Scilab Textbook Companion for Utilization Of Electric Energy by E. Openshaw Taylor¹

Created by Sibi Varman Lakshmanasamy Bachelor Of Engineering Electronics Engineering Bannari Amman Institute Of Technology College Teacher None Cross-Checked by None

April 22, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Utilization Of Electric Energy
Author: E. Openshaw Taylor
Publisher: Universities Press(india)private Limited&hyderabad
Edition: 18
Year: 2016
ISBN: 9788173717000

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Electric Drive	5
2	Electric Traction	13
3	Heating and Welding	17
4	Electrolytic Processes	22
5	Illuminating Engineering	23
6	Economic Aspects of Utilising Electrical Energy	26

List of Scilab Codes

Exa 1.1	calculation of tapping
Exa 1.2	calculating current and kw input
Exa 1.3	calculation of torque
Exa 1.4	calculation of speed 8
Exa 1.5	calculation of rating
Exa 1.6	calculation of rating
Exa 1.7	time taken for starting motor
$Exa \ 1.8$	estimating time taken and number of revolutions made
	before motor stopped 10
Exa 1.9	torque exerted by motor
Exa 2.11	determining characteristics
Exa 2.12	calculating total energy supplied
Exa 2.13	calculating sags and tension
Exa 3.16	calculating width for strip
Exa 3.17	estimating energy required
Exa 3.18	determining power required
Exa 3.19	estimating heat requirements
Exa 3.20	estimating heat requirements
Exa 4.21	calculating electricity $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 22$
Exa 5.22	calculating number and size of lamps
Exa 5.23	estimating number and size of projectors
Exa 6.25	determining the value of plang
Exa 6.26	estimating annual energy cost
Exa 6.27	Improving power factor
Exa 6.28	estimating the savings
Exa 6.29	comparing the costs
Exa 6.30	calculating the cost
Exa 6.31	calculating the minimum cost

Exa 6.32	determining the most economic cost arrangement	32
Exa 6.33	comparing the costs	34

Electric Drive

Scilab code Exa 1.1 calculation of tapping

```
1 //Example 1_1 page no:15
2 \text{ clc};
3 //given
4 line_voltage = 400; //in V
5 phase_voltage = line_voltage/sqrt(3);//in V
6 Starting_current = 75; //in A
7 impedance = 1.54; //in ohm
8 full_load_current = 30; //in A
9 slip = 0.04; //in percent
10 tapping = sqrt((Starting_current*impedance*100^2)/
     phase_voltage);
11 disp(tapping,"the tapping provided is (in percent)");
12 start_current = Starting_current * 100 / tapping;
13 ratio = (start_current/full_load_current)^2*slip;
14 disp(ratio," starting torque in terms of full load
     torque is(no unit)");
```

Scilab code Exa 1.2 calculating current and kw input

```
1 //Example 1_2 page no:23
2 \text{ clc};
3 //given
4 //solving a sub part
5 voltage = 500; //in v
6 current = 32; //in A
7 arm_res = 0.4; //in ohm
8 fl_win_res = 250; //in ohm
9 \text{ rpm} = 450;
10 field_current = 2;
11 input_pow = (voltage*current)/1000;
12 arm_current = current - field_current;
13 //when running at 600rpm
14 \text{ rpm1} = 600;
15 k_phi = (voltage - 12)/rpm1;
16 //when running at 450rpm
17 R = -(k_phi*rpm-voltage)/arm_current;
18 R = R - arm_res;
19 disp("To decrease the speed to 450 rev/min");
20 disp(R," the resistance added with the armature is (
      in ohm)");
21 disp(current," the current is (in A)");
22 disp(input_pow," the kw-input taken from the supply
      is (in kW)");
23 //solving b sub part
24 disp("To increase the speed to 700 rev/min");
25 \text{ flux_ratio} = 600/700;
26 res_added = (fl_win_res/flux_ratio) - fl_win_res;
27 disp(res_added," the resistance to be added is (in
     ohm)");
28 arm_current = arm_current*(1/flux_ratio);
29 \text{ fld}_current = 1.25;
30 tot_current = arm_current + fld_current;
31 pow = tot_current * voltage/1000;
32 disp(arm_current," the armature current is (in A)");
33 disp(fld_current," the field current is (in A)");
34 disp(tot_current,"the total current is (in A)");
35 disp(pow," the kw-input taken from the supply is (in
```

```
kW)");
36 //the resistance value is rounded off in text book
    so armature current, total current , input power
    vary slightly with text book
```

