //charge passed through ballistic
galvanometer in C
18 //Q = i*t = (E/Rs)*t = ((2*phi*Ns)/(t*Rs))*t =
(2*phi*Ns)/Rs
19 phi = (Q*R)/(2*Ns); //flux in Wb
20 B = phi/(A); //flux density in Wb/m**2
21 ur = (B/(u0*H)); //relative permeability
22
23 //result
24 mprintf("flux density = %3.3 f Wb/m**2",B);
25 mprintf("\nrelative permeability = %3.0 f",ur);
```

Scilab code Exa 13.10 Calculate the relative permeability

```
1 //
2 //Chapter 13 example 10
3
4 clc;clear all;
5
6 //variable declaration
7 d = 0.3; //diameter in m
        = 4*10<sup>-4</sup>; //cross sectional area of iron
8 a
      ring in m**2
       = 80; //number of turns on magnetising
9 N
      coil
10 Ns = 30; //number of turns on secondary coil
      = 0.1*10^{-3}; //flux meter constant in Wb-
11 F
      turn
12 D = 46; //deflection factor
13 I = 2; //current in A
14
15 //calculations
```

```
16 //phi = (N*I*u0*ur*a)/l
17 // phi = x * l
18 / | lat x = (N * I * u0 * a) / l
19 l
     = d*%pi;
20 uO
        = 4*(%pi)*10^{-7};
21 x
       =(N*I*u0*a)/(1);
22 // total change in Wb-turns y = 2*phi*Ns = 2*x*ur*Ns
23 y
     = 2 * x * Ns;
24 df
       = F * D;
                    //change in flux measured by the flux
       meter in wb-turns
                    //relative permeability
25 ur
        = df / y;
26
27 // result
28 mprintf("relative permeabitlity = \%3.0\,\mathrm{d}",ur);
29 mprintf("\n Note:textbook answer represents the
      approximate value")
```

Scilab code Exa 13.11 Find the quantity of the electricity

```
1 //
2 //Chapter 13 example 13
3
4 clc;clear all;
5
6 //variable declaration
7 Q
         = 1000;
                      //Charge passed through
      galvanometer in uC
8 \text{ theta1} = 60;
        = 10; //defelction in mm
= 1000; //m=circular scale
9 d
10 r
11
12 //calculations
13 theta2 = \%pi/(3) //conversion of degrees to
```

```
radians
14 K = Q/(theta2); //galvanometer constant in uC/
radian
15 theta = d/(2*r); //angle turned through by
reflected ray for aswing of 10 mm
16 Q1 = K*theta; //charge for a swing of
0.005 radian in uC
17
18 //result
19 mprintf("charge for a swing of 0.005 radian = %3.2 f
uC",Q1);
```

Scilab code Exa 13.12 Calculate the hysteresis loss in watts per kg

```
2 //Chapter 13 example 12
3
4 clc;clear all;
5
6 //variable declaration
       = 50; //number of reversals
= 1; //mass
7 f
8 m
9 d = 7.8 * 10 * *3;
                                //density
      = 4800;
                               //area of the loop m<sup>3</sup>
10 A
                               //in AT/m
11 x
       = 200;
                                // 1 unit in mm
12 x1
       = 10;
                                \frac{1}{1} 1 unit in mm
13 y1
        = 10;
                                //in T
14 y
        = 0.1;
15
16 //claculations
17 V = m/d;
                           //volume of magnetic
  material in m<sup>3</sup>
18 1 = A*(x/x1)*(y/y1);
```

```
19 l1 = l*V*f; // hysteresis loss in
watts per kg at 50 Hz
20
21 // result
22 mprintf("hysteresis loss at 50 Hz = %3.3f watts per
kg ",11);
```

Scilab code Exa 13.13 At what frequency will the iron loss be doubled if the flux

