Scilab Textbook Companion for Electric Drives Concepts And Applications by Vedam Subrahmanyam¹

Created by Shifana S B.E

Electrical Engineering
St.Xavier's Catholic College of Engineering ,Nagec
College Teacher
None
Cross-Checked by
None

July 31, 2019

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electric Drives Concepts And Applications

Author: Vedam Subrahmanyam

Publisher: Tata McGraw Hill Publication, New Delhi

Edition: 2

Year: 2011

ISBN: 9780070701991

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Characteristics of Electric motor	6
3	Converters for Feeding Electric Motors	29
4	Control of Electric Motors	53
5	Rating and Heating of Motors	78

List of Scilab Codes

Exa 1.1	Find the speed of the motor	6
Exa 1.2	Calculate the initial breaking torque	8
Exa 1.3	Find the resistance needed to reduce the speed	Ć
Exa 1.4.a	Calculate the effeciency	11
Exa 1.4.b	Calculate the no load and full load speeds .	12
Exa 1.5.a	Determine the speed and torque developed .	15
Exa 1.5.b	Determine the resistance and torque developed	15
Exa 1.6	Determine the speed and torque of the motor	17
Exa 1.7	Determine the speed and torque of the motor	18
Exa 1.8	Determine the speed and torque of the motor	20
Exa 1.10	Compute direct on line starting torque and	
	by a star delta starter	22
Exa 1.11	Determine the torque	23
Exa 1.12	Determine the torque	26
Exa 1.13	Compute the impedence of motor and the	
	breaking torque	26
Exa 3.1	Determine the current in the load	29
Exa 3.2	Determine the firing angle of the converter .	31
Exa 3.3	Determine the overlap angle	32
Exa 3.4	Determine the average value of converter volt-	
	age and current and overlap angle	33
Exa 3.5	Determine the average value of load current	
	and overlap angle	35
Exa 3.6	Determine the overlap angle	37
Exa 3.7	Determine the overlap angle	36
Exa 3.8	Determine the average and rms value of load	
	current	41
Exa 3.9	Determine the overlap angle	42

Determine the average value of load voltage
and current and power dissipation
Determine the powerfactor
Determine the thyristor current
Determine the overlap angle
Determine the ripple factor
Determine the maximum and minimum cur-
rent
Determine the average value of current
Determine the efficiency
Determine the powerfactor
Determine the firing angle
Determine the firing angle
Determine the firing angle
Determine the back emf voltage
Determine the constant
Determine the back emf and firing angle
Determine the inductance
Determine the current
Determine the time ratio
Determine the firing angle
Determine the rms value of current
Determine the speed
Determine the temperature
Determine the overloading
Determine the overloading

List of Figures

1.1	Find the speed of the motor
1.2	Calculate the initial breaking torque
1.3	Find the resistance needed to reduce the speed 10
1.4	Calculate the effeciency
1.5	Calculate the no load and full load speeds
1.6	Determine the speed and torque developed
1.7	Determine the resistance and torque developed 16
1.8	Determine the speed and torque of the motor
1.9	Determine the speed and torque of the motor
1.10	Determine the speed and torque of the motor
1.11	Compute direct on line starting torque and by a star delta
	starter
1.12	Determine the torque
1.13	Determine the torque
1.14	Compute the impedence of motor and the breaking torque . 27
3.1	Determine the current in the load
3.2	Determine the firing angle of the converter
3.3	Determine the overlap angle
3.4	Determine the average value of converter voltage and current and overlap angle
3.5	Determine the average value of load current and overlap angle 36
3.6	Determine the overlap angle

3.7	Determine the overlap angle	40
3.8	Determine the average and rms value of load current	41
3.9	Determine the overlap angle	43
3.10	Determine the average value of load voltage and current and	
	power dissipation	45
3.11	Determine the powerfactor	46
3.12	Determine the thyristor current	47
3.13	Determine the overlap angle	49
3.14	Determine the ripple factor	50
3.15	Determine the maximum and minimum current	51
4.1	Determine the average value of current	54
4.2	Determine the efficiency	55
4.3	Determine the powerfactor	57
4.4	Determine the firing angle	58
4.5	Determine the firing angle	60
4.6	Determine the firing angle	62
4.7	Determine the back emf voltage	63
4.8	Determine the constant	65
4.9	Determine the back emf and firing angle	66
4.10	Determine the inductance	68
	Determine the current	70
4.12	Determine the time ratio	71
	Determine the firing angle	73
	Determine the rms value of current	74
4.15	Determine the speed	76
5.1	Determine the temperature	79
5.2	Determine the overloading	80
5.3	Determine the overloading	81

Chapter 1

Characteristics of Electric motor

Scilab code Exa 1.1 Find the speed of the motor

```
concepts and application by V.
1 // Electric Drives
     Subrahmanyam
2 // Publisher: Tata McGraw-Hill
3 // Edition : Second
4 // Ex1_{-1}
5 clc;
6 clear;
7 V=500; // voltage v
8 N1=900;// speed in rpm
9 Ia1=45; //armature current in A
10 Ia2=21; //armature current in A
11 R=8; // resistance in ohm
12 Ra=1;//armature resistance in ohm
13 Eb1=V-(Ia1*Ra);
14 Eb2=V-(9*Ia2);
15 N2=N1*(Eb2/Eb1);
16 disp(N2, 'New speed in rpm is :');
```

```
Scilab 5.5.2 Console

P M X

New speed in rpm is:
615.16484

-->
```

Figure 1.1: Find the speed of the motor

```
Scilab 5.5.2 Console

7 7 X

The initial breaking torque in Nm is:
6.9304445

-->
```