Scilab code Exa 1.3 calculation of torque

```
1 //Example 1_3 page no:42
2 clc;
3 //given
4 armature_resitance = 0.086 / / in ohm
5 fl_arm_current = 150;
6 \text{ volt} = 220;
7 power = 30; //in kiloWatt
8 ini_brk_current = 200;
9 full_ld_speed = 535; // in rev/min
10 back_emf = volt - (fl_arm_current *
      armature_resitance);
11 tot_volt = volt + back_emf;
12 resistance_req = tot_volt / ini_brk_current;
13 res_added = resistance_req - armature_resitance;
14 disp(res_added," the resistance to be added is (in
     ohm)");
15 full_ld_torque = (power*1000*60)/(%pi*2*
     full_ld_speed);
16 ini_brk_torque = full_ld_torque * ini_brk_current /
     fl_arm_current;
17 back_emf = 208/2; //back emf at half speed
18 current = (volt + back_emf)/resistance_req;
19 ele_brk_torque = full_ld_torque * current /
     fl_arm_current;
20 disp(ele_brk_torque," Electric braking torque at half
      speed is (in Nm)");
21 //the value vary slightly with textbook hence values
       are rounded off in text book
```

Scilab code Exa 1.4 calculation of speed

```
1 //Example 1_4 page no:47
2 \text{ clc};
3 //given
4 //In text book the answers are rounded off so result
       vary slightly with text book
5 power = 15*1000; //in W
6 I = 60;
7 \text{ rpm} = 450;
8 E = 322;
9 I = 41.2;
10 full_load_torque = (power*I)/(2*%pi*rpm);
11 output = E*I;
12 disp(output," the output from the machine is (in W)")
13 mac_input = (2*%pi*rpm*318)/60;
14 disp(mac_input," the mechanical input to the machine
      from the load if it were running at 450 rev/min
      would be(in W)");
15 / rpm at 500;
16 \text{ rpm} = 500;
17 mac_input = (2*%pi*rpm*318)/60;
18 disp(mac_input," the mechanical input to the machine
      at 500 rev/min is (in W)");
```

Scilab code Exa 1.5 calculation of rating

```
1 //Example 1_5 page no:68
2 clc;
3 //given
```

```
4 original_losses = 18.5; //in KW
5 theta_f = 45; //in degree C
6 time_constant = 90; //in minutes
7 P = sqrt((theta_f/((1-exp(-30/90))*theta_f))*(
        original_losses^2));
8 disp(P,"the hour rating of the motor for this
        temperature rise is (in KW)");
9 //the result vary slightly with text book hence
        values are rounded off in text book
```

Scilab code Exa 1.6 calculation of rating

Scilab code Exa 1.7 time taken for starting motor

```
1 //Example 1_7 page no:74
2 clc;
3 //given
4 power = 75;//in kW
5 rpm = 500;
6 energy = 5400;
7 fl_load_torque = (power * 1000 * 60)/(2 * %pi * rpm)
;
8 str_torque = 2145;
9 acc_torque = 715;
```

```
10 stored_energy = energy * power;
11 omega = rpm *(2*%pi/60);
12 I = (2 * stored_energy)/(omega^2);
13 alpha = acc_torque / I;
14 t = omega / alpha;
15 disp(t,"the time taken to start the motor if the
load torque is equal to full load torque is (in s
)");
16 //the result vary slightly hence values are rounded
off in text book
```

Scilab code Exa 1.8 estimating time taken and number of revolutions made before motor stopped

```
1 //Example 1_8 page no:75
2 clc;
3 // given
4 voltage = 2200; //in V
5 power = 110; //in \, kW
6 rpm = 750; // rotation per minute
7 inertia = 62; //in kg.m^2
8 resistance = 13; //in ohm
9 efficiency = 0.93; // 93\% converted to decimal
10 fl_load_torque = (power * 1000 * 60)/(2*%pi*rpm);
11 fl_ld_line_current = (power * 1000)/(sqrt(3)*voltage
      * efficiency);
12 ln_current = 2000/(sqrt(3)*resistance);
13 ele_brk_torque = 4200; //in Nm
14 tot_brk_torque = ele_brk_torque + 1400;
15 omega = (rpm * 2* %pi)/60;
16 Te = 4200; //in Nm
17 K = Te/omega;
18 t = ((60/K) * \log (5600/1400));
19 disp(t,"the time taken is (in s)");
20 r = ((1.12*5600/(2*%pi*53.5))*(1-exp(-0.893*1.55))
```

```
+1.7) -((1400/(2*%pi*53.5))*1.95);
21 disp(r,"the number of revolution made before the
    motor stopped is (no unit)");//it is count it has
    no unit
```