```
1 clc;
2 clear all;
3
4 //variable declaration
                     //supply frequency in Hz
5 f
        = 60;
                       //iron loss in W
6 Pi
         = 360;
7 f
        = 60;
8 //Pe
           =6*Ph;
9 //Pi
           = Pe+Ph
10 / 360 = (6 * Ph) + Ph
11 Ph
         = Pi/7;
                    //hysteresis loss in W
12 Pe
         = Pi-Ph;
                    //eddy current loss in W
13 //Ph1
            = (f1/f) * Ph
14 Ph1
          = (1/f) * Pe;
                       //hysteresis loss in watts
15 //Ph1
           =Ph1*f1
16 //Pe1
           = ((f1/f)^2) * Pe
17 Pe1
                          //eddy current loss
          =((1/f)^2)*Pe;
18 //Pe1
           = Pe1*Pe
19 Pi1
          =Ph1+Pe1;
20 Pi1
           = 2*Pi;
21 //720
          = 0.857 * f1 + (0.0857 * f1^2)
22 f1
         =86.8
23
24
25 / result
26 mprintf("new supplyfrequency = %3.2 f HZ",f1);
```

Scilab code Exa 13.14 Estimate the hysteresis and eddy current losses

```
2 //Chapter 13 example 14
 3
 4 \, \text{clc};
5 clear all;
 6
 7 //variable declaration
8 //Ph
          = A * f
9 //Pe
          = B * f^2
          = Ph+Pe
10 //Pi
11 Pi = 17.2;
                     //power in W
                     //frequency in Hz
12 f
       = 50;
13 Pi1 = 28.9; //iron loss in W
14
                          //weight in kg
15 m
            = 13;
16
17 //calculations
18 / / 17.2 = 40 * A + ((40)^{2}) * B
19 //28.9 = 60*A+((60)^2)*B
20 A
     = 0.326667
21 B
       = 0.002583
22 Ph = (A*f)/m //hysteresis loss per kg in W
23 Pe = (B*(f^2))/m //eddy current loss per kg in W
24
25 // result
26 mprintf("hysteresis loss per kg = \%3.2 f W", Ph);
27 mprintf("\neddy current loss per kg = \%3.3 f W', Pe);
```

Scilab code Exa 13.15 Calculate the eddy current loss per kg

1 //

```
2 //Chapter 13 example 15
3 \, \text{clc};
4 clear all;
5
6 //variable declaration
7 A = 0.5;
8 B
      = 0.01;
9 f = 50;
10 n
       = 10;
11
12 //calculations
13 Pe = B*(f^2); //eddy current loss at 50 Hz in
     W
14 Pe1 = Pe/n; //eddy current loss per kg at 50 Hz
    in watts
15
16 // result
17 mprintf("eddy current loss per kg at 50 Hz = \%3.2 f
     watts", Pe1);
```

Scilab code Exa 13.16 Calculate the percentage change in hysteresis loss

1 //

```
2 //Chapter 13 example 16
3 
4 clc;
5 clear all;
6
```

```
7 //variable declaration
8 x = 0.8;
             //Kf2/Kf1
9 y =1.2;
10
11 / Pe2/Pe1 = (Kf2/Kf1)^2
12 p = x^2;
13 //Pe2 = p*Pe1; //
14 //p1 = (Pe1-Pe2)/Pe1;
15 p1 = (1-p)*100; //percentage change in
     hysteresis current loss
16 p2 = y^2;
17 p12 = (y-1)*100;
                         //percentage change in
     hysteresis current loss
18 p3 =(p2-1)*100; //percentage change in eddy
     current loss in %
19
20 //result
21 mprintf("percentage change in hysteresis current
     loss = %3.3 f percentage decrease",p1);
22 mprintf("\npercentage change in hysteresis current
     loss = %3.3 f percentage increase",p12);
23 mprintf("\npercentage change in eddy current loss in
      = %3.2 f percentage increase",p3);
```

Scilab code Exa 13.17 Calculate the iron in watts loss per kg

