Scilab Textbook Companion for Fundamentals Of Electrical Drive by Mohamad A. El- Sharkawi ¹

Created by
Abisha L J
BE
Electrical Engineering
St.Xavier's Catholic College of Engineering
College Teacher

None Cross-Checked by None

July 31, 2019

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fundamentals Of Electrical Drive

Author: Mohamad A. El- Sharkawi

Publisher: Nelson Engineering

Edition: 1

Year: 2000

ISBN: 0534952224

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	List of Scilab Codes	
2	Introduction to solid state Devices	6
3	Introduction to solid state switching circuits	11
4	Joint speed torque characterstics of electric motor and mechanical loads	34
5	speed torque characterstics of electric motor	37
6	speed control of direct current motors	46
7	speed control of induction motors	55
9	Braking of dc motors	72
10	Braking of induction motors	82
11	Dynamics of electric drive systems	86

List of Scilab Codes

Exa 2.1	calculate base current in linear and saturation	
	region	6
Exa 2.2	calculate the approximate value of dc gate	
	current	7
Exa 2.3	To calculate the minimum value of snubbing	
	inductance	8
Exa 2.4	Design a snubbing circuit to protect a SCR	
	from excessive change in volume by time	Ĝ
Exa 3.1	calculate the average current	11
Exa 3.2	calculate rms voltage rms current average volt-	
	age drop	12
Exa 3.3	compute power dissipated in the load resis-	
	tance	14
Exa 3.4	compute power factor at the ac side	16
Exa 3.5	calculate the triggering angle and the load	
	power	17
Exa 3.6	calculate conduction period	18
Exa 3.7	calculate conduction period maximum and av-	
	erage diode current and average current of	
	SCR	20
Exa 3.8	calculate power delivered to the load when	
_	the triggering angle is 80 and 30 dgree	22
Exa 3.9	calculate maximum average voltage and trig-	
_	gering angle and load voltage	23
Exa 3.10	calculate on time and switching period av-	
	erage voltage across load and diode average	
	current and load power	25

Exa 3.12	calculation of conduction period of each tran-	
	sistor	27
Exa 3.13	calculate rms voltage applied to the motor .	28
Exa 3.14	calculate the rms current and the power de-	
	livered to battery during charging	29
Exa 3.15	calculate the rms current and the power de-	
	livered to battery during discharging	30
Exa 3.16	calculate minimum triggering angle and asso-	
2116 3113	ciated conduction period and average charg-	
	ing current	32
Exa 4.1	compute the power consumed by the load .	34
Exa 5.1	caculate rated torque starting torque and start-	01
LAG 5.1	ing current	37
Exa 5.2	compute the motor efficiency	38
Exa 5.3	calculate speed of motor copper loss starting	3 0
Exa 5.5	torque of the motor	39
Exa 5.4	calculate the change in starting torque and	99
Exa 5.4	resistance added to achieve maximum torque	42
Exa 5.5	compute the excitation current to improve over-	42
Exa 5.5	all power factor	43
Exa 5.6	compute the minimum excitation that the ma-	40
Exa 5.0	chine must maintain to provide the needed	
		44
Exa 6.1	torque	44
Exa 0.1	calculate added resistance to reduce the speed	
	by 50 percentage and efficiency and resistance	
	added to operate the motor in holding condi-	1 <i>C</i>
E 6.2	tion	46
Exa 6.3	calculate armature current and motor speed	
	and value of added resistance and extra field	10
D 6.4	loss	48
Exa 6.4	calculate the motor speed and the developed	F0
D. C.	power	50
Exa 6.5	calculate the motor speed and the power de-	F 1
D 0.0	livered to the load	51
Exa 6.6	calculate the triggering angle of the motor .	52
Exa 6.7	calculate field current motor voltage and speed	53

Exa 7.1	compute the added resistance to reduce the speed by 20 percent and motor efficiency with and without added resistance and annual cost	
	of operating motor	55
Exa 7.2	calculate the magnitude of the injected volt-	00
1.2	age and the power delivered by the source of	
	injected voltage	57
Exa 7.3	calculate the starting current and starting torque	
LXα 1.0	with and without the voltage	59
Exa 7.4	calculate the motor speed and current in dc	00
LX4 1.4	link and rotor and stator rms current and	
	power returned back to the source and ad-	
	ditional losses	60
Exa 7.5	calculate the motor speed at full voltage	63
Exa 7.6	compute maximum frequency and then motor	00
EXA 1.0	current and power delivered at 60 Hz and at	
	maximum frequency	64
Exa 7.7	compute the motor speed and the starting	04
LX4 1.1	current if the frequency decreased to 50 Hz.	66
Exa 7.8	compute the starting current for a constant v	00
LX4 1.0	by f control	67
Exa 7.9	compute the input current	69
Exa 7.10	compute the frequency of the CSI to drive the	00
1.10	machine at 900 rpm	70
Exa 9.1	calculate no load and motor speed then de-	••
2210 0.1	veloped torque and Ea and terminal current	
	and total losses during regenerative braking	
	and also power delivered	72
Exa 9.2	calculate the speed	74
Exa 9.3	calculate the triggering angle	75
Exa 9.4	calculate the triggering angle	76
Exa 9.5	calculate the value of braking resistance	77
Exa 9.6	calculate the triggering angle	78
Exa 9.7	calculate the triggering angle	79
Exa 9.8	calculate new steady state speed and the ar-	
	mature current	80
Exa 10.1	calculate motor speed and power delivered to	
	the electrical supply	82

Exa 10.2	calculate the duty ratio of the FWM	83
Exa 10.3	calculate slip and current and also torque at	
	all operating points	84
Exa 11.1	calculate the motor speed	86
Exa 11.3	calculate and show how to achieve the desired	
	starting time	87
Exa 11.4	calculate the time required to change the mo-	
	tor speed \dots	88
Exa 11.5	calculate terminal voltage and traveling time	
	during braking	89
Exa 11.6	compute the starting time of the motor at no	
	load and full load voltage	90
Exa 11.7	compute the starting time	91
Exa 11.8	compute the magnitude of the motor voltage	93
Exa 11.9	compute the value of braking resistance	93
Exa 11.10	compute the starting time	95

List of Figures

2.1	calculate base current in linear and saturation region	7
2.2	calculate the approximate value of dc gate current	7
2.3	To calculate the minimum value of snubbing inductance	8
2.4	Design a snubbing circuit to protect a SCR from excessive	
	change in volume by time	9
3.1	calculate the average current	11
3.2	calculate rms voltage rms current average voltage drop	13
3.3	compute power dissipated in the load resistance	15
3.4	compute power factor at the ac side	16
3.5	calculate the triggering angle and the load power	17
3.6	calculate conduction period	19
3.7	calculate conduction period maximum and average diode cur-	
	rent and average current of SCR	20
3.8	calculate power delivered to the load when the triggering angle	
	is 80 and 30 dgree	22
3.9	calculate maximum average voltage and triggering angle and	
	load voltage	24
3.10	calculate on time and switching period average voltage across	
	load and diode average current and load power	25
3.11	calculation of conduction period of each transistor	27
	calculate rms voltage applied to the motor	28

3.13	calculate the rms current and the power delivered to battery during charging
3.14	calculate the rms current and the power delivered to battery during discharging
3.15	
4.1	compute the power consumed by the load
5.1 5.2 5.3	caculate rated torque starting torque and starting current . compute the motor efficiency
5.4	calculate the change in starting torque and resistance added
5.5 5.6	to achieve maximum torque
6.1	calculate added resistance to reduce the speed by 50 percentage and efficiency and resistance added to operate the motor in holding condition
6.2	calculate armature current and motor speed and value of added resistance and extra field loss
6.3	calculate the motor speed and the developed power
6.4	calculate the motor speed and the power delivered to the load
6.5	calculate the triggering angle of the motor
6.6	calculate field current motor voltage and speed
7.1	compute the added resistance to reduce the speed by 20 percent and motor efficiency with and without added resistance and annual cost of operating motor
7.2	calculate the magnitude of the injected voltage and the power delivered by the source of injected voltage
7.3	calculate the starting current and starting torque with and without the voltage
7.4	calculate the motor speed and current in dc link and rotor and stator rms current and power returned back to the source and additional losses

7.5	calculate the motor speed at full voltage	63
7.6	compute maximum frequency and then motor current and	
	power delivered at 60 Hz and at maximum frequency	64
7.7	compute the motor speed and the starting current if the fre-	
	quency decreased to 50 Hz	66
7.8	compute the starting current for a constant v by f control	67
7.9	compute the input current	69
7.10	compute the frequency of the CSI to drive the machine at 900	
	rpm	70
9.1	calculate no load and motor speed then developed torque and	
	Ea and terminal current and total losses during regenerative	
	braking and also power delivered	73
9.2	calculate the speed	75
9.3	calculate the triggering angle	75
9.4	calculate the triggering angle	76
9.5	calculate the value of braking resistance	77
9.6	calculate the triggering angle	78
9.7	calculate the triggering angle	79
9.8	calculate new steady state speed and the armature current .	80
10.1	calculate motor speed and power delivered to the electrical	
	supply	83
	calculate the duty ratio of the FWM	84
10.3	calculate slip and current and also torque at all operating points	84
11.1	calculate the motor speed	86
	calculate and show how to achieve the desired starting time	87
	calculate the time required to change the motor speed	88
	calculate terminal voltage and traveling time during braking	89
11.5	compute the starting time of the motor at no load and full	
	load voltage	90
	compute the starting time	91
	compute the magnitude of the motor voltage	92
	compute the value of braking resistance	94
11.9	compute the starting time	95