Figure 1.2: Calculate the initial breaking torque

${\it Scilab\ code\ Exa\ 1.2\ Calculate\ the\ initial\ breaking\ torque}$

```
9 N1=78.5; // speed in rad/sec
10 R1=0.3; // resistance in ohm
11 I2=90; // current in A
12 N2=31.4; // Speed in rpm
13 Eb1=V1-(I1*R1);
14 T1=(Eb1*I1)/N1;
15 V2=V1+Eb1;
16 R2=(V2/I2)-R1;
17 T2=(Eb1*I2)/N1;
18 Eb2=(Eb1*N2)/N1;
19 I=(V1+Eb2)/R2;
20 T=(Eb2+I)/N2;
21 disp(T, 'The initial breaking torque in Nm is:')
22 // Calculation error in the textbook
```

Scilab code Exa 1.3 Find the resistance needed to reduce the speed

```
1 // Electric drives concepts and application by V.
      Subrahmanyam
2 // Publisher: Tata McGraw-Hill
3 // Edition : Second
4 // Ex1_3
5 clc;
6 clear;
7 V=250; //supply voltage V
8 Ia1=40; //Armature current in A
9 R1=0.6; // Resistance in ohm
10 N1=2.828; // speed in rpm
11 N2=2; //speed in rpm
12 Ia2=((Ia1)^2/N1)^(1/2);
13 Eb1=V-(Ia1*R1);
14 Eb=(Ia1/Ia2)*N2;
15 Eb2=Eb1/Eb;
```


Figure 1.3: Find the resistance needed to reduce the speed

```
Scilab 5.5 2 Console

the effeciency of the motor in % is:

9.0976403

-->
```

Figure 1.4: Calculate the effeciency

```
16 R2=(V-Eb2)/Ia2;
17 disp(R2, 'External resistance required in ohm: ')
```

Scilab code Exa 1.4.a Calculate the effeciency

```
9 Na=1200; //Speed in rpm
10 Na1=125.6; // Speed in rad/sec
11 R1=0.55;// Resistance in ohm
12 R2=110;// Resistance in ohm
13 N0=600; // Speed in rpm
14 N01=62.8; //Speed in rpm
15 Nf = 300; // Speed in rpm
16 Nf1=31.4; // Speed in rpm
17 Rsh=1.256; // Resistance in ohm
18 E=V-(Ia*R1);
19 K=E/Na1;
20 E1 = K * NO1;
21 Tf = K * Ia;
22 E2=E1*(Nf/N0);
23 V2=E2+(Ia*R1);
24 Is=(V2/Rsh)+Ia;
25 I1 = Is + (V/R2);
26 Pi=V*I1;
27 Po=Tf*Nf1;
28 Eff = (Po/Pi)*100;
29 disp(Eff, 'the effeciency of the motor in % is:')
```

Scilab code Exa 1.4.b Calculate the no load and full load speeds

```
// Electric Drives:concepts and applications by V.
    subrahmanyam
// Publisher: Tata McGraw-Hill
// Edition: Second
// Ex1_4b
clc;
clear;
V=440; // voltage in V
K=3.153;
```

```
Soliab 5.5.2 Console

Possible 5.5.2 Console

No load speed in rpm is:

999.45064

Full load speed in rpm is:

230.17651

-->
```

Figure 1.5: Calculate the no load and full load speeds

```
9 Ia=80; // Current in A
10 Rs=2; // Resistance in ohm
11 Rsh=1.5; // Resistance in ohm
12 R1=0.55; // Resistance in ohm
13 Alpha=(Rs/Rsh);
14 Vo=(V/Alpha);
15 No=(Vo/K);
16 N=((60*No)/(2*%pi));
17 disp(N, 'No load speed in rpm is:')
18 V2=((V/Rs)-Ia)/((1/Rs)+(1/Rsh));
19 E2=V2-(Ia*R1);
20 N2=N*(E2/Vo);
21 disp(N2, 'Full load speed in rpm is:')
```

```
The speed of the motor in rpm is:

898.56

The torque developed in Nm is:

99.471839
-->
```

Figure 1.6: Determine the speed and torque developed

Scilab code Exa 1.5.a Determine the speed and torque developed

```
1 // Electric Drives: concepts and applications by V.
      subrahmanyam
2 // Publisher: Tata McGraw-Hill
3 // Edition : Second
4 / Ex1_5a
5 clc;
6 clear;
7 V=250; // voltage in V
8 Ra=0.4; // Resistance in ohm
9 Na=480; //Speed in rpm
10 Va=125; // voltage in V
11 Ia=40; // Current in A
12 Vi=V-(Ra*Ia);
13 N=Na*(Vi/Va);
14 disp(N, 'The speed of the motor in rpm is:')
15 N1 = (2 * \%pi * N) / 60;
16 T=(Vi*Ia)/N1;
17 disp(T, 'The torque developed in Nm is:')
```

Scilab code Exa 1.5.b Determine the resistance and torque developed

```
// Electric Drives:concepts and applications by V.
    subrahmanyam
// Publisher: Tata McGraw-Hill
// Edition: Second
// Ex1_5b
clc;
clear;
V=250;// voltage in V
I=40;//Current in A
Ra=0.4;//Resistance in ohm
```


Figure 1.7: Determine the resistance and torque developed

```
Scilab 5.5.2 Console

The speed of motor in rpm is:

480.76312

The torque in Nm is:

3.8246004

-->
```

Figure 1.8: Determine the speed and torque of the motor

```
10 Eb=125; // voltage in V
11 Na=50.24; //Speed in rpm
12 Re=(V-Eb-(I*Ra))/I;
13 disp(Re, 'The value of resistance in ohm:')
14 T=(Eb*I)/Na;
15 disp(T, 'The torque developed in Nm is:')
16 //Result vary due to error in calculation of torque in the textbook
```