```
1 //
```

```
2 //Chapter 13 example 17
3
4 clc;
5 clear all;
6
7 //variable declaration
```

```
//width of plates in m
8 w = 0.03;
                   //number of plates
9 n
      = 51;
      = 0.000489; // thickness in m<sup>3</sup>
10 t
                   //frequency in Hz
11 f
      = 50;
12 Bmax = 1;
13 N
      = 600;
                  //copper loss in watts
14 P1
      = 3;
                   //weight in kg
15 m
       = 11;
16
17 //calculations
                       //mean area of plates in m<sup>3</sup>
18 A
      = w*n*t;
19 E
      = 4.44*f*Bmax*A*N; //induced voltage in V
20 //from graph corresponding to voltage of 100 volts
21 P2 = 30.5; //total losses in watts
22 P = P2 - P1;
                   //iron loss in watts
23 PL = P/m;
                   //loss per kg in watts
24
25 / result
26 mprintf("iron loss per kg = \%3.2 f watts", PL);
```

Chapter 14

Digital Measurement of Electrical Quantities

Scilab code Exa 14.1 Determine the full scale output

```
1 //

2 //Chapter 14 example 1

3 clc;

4 clear all;

5

6 //variable declaration

7 VREF =10; //reference voltage in V

8

9

10 //calculations

11 W1 = VREF/2; //the second MSB weight in V

12 W2 = VREF/4; //the third MSB weight in V

13 W3 = VREF/8 //the fourth (or LSB ) MSB

weight in V

14 W = VREF+W1+W2+W3; //full scale output in

V

15 r = W/4; //resolution in V
```

```
16
17 //result
18 mprintf("the second MSB weight =%3.2d",W1);
19 mprintf("\nthe third MSB weight =%3.2d",W2);
20 mprintf("\nthe fourth (or LSB ) weight =%3.2d",W3);
21 mprintf("\nthe resolution of DAC is equal to the
      weight of the LSB = %3.2f V",W3);
22 mprintf("\nfull scale output = %3.2f V",r);
```

Scilab code Exa 14.2 Find out the voltage

```
2 //Chapter 14 example 2
3
4 clc;
5 clear all;
6
7 //variable declaration
8 D = 16;
                         //output voltage in V
9
10 //calculations
                                //first MSB output in
11 Dn1
         = D/(2^{1});
      V
            = D/(2^2);
                                //second MSB output in
12 Dn2
      V
13 Dn3
            = D/(2^3);
                                //third MSB output in
     V
            = D/(2^4);
                                //fourth MSB output in
14 Dn4
      \mathbf{V}
15 Dn5
           = D/(2<sup>5</sup>);
                                //fifth MSB output in
     V
16 Dn6
           = D/(2^6);
                                //Sixth MSB output in
     V
```

```
17 V
               = Dn1+Dn2+Dn3+Dn4+Dn5+Dn6;
               = ((D*(2^{0}))+(D*(2^{1}))+(0*(2^{2}))+(D*(2^{0}))))
18 Vout
      *(2^3) + (0*(2^4)) + (D*(2^5))) / (2^6); // for
      digital input 101011
19
20 //result
21 mprintf(" first MSB output = %3.2 f V", Dn1);
22 mprintf("\n second MSB output = \%3.2 f V", Dn2);
23 mprintf("\n third MSB output = \%3.2 f V", Dn3);
24 mprintf("\n fourth MSB output = \%3.2 f V", Dn4);
25 mprintf("\n fifth MSB output = \%3.2 f V", Dn5);
26 mprintf("\n Sixth MSB output = \%3.2 f V", Dn6);
27 mprintf("\nthe resolution is equal to the weight of
      the LSB = \%3.2 \,\text{f} V", Dn6);
28 mprintf("\nthe full scale output for digital input
      of 101011 = %3.2 f V", V);
29 mprintf("\nthe voltage output for a digital input of
       101011 = \%3.2 \text{ f V"}, Vout);
```

Scilab code Exa 14.3 Determine the display indication