Chapter 2

Introduction to solid state Devices

Scilab code Exa 2.1 calculate base current in linear and saturation region

```
1 //Book Name: Fundamentals of electrical drives by
     Mohamad A. El- Sharkawi
2 //chapter 2
3 //example 2.1
4 // edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
8 Ic=10;//collector current in ampere
9 beta1=200; // current gain in the linear region
10 beta2=10; //current gain in the saturation region
11 Ib1=(Ic/beta1); //base current in the linear region
     in ampere
12 Ib2=(Ic/beta2); //base current in the saturation
     region in ampere
13 disp(Ib1, 'The base current in the linear region in
     ampere is')
```

```
The base current in the linear region in ampere is

0.05

The base current in the saturation region in ampere is

1.
```

Figure 2.1: calculate base current in linear and saturation region

```
Scilab 5.5.2 Console

gate current required to trigger the SCR at 30 degree in milliamphere is

4.2869961

-->
```

Figure 2.2: calculate the approximate value of dc gate current

```
14 disp(Ib2, 'The base current in the saturation region in ampere is')
```

Scilab code Exa 2.2 calculate the approximate value of dc gate current

```
The minimum value of snubbing inductance in microhenry is

6.

-->
```

Figure 2.3: To calculate the minimum value of snubbing inductance

Scilab code Exa 2.3 To calculate the minimum value of snubbing inductance

Scalab 5.5.2 Console

The given snubber circuit is suitable for protecting the SCR from excessive 1000.000000 volt per microsec -->

Figure 2.4: Design a snubbing circuit to protect a SCR from excessive change in volume by time

```
9 de=100; //maximum di/dt of SCR in A/microsec
10 Vs=120; //source voltage rms value in volts
11 L=(VBO/(0.5*de));
12 disp(L, 'The minimum value of snubbing inductance in microhenry is')
```

Scilab code Exa 2.4 Design a snubbing circuit to protect a SCR from excessive chan

```
1 //Book name: Fundamentals of electrical drives by
     Mohamad A. El- Sharkawi
2 //chapter2
3 // \text{example } 2.4
4 // edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
8 Ls=8;//snubbing inductor in microhenry
9 VBO=4000;//base voltage in volts
10 di=200; //rate of change of current (di/dt) in
     amperes per microsec
11 dv=1500; //rate of change of voltage (dv/dt) in volt
     per microsce
12 Cs=10; //snubbing capacitance in microfarad
13 Rs=sqrt(VBO/(0.5*di*Cs));//snubbing resistance in
     ohms
```

- 14 dVscr=((Rs*VBO)/Ls);///rate of change of SCR voltage with respect to time
- 15 mprintf("The given snubber circuit is suitable for protecting the SCR from excessive %f volt per microsec", dVscr)

Chapter 3

Introduction to solid state switching circuits

Scilab code Exa 3.1 calculate the average current

Figure 3.1: calculate the average current

Scilab code Exa 3.2 calculate rms voltage rms current average voltage drop

```
1 //Book name: Fundamentals of electrical drives by
      Mohamad A. El- Sharkawi
2 //chapter3
3 // \text{example } 3.2
4 // edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
                                //source voltage of the
8 \text{ Vsrms} = 110;
      circuit in volts
9 Vm = Vsrms * (2)^(1/2);
                               //maximum voltage in volts
                              //resistance in ohm
10 R=2;
11 alpha1=45;
                            //triggering angle in degree
                            //triggering angle in degree
12 alpha2=90;
13 / \text{when } a1 = 45
14 disp('case 1')
15 Vrms = (Vsrms/(2)^(1/2))*(1-(alpha1*(%pi/180)/%pi)+(
      sind(2*alpha1)/(2*%pi)))^(1/2);
16 disp(Vrms, 'rms voltage across the load resistance in
```

```
case 1

rms voltage across the load resistance in volt is:

74.164597

rms current of the resistance in ampere is:

37.082298

average voltage drop across the SCR in volt is:

- 42.265742

case 2

rms voltage across the load resistance in volt is:

55.

rms current of the resistance in ampere is:

27.5

average voltage drop across the SCR in volt is:

- 24.758699
```

Figure 3.2: calculate rms voltage rms current average voltage drop

```
volt is: ')
17 Irms=Vrms/R;
18 disp(Irms, 'rms current of the resistance in ampere
      is: ')
19 Vscr=-(Vm/(2*%pi))*(1+cosd(alpha1));
20 disp(Vscr, 'average voltage drop across the SCR in
      volt is: ')
21 / \text{when } a2 = 90
22 disp('case 2')
23 Vrms1=(Vsrms/(2)^(1/2))*(1-(alpha2*(%pi/180)/%pi)+(
      sind(2*alpha2)/(2*%pi)))^(1/2);
24 disp(Vrms1, 'rms voltage across the load resistance
      in volt is: ')
25 \text{ Irms1=Vrms1/R};
26 disp(Irms1, 'rms current of the resistance in ampere
27 Vscr1=-(Vm/(2*%pi))*(1+cosd(alpha2));
28 disp(Vscr1, 'average voltage drop across the SCR in
      volt is: ')
```

Scilab code Exa 3.3 compute power dissipated in the load resistance

```
Instantaneous power method:

Power dissipated in the load resistance in watt is:

486.72183

Harmonic method:

The power computed by harmonic method in watt is:

486.72183

-->
```

Figure 3.3: compute power dissipated in the load resistance

```
of the resistive load in ohm
                                                                                                                                                                     //triggering angle
10 alpha=60;
                          of the converter in degree
11 Vm = 110*(2)^(1/2);
                                                                                                                                                                 //maximum voltage
                         in volts
12 disp('Instantaneous power method:')
13 P=((Vm)^{(2)}/(8*\%pi*R))*(2*(\%pi-alpha*(\%pi/180))+sind
                          (2*alpha));
14 disp(P, 'Power dissipated in the load resistance in
                          watt is: ')
15 disp('Harmonic method:')
16 a1=(Vm/(2*\%pi*R))*(cosd(2*alpha)-1);
17 b1=(Vm/(4*\%pi*R))*(sind(2*alpha)+(2*(\%pi-alpha*(\%pi-alpha)))*(sind(2*alpha)+(2*(%pi-alpha)))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alpha))*(sind(2*alph
                          /180)));
18 c1=(a1^(2)+b1^(2))^(1/2);
19 pie1=atand(a1/b1);
20 P1 = (Vm * c1 * cosd(pie1))/2;
21 disp(P1, 'The power computed by harmonic method in
                         watt is: ')
```

```
The power factor on the ac side is

0.4011176

-->
```

Figure 3.4: compute power factor at the ac side

Scilab code Exa 3.4 compute power factor at the ac side

```
1 //Book name: Fundamentals of electrical drives by
      Mohamad A. El- Sharkawi
2 / \text{chapter } 3
3 / \text{example } 3.4
4 //edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
8 Vrms=110;
                                         //The voltage on
      the ac side in volts
9 R = 10;
                                        //Resistance value
       of the resistive load in ohm
                                       //triggering angle
10 alpha=60;
      of the converter in degree
11 Vm = 110*(2)^(1/2);
                                      //maximum voltage
```

```
The triggering angle in degree is

110.28424

The load power in watt is:

605.
```

Figure 3.5: calculate the triggering angle and the load power

```
in volts

12 a1=(Vm/(2*%pi*R))*(cosd(2*alpha)-1);
13 b1=(Vm/(4*%pi*R))*(sind(2*alpha)+(2*(%pi-alpha*(%pi/180)));

14 c1=(a1^(2)+b1^(2))^(1/2);
15 pie1=atand(a1/b1);
16 pie1=abs(pie1);
17 I1rms=c1/sqrt(2);
18 Irms=(Vrms/R)*sqrt(1-((alpha/%pi)*(%pi/180))+(sin(2*alpha)/(2*%pi)));
19 pf=(I1rms/Irms)*cos(pie1);
20 disp(pf,'The power factor on the ac side is')
21 //The answers vary due to round off error
```