Scilab code Exa 1.9 torque exerted by motor

```
1 //Example 1_9 page no:100
2 clc;
3 //given
4 T = 1400;
5 \text{ T1} = 1900;
6 k = 7.85/1400;
7 \mod rpm = 750;
8 //calculating load torque
9 Tm = Tl - (Tl/1.53);
10 slip = k * 660;
11 speed = motor_rpm - 35.2;
12 disp("After 5s");
13 disp(Tm," the torque at the end of 5s is (in Nm)");
14 disp(slip,"the slip is (in rad/s)");
15 disp(speed,"the speed is (rpm)");
16 \text{Tm} = (\text{T1}) - (\text{T1} - 0) * \exp(-0.085 * 10);
17 disp("After 10s");
18 disp(Tm," the torque at the end of 10s is (in Nm)");
19 slip = k * 1088;
20 \text{ speed} = \text{motor}_{rpm} - 58;
21 disp(slip,"the slip is (in rad/s)");
22 disp(speed,"the speed is (rpm)");
23 T_m = 1088;
24 Tm = 280 + (T_m - 280) * exp(-0.085 * 15);
25 disp("After 15s");
26 disp(Tm," the torque at the end of 15s is (in Nm)");
27 slip = k * Tm;
28 \text{ speed} = \text{motor}_{rpm} - 27;
```

```
29 disp(slip," the slip is (in rad/s)");
30 disp(speed,"the speed is (rpm)");
31 Tm = 280 + (1088 - 280) * \exp(-0.085 * 30);
32 \text{ slip} = k * 343;
33 \text{ speed} = \text{motor}_{rpm} - 18.4;
34 disp("After 30s");
35 disp(Tm," the torque at the end of 30s is (in Nm)");
36 disp(slip,"the slip is (in rad/s)");
37 disp(speed,"the speed is (rpm)");
38 \text{ Tm} = \text{T1} - (\text{T1} - 280) * \exp(-0.085 * 10)
39 \text{ slip} = k * 1235;
40 \text{ speed} = \text{motor}_{rpm} - 66;
41 disp("At the end of this period");
42 disp(Tm," the torque at the end of this period is (in
       Nm)");
43 disp(slip,"the slip is (in rad/s)");
44 disp(speed,"the speed is (rpm)");
45 \text{Tm} = 280 + (1235 - 280) * \exp(-0.085 * 30);
46 slip = k * Tm;
47 \text{ speed} = \text{motor}_{rpm} - 19;
48 disp("At the end of second off-peak period");
49 disp(Tm,"the torque at the end of this period is (in
       Nm)");
50 disp(slip,"the slip is (in rad/s)");
51 disp(speed,"the speed is (rpm)");
52 //the result vary slightly hence values are rounded
      off in text book
```

Electric Traction

Scilab code Exa 2.11 determining characteristics

```
1 //Example 2_11 page no:141
2 \text{ clc};
3 // given
4 speed1 = 37.5; //in km/h
5 \text{ speed2} = 48.2; // \text{in } \text{km/h}
6 tractive_effort = 4670; //in N
7 flux_speed = 100 * speed1/speed2;
8 //if current is reduced by 30% then new flux will
      from the magnetisation curve be 64%
9 flux = 64; //in percentage
10 speed = speed2*flux_speed/flux;
11 disp(speed," the speed at new flux will be(in km/h)")
      ;
12 tractive_effort = tractive_effort * flux/70.7;//
      calculating new tractive effort
13 disp(tractive_effort," the new tractive effort at 100
     A will be(in N)");
14 //the new tractive effort calculated is wrong in
      textbook. It is a calculation error
```