```
2 //Chapter 14 example 3
3
4 \, \text{clc};
5 clear all;
6
7 //variable declaration
8
9 T
      = 2500;
                       //transitions per second
                  //time in s
10 t1 = 0.1;
11 t2 = 1;
                //time in s
12 t3 = 10;
                 //time in s
```

```
13
14 //calculations
15 C1 = T*t1;
                   //counter can count or
     display
16 C2
           = T*t2;
                           //counter can count or
     display
17 C3
      = T * t3;
                           //counter can count or
     display
18
19 //result
20 mprintf(" counter can count or display when 0.1 s =
     \%3.2\,d",C1);
21 mprintf(" \ncounter can count or display when 1 s =
     \%3.2\,d",C2);
22 mprintf(" \ncounter can count or display when 10 \text{ s} =
      \%3.2\,d", C3);
```

Scilab code Exa 14.4 Calculate the frequency of the system

```
2 //Chapter 14 example 4
3 \, \text{clc};
4 clear al;
5
6 //variable declaration
7 \text{ N} = 45;
                   //count
8 t
       = 0.01;
                   //gate enable time in s
9
10 //calculations
              //frequency in Hz
11 f = N/t;
12
13 //result
14 mprintf("frequency = \%3.1 f kHz",(f*10^-3));
```

Scilab code Exa 14.5 Find the maximum likely errors

```
2 //Chapter 14 example 5
3 \text{ clc};
4 clear all;
5
6 //variable declaration
           = 5*10^6; //time reaading in ms
= 500; //time reaading in ms
7 t
8 t2
           = 0.005; //accuracy in percent of
9 x
      reading
          = 500*10^3; //time reaading in ms
10 t3
11
12 //calculations
      = ((x/100)*t)+1; //maximum likely
13 e
      timing error in ms
           = ((x/100)*t2)+1; //maximum timing
14 e1
      error in ms
           = t2*10^6;
                                 //maximum accuracy
15 a
      mininum error will be obtained when the time is
      read on the us read
           = ((x/100)*t3)+1; //maximum timing
16 e3
      error in ms
17
18 //result
19 mprintf("maximum likely timing error when time
      reading is 05000000 \text{ ms} = \%3.2 \text{ f} \text{ ms}",e);
20 mprintf("\nmaximum timing error when time reading
       is 00000500 \text{ ms} = \%3.2 \text{ f} \text{ ms}",e1);
21 mprintf("\nmaximum error when time reading is
      00500000 = \%3.2 \,\mathrm{f} \,\mathrm{ms}",e3);
```

Scilab code Exa 14.6 Calculate the resolution

```
2 //Chapter 14 example 6
3
4 \, \text{clc};
5 clear all;
6
7 //variable declaration
     =3;
                  //number of full digits
8 n
       = 1; //voltage in V
9 v1
      = 10; //voltage in V
= 5; //voltage in V
= 0.5; //accuracy of reading in %
10 v2
11 v3
12 a
       = 2; //reading in V
13 r
14
15 //calculations
16 R = 1/(10^n); //resolution
17 V1 = R*v1;
                        //for full scale range of 1V ,
     the resolution in V
                        //for full scale range of 10V ,
18 V2 = R * v2;
      the resolution in V
          = v3 * R;
                   //the digit in least significant
19 v
       digit has a value of in V
20 e
     = ((a/100)*r)+v; //total possible error
     on in V
21
22 //result
23 mprintf("for full scale range of 1V, the resolution
     = \%3.4 \text{ f V}", V1);
24 mprintf("\nfor full scale range of 10V, the
      resolution = \%3.4 \text{ f V}", V2);
```

Scilab code Exa 14.7 Find the resolution