Scilab code Exa 3.5 calculate the triggering angle and the load power

```
1 //Book name: Fundamentals of electrical drives by
      Mohamad A. El- Sharkawi
2 //chapter 3
3 //example 3.5
4 // edition 1
5 //publishing place: Thomson Learning
6 clc;
7 clear;
8 Vsrms=110; //The voltage on the ac side in volts
9 R=5; // Resistance value of the resistive load in ohm
10 Vrms=55; //voltage across the load
11 //iteration method
12 xold=1; //assumed value
13 x=(180/\%pi)*(2.25+(sind(2*xold)/2));
14 err=100; //assumed value
15 while (err > 0.0001)
       xnew = (180/\%pi)*(2.25+(sind(2*x)/2));
16
17
       x = xnew;
18
       err=abs(xnew-xold);
19
       xold=x;
20
      end
21 disp(x, 'The triggering angle in degree is')
22 P = (Vrms)^2/R;
23 disp(P, 'The load power in watt is:')
24 //The answer given in the book is wrong
```

Scilab code Exa 3.6 calculate conduction period

```
The value of beta in degree is

30.108882

The conduction period in degree is

- 29.891118

-->
```

Figure 3.6: calculate conduction period

```
5 //publisher and place: Nelson Engineering
6 clc;
7 clear;
8 R=10; //resistance of the load in ohm
9 L=0.03; //inductance in H
10 Vrms=100;//source voltage in volt
11 f=60; //frequency in Hz
12 alpha=60;//triggering angle in degree
13 omega=2*\%pi*f;
14 tau=L/R;
15 Q=atand((omega*L)/R);
16 //iteration method
17 xold=1;//assumed value
18 x=Q+asind(sind(Q-alpha)*exp((-1)*((xold-alpha)*(%pi
      /180))/(omega*tau))));
19 err=10;//assumed value
20 while (err > 0.01)
       xnew=Q+asind(sind(Q-alpha)*exp((-1)*((x-alpha)*(
21
          %pi/180)/(omega*tau))));
22
       x = xnew;
23
       err=abs(xnew-xold);
24
       xold=x;
25
      end
```

```
To find Conduction period:
The conduction period is 249 dgree
To find maximum diode current:
The maximum diode current is 7.176458 ampere
To calculate average current of the diode:
The average current of the diode is 0.770542 ampere
To calculate average load current:
The average load current is 3.713805 ampere
To calculate average current of the SCR:
The average current of the SCR:
The average current of the SCR is 2.943263 ampere
-->
```

Figure 3.7: calculate conduction period maximum and average diode current and average current of SCR

```
26 disp(x,'The value of beta in degree is')
27 r=x-alpha;
28 disp(r,'The conduction period in degree is ')
29 //The answer given in the book is wrong. While using
the book answer both LHS and RHS are not equal.
```

 ${\it Scilab\ code\ Exa\ 3.7}$ calculate conduction period maximum and average diode current

```
6 clc;
7 clear;
8 Vs=110; //source voltage in volts
9 L=20e-3; //inductance of the circuit in henry
10 R=10; //resistance of the circuit in ohm
11 a=60; //trigerring angle in degree
12 r1=a*(\%pi/180);
13 Vm = Vs * 2^{(1/2)};
14 T=L/R;//Time constant of the circuit in sec
15 w=2*%pi*a; //rotational speed in rad/sec
16 mprintf("\n To find Conduction period:")
17 b = (\%pi - (w*T*log(0.05)))*(180/\%pi);
18 gama=b-a; //conduction period in degree
19 mprintf("\nThe conduction period is %d dgree", gama)
20 mprintf("\nTo find maximum diode current:")
Z = sqrt(R^2 + (w*L)^2);
22 wtau=(w*L)/R;
23 Q=atand(wtau);
24 l = exp((-1)*((\%pi-(a*(\%pi/180)))/wtau));
25 c = (\%pi - (a*(\%pi/180)));
26 id = (Vm/Z) * (sind(Q) + ((sind(Q-a))*1));
27 mprintf("\nThe maximum diode current is %f ampere",
28 mprintf("\nTo calculate average current of the diode
29
  Idave=(id/(2*\%pi))*(-wtau)*(exp((-1)*(b*(\%pi/180)-
      %pi))-1);
30 mprintf("\nThe average current of the diode is %f
      ampere", Idave)
31 mprintf("\nTo calculate average load current:")
32 Vave = (Vm/(2*\%pi))*(1+(cosd(a)));
33 Iave=Vave/R;
34 mprintf("\nThe average load current is %f ampere",
      Iave)
35 mprintf("\nTo calculate average current of the SCR:"
      )
36 ISCR=Iave-Idave;
37 mprintf("\nThe average current of the SCR is %f
```

```
To find the power delivered at a1=80 degree:

The power delivered at the triggering angle 80 degree in kilowatt is

1.3195298

To find the power delivered at a2=30 degree:

The power delivered at the triggering angle 80 degree in kilowatt is

2.0384507
```

Figure 3.8: calculate power delivered to the load when the triggering angle is 80 and 30 dgree

```
ampere", ISCR)
```

 ${
m Scilab\ code\ Exa\ 3.8}$ calculate power delivered to the load when the triggering angle

```
12 a1=80; //triggering angle 1 in degree
13 a2=30; //triggering angle 2 in degree
14 if a1 < 60 then
       disp(a1, 'The current is discontinous')
15
16 else if (a2>60)
17
           disp(a2, 'The current is discontinous')
18 end
19 disp('To find the power delivered at a1=80 degree:')
20 B1=180;
21 p=(((3*Vm^{(2)})/(8*\%pi*10))*(2*(B1-a1)*(\%pi/180)+sind)
      (2*a1)-sind(2*B1)); //power delivered when
      triggering angle a1=180 degree
22 P=p*10^-3; //power interms of kilowatt
23 disp(P, 'The power delivered at the triggering angle
     80 degree in kilowatt is')
24 disp('To find the power delivered at a2=30 degree:')
25 B2=120+a2;
26 p1=(((3*Vm^{(2)})/(8*\%pi*10))*(2*(B2-a2)*(\%pi/180)+
      sind(2*a2)-sind(2*B2)));//power delivered when
      triggering angle a2=30 degree
27 P1=p1*10^-3; //power interms of kilowatt
28 disp(P1, 'The power delivered at the triggering angle
       80 degree in kilowatt is')
```

 ${
m Scilab\ code\ Exa\ 3.9}$ calculate maximum average voltage and triggering angle and loa

```
a) To find maximum average voltage across the load:

maximum average voltage across the load

280.89869

b) To find the triggering angle at the average voltage of the load:

The triggering angle in degree is

- 22.799939

c) To find load voltage when the triggering angle is -30 degree :

Load voltage when the triggering angle is -30 degree in volt is

140.44935
```

Figure 3.9: calculate maximum average voltage and triggering angle and load voltage

```
7 clear;
8 Vab=208; //source voltage in volts
9 Vs=Vab/3^(1/2);//rms voltage in volts
10 Vm=Vs*2^(1/2);//maximum peak voltage in volts
11 disp('a) To find maximum average voltage across the
     load: ')
12 Vavemax = (3*3^(1/2)*Vm)/\%pi;
13 disp(Vavemax, 'maximum average voltage across the
     load')
14 disp('b) To find the triggering angle at the average
      voltage of the load: ')
15 xold=1; //assumed value
16 c=30; //constant value
17 x=asind((\%pi/(3*sqrt(3)))-(cosd(xold+c)));
18 err=100;//assumed value
19 while (err > 0.0001)
20
       xnew=asind((\%pi/(3*sqrt(3)))-(cosd(x+c)));
21
       x = xnew;
```

```
a.To calculate on time and switching period:
The switching period and on time in milli second are 0.500000 0.150000
To calculate average voltage across the load:
The average voltage across the load is 24 volt
c.To calculate average voltage across the load:
The average voltage across the load is 56 volt
d.To calculate average current of the load:
The average current of the load:
The average current of the load is 6 ampere
e.To calculate load power:
The load power is 144 watt
-->
```

Figure 3.10: calculate on time and switching period average voltage across load and diode average current and load power

```
22     err=abs(xnew-xold);
23     xold=x;
24     end
25    disp(x,'The triggering angle in degree is')
26    disp('c)To find load voltage when the triggering angle is -30 degree :')
27    Vave=(3*3^(1/2)*Vm)/(2*%pi);
28    disp(Vave,'Load voltage when the triggering angle is -30 degree in volt is')
29    //The part (b) answer given in the book is wrong
```

 ${
m Scilab~code~Exa~3.10}$ calculate on time and switching period average voltage across

```
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
                                       //switching
8 f = 2;
      frequency of chopper in kilohertz
9 Vs = 80:
                                      //source voltage in
       volts
10 k = .3;
                                     //duty ratio
                                    //load resistance in
11 R=4;
12 mprintf("\na.To calculate on time and switching
      period:")
13 t=1/f;
                                  //switching period in
      milli sec
14 \text{ ton=k*t};
                                //on time in milli sec
15 mprintf("\nThe switching period and on time in milli
       second are %f %f",t,ton)
16 mprintf("\nTo calculate average voltage across the
     load:")
17 Vave=k*Vs;
18 mprintf("\nThe average voltage across the load is %d
       volt", Vave)
19 mprintf("\nc.To calculate average voltage across the
      load:")
20 Vdave = (1-k) * Vs;
                             //obtained by integrating
      Vs with respect to ton and t
21 mprintf("\nThe average voltage across the load is %d
       volt", Vdave)
  mprintf("\nd.To calculate average current of the
     load:")
23 Iave=Vave/R;
24 mprintf("\nThe average current of the load is %d
      ampere", Iave)
25 mprintf("\ne.To calculate load power:")
26 P=Vave*Iave;
27 mprintf("\nThe load power is %d watt",P)
```

```
Scilah 5.5.2 Console
```

```
The conduction period of each transistor in msec is

1.

-->
```