Scilab code Exa 2.12 calculating total energy supplied

```
1 //the examples are continuously numbered in textbook
     . This is the second example in chapter 2 as
      first example cannot be codded in scilab.
2 / Example 2_12 page no:146
3 \text{ clc};
4 //given
5 weight = 391000; //in kg
6 \text{ no_of_motor} = 12;
7 no_of_motors_parallel = 6;
8 tot_tractive_effort = 171000; //in N
9 line_voltage = 600;//in V
10 avg_current = 380; //in A
11 speed = 41.8 / (in km/h)
12 tot_res = 0.158;//in ohm
13 acceleration = tot_tractive_effort / (0.2778*weight)
      ;
14 time1 = speed/1.575;
15 //in full series position
16 back_emf_series = 300 - ( avg_current * tot_res);
17 //in full parallel position
18 back_emf_parallel = 600 - (avg_current * tot_res);
19 speed_parallel = 41.8;
20 speed_series = speed_parallel * back_emf_series/
     back_emf_parallel;
21 time2 = speed_series / 1.575;
22 time_parallel = time1 - time2;
23 disp("Total Energy Supplied during starting period
      is (in Wh)")
24 series = no_of_motors_parallel * line_voltage *
     avg_current * time2;
25 series = series / 3600; //converting to watt-hour
26 parallel = no_of_motor * line_voltage * avg_current
```

```
* time_parallel;
27 parallel = parallel / 3600; //converting to watt-hour
28 disp(parallel+series);
29 disp("Energy lost in starting resistances(in Wh)");
30 series = no_of_motors_parallel * 0.5 *
     back_emf_series * avg_current * time_parallel;
31 series = series / 3600; //converting to watt-hour
32 parallel = no_of_motor * 0.5*300 * avg_current *
     time_parallel;
33 parallel = parallel / 3600; //converting to watt-hour
34 disp(parallel+series);
35 disp("Energy lost in motor resistance(in Wh)");
36 W = no_of_motor * avg_current^2 * tot_res * time1;
37 W = W / 3600; //converting to watt-hour
38 disp(W);
39 KE = 0.5 * (time1/3600)*(tot_tractive_effort * speed
      * 1000/3600);
40 disp(KE," useful energy is (in Wh)");
41 //the result vary slightly hence values are rounded
     off in textbook
```

Scilab code Exa 2.13 calculating sags and tension

```
1 //Example 2_14 page no:188
2 clc;
3 //given
4 mass = 136000;//in kg
5 g = 9.81;
6 up_gradient = 1/600;
7 len = 1005;//in m
8 V = 1500;
9 comp_train_wg = mass * g * up_gradient;
10 net_tractive_effort = 104500 - 6675;
11 f = net_tractive_effort / (1.1* mass);
12 quantity = 1/f;
```

Heating and Welding

Scilab code Exa 3.16 calculating width for strip

```
1 / Example 3_16 page no:210
2 \text{ clc};
3 //given
4 power_3ph = 30000; //in W
5 voltage = 400; //in V
6 thickness = 0.254; //in mm
7 wire_temp = 1100; //in C
8 charges = 700; //in C
9 emissitivity = 0.9;
10 rad_efficiency = 0.5;
11 power = power_3ph/3; //power per phase
12 R = voltage^{2}/(3*power);
13 1BYw = (R*1000*thickness)/1.016;
14 heat = 5.72 * 10<sup>4</sup> * emissitivity * rad_efficiency
      *((1373/1000)^4-(973/1000)^4);
15 wl = power/(2*heat);
16 l = sqrt(lBYw*wl);
17 w = wl/l
18 w = w*1000; // converting to mm
19 disp(w,"the suitable width of the strip is(in mm)");
20 T1 = 1000 * nthroot(((heat/(2.56*10<sup>4</sup>))+0.0074),4);
```

```
22 //the result vary slightly with textbook hence
values are rounded off in textbook
```

Scilab code Exa 3.17 estimating energy required

```
1 //the examples are continuously numbered throughout
     the textbook
2 //Example 3_17 page no:219
3 clc;
4 //given
5 spc_heat = 393.6; //in Jkg^-1C^-1
6 lat_heat = 163 * 10^{3}; // in J/kg
7 melting_pt = 920; //in C
8 eff = 70; //in percentage
9 mass = 500; //in kg
10 cold_temp = 20; //in C
11 heat_req_rise_temp = mass * spc_heat *(melting_pt -
     cold_temp);
12 heat_req_melt_charge = mass * lat_heat;
13 tot_joules_req = heat_req_rise_temp+
     heat_req_melt_charge;
14 tot_energy = tot_joules_req * 2.78 * 10 ^ -7; //
     converting to kwh
15 energy_input = tot_energy *100/eff;
16 power_input = energy_input/0.75;
17 disp(power_input," the average power input to the
     furnace is (in kW)");
```