 ${\it Scilab}\ {\it code}\ {\it Exa}\ 1.6$ Determine the speed and torque of the motor

```
1 // Electric Drives: concepts and applications by V.
      subrahmanyam
2 // Publisher: Tata McGraw-Hill
3 // Edition : Second
4 / Ex1_6
5 clc;
6 clear;
7 V=250; // voltage in V
8 I=40;//Current in A
9 R1=2.725; // Resistance in ohm
10 R2=3.5;// Resistance in ohm
11 Rf = 0.15; // Resistance in ohm
12 N=480; //Speed in rpm
13 V1 = V - I * (R1 + Rf);
14 Ir = (V1/R2);
15 Ia=I-Ir;
16 Eb=V1-(Ia*Rf);
17 Nm=N*(V1/Eb);
18 disp(Nm, 'The speed of motor in rpm is:')
19 //Result vary due to 125V is used instead of 135V in
       the textbook
20 T=(Eb*Ia)/(2*\%pi*Nm/60);
21 disp(T, 'The torque in Nm is:')
```

Scilab code Exa 1.7 Determine the speed and torque of the motor

Figure 1.9: Determine the speed and torque of the motor

```
7 V=250; // voltage in V
8 I=40;//Current in A
9 Ro=0.4;// Resistance in ohm
10 R1=2.725; // Resistance in ohm
11 R2=3.5; // Resistance in ohm
12 Eb=125; // voltage in V
13 Na=480; //Speed in rpm
14 Na1=50.24; //Speed in rad/sec
15 R = ((1/R1) + (1/R2));
16 Vm = (V - (I*R1))/(R*R1);
17 Em = Vm - (I * Ro);
18 N = (Em/Eb) * Na;
19 disp(N, 'The speed of the motor in rpm is:')
20 N1 = (2 * \%pi * N) / 60;
21 Il=(V-Vm)/R1;
22 Po = Em * I;
23 T=Po/N1;
24 disp(T, 'The torque in Nm is:')
```

Scilab code Exa 1.8 Determine the speed and torque of the motor

Figure 1.10: Determine the speed and torque of the motor

```
Scilab 5.5.2 Console

Pirect on line starting torque in Nm is:

2.56

By Star/delta starter:

0.8533333

-->
```

Figure 1.11: Compute direct on line starting torque and by a star delta starter

```
12 N1=480; // Speed in rpm
13 Vm=Rs*I;
14 Ia=I-((V-Vm)/2);
15 Em=-Vm-(Ia*R1);
16 N=-(Em/Eb)*N1;
17 disp(N, 'The speed in rpm is:')
18 N2=-(2*%pi*N)/60;
19 T=(Em*Ia)/N2;
20 disp(T, 'The torque in Nm is:')
```

Scilab code Exa 1.10 Compute direct on line starting torque and by a star delta st

Scilab code Exa 1.11 Determine the torque

```
// Electric Drives:concepts and applications by V.
subrahmanyam
// Publisher: Tata McGraw-Hill
// Edition: Second
// Ex1_11
clc;
clc;
clear;
Sf1=0.04; // Full load slip in %
x=(8*3)^(1/2);
Tst=(x)^2*Sf1;
S=Sf1/2;
T=(8)^2*S;
disp(T, "Torque in Nm is:")
```


Figure 1.12: Determine the torque

```
Scilab 5.5.2 Console

7 7 ×

Torque in Nm is:

0.16

-->
```

Figure 1.13: Determine the torque

Scilab code Exa 1.12 Determine the torque

Scilab code Exa 1.13 Compute the impedence of motor and the breaking torque

```
The impedence of motor is:

6.53 + 2.08i

The impedence at plugging is:

1.0675 + 2.08i

The braking torque in Nm is:

77019.173
-->
```

Figure 1.14: Compute the impedence of motor and the breaking torque

```
12 rm=250; // resistance in ohm
13 xm=20; // reactance in ohm
14 S=0.05; // Full load slip in %
15 Z2=r1+x1+(r2/S)+x2;
16 disp(Z2, "The impedence of motor is:")
17 I2=(V/(sqrt(3)*(6.853)));
18 T1=3*(I2)^2*(r2/S);
19 Sb=2-S;
20 Sf=2-S+r1;
21 Zb=r1+x1+(Sb/Sf)+x2;
22 disp(Zb, "The impedence at plugging is:")
23 I=(V/(sqrt(3)*(2.336)));
24 T2=3*(I)^2*(Sb/Sf);
25 T=T1+T2;
26 disp(T, "The braking torque in Nm is:")
```

Chapter 3

Converters for Feeding Electric Motors

Scilab code Exa 3.1 Determine the current in the load

Figure 3.1: Determine the current in the load $\,$

```
Scilab 5.5.2 Console

? A X

The firing angle in degree is:

88.128663
-->
```

Figure 3.2: Determine the firing angle of the converter

Scilab code Exa 3.2 Determine the firing angle of the converter

```
// Electric Drives:concepts and applications by V.
    subrahmanyam
// Publisher: Tata McGraw—Hill
// Edition: Second
// Ex3_2
clc;
clear;
Vs=400; // Supply voltage in V
Id=80.88; // Current in A
```

```
Scilab 5.5.2 Console

7 % X

The overlap angle in deg is:
5.1916304

-->
```

Figure 3.3: Determine the overlap angle

```
9 Rd=2; // Resistance in ohm
10 Eb=-150; // Back emf in V
11 Vdia=Id*Rd+Eb;
12 a=acos((Vdia*%pi)/(2*sqrt(2)*Vs));
13 Alpha=(a*180)/%pi;
14 disp(Alpha, "The firing angle in degree is:")
```