Figure 3.11: calculation of conduction period of each transistor

Scilab code Exa 3.12 calculation of conduction period of each transistor

```
1 //Book name: Fundamentals of electrical drives by
     Mohamad A. El- Sharkawi
2 //chapter 3
3 // \text{example } 3.12
4 //edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
8 f = 500;
                                         //frequency at
      the load side in Hz
                                        //time for one
9 \ t=1/f;
      cycle in sec
                                       //time of the
10 tseg=t/6;
      switching segment in sec
                                      //conduction period
11 tcon=3*tseg;
       of each transistor in sec
12 tcon1=tcon*10^3;
                                     //conduction period
      of each transistor in msec
13 disp(tcon1, 'The conduction period of each transistor
```

```
The rms voltage applied to the motor winding with FWM in volts is:
61.237244

The rms voltage applied to the motor winding without FWM in volts is
122.47449
```

Figure 3.12: calculate rms voltage applied to the motor

```
in msec is')
```

-->

Scilab code Exa 3.13 calculate rms voltage applied to the motor

```
1 //Book name: Fundamentals of electrical drives by
     Mohamad A. El- Sharkawi
2 //chapter 3
3 //example 3.13
4 // edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
                                    //duty ratio
8 d=.25;
                                   //source voltage in
9 \text{ Vdc} = 150;
      volts
                                  //rms voltage applied
10 Vab = ((2*d)/3)^{(1/2)} * Vdc;
      to the motor winding with FWM
11 disp(Vab, 'The rms voltage applied to the motor
      winding with FWM in volts is: ')
12 Vab1 = (Vab/d^{(1/2)});
                                 //rms voltage applied to
       the motor winding without FWM
```

The rms current delivered to the battery during charging is 1.186207 ampere To find the power delivered to the battery during charging:

The power delivered to the battery during charging is 47.627706 degree -->

Figure 3.13: calculate the rms current and the power delivered to battery during charging

```
13 disp(Vab1, 'The rms voltage applied to the motor winding without FWM in volts is')
```

 ${f Scilab\ code\ Exa\ 3.14}$ calculate the rms current and the power delivered to battery

```
1 //Book name: Fundamentals of electrical drives by
      Mohamad A. El- Sharkawi
2 / chapter 3
3 //example 3.14
4 //edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
8 \text{ Vs} = 110;
                                                          //
      source voltage in volts
9 \text{ Vdc} = 150;
                                                        //DC
      voltage in volts
10 Vm = Vs * 2^(1/2);
      //maximum voltage in volts
11 a=90;
```

```
//triggering angle in degree
12 R = 1;
                                                        //
      resistance in ohm
13 theta=asind(Vdc/Vm);
14 theta1=75;
      approximated value of theta in degree
15 B=180-theta1;
                                                     //The
       value of bete
16 \text{ gama=B-a};
      conduction period in degree
17 VRrms = ((Vdc^{(2)}*gama/180) + ((Vm^{(2)}/(2*\%pi))*(gama*(
     pi/180) -(sind(2*B)-sind(2*a))/2)-((2*Vdc*Vm)/%pi
     )*(cosd(a)-cosd(B))))^(1/2);
18 Icrms=VRrms/R;
                                                  //rms
      current
19 mprintf("\nThe rms current delivered to the battery
      during charging is %f ampere", Icrms)
20 mprintf("\nTo find the power delivered to the
      battery during charging:")
21 a1 = ((Vm/(R*\%pi))*(((1-cosd(2*B))/2)-((1-cosd(2*a))
     (2)) -(((2*Vdc)/(R*\%pi))*(sind(B)-sind(a)));
22 b1=((Vm/(R*\%pi))*(gama*(\%pi/180)+((sind(2*a)-sind(2*a))))
     ((2*Vdc)/(R*\%pi))*(cosd(a)-cosd(B));
23 pie1=atand(a1/b1);
24 I1crms=sqrt(a1^2+b1^2)/sqrt(2);
25 Ps=Vs*I1crms*cosd(pie1);
26 \text{ Ploss=Icrms*R};
27 Pcharge=Ps-Ploss;
28 mprintf("\nThe power delivered to the battery during
       charging is %f degree", Pcharge)
```

Scilab code Exa 3.15 calculate the rms current and the power delivered to battery

```
Scilab 5.5.2 Consols

The total rms current during discharging is 70.000000 A

The power delivered to the ac source during discharging is 2.755219 kW

-->
```

Figure 3.14: calculate the rms current and the power delivered to battery during discharging

```
1 //Book name: Fundamentals of electrical drives by
      Mohamad A. El- Sharkawi
2 //chapter 3
3 //example 3.15
4 // edition 1
5 //publisher and place: Nelson Engineering
6 \text{ clc};
7 clear;
8 Vs=110; //source voltage in volts
9 Vdc=150; //DC voltage in volts
10 Vm=Vs*2^(1/2); //maximum voltage in volts
11 alphamin=0; //triggering angle in degree
12 R=1; //resistance in ohm
13 Beta=180; //The value of bete
14 gama=Beta-alphamin; //conduction period in degree
15 VRrms = sqrt(Vdc^{(2)} + ((Vs*2^{(1/2)})^{(2)}/2) - ((4*Vdc*Vm)/2)
      %pi));
16 VRrms=ceil(VRrms)
17 Idrms=VRrms/R:
18 mprintf("\nThe total rms current during discharging
      is %f A", Idrms)
19 a1 = ((Vm/(R*\%pi))*(((1-cosd(2*Beta))/2)-((1-cosd(2*Beta))/2))
      alphamin))/2))) - (((2*Vdc)/(R*%pi))*(sind(Beta)-
      sind(alphamin)));
20 b1=((4*Vdc)/(R*\%pi))-(Vm/R);
21 pie1=atand(a1/b1);
22 Ildrms=\operatorname{sqrt}((a1^2+b1^2)/2);//\operatorname{rms} value of
```

```
a.To calculate minimum triggering angle and associated conduction period:
The minimum triggering angle is 2 degree and the associated time period is 120 degree
To compute the average charging current for the minimum triggering angle:
The average charging current of minimum triggering angle is 11.736466 A
-->
```

Figure 3.15: calculate minimum triggering angle and associated conduction period and average charging current

```
fundamental component
23 Pac=Vs*I1drms*cosd(pie1);
24 Pac=Pac*10^(-3);
25 mprintf("\nThe power delivered to the ac source during discharging is %f kW",Pac)
```

 ${\it Scilab\ code\ Exa\ 3.16}$ calculate minimum triggering angle and associated conduction

```
13 mprintf("\na.To calculate minimum triggering angle
     and associated conduction period:")
14 alphamin=60-asind(Vdc/(sqrt(3)*Vmax));
15 alphamin=ceil(alphamin);
16 gama=Beta-alphamin;
17 mprintf("\nThe minimum triggering angle is %d degree
      and the associated time period is %d degree",
     alphamin, gama)
18 mprintf("\nTo compute the average charging current
     for the minimum triggering angle:")
19 VR=Vdc+(((9*Vmax)/(2*%pi))*cosd(alphamin+150));
20 1=((9*Vmax)/(2*\%pi))*cosd(alphamin+150);
21 IRave=VR/R;
22 mprintf("\nThe average charging current of minimum
     triggering angle is %f A", IRave)
23 //The answers vary due to round off error
```

Chapter 4

Joint speed torque characterstics of electric motor and mechanical loads

 ${\bf Scilab} \ {\bf code} \ {\bf Exa} \ {\bf 4.1}$ compute the power consumed by the load

1 //Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi

Scilab 5.5.2 Console

The power consumed by the motor in kilowatt is:

2073.7049

-->

Figure 4.1: compute the power consumed by the load

```
2 / \text{chapter } 4
3 //example 4.1
4 // edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
                                                  //mass of
8 m = 5000;
      the electric bus in kg
                                                 //diameter
9 d=1;
      of the wheel in m
                                                //radius of
10 \text{ r=d/2};
      the wheel in m
11 v = 50;
                                               //speed of
      the bus going to uphill in kg/hr
                                              //slope of the
12 a=30;
       hill in degree
                                             //friction
13 u = 0.4;
      coefficient
                                            //gravitational
14 g=9.8;
      acceleration
                                          //gravitational
15 Fg=m*g;
      force in newton(N)
16 F = Fg * cosd(a);
                                        //normal force in
      newton (N)
17 Fl=Fg*sind(a);
                                       //load pulling force
       in newton (N)
18 Fr=u*F;
                                       //friction force in
      newton (N)
                                      //total force seen by
19 Fm = Fl + Fr;
       motor in newton (N)
                                     //Torque seen by the
  Tm = Fm * r;
      motor in Nm
21 omega=v/r;
                                        //angular speed
                                       //power consumed by
22 \text{ Pm=Tm*omega};
      the motor in watt
23 Pm = Pm * 10^{-3};
                                //power consumed by the
      motor in kilowatt
24 disp(Pm, 'The power consumed by the motor in kilowatt
```

is: ')

Chapter 5

speed torque characterstics of electric motor

Scilab code Exa 5.1 caculate rated torque starting torque and starting current

```
1 //Book name: Fundamentals of electrical drives by
      Mohamad A. El- Sharkawi
2 / chapter 5
3 // \text{example } 5.1
4 // edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
8 \text{ kpie=3};
                                //flux in voltsec
                               //voltage in volts
9 \text{ Vt} = 600;
10 Ra=2;
                              //armature resistance in
     ohms
11 Ia=5:
                             //armature current at
      fullload in ampere
12 Td=kpie*Ia;
                            //rated torque in Nm
13 disp(Td, 'The rated torque in Nm is')
14 Tst=(Vt*kpie)/Ra; //starting torque
```

The rated torque in Nm is 15. The starting torque in Nm is 900. The starting current in ampere is 300.