```
2 //Chapter 14 example 7
3 \, \text{clc};
4 clear all;
5
6 //variable declaration
7 n =4; //number of full digits
8 v1 = 1; //voltage in V
9 v2 = 10; //voltage i
                    //voltage in V
10
11 //calculations
          = 1/(10^n); //resolution
12 R
          = R*v1; //resolution on 1V range in V
13 R1
         = R*v2; //resolution on 10V range in V
14 R2
15
16 // result
17 mprintf("R = \%3.4 \text{ f V}", R);
18
19 mprintf("\nthere are 5 digits in 4 (1/2) display
      digit display , so 15.84 would display as 15.840")
20 mprintf("\nR1 = \%3.4 \text{ f V}", R1);
21 mprintf("\nany reading upto 4 th decimal can be
      displayed ");
22 mprintf("\nhence 0.5243 can be dislayed as 0.5243")
23 mprintf("\ R2 = \%3.4 \ f \ V", R2);
24 mprintf("\nany reading upto third decimal can be
      displayed ");
25 mprintf("\nhence 0.5243 can be dislayed as 0.524
```

Scilab code Exa 14.8 Find the resolution

```
2 //Chapter 14 example 8
3
4 \, \text{clc};
5 clear all;
6
7 //variable declaration
8 n =3;
                //number of full digits
       = 10; //voltage in V
= 100; //voltage in V
9 v1
10 v2
11
12 //calculations
         = 1/(10^n); //resolution
13 R
          = R*v1; //resolution on 1V range in V
= R*v2; //resolution on 10V range in V
14 R1
15 R2
16
17 //result
18 mprintf("R = \%3.4 \text{ f V}", R);
19
20 mprintf("\nthe meter cannot distinguish the values
      that differ from each by less than 0.001 of full
      scale");
21 mprintf ("\nR1 = \%3.4 \text{ f V}", R1);
22 mprintf("\nany decimal upto second decimal can be
      displayed ");
23 mprintf("\nhence 15.45 can be dislayed as 15.45")
24 mprintf ("\ R2 = \%3.4 \ f \ V", R2);
25 mprintf("\nany deccimal upto one decimal can be
      displayed ");
```

```
26 mprintf("\nhence 25.65 can be dislayed as 025.6
instead of 25.65");
```

Scilab code Exa 14.9 Find the resolution

```
2 //Chapter 14 example 9
3
4 \, \text{clc};
5 clear all;
6
7 //variable declaration
             //number of full digits
       =4;
8 n
      = 10;
                   //voltage in V
9 v1
                   //voltage in V
         = 1;
10 V1
          =10;
                      //voltage in V
11 V2
12
13 //calculations
14 R
          = 1/(10^n); //resolution
           = R*v1; //resolution on 1V range in V
15 R1
           = R*V1; //resolution on 1V range in V
16 R2
     for display 0.6132 V
          = R * V2;
                     //resolution on 10V range in V
17
  RЗ
     for display 0.6132 V
18
19 //result
20 mprintf("R = \%3.4 \text{ f V}", R);
21 mprintf ("\nR1 = \%3.4 \text{ f} V", R1);
22 mprintf("\nany decimal upto third decimal can be
     displayed ");
23 mprintf("\nhence 13.97 can be dislayed as 13.970")
24 mprintf("\ R2 = \%3.4 \ f \ V", R2);
25 mprintf("\nany deccimal upto fourth decimal can be
```

displayed on 1V");

- 26 mprintf("\nhence 0.6132 can be dislayed as 0.6132 V");
- 27 mprintf(" $\ R3$ = $\%3.4\ f\ V$ ",R3);
- 28 mprintf("\nany deccimal upto third decimal can be displayed on 10 V ");
- 29 mprintf("\nhence 0.6132 can be dislayed as 0.613 V");
Chapter 15

Signal Analyzers

Scilab code Exa 15.1 Find the dynamic range

1 //