Scilab code Exa 3.18 determining power required

 $1 / Example 3_18$ page no:225

```
2 clc;
3 //given
4 len = 0.3; //in m
5 wide = 0.15; //in m
6 thick = 0.025; //in m
7 temp = 160; //in C
8 t = 10; //in minutes
9 frequency = 30//in MHz
10 spc_heat = 1465; //in Jkg^-1C^-1
11 weight = 575; //in \text{ kgm}^{-3}
12 permitivity = 5;
13 power_factor = 0.05;
14 vol_of_wood = len * wide * thick;
15 weight_of_wood = vol_of_wood * weight;
16 heat_req = weight_of_wood * spc_heat * 150;
17 heat_req = heat_req/(3.6*10^3);//converting to Wh
18 pow_req = heat_req * 60/t;
19 disp(pow_req,"the power required is (in W)");
20 c = (len * wide * permitivity * 1.113 * 10 ^ -10)
     /(4*%pi * thick);
21 cap_reactance = 1/ ( 2*%pi* frequency * 10 ^6 * c);
22 phi = acosd(0.05);
23 R = cap_reactance * tand(phi);
24 V = sqrt(290 * R);
25 disp(V,"the voltage across the work is (in V)");
26 I = V/cap_reactance;
27 disp(I," the current in the work is (in A)");
28 //the result vary with textbook hence capacitive
     reactance value is greatly rounded off which
     change result of resistance so voltage vary with
     textbook
```

Scilab code Exa 3.19 estimating heat requirements

 $1 / Example 3_19 page no:240$

```
2 clc;
3 //given
4 \text{ vol} = 3000;
5 \text{ t1} = 4.5; // \text{in C}
6 t2 = 18.5; //in C
7 h1 = 75; //in percentage
8 h2 = 60; //in percentage
9 \text{ eng_for_1cm} = 1.22 * 10^3;
10 eng = eng_for_1cm *vol * 14;
11 eng = eng/(3.6*10 ^{6});//converting to kW
12 moist = 0.00440; //in kgm<sup>-3</sup>
13 latent_heat = 2450 * 10 ^ 3;
14 weight_of_moist = moist * vol;
15 heat_req = latent_heat * weight_of_moist;
16 heat_req = heat_req/(3.6*10^{6});
17 tot_heat_req = eng + heat_req;
18 disp(tot_heat_req,"the total heat requirement is (in
       kW)");
```

Scilab code Exa 3.20 estimating heat requirements

```
1 //Example 3_20 page no:240

2 clc;

3 //given

4 floor_area = 6*6;//in m<sup>2</sup>

5 ceiling_area = 6*6;//in m<sup>2</sup>

6 temp = 18;//in C

7 wall_AB = 6*3;//in m<sup>2</sup>

8 cavity = 0.4;//in m

9 win_len = 1.2;//in m

10 win_width = 1.8;//in m

11 external_temp = 1.5;//in C

12 //calculating heat losses from walls

13 ceiling_loss = ceiling_area * 12.288 * 10<sup>3</sup> * (temp

- external_temp);
```

Electrolytic Processes

Scilab code Exa 4.21 calculating electricity

```
1 //the examples are continuously numbered throughout
      the textbook
2 //Example 4_21 page no:261
3 \text{ clc};
4 //given
5 surf_area = 0.36; //in m^2
6 thickness = 0.0254; //in mm
7 mass_den = 8.96 \times 10^{-3}; //in kgm<sup>-3</sup>
8 ece = 32.9 \times 10^{-8}; //in kgC<sup>-1</sup>
9 mass_cop = surf_area * thickness * 10^-3 * mass_den;
10 \text{ ece_cop} = \text{ece} * 3600 * 1000;
11 amp_hr = mass_cop/ece_cop;
12 disp(amp_hr," the ampere hours required is (in amp-
      hours)");
13 //the ampere hour calculation is wrong in textbook.
      The division between mass of copper and ece of
      copper is done wrongly in textbook
```

Illuminating Engineering

Scilab code Exa 5.22 calculating number and size of lamps

```
1 //the examples are continuously numbered throughout
      the textbook
2 //Example 5_22 page no:313
3 \text{ clc};
4 //given
5 len = 12; //in m
6 wide = 7.5; //in m
7 high = 4.5; //in m
8 avg_lumen = 80; //in lumen per square meter
9 height = 0.75; //in m
10 \text{ coeff_uti} = 0.3;
11 tot_area = len * wide;
12 tot_lumen = avg_lumen * tot_area;
13 lamp_lumen_req = tot_lumen /coeff_uti;
14 //suppose 100 watt lamps are used
15 no_of_lamps = lamp_lumen_req / 1340;
16 disp(no_of_lamps," the number of lamps required would
       be ")
17 disp("this can be arranged in 6 rows of 3");
18 //suppose 200 watt lamps are used
19 no_of_lamps = lamp_lumen_req / 2880;
```