Figure 5.1: caculate rated torque starting torque and starting current

Scilab code Exa 5.2 compute the motor efficiency

```
Scilab 5.5.2 Console

The efficiency of the motor is 89 percentage
-->
```

Figure 5.2: compute the motor efficiency

```
1 //Book name: Fundamentals of electrical drives by
     Mohamad A. El- Sharkawi
2 //chapter 5
3 / \text{example } 5.2
4 // edition 1
5 // publisher and place: Nelson Engineering
7 clear;
8 1 = 50;
                                       //load in hp
                                      //frequency in
9 f = 60;
      hertz
                                     //full load speed in
10 n=1764;
      rpm
11 \text{ ns} = 1800;
                                    //synchronous speed
      of motor in rpm
12 Pr = .950;
                                   //rotational loss in
      kilowatts
13 Pcu=1.600;
                                  //stator copper loss in
       kilowatt
14 Pi=1.200;
                                 //iron loss in kilowatt
15 Pout=1/1.34;
                                //output power at full
      load is 50 hp in kilowatt
16 Pd=Pout+Pr;
                              //power developed in
     kilowatt
17 s=(ns-n)/ns;
                              //slip of the motor
18 Pg=Pd/(1-s);
19 Pin=Pg+Pcu+Pi;
                           //input power in kilowatt
20 efficiency=Pout/Pin; //motor efficiency
21 efficiency=efficiency*100;//efficiency in percentage
22 mprintf("The efficiency of the motor is %d
      percentage", efficiency)
```

Scilab code Exa 5.3 calculate speed of motor copper loss starting torque of the mo

```
Scilab 5.5.2 Console
```

```
a). Motor speed:

The speed of the motor at full load in rpm is

1764.

b).Copper loss of the rotor

The copper loss of the rotor in watt is

761.49863

c).Starting torque

The starting torque in Nm is

100.99689
```

Figure 5.3: calculate speed of motor copper loss starting torque of the motor

```
1 //Book name: Fundamentals of electrical drives by
     Mohamad A. El- Sharkawi
2 //chapter 5
3 //example 5.3
4 // edition 1
5 //publisher and place: Nelson Engineering
6 clc;
7 clear;
8 1=50; //load in hp
9 f=60; //frequency in hertz
10 V=440; //voltage of the motor in volts
11 p=4; //Number of poles of the motor
12 Tmax=2.5; //maximum torque of the motor
13 T=1; //motor torque
14 smax=0.1; //maximum slip
15 ns=(120*f)/p;//synchronous speed in rpm
16 disp('a). Motor speed:')
17 s=(T/Tmax)*(smax/2);//the equation is obtained from
     the equation T=3V^2s/wsR2
18 n=ns*(1-s); //speed of the motor in rpm
19 disp(n, 'The speed of the motor at full load in rpm
      is ')
20 disp('b). Copper loss of the rotor')
21 Pd=1/1.34; //power developed or Pout in kilowatt
22 Pcu2=Pd*(s/(1-s)); //copper loss in kilowatt which is
       obtained from two equations Pcu2=Pg*s, Pd=Pg*(1-s)
23 Pcu=Pcu2*10^3; //copper loss in watt
24 disp(Pcu, 'The copper loss of the rotor in watt is')
25 disp('c). Starting torque')
26 //At starting slip s=1
27 omega=(2*\%pi*n)/f;
28 Pout=Pd*10^3; //Pout value in watts
29 Tst=(smax^(2)*Pout)/(s*omega);
30 disp(Tst, 'The starting torque in Nm is')
31 //The answers vary due to round off error
```

Scilab code Exa 5.4 calculate the change in starting torque and resistance added t

```
1 //Book name: Fundamentals of electrical drives by
      Mohamad A. El- Sharkawi
2 / chapter 5
3 // \text{example } 5.4
4 // edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
                                          //stator
8 R1 = 3;
      resistance in ohm
9 R2 = 2;
                                         //rotor
      resistance referred to stator in ohm
                                        //equivalent
10 Xeq=10;
      inductive reactance in ohm
                                      //voltage reduction
11 1=10;
       in percentage
                                     //assumed value of V
12 V = 1;
13 TA = (1 * V)^2;
                                    //starting torque at
      the rated voltage
14 TB=(0.9*V)^2;
                                   //starting torque
      after 10% voltage reduction
15 \text{ r=1-TB};
                                  //reduction in starting
       torque
16 r=r*100;
                                 //reduction in starting
      torque in percentage
17 mprintf("\nThe reduction in starting torque is %f
      percentage",r)
18 Radd=sqrt(R1^(2)+Xeq^(2))-R2;
19 mprintf("\nThe resistance added to the rotor circuit
       to achieve the maximum torque is %f", Radd)
20 //The answer given in the book is wrong
```

```
Scalab 5.5.2 Console

The reduction in starting torque is 19.000000 percentage
The resistance added to the rotor circuit to achieve the maximum torque is 8.440307
-->
```

Figure 5.4: calculate the change in starting torque and resistance added to achieve maximum torque

```
Sclab 5.5.2 Console

The total reactive power for .95 power factor lagging in KVAR is

13.147364

The excitation current required to improve overall power factor of the plant in A is

14.433723

-->
```

Figure 5.5: compute the excitation current to improve overall power factor

Scilab code Exa 5.5 compute the excitation current to improve overall power factor

```
industrial plant in Mw
9 \text{ pf} = .85;
                                        //power factor
      lagging
10 \text{ pfnew=.95}
                                       //To improve new
      power factor
11 V = 5000;
                                      //motor rated
      voltage in volts
                                       //synchronous
12 Xs = 5;
      reactance in ohm
                                      //constant value
13 c = 200;
      given
14 Vt=V/3^(1/2);
15 = a = a cosd(pf);
                                   //power factor angle of
       the load in degree
                                    //load reactive power
16 Ql=P*tand(a);
      in KVAR
17 Qtot=P*tand(acosd(pfnew));
                                 //total reactive
      power for .95 power factor lagging
18 disp(Qtot, 'The total reactive power for .95 power
      factor lagging in KVAR is')
19 Qm = Qtot - Q1;
20 Vt = (V/sqrt(3));
21 Ef = ((Qm*Xs)/(3*Vt))+Vt;
22 If=Ef/c;
23 disp(If, 'The excitation current required to improve
      overall power factor of the plant in A is')
```

 ${\it Scilab\ code\ Exa\ 5.6}$ compute the minimum excitation that the machine must maintain

Scilah 5.5.2 Consoli

```
The minimum excitation that machine must maintain to provide the needed torque in volt is: 946.3301
```

Figure 5.6: compute the minimum excitation that the machine must maintain to provide the needed torque

```
4 // edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
                                   //rated voltage of
8 V = 2300;
      the synchronous motor in volt
9 Vt=V/3^(1/2);
10 f=60;
                                   //frequency in Hertz
                                 //number of poles
11 p=6;
                                //constant torque of the
12 T1=5000;
      load in Nm
                               //synchronous reactance
13 Xs = 6:
      of the motor in ohm
14 ns = (120*f)/p;
                               //synchronous speed of
      the motor in rpm
15 omegas=(2*\%pi*ns)/60;
16 Ef=(Tl*omegas*Xs)/(3*Vt);
                                  //The minimum
      excitation that machine must maintain to provide
      the needed torque
17 disp(Ef, 'The minimum excitation that machine must
      maintain to provide the needed torque in volt is:
      ')
```