```
2 //Chapter 15 example 1
3 clc;clear all;
4
5 //variable declaration
                //power level of the third-order
6 Ip = 25;
      intercept in dBm
      = -85; //minimum detectable signal in
7 M
     dBm
8
9 //calculations
10 Rd = (2/3)*(Ip-M);
11
12 // result
13 mprintf("dynamic range = \%3.0 \text{ f dB}",Rd);
```

Scilab code Exa 15.2 Find the minimum detectable signal of a spectrum

```
1 //
2 // Chapter 15 example 2
3
4 clc;clear all;
5
6 //variable decalaration
                  //noise figure indB
7 N
         = 20;
         = 1000;
                     //bandwidth in Hz
8 B
9
10 //calculations
11 x = B/(10^{6});
12 \ //\log(10**-3) = (-3)*\log(1) = -3
      = (-114) + ((10*(-3))*(1)) + N; //\log(1) = 1
13 M
14
15 // result
16 mprintf("minimum detectable signal = %3.2 f dBm",M);
```

Chapter 16

Cathode Ray Oscilloscope

Scilab code Exa 16.1 Find the rms value and also the electrostatic deflection sens

```
2 //Chapter 16 example 1
 3
 4
 5 clc;clear all;
 6
 7 //variable declaration
8 1 = 0.025; //length of plates in m

9 d = 0.005; //distance between plates in m

10 S = 0.2; //the distance between the screen
10 S
       and centre of plates in m
11 Va =3000; //accelerating voltage in V
12 x =0.1; //trace length (2*y) in m
13
14
15 //cacualtions
16 //y = lSVd/(2*d*Va)
\frac{10}{17} \text{ Vd} = (d*Va*x)/(1*S); // deflection voltgae in V
                                    //rms value of sinusoidal
18 Vrms = Vd/(sqrt(2));
```

```
voltage applied to the X-deflecting plates in V
19 Sd = (1*S)/(2*d*Va); //deflection voltage
in mm/V
20
21 //result
22 mprintf("rms value of sinusoidal voltage applied to
the X-deflecting plates = %3.2d V",Vrms);
23 mprintf("\ndefelection sensitivity = %3.3f mm/V",(Sd
*10**3));
```

Scilab code Exa 16.2 Find the input voltage

```
2 // Chapter 16 example 2
   3
   4 clc;clear all;
   5
   6 //variable declaration
                                    = 0.02; //length of plates in m
  7 l
                                   = 0.005; //distance between plates in m
= 0.3; //the distance between the screen th
   8 d
                                                                                           //the distance between the screen
   9
          S
                         and centre of plates in m
10~Va
                                                                                  //accelerating voltage in V
                                    =2000;
                                                                   //trace length in m
11 Y
                                    =0.03;
12
13
14 //cacualtions
15 //y = 1SVd/(2*d*Va)
                                   = (d*Va*x)/(l*S); //deflection voltgae in V
16 Vd
                                    = Vd/(sqrt(2)); //rms value of sinusoidal
17 Vrms
                           voltage applied to the X-deflecting plates in V
18 Vin = Vrms/(Vd);
                                                                                                                    //input voltage required in V
19
```

```
20 //result
21 mprintf(" nput voltage required = %3.3 f V", Vin);
```

Scilab code Exa 16.3 Calculate the maximum velocity of electrons

1 //

```
2 //Chapter 16 example 3
 3
4 clc;clear all;
 5
 6 //variable declaration
7 Va = 1000; // accelerating voltage in V
8 e = 1.6*10<sup>-19</sup>; //charge of electron in C
9 m = 9.1*10<sup>-31</sup>; //mass of electron in kg
10
11
12 //calcuations
13 V = sqrt(2*Va*(e/m)); //maximum velocity of
       electrons in m/s
14
15 //result
16 mprintf("maximum velocity of electrons = \%3.3 \,\mathrm{e} \,\mathrm{m/s}",
       V);
```

Scilab code Exa 16.4 Find the beam speed and deflection sensitivity of the tube an

1 //

2 //Chapter 16 example 4 3