Scilab code Exa 3.3 Determine the overlap angle

```
3 // Edition : Second
4 / Ex3_3
5 clc;
6 clear;
7 Id=80.88; // Current in A
8 Rd=2;//Resistance in ohm
9 Xc=0.628; // Reactance in ohm
10 Vs=400; //Supply voltage in V
11 Eb=150; //Back emf in V
12 Z=Id*(Rd+(Xc/%pi));
13 a = acos((Z-Eb)/(0.9*Vs));
14 Alpha=(a*180)/\%pi;
15 c = cos(Alpha);
16 d=-c/11;
17 b=(Id*Xc*2)/(%pi*Vs);
18 \quad X=d-b;
19 e=acos(X);
20 f = (e * 180) / \%pi;
21 \quad u=f-Alpha;
22 disp(u, "The overlap angle in deg is:")
```

 ${f Scilab\ code\ Exa\ 3.4}$ Determine the average value of converter voltage and current a

```
// Electric Drives:concepts and applications by V.
    subrahmanyam
// Publisher: Tata McGraw-Hill
// Edition: Second
// Ex3_4
clc;
clear;
Vs=200; // Supply voltage in V
Rd=12.5; // Resistance in ohm
Xc=0.5; // Reactance in ohm
```

```
Scilab 5.5.2 Console

? ? X

The average value of dc current in A is:
7.1094793

The average value of converter voltage in V is:
88.868491

The overlap angle in deg is:
0.7458187
```

Figure 3.4: Determine the average value of converter voltage and current and overlap angle $\,$

```
10  pf=0.5; // Powerfactor
11  Vdia=0.9*Vs*pf;
12  Id=Vdia/(Rd+(Xc/%pi));
13  disp(Id, "The average value of dc current in A is:")
14  Vd=Id*Rd;
15  disp(Vd, "The average value of converter voltage in V is:")
16  Vc=Vdia-Vd;
17  X=pf-((Vc*2)/Vs);
18  c=acos(X);
19  d=(c*180)/%pi;
20  u=d-60;
21  disp(u, "The overlap angle in deg is:")
22  // Result vary due to error in calculation of overlap angle in the textbook
```

 ${f Scilab\ code\ Exa\ 3.5}$ Determine the average value of load current and overlap angle

```
The average value of load current in A is:

56.571429

The overlap angle u in deg is:

64.623066

The overlap angle u1 in deg is:

35.125722

-->
```

Figure 3.5: Determine the average value of load current and overlap angle

```
15 \text{ Vdia=0.9*Vs*pf};
16 Id=Vdia/Z;
17 disp(Id,"The average value of load current in A is:"
18 Vd=Id*Rd;
19 Vdc=Vdia-Vd;
20 a = (1 - ((Vdc*2)/Vdia));
21 b = acos(a);
22 u = (b*180) / \%pi;
23 disp(u, "The overlap angle u in deg is:")
24 Vdia1=0.9*Vs*pf1;
25 \text{ Id1=Vdia1/Z};
26 Vd1=Id1*Rd;
27 Vdc1=Vdia1-Vd1;
V = pf1 - ((Vdc1*2)/Vs);
29 c=acos(V);
30 d=(c*180)/\%pi;
31 u1=d-30;
32 disp(u1, "The overlap angle u1 in deg is:")
33 //Result vary due to error in calculation of overlap
       angle in the textbook
```

Scilab code Exa 3.6 Determine the overlap angle

```
// Electric Drives:concepts and applications by V.
    subrahmanyam
// Publisher: Tata McGraw-Hill
// Edition: Second
// Ex3_6
clc;
clear;
Vs=220; // Supply voltage in V
f=50; // Frequency in Hz
```


Figure 3.6: Determine the overlap angle

```
9 Eb=-200; //Back emf in V
10 Rd=3; // Resistance in ohm
11 Vdc=200;//voltage in V
12 Xc=0.314; // Reactance in ohm
13 L=0.001; //Inductance in mH
14 pf = -0.5; // Powerfactor
15 Vdia=0.9*Vs*pf;
16 Id=(Vdia-Eb)/(Rd+((2*Xc)/%pi));
17 Vd=Id*Rd+Eb;
18 a=-pf+((Vd*2)/Vdc);
19 b=acos(a);
20 c = (b*180) / \%pi;
21 u = c - 120;
22 disp(u, "The overlap angle in deg is:")
23 //Result vary due to error in calculation of overlap
       angle in the textbook
```

Scilab code Exa 3.7 Determine the overlap angle

```
// Electric Drives:concepts and applications by V.
subrahmanyam
// Publisher: Tata McGraw-Hill
// Edition: Second
// Ex3_7
clc;
clear;
Id=50; // Current in A
Vs=220; // Supply voltage in V
Vdio=257.4; // voltage in V
f=50; // Frequency in Hz
L=0.0015; // Inductance in mH
pf=0.866; // Powerfactor
Xc=2*%pi*f*L;
```


Figure 3.7: Determine the overlap angle

```
Solisb 5.5.2 Console

2 A X

load current in A is:
64.9

Average value of load current in A is:
20.6382

Rms value of load current in A is:
35.746411

-->
```

Figure 3.8: Determine the average and rms value of load current

```
14  Vdia=1.17*Vs*pf;
15  Vd=Vdia-((3*Id*Xc)/(2*%pi));
16  Vc=Vdia-Vd;
17  a=pf-((Vc*2)/Vdio);
18  b=acos(a);
19  c=(b*180)/%pi;
20  u=c-30;
21  disp(u,"the overlap angle in deg is:")
```