Chapter 6

speed control of direct current motors

 ${
m Scilab\ code\ Exa\ 6.1}$ calculate added resistance to reduce the speed by 50 percentage

```
1 //Book name: Fundamentals of electrical drives by
     Mohamad A. El- Sharkawi
2 / chapter 6
3 // \text{example } 6.1
4 // edition 1
5 //publisher and place: Nelson Engineering
6 clc;
7 clear;
8 Vs=150; //source voltage of DC shunt motor in volt
9 n1=1200; //synchronous speed in rpm
10 Ra=1; //armature resistance in ohm
11 Rf=150; // field resistance in ohm
12 I=10; //line current in ampere
13 If=(Vs/Rf); // Field current before adding the
      resistance in ampere
14 disp('a) Calculate the resistance that should be
      added to the armature circuit to reduce the speed
```

```
a) Calculate the resistance that should be added to the armature circuit to reduce the speed by 50%

The resistance which should be added to reduce the speed by 50% in ohm is:

7.8333333

b) To calculate the motor efficiency

The efficiency of the motor without adding resistance in % is:

77.933333

The efficiency of the motor with adding resistance in % is:

35.633333

c) To calculate the resistance to be added to the armature for the holding operation

The resistance to be added to the armature for the holding operation in ohm is:

15.666667
```

Figure 6.1: calculate added resistance to reduce the speed by 50 percentage and efficiency and resistance added to operate the motor in holding condition

```
by 50%')
15 //consider that the motoring point 1 represents
     without adding resistance & point 2 for the
     operating point at 50% load reduction
16 Ia1=I-If;//armature current without adding
     resistance
17 n2=0.5*n1; //50\% speed is reduced
18 Ea1=Vs-(Ia1*Ra); //speed equation at operating point
  Radd=Ea1/(2*Ia1); // Obtained from the equation of Ea1
     /Ea2=n1/n2
20 disp(Radd, 'The resistance which should be added to
     reduce the speed by 50% in ohm is: ')
21 disp('b) To calculate the motor efficiency')
22 Prloss=100; //rotational loss in watt
23 Pfloss=If^(2)*Rf;//field loss in watt
24 Paloss=Ia1^(2)*Ra//armature losses in watt
25 Pin=Vs*I; //Input power in watt
26 Ploss=Prloss+Pfloss+Paloss; // Total losses before
```

```
adding armature resistance in watt
27 Ploss1=Prloss+Pfloss+Paloss*(Ra+Radd);//Total losses
       after adding armature resistance in watt
  eff=((Pin-Ploss)/Pin)*100;//efficiency of the motor
     without adding resistance in %
29 eff1=((Pin-Ploss1)/Pin)*100;//efficiency of the
     motor with adding resistance in %
30 disp(eff, 'The efficiency of the motor without adding
      resistance in % is:')
31 disp(eff1, 'The efficiency of the motor with adding
     resistance in % is:')
32 disp('c) To calculate the resistance to be added to
     the armature for the holding operation')
33 //set motor speed equal to zero
34 Radd=(Vs/Ia1)-Ra;
35 disp(Radd, 'The resistance to be added to the
     armature for the holding operation in ohm is: ')
```

 ${
m Scilab\ code\ Exa\ 6.3}$ calculate armature current and motor speed and value of added

Scilab 5.5.2 Console

```
The armature current after inserting the resistance in ampere is:

11.25

The motor speed in rpm is:

1448.8636

The value of added resistance in ohm is:

37.5

The extra field loss due to the addition of resistance in watt is:

24.
```

Figure 6.2: calculate armature current and motor speed and value of added resistance and extra field loss

```
13 If1=(Vs/Rf); // Field current before adding the
      resistance in ampere
14 //Assume the resistance added in the field circuit
     to reduce the field current by 20%
  If2=.8; // Field current after adding the resistance
     in ampere
  Ia1=I-If1; // Armature current before inserting the
      resistance in ampere
  Ia2=(If1*Ia1)/If2;//Armature current after inserting
       the resistance in ampere
  disp(Ia2, 'The armature current after inserting the
      resistance in ampere is: ')
19 Ea1=Vs-(Ia1*Ra);
20 Ea2=Vs-(Ia2*Ra);
21 n2 = (If1*n1*Ea2)/(Ea1*If2);
22 disp(n2, 'The motor speed in rpm is:')
23 Radd=(Vs-(If2*Rf))/If2;
24 disp(Radd, 'The value of added resistance in ohm is:'
     )
```

```
The speed of the motor in rpm is:

154.8879

The power developed by the motor in terms of watt is:

162.19823
-->
```

Figure 6.3: calculate the motor speed and the developed power

```
25 P=If2^(2)*Radd;
26 disp(P, 'The extra field loss due to the addition of resistance in watt is:')
```

Scilab code Exa 6.4 calculate the motor speed and the developed power

```
Scilah 5.5.2 Console
```

```
The speed of the motor is 246.561146 rpm The power developed by the motor is 258.198228 watt -->
```

Figure 6.4: calculate the motor speed and the power delivered to the load

```
12 V=120; //source voltage in volt
13 f=60; //supply frequency in Hertz
14 a=60; //trigerring angle of the converter in degree
15 b=150; //conduction period in degree
16 Iave=T/KQ; //average current in ampere
17 Vm=V*2^(1/2);
18 W=((Vm/(2*%pi))*(cosd(a)-cosd(b+a))-(Iave*Ra))/((b /360)*KQ); // angular speed of the motor
19 n=W*(f/(2*%pi));
20 disp(n, 'The speed of the motor in rpm is:')
21 Pd=KQ*W*Iave; //power developed by the motor
22 disp(Pd, 'The power developed by the motor in terms of watt is:')
```

 ${
m Scilab\ code\ Exa\ 6.5}$ calculate the motor speed and the power delivered to the load

```
Scilab 5.5.2 Console
```

```
The triggering angle of the motor is 21.731115 degree -->
```

Figure 6.5: calculate the triggering angle of the motor

```
7 clear;
8 L=1; //load of shunt motor in hp
9 T=10; //constant torque of motor in Nm
10 Ra=5; //armature resistance of the motor in ohm
11 KQ=2.5; //The field constant in V sec
12 V=120; //source voltage in volt
13 f=60; //supply frequency in Hertz
14 a=60; //trigerring angle of the converter in degree
15 b=150; //conduction period in degree
16 Iave=T/KQ; //average current in amphere
17 Vm = V * 2^(1/2);
18 W=((Vm/\%pi)*(cosd(a)-cosd(b+a))-(Iave*Ra))/((b/180)*
     KQ); // angular speed of the motor
19 n=W*(60/(2*\%pi));
20 mprintf("\nThe speed of the motor is %f rpm",n)
21 Pd=KQ*W*Iave; //power developed by the motor
22 mprintf("\nThe power developed by the motor is %f
      watt", Pd)
```

Scilab code Exa 6.6 calculate the triggering angle of the motor

```
Calculate the field current:
The field current is 15.554275 A
Calculate the motor voltage:
The motor voltage is 239.352296 volt
Calculate the motor speed:
The speed of the motor is 739.178134 rpm
-->
```

Figure 6.6: calculate field current motor voltage and speed

```
4 //edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
8 T=60; // Constant load torque in Nm
9 V=120; //supply voltage in volt
10 KQ=2.5; // Field constant of the motor
11 Ra=2; // Armature resistance in ohm
12 n=200;//speed of the motor in rpm
13 Vm = V * 2^{(1/2)}; //maximum voltage in volt
14 w=(2*\%pi*n)/T;//angular speed
15 Iave=T/KQ;
16 b=((\%pi/(2*Vm))*((Ra*Iave)+(KQ*w)));
17 alpha=acosd(b);
18 mprintf("\nThe triggering angle of the motor is
                                                       \%f
      degree", alpha)
```

Scilab code Exa 6.7 calculate field current motor voltage and speed

```
1 //Book name: Fundamentals of electrical drives by
```

```
Mohamad A. El- Sharkawi
2 //chapter 6
3 //example 6.7
4 //edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
8 Ra=2; //armature resistance in ohm
9 Rf=3; // field resistance in ohm
10 V=320; //terminal voltage in volt
11 T=60; // full load torque in Nm
12 n=600; //motor speed in rpm
13 mprintf("\nCalculate the field current:")
14 KC=0.248; //calculated by solving two equations
15 Ia=sqrt(T/KC);
16 mprintf("\nThe field current is %f A", Ia)
17 mprintf("\nCalculate the motor voltage:")
18 n1=400;
19 omega1 = (2*\%pi*n1)/T;
20 Vt=Ia*(Ra+Rf+(KC*omega1));
21 mprintf("\nThe motor voltage is %f volt", Vt)
22 mprintf("\nCalculate the motor speed:")
23 AR=Ra/Rf;
24 Ia=sqrt(T/(KC*AR));
25 \text{ w} = (\text{V}/(\text{KC}*\text{AR}*\text{Ia})) - ((\text{Ra}+(\text{AR}*\text{Rf}))/(\text{KC}*\text{AR}));
26 \quad n2 = (w*T)/(2*\%pi);
27 mprintf("\nThe speed of the motor is %f rpm",n2)
```