```
4 clc; clear all;
5
6 //variable declaration
7 Va = 2000; // accelerating voltage in V
       = 1.6*10^-19; //charge of electron in C
= 9.1*10^-31; //mass of electron in kg
8 e
9 m
       = 0.015; //length of plates in m
10 l
       = 0.005; //distance between plates in m
= 0.5; //the distance between the scree
11 d
                    //the distance between the screen
12 S
      and centre of plates in m
13
14 //calcuations
15 V = sqrt(2*Va*(e/m)); //beam speed in m/s
16 Sd = (1*S)/(2*d*Va);
                                          //deflection
      sensitivity of the tube in mm/V
       = 1/(Sd);
                                 //defelection factor in V
17 D
      /mm
18
19 / result
20 mprintf("Beam speed = \%3.3 \,\mathrm{e} \,\mathrm{m/s}",V);
21 mprintf("\ndeflection sensitivity of the tube %3.3f
     mm/V",(Sd*10^3));
22 mprintf("\ndefelcction factor = \%3.4 f V/mm",(D
      *10^-3));
```

Scilab code Exa 16.5 Determine the deflection sensitivity

1 //
2 //Chapter 16 example 5
3 4 clc;clear all;
5 6 //variable declaration

```
7 l = 0.02; //length of plates in m
        = 0.005; // distance between plates in m
= 0.2; // the distance between the screen
8 d
9 S
     and centre of plates in m
10 Va
       = 2500; //accelerating voltage in V
11
12 //calculations
                                        //deflection
         = (l*S)/(2*d*Va);
13 Sd
      sensitivity of the tube in mm/V
14
15 //result
16 mprintf("deflection sensitivity of the tube %3.2f mm
     /V",(Sd*10^3));
```

Scilab code Exa 16.6 Deduce the formula used

```
2 //Chapter 16 example 6
3
4 clc;clear all;
5
6 //varable declaration
7 l = 2.5; //length of plates in cm
      = 1; //distance between plates in cm
8 d
  theta = 1; //angular defelecction of electron
9
     beam in degrees
10 Va = 1000; //accelerating voltage in V
11
12 //calculations
13 //\tan(\text{theta}) = \frac{1 * Vd}{(2 * d * Va)}
14 x = tan(((theta*%pi)/180));
15 Vd =((2*d*Va)/(1))*x; //required voltage in
     \mathbf{V}
```

Scilab code Exa 16.7 Calculate the deflection voltage

```
1 //
2 //Chapter 16 example 7
3
4 clc;clear all;
5
6 //variable declaartion
7 1 = 0.025; //length of plates in m
8 d = 0.005; //distance between plates in m
9 S = 0.2; //the distance between the screen
      and centre of plates in m
10 Va
       = 2500; //accelerating voltage in V
11
12 //calculations
13 //y = (s*(d/2))/(1/2)
14 y = (S*d)/(1); //defelction in m
15
16 // result
17 mprintf("deflection = %3.2 f m",y);
```

Scilab code Exa 16.8 Find the Phase angle

```
2 //Chapter 16 example 8
3
4 clc;clear all;
5
6 //variable declaration
7 //as shown in patern is straight line
8 dvo
        = 0;
9 Dv
         = 6;
10 //pattern is ellipse
11 \, dvo1 = 3;
12 Dv1
        =6;
13 //pattern is circle
14 \, dvo2 = 1;
15 \text{ Dv2} = 1;
16 //pattern is ellipse
17 \, dvo3 = 3;
18 Dv3 =5;
19
20 //calculations
21 \ y4 = dvo1/(Dv1);
22 phi1 = asin(dvo/(Dv)); //phase angle in degrees
23 phi2 = asin(dvo1/(Dv1));
                                    //phase angle in
      degrees
                                   //phase angle in
24 phi3 = asin(dvo2/(Dv2));
      degrees
25 \text{ phi4} = \operatorname{asin}(\operatorname{dvo3}(\operatorname{Dv3}));
                                   //phase angle in
      degrees
26 phi22 = 180-((phi2*180)/(%pi));
27 phi44 = 180-((phi4*180)/(%pi));
28
29 //result
30
31 mprintf("phase angle = \%3.2 \text{ f} ",((phi1*180)/%pi));
32 mprintf("\nphase angle = \%3.2 f or \%3.2 f ",((
      phi2*180)/%pi),(phi22));
33 mprintf("\nbut from figure ellipse is inn 2nd and
      fourt quarterso the valid value of phase angle is
       %3.2f ",phi2);
```