 Scilab code Exa 3.8 Determine the average and rms value of load current

```
1 // Electric Drives: concepts and applications by V.
      subrahmanyam
2 // Publisher: Tata McGraw-Hill
3 // Edition : Second
4 / Ex3_8
5 clc;
6 clear;
7 Rd=2.5; // Resistance in ohm
8 V=250; // voltage in V
9 f=50; //Frequency in Hz
10 Vs=150; //Supply voltage in V
11 pf = -0.5; // Powerfactor
12 Eb=-250; //Back emf in V
13 Xc=0.636; //Reactance in ohm
14 Vdia=1.17*Vs*pf;
15 Id=(Vdia-Eb)/Rd;
16 disp(Id, "load current in A is:")
17 Ith=(Id*Xc)/2;
18 disp(Ith, "Average value of load current in A is:")
19 Irms = sqrt(3) * Ith;
20 disp(Irms, "Rms value of load current in A is:")
21 //Result vary due to error in calculation of current
       in the textbook
```

Scilab code Exa 3.9 Determine the overlap angle

Figure 3.9: Determine the overlap angle

```
7 L=0.003; // Inductance in mH
8 Id=64.9; // Current in A
9 V=162.25; //voltage in V
10 Vs=150;//Supply voltage in V
11 f=50; // Frequency in Hz
12 Rd=2.5; // Resistance in ohm
13 Eb=-250; //Back emf in V
14 pf = -0.5; // Powerfactor
15 Xc=2*%pi*f*L;
16 Vdia=(Id*(Rd+((3*Xc)/(2*\%pi))))+Eb;
17 a=Vdia/(1.17*Vs);
18 b = acos(a);
19 c=(b*180)/\%pi;
20 Alpha=-0.3338; // angle in radian
21 X = (3*Id*Xc)/(%pi*Vs);
22 d = acos(Alpha - X);
23 e = (d*180) / \%pi;
24 \quad u=e-c;
25 disp(u,"The overlap angle in deg is:")
26 // Result vary due to error in calculation of overlap
       angle in the textbook
```

 ${f Scilab\ code\ Exa\ 3.10}$ Determine the average value of load voltage and current and p

```
// Electric Drives:concepts and applications by V.
    subrahmanyam
// Publisher: Tata McGraw—Hill
// Edition: Second
// Ex3_10
clc;
clear;
Vs=400; // Supply voltage in V
f=50; // Frequency in Hz
```


Figure 3.10: Determine the average value of load voltage and current and power dissipation ${\bf r}$

```
Scilab 5.5.2 Console

The power factor is:

0.2445021

-->
```

Figure 3.11: Determine the powerfactor

```
9 Rd=15; // Resistance in ohm
10 pf=0.2588; // Powerfactor
11 Vdia=1.35*Vs*pf;
12 disp(Vdia, "Average value of load voltage in V is:")
13 Id=Vdia/Rd;
14 disp(Id, "Average value of load current in A is:")
15 P=Vdia*Id;
16 disp(P, "Power dissipation in W is:")
```

Scilab code Exa 3.11 Determine the powerfactor

```
Scilab 5.5.2 Console

The max current in A is:

20.785056

-->
```

Figure 3.12: Determine the thyristor current

Scilab code Exa 3.12 Determine the thyristor current

Scilab code Exa 3.13 Determine the overlap angle

Figure 3.13: Determine the overlap angle

```
Scilab 5.5.2 Console

Ripple factor is:

1.
-->|
```

Figure 3.14: Determine the ripple factor

```
10 gama=t0/t1;
11 Vl=gama*Vs;
12 Vrms=sqrt(gama)*Vs;
13 Rf=(sqrt(1-gama))/(sqrt(gama));
14 disp(Rf, "Ripple factor is:")
```

Scilab code Exa 3.14 Determine the ripple factor

```
Maximum current in A is:

44.850018

Minimum current in A is:

23.026767

-->
```

Figure 3.15: Determine the maximum and minimum current

```
4  //Ex3_14
5  clc;
6  clear;
7  t0=1.5; //Time in ms
8  t1=3; //Time in ms
9  Vs=200; //Supply voltage in V
10  gama=t0/t1;
11  Vl=gama*Vs;
12  Vrms=sqrt(gama)*Vs;
13  Rf=(sqrt(1-gama))/(sqrt(gama));
14  disp(Rf, "Ripple factor is:")
```

Scilab code Exa 3.15 Determine the maximum and minimum current

```
1 // Electric Drives: concepts and applications by V.
      subrahmanyam
2 // Publisher: Tata McGraw-Hill
3 // Edition : Second
4 / Ex3_15
5 clc;
6 clear;
7 R=1.5; // Resistance in ohm
8 L=3; //Inductance in H
9 Ton=2; //Time in ms
10 T=6; //Time in ms
11 Vs=150; //Supply voltage in V
12 t=Ton/T;
13 tON=L/R;
14 Vavg=T*Vs;
15 Iavg=Vavg/R;
16 P=(Iavg)^2*R;
17 Io=23.032;
18 I = 1 - \exp(-t);
19 I1=Io*\exp(-t);
20 Imax = (Vs/R) * I + I1;
21 disp(Imax, "Maximum current in A is:")
22 Imin=Imax*exp(-2*t);
23 disp(Imin, "Minimum current in A is:")
```

Chapter 4

Control of Electric Motors

Scilab code Exa 4.1 Determine the average value of current

```
1 // Electric Drives: concepts and applications by V.
      subrahmanyam
2 // Publisher: Tata McGraw-Hill
3 // Edition : Second
4 / Ex4_{-1}
5 clc;
6 clear:
7 Eb=50;// voltage in V
8 V=120;// voltage in V
9 f=50; //frequency in Hz
10 R=10; // Resistance in ohm
11 a=asin(Eb/(sqrt(2)*V));
12 Alpha=(a*180)/%pi;
13 pf = 0.9556;
14 Iavg = (1/(2*\%pi*R))*((2*sqrt(2)*V*pf)-(Eb*(%pi-(2*pi-(2*pi-(2)*V*pf))))
      Alpha))));
15 disp(Iavg, "Current Iavg in A is:")
```

```
Sollab 5.5.2 Console

Current Iavg in A is:

29.933606

-->
```