Chapter 7

speed control of induction motors

 ${
m Scilab\ code\ Exa\ 7.1}$ compute the added resistance to reduce the speed by 20 percent

```
1 //Book Name: Fundamentals of electrical drives by
     Mohamad A. El- Sharkawi
2 //chapter 7
3 //example 7.1
4 // edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
8 V=480; //terminal voltage in volt
9 p=6;//number of poles
10 f=60; //frequency in hertz
11 Pout=30*746; // rated output voltage in volts
12 R1=0.5; //stator resistance in ohm
13 R2=0.5; //rotor resistance reffered to stator in ohm
14 Protational = 500; // rotational loss in watt
15 Pcu=600; //core losses in watt
16 c=0.05; //cost of energy
```

Scilab 5.5.2 Consol

```
The speed of the motor is 1151 rpm

The efficiency of the motor without added resistance is 88 percentage

The resistance added to reduce 20 percentage of the speed is 2.359865 ohm

The efficiency of the motor with added resistance is 70 percentage

The annual cost of the operating motor is $1189.760000

-->
```

Figure 7.1: compute the added resistance to reduce the speed by 20 percent and motor efficiency with and without added resistance and annual cost of operating motor

```
17 t1=100; //time which the motor operates in a week
18 Pd=Pout+Protational; //developed power in watt
19 a=1; // the s<sup>2</sup> value from the equation s^2-s+0.039
20 b=-1; //the s value from the equation s^2-s+0.039
21 c=0.039; //the constant value from the equation s^2-s
      +0.039
22 s1=(-(b)+sqrt((b)^2-(4*a*c)))/(2*a);
23 s2=(-(b)-sqrt((b)^2-(4*a*c)))/(2*a);//roots to find
      the value of s from the equation s^2-s+0.03
24 s=s2; //s1 is very large hence neglected thus slip=s2
25 a1=120; //constant value in the formula
26 ns=(a1*f)/p;//synchronous speed in rpm
27 n = ns * (1 - s);
28 mprintf("\nThe speed of the motor is %d rpm",n)
29 I2=sqrt((Pd*s)/(3*R2*(1-s)));//motor current in amps
30 Pwinding=3*I2^(2)*(R1+R2);
31 Pin=Pd+Pwinding+Pcu;
32 eta=Pout/Pin;//efficiency of the motor
33 eta=eta*100; // efficiency in percentage
34 mprintf("\nThe efficiency of the motor without added
       resistance is %d percentage", eta)
35 nnew=0.8*n;//speed after 20% reduction
36 \text{ snew} = (\text{ns-nnew})/\text{ns};
37 rmsnew=nnew/60;//speed in rps
```

```
Scilab 5.5.2 Console

The magnitude of injected voltage is 8.249252 volt

The power delivered by the source of injected voltage is 536.991342 watt

-->
```

Figure 7.2: calculate the magnitude of the injected voltage and the power delivered by the source of injected voltage

```
38 omegadnew=(2*%pi*rmsnew);
39 rps=n/60; //speed in rps
40 omega=(2*\%pi*rps);
41 Pdnew=(Pd*omegadnew)/omega;
42 Radd=R2*((snew-s)/s);//resistance added to reduce 20
     % of the speed
  mprintf("\nThe resistance added to reduce 20
43
      percentage of the speed is %f ohm", Radd)
44 I2new=sqrt((Pdnew*snew)/(3*(R2+Radd)*(1-snew)))
45 Pwindingnew=3*I2^(2)*(R1+R2+Radd);
46 Pinnew=Pdnew+Pwindingnew+Pcu;
47 Poutnew=Pdnew-Protational;
48 etanew=Poutnew/Pinnew;
49 etanew=etanew*100;
50 mprintf("\nThe efficiency of the motor with added
      resistance is %d percentage", etanew)
51 Padd=3*I2^(2)*Radd;
52 Padd=Padd*10^(-3);
53 t=100*52; //total hours of operation in one year
54 C=Padd*t*c;
55 mprintf("\nThe annual cost of the operating motor is
56 //The answer may vary due to roundoff error
```

Scilab code Exa 7.2 calculate the magnitude of the injected voltage and the power

```
1 //Book Name: Fundamentals of electrical drives by
      Mohamad A. El- Sharkawi
2 //chapter 7
3 // \text{example } 7.2
4 // edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
8 V=480;//terminal voltage in volt
9 p=4;//number of poles
10 f=60; //frequency in hertz
11 Td=60; //constant torque load in Nm
12 R1=0.4;
13 R2 = 0.1;
14 Xeq=4;
15 N1=2;
16 N2=1;
17 n=1000; //speed of the motor in rpm
18 \quad a1 = 120;
19 ns=(a1*f)/p;
20 s = (ns-n)/ns;
21 R21=R2*(N1/N2)^(2);
22 theta=atand(Xeq/(R1+(R21/s)));
23 a=0.05;
24 b=8;
25 c = -80.74;
26 Vi11=(-b+sqrt(8^2-(4*a*c)))/(2*a);/obtained from
      the equation 0.05 \,\mathrm{Vi}^2 + 8 \,\mathrm{Vi} - 80.74
27 Vi12=(-b-sqrt(8^2-(4*a*c)))/(2*a);/obtained from
      the equation 0.05 \,\mathrm{Vi}^2 + 8 \,\mathrm{Vi} - 80.74
28 Vi1=Vi11;//because negative voltage is neglected
29 Vi = (Vi1 * N2) / N1;
30 c1=122;//calculated constant values of the equation
31 c2=1.85; // calculated constant values of the equation
32 I2 = (c1 - Vi1)/c2;
33 V1=sqrt(3)*Vi;//line to line injected voltage
```

```
a) Without injected voltage Vi=0v
The starting current without injected voltage is 68.000000 A
The starting torque without injected voltage is 29.437298 Nm
b) With injected voltage Vi=9.5v
The starting current with injected voltage is 65.607743 A
The starting torque with injected voltage is 29.418859 Nm
-->
```

Figure 7.3: calculate the starting current and starting torque with and without the voltage

```
34 mprintf("\nThe magnitude of injected voltage is %f
     volt",V1)
35 Pr=3*I2*Vi1*cosd(theta);
36 mprintf("\nThe power delivered by the source of
     injected voltage is %f watt",Pr)
37 //The answers vary due to round off error
```

 ${
m Scilab\ code\ Exa\ 7.3}$ calculate the starting current and starting torque with and wi

```
//Book Name: Fundamentals of electrical drives by
Mohamad A. El- Sharkawi
//chapter 7
//example 7.3
//edition 1
//publisher and place: Nelson Engineering
clc;
clear;
V=480; //terminal voltage in volt
p=4; //number of poles
f=60; //frequency in hertz
```

```
11 Tl=60; //load torque in Nm
12 R1=0.4;
13 R2=0.1;
14 Xeq=4;
15 N1=2; //obtained from the equation N1/N2=2
16 n=1000; //motor speed in rpm
17 a=120;
18 ns=(a*f)/p;
19 rps=ns/60;
20 omegas = (2*%pi*rps);
21 mprintf("\na)Without injected voltage Vi=0v")
22 \text{ Vs=V/sqrt}(3);
23 R21=R2*(N1^(2));
24 I2st=Vs/sqrt((R1+R21)^{2}+Xeq^{2});/starting
     current in A
25 I2st=ceil(I2st)//rounding off the starting current
26 Tst=(3*I2st^(2)*R1)/omegas; //staring torque
27 mprintf("\nThe starting current without injected
      voltage is %f A", I2st)
28 mprintf("\nThe starting torque without injected
      voltage is %f Nm", Tst)
29 mprintf("\nb)With injected voltage Vi=9.5v")
30 Vi=9.5; //injected voltage in volt
31 I2st1=(Vs-Vi)/sqrt((R1+R21)^2)+Xeq^2);/starting
      current with injected resistance in A
32 thetar=atand(Xeq/(R1+R21));
33 Tst1=(3/omegas)*((I2st1^2*R1)+(I2st*Vi)*cosd(thetar)
     );
34 mprintf("\nThe starting current with injected
      voltage is %f A", I2st1)
35 mprintf("\nThe starting torque with injected voltage
       is %f Nm", Tst1)
```

Scilab 5.5.2 Console

```
To find speed of the motor:
The speed of the motor is 600.000000 rpm
To compute current in DC link:
The current in DC link is 61.242537 A
To compute rotor rms current:
The rotor rms current is 50.004322 A
To compute stator rms current:
The stator rms current is 50.004322 A
To compute power returned to the source:
The power returned to the source is 19.849556 watt
To compute the losses when additional resistance is added:
The power losses when additional resistance added is 19.849556 watt
-->
```

Figure 7.4: calculate the motor speed and current in dc link and rotor and stator rms current and power returned back to the source and additional losses