Scilab code Exa 5.23 estimating number and size of projectors

```
1 / Example 5_23 page no:330
2 clc;
3 // given
4 height = 15; //in m
5 area_ill = 15 * 45; //in m^2
6 waste_light_factor = 1.2;
7 coeff_uti = 0.4;
8 deprication_factor = 1.5;
9 tot_lumen = area_ill * 80;
10 lumen_output = tot_lumen * waste_light_factor *
     deprication_factor;
11 tot_lamp_lumens = lumen_output / coeff_uti;
12 lumen_output_each = 18.9;
13 tot_lumen_output = 1000 * lumen_output_each;
14 no_of_lamps = tot_lamp_lumens / tot_lumen_output;
15 disp(tot_lumen," the total lumens required on surface
      is (in lm)");
16 disp(lumen_output,"the lumens output from the
      projector is (in lm)");
17 disp(tot_lamp_lumens," the total lamp lumens is (in
     lumens)");
```

- 19 disp(no_of_lamps,"the number of lamps is ");
- 20 disp("the no of lamps is rounded off to 15 or 16");

Economic Aspects of Utilising Electrical Energy

Scilab code Exa 6.25 determining the value of plang

```
1 //the examples are continuously numbered throughout
     the textbook
2 //Example 6_25 page no:345
3 clc;
4 // given
5 beg_cost = 240000; //in rupees
6 salvage_val = 24000; //in rupees
7 t = 20; //in years
8 t1 = 10; //in years
9 tot_dep = beg_cost - salvage_val;
10 tot_dep_af10 = beg_cost - 108000;
11 val = beg_cost * (0.891)^10;
12 tot_sink_fund = 216000; //in rupees
13 annual_deposit = (0.08 * tot_sink_fund)/((1.08)^20
      -1);
14 annual_deposit_af10 = (annual_deposit *( 1.08^10-1))
     /0.08;
15 val_plant = beg_cost - annual_deposit_af10;
16 disp(tot_dep_af10,"the value calculated in straight
```

line depreciation at the end of 10 years will be
(in rupees)");

- 17 disp(val, "the value calculated in reducing balance depreciation at the end of 10 years will be (in rupees)");
- 19 //the result vary slightly hence values are rounded off in textbook

Scilab code Exa 6.26 estimating annual energy cost

```
1 / Example 6_26 page no:348
2 \text{ clc};
3 //given
4 load1 = 200; //in kW
5 load2 = 150; //in kW
6 load3 = 50; //in \, kW
7 t1 = 1; // in hour
8 t2 = 7; //in hour
9 t3 = 8; //in hour
10 max_tarrif = 108; //in rupees
11 tarrif = 10; //in paise
12 max_demand_charge = load1 * max_tarrif;
13 total = (load1* t1 * 6 * 52) + (load2* t2 * 6 * 52)+
       (1oad3 * t3 * 6 * 52);
14 annual_cost = total * 10;
15 annual_cost = annual_cost / 100; // converting to
      rupees
16 tot_annual_cost = annual_cost + max_demand_charge;
17 avg_cost = tot_annual_cost * 100 / total;
18 disp(tot_annual_cost,"the annual energy cost for the
       industry is (in rupees)");
19 disp(avg_cost," the average cost per unit is (in
```

paise)");

Scilab code Exa 6.27 Improving power factor

```
1 //Example 6_27 page no:356
2 \text{ clc};
3 \text{ max\_demand} = 175; // \text{in } \text{kW}
4 \text{ pow_fac} = 0.75;
5 max_tariff = 72; //in rupees
6 tariff = 10; //in paise
7 phase_adv = 120; //in rupees/kVA
8 loss = 20; //in percentage
9 kVA_demand = max_demand / pow_fac;
10 max_demand_charge = max_tariff * kVA_demand;
11 cos_phi = sqrt(1-((phase_adv * loss)/(max_tariff *
      100))^2);
12 disp(kVA_demand," before installation of capacitors
      the kVA demand is (in kVA)");
13 disp(max_demand_charge," the maximum demand charge is
       (in rupees)");
14 disp(cos_phi,"the power factor is ");
15 //the kVA_demand is rounded off in textbook so
     maximum demand charge vary slightly with textbook
```