Figure 4.1: Determine the average value of current

```
Scilab 5.5.2 Console

Pfficiency in % is:

81.151978

-->
```

Figure 4.2: Determine the efficiency

Scilab code Exa 4.3 Determine the efficiency

```
9 N=1000; //Speed in rpm
10 Eff1=0.87; // Efficiency in \%
11 Vs=250; // voltage in V
12 f=50; //frequency in Hz
13 Alpha=0.5; // angle
14 R=0.40; // Resistance in ohm
15 Fdf=1; //fundamental displacement factor
16 df=0.9; // distortion factor
17 pf=0.9; //the power factor
18 Pi=P/Eff1;
19 I=Pi/V;
20 Eb=V-(I*R);
21 \text{ Vi=0.9*Vs};
22 Eb1=Vi-(I*R);
23 N1 = (Eb1/Eb) *N;
24 Pi1=V*I*pf*(10)^(-3);
25 \text{ Pi2} = (\text{Pi1} * \text{N1}) / \text{N};
26 \text{ Vc=0.9*Vs*Alpha};
27 Eb2=Vc-(I*R);
28 \text{ N2} = (\text{N} * \text{Eb2}) / \text{Eb};
29 P0 = ((Pi1*N2)/N)*1000;
30 Pi0=Vc*I;
31 Eff=(P0/Pi0)*100;
32 disp(Eff, "Efficiency in % is:")
33 //Result vary due to roundoff error
```

Scilab code Exa 4.4 Determine the powerfactor

Figure 4.3: Determine the powerfactor

```
Scilab 5.5.2 Console

The firing angle in deg is:

57.486385
-->
```

Figure 4.4: Determine the firing angle

```
5 clc;
6 clear;
7 V=250; // voltage in V
8 f=50; // frequency in Hz
9 R=1.5; // Resistance in ohm
10 L=30; // inductance in mH
11 Eb=100; // Back emf in V
12 Alpha=0.866; // angle
13 Vc=0.9*V*Alpha;
14 Id=(Vc-Eb)/R;
15 P=Vc*Id*10^(-3);
16 pf=0.9*Alpha;
17 disp(pf, "powerfactor is:")
```

Scilab code Exa 4.5 Determine the firing angle

```
1 // Electric Drives: concepts and applications by V.
      subrahmanyam
2 // Publisher: Tata McGraw-Hill
3 // Edition : Second
4 / Ex4_5
5 clc;
6 clear;
7 N=1800; // Speed in rpm
8 I=60; // Current in A
9 V=400; // voltage in V
10 E=185; //Back emf in V
11 N2=900; //Speed in rpm
12 R=0.5; // Resistance in ohm
13 Vs = V/2.34;
14 Vl = V/1.35;
15 Vi = V - (I * R);
16 V = E + (I * R);
17 a = a cos(V/(2.34*Vs));
18 Alpha=(a*180)/%pi;
19 disp(Alpha, "The firing angle in deg is:")
```

Scilab code Exa 4.6 Determine the firing angle

Figure 4.5: Determine the firing angle

```
5 clc;
6 clear;
7 V=500;// voltage in V
8 Vs=250; // voltage in V
9 I=181; // Current in A
10 N=1500; //Speed in rpm
11 R=0.1; // Resistance in ohm
12 f=50; //frequency in Hz
13 Eb = Vs - (I * R);
14 Eb1=Eb/3;
15 A1 = acos(Vs/(1.35*V));
16 Alpha1=(A1*180)/\%pi;
17 Ia2=I/9;
18 V2 = Eb1 + (Ia2 * R);
19 A2 = acos(V2/(1.35*V));
20 Alpha2=(A2*180)/\%pi;
21 V1 = Vs / 1.35;
22 A3 = acos(V2/(1.35*V1));
23 Alpha3=(A3*180)/\%pi;
24 disp(Alpha3, "The firing angle in deg is:")
```

Scilab code Exa 4.7.a Determine the firing angle

```
// Electric Drives:concepts and applications by V.
    subrahmanyam
// Publisher: Tata McGraw-Hill
// Edition: Second
// Ex4_7a
clc;
clear;
V=300; // voltage in V
Vt=363.25; // voltage in V
f=60; // frequency in Hz
```

```
Scilab 5.5.2 Console

The firing angle in deg is:

26.244709

-->
```

Figure 4.6: Determine the firing angle

```
Scilab 5.5.2 Console

? 7 ×

The back emf in V is:

173.25
```

Figure 4.7: Determine the back emf voltage

```
10  Rd=0.02; // Resistance in ohm
11  La=0.002; //inductance in H
12  Id=500; // Current in A
13  N=1500; // Speed in rpm
14  Eb=Vt-(Id*Rd);
15  A=acos(Vt/(1.35*V));
16  Alpha=(A*180)/%pi;
17  disp(Alpha, "The firing angle in deg is:")
```

Scilab code Exa 4.7.b Determine the back emf voltage

```
1 // Electric Drives: concepts and applications by V.
      subrahmanyam
2 // Publisher: Tata McGraw-Hill
3 // Edition : Second
4 / Ex4_7b
5 clc;
6 clear;
7 V=300;// voltage in V
8 Vt=363.25; // voltage in V
9 f=60; //frequency in Hz
10 Rd=0.02; // Resistance in ohm
11 La=0.001; //inductance in H
12 Id=500; // Current in A
13 N=1500; //Speed in rpm
14 \text{ Xc} = 2 * \% \text{pi} * f * \text{La};
15 Z=Rd+((3*Xc)/\%pi);
16 Eb=Vt-(Id*Z);
17 disp(Eb, "The back emf in V is:")
```

Scilab code Exa 4.8 Determine the constant

Figure 4.8: Determine the constant

```
Scilab 5.5.2 Console

The back emf in V is:

360.

The firing angle1 in deg is:

139.32136

The firing angle2 in deg is:

98.111126

-->
```