```
%3.2 f ",phi44);
```

Scilab code Exa 16.9 Find the pulse duration

```
1 //
2 //Chapter 16 example 9
3 clc;clear all;
4
5 //variable declaration
6 f = 2000; //frequency in Hz
                 //duty cycle
      = 0.2;
7 D
8
9 //calculations
10 T = 1/(f); //time period in ms
      = D*T; //pulse duration in ms
11 d
12
13 //result
14 mprintf("pulse duration = \%3.2 \text{ f ms}",(d*10^3));
```

Scilab code Exa 16.10 Find the ratio of frequencies of vertical and horizontal sig

1 //

2 //Chapter 16 example 10

Scilab code Exa 16.11 Find out the frequency of vertical signal

```
1 //
 2 //Chapter 16 example 11
 3
 4 clc;clear all;
 5
 6 //variable declaration
          = 2; // positive y- peaks in pattern
= 0.5; // positive y-peaks in pattern
 7 y1
 8 y2
          = 0.5; // positive x-peaks in pattern
= 0.5; // positive x-peaks in pattern
 9 x1
10 x2
          = 3; //frequency of horizontal voltage
11 F
       signal in kHz
12
13 //calculations
14 fx = x1+x2; //frequency of X
15 fy = y1+y2; //frequency of Y
```

```
16 f = fy/(fx);
17 fv = f*F; //frequency of vertical voltage
    signal in kHz
18
19 //Result
20 mprintf("frequency of vertical voltage signal in =
    %3.1f kHz",fv);
```

Scilab code Exa 16.12 Determine the frequency of vertical input

```
1 //
2 //Chapter 16 example 12
3 clc;clear all;
4
5 //variable declaration
6 fx = 1000; //frequency of horizontal input in
    Hz
7 Pv = 2; //pointsof tangency to vertical line
8 Ph = 5; //pointsof tangency to horizontal
     line
9
10 //calculations
11 fy = fx*(Ph/(Pv)); //frequency ofvertical
     input in Hz
12
13 //result
14 mprintf("frequency of vertical input = \%3.2 f Hz", fy);
```

Scilab code Exa 16.13 Determine the mark to space ratio of the pulse

```
1 //
```

```
2 //Chapter 16 example 13
3
4 clc;clear all;
5
6 //variable declaration
       = 1;
               //1 division is equal to 1 cm
7 d
                //mark in cm
8 M
       = 0.4;
      = 1.6;
                //mark in cm
9 S
                //amplitude in cm
       = 2.15;
10 A
                 //time-base control setting in us
11 t
        = 10;
         = 0.2;
                      //amplitude control setting
12 p
13
14 //calcculations
               //mark to space ratio
15 R
     = M/S;
16 T
      = (M+S)*t;
                    //time for mark and space in
      divisions
17 f
      = 1/T; //pulse in frequency kHz
18 P
     = A*p;
                          //magnitude of pule voltage
     in V
19
20 //Result
21 mprintf("mark-to-space ratio = \%3.2 \text{ f}", R);
22 mprintf("\npulse frequency = \%3.2 f kHz",f);
23 mprintf("\nmagnitude of pulse voltage = %3.2 f V",P);
```