Scilab code Exa 6.28 estimating the savings

```
1 //Example 6_28 page no:358
2 clc;
3 //given
4 con_req = 1000000;//in units per year
5 load_fac = 30;//in percentage
6 max_tariff = 120;//in rupees
7 tariff = 5;//in paise
```

```
8 imp_ld_fac = 100; //in percentage
9 //sol
10 \text{ avg_ld} = \text{con_req} / 8760;
11 max_load = avg_ld * imp_ld_fac / load_fac;
12 mac_dmd_chc = max_load * max_tariff;
13 unit_charge = con_req * tariff / imp_ld_fac;
14 tot_charge = mac_dmd_chc + unit_charge;
15 avg_price_per_unit = tot_charge * imp_ld_fac /
     con_req;
16 max_load = avg_ld;
17 max_dmd_chc = max_load * max_tariff;
18 tot_charge = unit_charge + max_dmd_chc;
19 avg_price_perUnit = tot_charge * imp_ld_fac /
     con_req;
20 disp(avg_price_per_unit," the average price per unit
      before improving the load factor is (in paise)");
21 disp(avg_price_perUnit," the average price per unit
      after improving the load factor is (in paise)");
22 disp(avg_price_per_unit - avg_price_perUnit,"the
     total savings is (in paise)");
```

Scilab code Exa 6.29 comparing the costs

```
1 //Example 6_29 page no:362
2 clc;
3 //given
4 max_load = 250;//in kW
5 annual_load_fac = 40;//in percentage
6 voltage = 11;//in kV
7 max_tariff = 120;//in rupees
8 tariff = 4;//in paise
9 diesel_cost = 360;//in rupees per kW
10 oil_cost = 6;//in paise
11 dep_transformer = 8;//in percentage
12 dep_deisel_plant = 12;//in percentage
```

```
13 transformer_cost = 18; //in rupees per kVA
14 //sol
15 tot_no_units = max_load * annual_load_fac * 8760 /
     100;
16 //public supply
17 capital_cost = 3 * 150 * transformer_cost;
18 yearly_cost = capital_cost * dep_transformer / 100;
19 max_demand_charge = max_tariff * max_load;
20 unit_cost = tot_no_units * tariff / 100;
21 tot_yr_cost = yearly_cost + max_demand_charge +
     unit_cost;
22 //diesel plant
23 cost = 3 * 150 * diesel_cost;
24 yr_cost = cost * dep_deisel_plant / 100;
25 \text{ opp_staff_wage} = 4800;
26 unit_cost = tot_no_units * oil_cost / 100;
27 tot_year_cost = yr_cost + opp_staff_wage + unit_cost
28 disp(tot_yr_cost," the cost of public supply is ( in
     rupees)");
29 disp(tot_year_cost,"the cost of diesel plant is ( in
      rupees)");
```

Scilab code Exa 6.30 calculating the cost

```
1 //Example 6_30 page no:364
2 clc;
3 //given
4 power = 37;//in kW
5 motor_cost_a = 1440;//in rupees
6 eff_a = 88;//in percentage
7 motor_cost_b = 1920;//in rupees
8 eff_b = 89;//in percentage
9 opp = 3000;//in hours
10 tariff = 6;//in paise per kWH
```

```
11 dep = 10; //in percentage in per year
12 output = 37; //in \, kW
13 / \text{motor A}
14 cap_charge = motor_cost_a * dep / 100;
15 \text{ loss} = ((1/0.88) - 1) * \text{ output};
16 yr_cost_loss_a = loss * opp * tariff / 100;
17 disp(yr_cost_loss_a," the yearly cost of motor A is (
      in rupees)");
18 //motor B
19 cap_charge = motor_cost_b * dep / 100;
20 \text{ loss} = ((1/0.89) - 1) * \text{ output};
21 yr_cost_loss_b = loss * opp * tariff / 100;
22 disp(yr_cost_loss_b," the yearly cost of motor B is (
      in rupees)");
23 disp("the motor B gives the lower yearly cost");
24 //the value of cost vary with textbook hence values
      are rounded off in textbook but the result is
      same
```