Figure 4.9: Determine the back emf and firing angle

```
12 Eb=V-(Ia*R);
13 Td=((Eb*Ia)/(2*%pi*n));
14 W=(2*%pi*N)/60;
15 A=Td/(W)^2;
16 disp(A,"The constant A is:")
```

Scilab code Exa 4.9 Determine the back emf and firing angle

```
3 // Edition : Second
4 / Ex4_9
5 clc;
6 clear;
7 V1=500; // voltage in V
8 V2=450; // voltage in V
9 Vs=420;// voltage in V
10 V=400; // voltage in V
11 I=60; // Current in A
12 R=1.5; // Resistance in ohm
13 R1=5; // Resistance in ohm
14 Eb=20; //Back emf in V
15 f=50; //frequency in Hz
16 V1 = V2 + Eb;
17 A = acos(V1/(1.35*Vs));
18 Alpha1=(A*180)/%pi;
19 Eb1=V2-(I*R);
20 disp(Eb1, "The back emf in V is:")
21 \quad V3 = -V2 - (I*R);
22 \ Vc = -V2 + Eb;
23 A1 = acos(Vc/(1.35*Vs));
24 Alpha2=(A1*180)/%pi;
25 disp(Alpha2, "The firing angle1 in deg is:")
26 \text{ Eb2} = -V - (I*R);
27 \text{ Vc1} = -\text{V} + \text{Eb} + (\text{R1} * \text{I});
28 A2 = a\cos(Vc1/(1.35*Vs));
29 Alpha3=(A2*180)/\%pi;
30 disp(Alpha3, "The firing angle2 in deg is:")
```

Scilab code Exa 4.10 Determine the inductance

```
1 // Electric Drives: concepts and applications by V. subrahmanyam
```

```
Scilab 5.5.2 Console

The inductance in Henry is:

0.1

-->
```

Figure 4.10: Determine the inductance

```
//Publisher: Tata McGraw-Hill
//Edition: Second
//Ex4_10
clc;
clc;
clear;
V=500; // voltage in V
I=15; //Current in A

t=0.6; //time in sec
f=80; //frequency in Hz
Vav=V*t;
Vi=V-Vav;
Ton=t/f;
L=Vi*(Ton/I);
disp(L,"The inductance in Henry is:")
```

Scilab code Exa 4.12 Determine the current

```
1 // Electric Drives: concepts and applications by V.
      subrahmanyam
2 // Publisher: Tata McGraw-Hill
3 // Edition : Second
4 / Ex4_12
5 clc;
6 clear;
7 V=460;// voltage in V
8 N1=1200; //Speed in rpm
9 N2=1000; //Speed in rpm
10 r1=0.06; // Resistance in ohm
11 r2=0.32; // Resistance in ohm
12 x1=2.16; // Reactance in ohm
13 x2=0.48; // Reactance in ohm
14 x=0.6*\%i; //Reactance in ohm
15 xm=8*%i; // Reactance in ohm
```


Figure 4.11: Determine the current

```
Scilab 5.5.2 Console

7 % X

The time ratio is:

0.7619048
-->
```

Figure 4.12: Determine the time ratio

```
16 S1=(N1-N2)/N1;

17 Z=(xm+(x1+x))/(x1+xm+x);

18 [M, P] = polar(Z);

19 M * exp(%i * P);

20 disp(Z,"z:")
```

Scilab code Exa 4.14 Determine the time ratio

```
4 / Ex4_14
5 clc;
6 clear;
7 V=440; // voltage in V
8 R1=0.07; // Resistance in ohm
9 R2=0.05; // Resistance in ohm
10 X=0.2; // Reactance in ohm
11 N=1420; //Speed in rpm
12 Xm=20; // Reactance in ohm
13 S1=80; // slip in rpm
14 S2=500; // slip in rpm
15 Ra = ((S2/S1)*R2) - R2;
16 R = 2 * Ra;
17 Ra1=4*R2;
18 T = (Ra1 * 2) / R;
19 disp(T,"The time ratio is:")
```

Scilab code Exa 4.15 Determine the firing angle

```
// Electric Drives:concepts and applications by V.
subrahmanyam
// Publisher: Tata McGraw-Hill
// Edition: Second
// Ex4_15
clc;
clear;
P=1000;
N=1500; // Speed in rpm
R2=0.06; // Resistance in ohm
I2=125.6; // Current in A
T=1.5; // Time in sec
N1=1420; // Speed in rpm
S=(R2*P)/N;
```


Figure 4.13: Determine the firing angle

```
Schlab 5.5.2 Console

7 7 X

The rms value of current I1 in A:

0.9692391

The rms value of current I2 in A:

0.9676617

The rms value of current I3 in A:

0.9098249

-->
```

Figure 4.14: Determine the rms value of current

```
14 K=((S/(2*%pi*N))*(I2)^2*T)/(N1)^2;
15 T1=K*(N1)^2;
16 N2=750;//Speed in rpm
17 S0=0.489;//No load slip
18 S2=1.12;//load slip
19 T2=K*(N2)^2;
20 X1=(T2*S)/T1;
21 A=acos(-S0/S2);
22 Alpha=(A*180)/%pi;
23 disp(Alpha, "The firing angle in deg is:")
```