Scilab code Exa 6.31 calculating the minimum cost

```
1 //Example 6_31 page no:366
2 clc;
3 //given
4 power = 75;//in kW
5 t1 = 1000;//in hours
6 t2 = 2000;//in hours
7 full_load_eff_a = 0.89;
8 full_load_eff_b = 0.90;
9 half_load_eff_b = 0.88;
10 half_load_eff_b = 0.89;
11 tariff = 7.5;//in paise
12 dep = 0.12;
13 motor_cost_a = 3120;//in rupees
14 full_load_output = 75;//in kW
```

```
15 half_load_output = 37.5; //in kW
16 / \text{motor A}
17 full_load_loss_a = full_load_output * ((1/
     full_load_eff_a)-1);
18 full_yearly_loss_a = full_load_loss_a * t1;
19 half_load_loss_a = half_load_output * ((1/
     half_load_eff_a)-1);
20 half_yearly_loss_a = half_load_loss_a * t2;
21 tot_yr_loss_a = full_yearly_loss_a +
     half_yearly_loss_a;
22 yr_cost_loss_a = tot_yr_loss_a * tariff / 100;
23 //motor B
24 full_load_loss_b = full_load_output * ((1/
     full_load_eff_b)-1);
25 full_yearly_loss_b = full_load_loss_b * t1;
26 half_load_loss_b = half_load_output * ((1/
     half_load_eff_b)-1);
27 half_yearly_loss_b = half_load_loss_b * t2;
28 tot_yr_loss_b = full_yearly_loss_b +
     half_yearly_loss_a;
29 yr_cost_loss_b = tot_yr_loss_b * tariff / 100;
30 yr_saving = yr_cost_loss_a - yr_cost_loss_b;
31 \text{ cap_value} = \text{yr_saving} * 100/12;
32 disp(yr_saving," the yearly savings in loss is ( in
     rupees)");
33 disp(cap_value,"the capitalised value is(in rupees)"
     );
34 disp((cap_value+motor_cost_a)," if motor cost of B is
      less than this (in rupees)");
35 disp("motor B would be cheaper");
36 //the mathematical calculation in textbook is wrong
```

Scilab code Exa 6.32 determining the most economic cost arrangement

1 //Example 6_32 page no:367

```
2 clc;
3 //given
4 power = 75; //in \, kW
5 t1 = 4000; //in hours
6 \text{ cost} = 3600; // \text{in rupees}
7 \text{ motor}_{eff} = 0.91;
8 \text{ pow_fac} = 0.89;
9 trans_cost = 18; //in rupees per kVA
10 \text{ dep} = 0.8;
11 transformer_cost = 6000; //in rupees
12 \text{ trans_eff} = 0.91;
13 trans_pow_fac = 0.89;
14 \text{ max\_tariff} = 108;
15 \text{ tariff} = 4;
16 output = 75; //in \, kW
17 //sol
18 kVA_input = output/(pow_fac*motor_eff);
19 cost_of_trans = 100 * trans_cost;
20 tot_cap_cost = cost + cost_of_trans;
21 annual_cost = tot_cap_cost * 8/100;
22 \text{ ove_eff} = \text{trans_eff} * 0.98;
23 \text{ loss} = ((1/\text{ove}_\text{eff}) - 1) * \text{power};
24 yr_cost_loss = (loss * t1 * tariff)/100;
25 max_demand = power / (motor_eff*0.98*trans_pow_fac);
26 max_demand_chc = max_demand * max_tariff;
27 tot_cost = max_demand_chc + yr_cost_loss +
      annual_cost;
28 yr_cap_cost = transformer_cost * 12 /100;
29 loss = ((1/motor_eff)-1)*power;
30 yr_cost_of_loss = loss * t1 * tariff / 100;
31 max_dmd_chc = 92.5 * max_tariff;
32 total_cost = max_dmd_chc + yr_cost_of_loss +
      yr_cap_cost;
33 saving = tot_cost - total_cost;
34 disp(saving," the total yearly saving is (in rupees)"
      );
35 //the calculation for loss is wrong in textbook so
      the result of saving vary with textbook
```

Scilab code Exa 6.33 comparing the costs

```
1 //Example 6_33 page no:368
2 \text{ clc};
3 //given
4 lumen = 1000000; //in lumen-hours
5 power = 100; //in W
6 voltage = 230; //in V
7 voltage2 = 210; //in V
8 cost = 3; //in rupees
9 life = 1000; //in hours
10 enf_cost = 5; //in paise
11 lumen_output = 1160;
12 //sol
13 //210V lamps
14 no_of_hrs = lumen / lumen_output;
15 cost_of_lamp = no_of_hrs * cost / life;
16 cost_of_eng = no_of_hrs * power * enf_cost / ( power
       *life);
17 tot_cost = cost_of_eng + cost_of_lamp;
18 / 230V lamps operating at 210V
19 lumen_output = 810;
20 life = 2750;
21 \text{ power} = 87.5;
22 no_of_hrs = lumen / lumen_output;
23 cost_of_lamp = no_of_hrs * cost / life;
24 cost_of_eng = no_of_hrs * power * enf_cost / ( 100
      *1000):
25 total_cost = cost_of_eng + cost_of_lamp;
26 disp(tot_cost," the total cost of 210V lamps is (in
      rupees)");
27 disp(total_cost,"the total cost of 230V lamps is (in
       rupees)");
28 disp("230V lamps are 2% cheaper than 210V lamps");
```