Scilab code Exa 4.19 Determine the rms value of current

```
1 // Electric Drives: concepts and applications by V.
                 subrahmanyam
  2 // Publisher: Tata McGraw-Hill
  3 // Edition : Second
 4 / Ex4_19
  5 clc;
 6 clear;
  7 V=400;// voltage in V
 8 R1=10;// Resistance in ohm
 9 R2=5; // Resistance in ohm
10 X1=2.6*\%i; //Reactance in ohm
11 X2=2.4*%i; // Reactance in ohm
12 Xm=36.4*%i; // Reactance in ohm
13 Z=0.06; //zigma value
14 C=486; //constant
15 F4=2.5; // frequency in Hz
16 F2=25; //frequency in Hz
17 Z1 = (1+X1) + ((Xm*(R1+X2))/(R1+X2+Xm));
18 [M, P] = polar(Z1);
19 M * exp(\%i * P);
20 Ieff1=sqrt(1+(M/(Z*Xm))^2*(((R2*(%pi)^4)/C)-1));
21 disp(Ieff1, "The rms value of current I1 in A:")
22 \quad Z2 = (1 + (X1/2)) + (((Xm/2) * ((R1/2) + (X2/2))) / ((R1/2) + X2 + ((R1/2) + (X2/2))) / ((R1/2) + X2 + ((R1/2) + (R1/2) + (R1/2))) / ((R1/2) + (R1/2) + (R1/2) + (R1/2) + (R1/2))) / ((R1/2) + (R1/2) + (R1
                 Xm/2)));
23 [M, P] = polar(Z2);
24 \text{ M} * \exp(\%i * P);
25 Ieff2=sqrt(1+(M/(Z*(Xm/2)))^2*(((R2*(%pi)^4)/C)-1));
26 disp(Ieff2, "The rms value of current I2 in A:")
27 S = (F4/F2);
28 \quad Z3 = (1 + (X1 * S)) + (((Xm * S) * ((R1 * S) + (X2 * S)))) / ((R1 * S) + (X2 * S))
                S)+(Xm*S));
29 [M, P] = polar(Z3);
30 \text{ M} * \exp(\%i * P);
31 Ieff3=sqrt(1+(M/(Z*(Xm*S)))^2*(((R2*(%pi)^4)/C)-1));
32 disp(Ieff3, "The rms value of current I3 in A:")
```

```
Sollab 5.5.2 Console

7 2 ×

The speed N1 in rpm is:
984.78261

The speed N2 in rpm is:
968.47826

The speed N3 in rpm is:
946.73913

-->
```

Figure 4.15: Determine the speed

Scilab code Exa 4.20 Determine the speed

```
// Electric Drives:concepts and applications by V.
    subrahmanyam
// Publisher: Tata McGraw—Hill
// Edition: Second
// Ex4_20
clc;
clear;
R=0.05; // Resistance in ohm
N0=1000; // Speed in rpm
```

```
9 Rf=46; // Resistance in ohm
10 I1=75; // Current in A
11 I2=150;//Current in A
12 I3=250;//Current in A
13 V=230; // voltage in V
14 Eb=230; //Back emf in V
15 If=V/Rf;
16 Ia1=I1-If;
17 Eb1=V-(Ia1*R);
18 N1 = (Eb1/Eb) * N0;
19 disp(N1, "The speed N1 in rpm is:")
20 \quad Ia2=I2-If;
21 Eb2=V-(Ia2*R);
22 N2 = (Eb2/Eb) * N0;
23 disp(N2, "The speed N2 in rpm is:")
24 Ia3=I3-If;
25 \text{ Eb3=V-(Ia3*R)};
26 \text{ N3} = (Eb3/Eb)*N0;
27 disp(N3, "The speed N3 in rpm is:")
```

Chapter 5

Rating and Heating of Motors

Scilab code Exa 5.1 Determine the temperature

```
1 // Electric Drives: concepts and applications by V.
      subrahmanyam
2 / \text{Example} : 5.1
3 clc;
4 clear;
5 theta1=60; // Temperature rise of motor in degree
6 theta2=40; // Temperature rise of motor in degree
7 e=0.5; //exponential value
8 I1=110; //current in A
9 I2=125; //current in A
10 t1=4; //Time in hour
11 t2=8; //Time in hour
12 theta=theta1/theta2;
13 tough = -(1/\log(0.5));
14 thetam1=theta2/e;
15 thetam2=thetam1*(I2/I1)^2;
16 x=t1/(theta1*tough);
17 a = exp(-x);
18 y=t2/(theta1*tough);
```


Figure 5.1: Determine the temperature

```
Scilab 5.5.2 Console

? * X

The permissible overloading is:

1.2397292

-->
```

Figure 5.2: Determine the overloading

```
19 b=exp(-y);
20 thetam=I2*((1-a)/(1-(a*b)));
21 disp(thetam, "The final temperature in deg is:")
```

Scilab code Exa 5.2 Determine the overloading

```
Scilab 5.5.2 Console

? * X

The permissible overloading of the motor is:

1.6025383

-->
```

Figure 5.3: Determine the overloading

```
6 clear;
7 T=100;//Temperature rise of motor in degree
8 t1=2;//Time in hour
9 t2=1.5;//Time in hour
10 Alpha=0.5;//Angle in rad
11 e=exp(-t1/t2);
12 thetam=100/(1-e);
13 t=thetam/T;
14 x=sqrt((t*(Alpha+1))-Alpha);
15 disp(x,"The permissible overloading is:")
```

Scilab code Exa 5.3 Determine the overloading

```
1 // Electric Drives: concepts and applications by V.
     subrahmanyam
2 // Publisher: Tata McGraw-Hill
3 // Edition : Second
4 // Ex5_3
5 clc;
6 clear;
7 Alpha=0.4; // Angle in rad
8 T1=100; // Temperature rise of motor in degree
9 T2=150; // Temperature rise of motor in degree
10 P=125; //Power in KW
11 t1=15; //Time in hour
12 t2=30; //Time in hour
13 x=-t1/T1;
14 a = exp(x);
15 y=-t2/T2;
16 b = exp(y);
17 p=sqrt(((Alpha+1)*(1-(a*b)))/(1-a)-Alpha);
18 disp(p,"The permissible overloading of the motor is:
     ")
```