Scilab code Exa 7.4 calculate the motor speed and current in dc link and rotor and

```
1 //Book Name: Fundamentals of electrical drives by
     Mohamad A. El- Sharkawi
2 //chapter 7
3 //example 7.4
4 // edition 1
5 //publisher and place: Nelson Engineering
6 clc;
7 clear;
8 V=480; //terminal voltage in volt
9 p=6;//number of poles
10 f=60; //frequency in hertz
11 Tout=300; //constant load torque in Nm
12 N1 = 1;
13 N2=1;
14 Prot=1e3; //rotational power in watt
15 alpha=120;//trigerring angle in degree
16 mprintf("\nTo find speed of the motor:")
```

```
17 a=120; //constant value
18 ns=(a*f)/p;
19 n=ns*(1+((N1/N2)*cosd(alpha)));
20 mprintf("\nThe speed of the motor is %f rpm",n)
21 s=(ns-n)/ns;
22 mprintf("\nTo compute current in DC link:")
23 rps=n/60; //speed in rps
24 omega=(2*\%pi*rps);
25 Pout=Tout*omega;
26 Pd=Pout+Prot;
27 K = (3*sqrt(2))/%pi;
28 I = (Pd/(1-s))/(K*V);
29 mprintf("\nThe current in DC link is %f A",I)
30 mprintf("\nTo compute rotor rms current:")
31 itr=sqrt(2/3);//solved integration value
32 I2=itr*I;
33 mprintf("\nThe rotor rms current is %f A", I2)
34 mprintf("\nTo compute stator rms current:")
35 I1 = (N1/N2) * I2
36 mprintf("\nThe stator rms current is %f A", I1)
37 mprintf("\nTo compute power returned to the source:"
38 Pr=Pd;
39 \text{ Pr=Pr*}10^{(-3)};
40 mprintf("\nThe power returned to the source is %f
      watt", Pr)
41 mprintf("\nTo compute the losses when additional
      resistance is added:")
42 Td=Pd/omega;
43 rpss=ns/60;//speed in rps
44 omegas=(2*\%pi*rpss);
45 Radd=(V^2*s)/(Td*omegas); //additional resistance
      added in ohm
46 I2=sqrt(((s/(1-s))*(Pd/3))/Radd); //rotor current
47 Padd=3*I2^2*Radd; //additional power loss
48 Padd=Padd*10^(-3);
49 mprintf("\nThe power losses when additional
      resistance added is %f watt", Padd)
```

```
Scilab 5.5.2 Console

The speed of the motor after the reduction of the rated voltage is 1139 rpm

-->
```

Figure 7.5: calculate the motor speed at full voltage

Scilab code Exa 7.5 calculate the motor speed at full voltage

```
1 //Book Name: Fundamentals of electrical drives by
     Mohamad A. El- Sharkawi
2 //chapter 7
3 //example 7.5
4 // edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
8 V=480; //terminal voltage in volt
9 p=6;//number of poles
10 Pout=30*746; //output power interms of watt
11 f=60; //frequency in hertz
12 R1=0.5; //stator resistance in ohm
13 R2=0.5; //rotor resistance reffered to stator in ohm
14 ns=1200; //synchronus speed in rpm
15 rps=ns/60;
16 omegas=(2*%pi*rps);//angular synchronous speed
17 Td=120; //load torque constant
18 s=(Td*omegas*R2)/V^2;
19 n=ns*(1-s); //the speed at full voltage in rpm
20 n = ceil(n)
21 Vnew=0.8*V; //when voltage is reduced by 20%
```

Scilab 5.5.2 Console

```
To compute the maximum frequency of the supply voltage:
The maximum frequency of the supply voltage is 67.702750 Hz
To calculate the motor current at f and fmax:
The motor current at 60 Hz is 23.676654 A
The motor current at 67.7Hz is 42.444229 A
To calculate the power delivered to the load at f and fmax:
The power delivered to the load at 60Hz is 21.991149 KW
The power delivered to the load at 67.7Hz is 23.828538 KW
-->
```

Figure 7.6: compute maximum frequency and then motor current and power delivered at 60 Hz and at maximum frequency

 ${f Scilab\ code\ Exa\ 7.6}$ compute maximum frequency and then motor current and power del

```
9 p=2; //number of poles
10 f=60; //frequency in hertz
11 Xeq=4; //inductive reactance in ohm
12 R1=0.2; //stator resistance in ohm
13 R2=0.3; //rotor resistance reffered to stator in ohm
14 Td=60; // driving constant load torque in Nm
15 n=3500; //speed of the motor in rpm
16 a=120; //constant value
17 ns=(a*f)/p;//synchronous speed in rpm
18 mprintf("\nTo compute the maximum frequency of the
      supply voltage:")
19 Tmax = Td;
20 rpss=ns/60;
21 omegas=(2*\%pi*rpss);
22 fmax=sqrt((V^2*f^2)/(Tmax*2*omegas*4));
23 mprintf("\nThe maximum frequency of the supply
      voltage is %f Hz", fmax)
24 mprintf("\nTo calculate the motor current at f and
      fmax:")
25 s=(ns-n)/ns;//slip at 60Hz
26 \text{ Vs=V/sqrt}(3);
27 I2=Vs/sqrt((R1+(R2/s))^2+Xeq^2);
28 mprintf("\nThe motor current at 60 Hz is %f A", I2)
29 Xeqmax = (fmax/f) * Xeq;
30 smax=R2/sqrt(R1^2+Xeqmax^2);
31 nmax = ((a*fmax)/p)*(1-smax);
32 I2max=Vs/sqrt((R1+(R2/smax))^2+Xeqmax^2);
33 mprintf("\nThe motor current at 67.7 \,\mathrm{Hz} is \% \mathrm{f} A",
      I2max)
34 mprintf("\nTo calculate the power delivered to the
      load at f and fmax:")
35 \text{ rps=n/60};
36 omega=(2*%pi*rps);
37 Pd=Td*omega; //developed power at 60Hz
38 Pd=Pd*10^(-3); //developed power in kilowatt
39 mprintf("\nThe power delivered to the load at 60Hz
      is %f Kw", Pd)
40 rpsmax=nmax/60;
```

Scilab 5.5.2 Console

```
The new motor speed at 50Hz is 2926.368922 rpm
The starting current at 50Hz is 82.218624 A
-->
```

Figure 7.7: compute the motor speed and the starting current if the frequency decreased to $50~\mathrm{Hz}$

 ${f Scilab\ code\ Exa\ 7.7}$ compute the motor speed and the starting current if the frequency

```
//Book Name: Fundamentals of electrical drives by
Mohamad A. El- Sharkawi
//chapter 7
//example 7.7
//edition 1
//publisher and place: Nelson Engineering
clc;
clear;
V=480; //terminal voltage in volt
p=2; //number of poles
fst=60; //frequency in hertz
f=50; // decreased frequency in Hz
Xeq=4; //inductive reactance in ohm
R1=0.2; //stator resistance in ohm
R2=0.3; //rotor resistance reffered to stator in ohm
```

Scilab 5.5.2 Console

```
To compute the starting current at 60Hz,480v:
The starting current at 60Hz,480v is 68.747028 A
To compute the starting current at 50Hz,400v:
The starting current at 50Hz,400v is 68.515520 A
The starting current is almost unchanged due to the v/f control
-->
```

Figure 7.8: compute the starting current for a constant v by f control

```
15 Td=60; // driving constant load torque in Nm
16 n=3500; //speed of the motor in rpm
17 ns=(120*f)/p;//synchronous speed in rpm
18 Vs=V/sqrt(3);
19 rps=ns/60;
20 omegas=(2*%pi*rps);
21 s=(Td*omegas*R2)/V^2;
22 n=ns*(1-s);//the new motor speed at 50Hz in rpm
23 mprintf("\nThe new motor speed at 50Hz is %f rpm",n)
24 I2st=Vs/sqrt((R1+R2)^{2})+Xeq^{2}; // starting current
      in A
25 Xeqnew=(f/fst)*Xeq;//inductive reactance at 50Hz
26 I2stnew=Vs/\sqrt{(R1+R2)}(2)+Xeqnew^(2));//\sqrt{starting}
      current at 50Hz in A
27 mprintf("\nThe starting current at 50Hz is %f A",
      I2stnew)
```

Scilab code Exa 7.8 compute the starting current for a constant v by f control

```
3 //example 7.8
4 // edition 1
5 //publisher and place: Nelson Engineering
6 clc;
7 clear;
8 V=480; //terminal voltage in volt
9 p=2; //number of poles
10 f=60; //frequency in hertz
11 fd=50; //decreased frequency in Hz
12 Xeq=4; //inductive reactance in ohm
13 R1=0.2; //stator resistance in ohm
14 R2=0.3; //rotor resistance reffered to stator in ohm
15 Td=60; //driving constant load torque in Nm
16 n=3500; //speed of the motor in rpm
17 VFR=V/f; // voltage frequency ratio
18 Vnew=fd*VFR;
19 a=120; //constant value
20 ns=(a*fd)/p;//synchronous speed in rpm
21 Vs=V/sqrt(3);
22 \text{ rps=n/60};
23 omegas = (2 * %pi * rps);
24 s = (Td*omegas*R2)/Vnew^2;
25 n=ns*(1-s);//the new motor speed at 50Hz in rpm
26 \text{ rpss=ns/60};
27 \text{ omega} = (2*\%pi*rpss)/60;
28 mprintf("\nTo compute the starting current at 60Hz
      480 v:")
29 I2st=Vs/sqrt((R1+R2)^{2})+Xeq^{2}; // starting current
30 mprintf("\nThe starting current at 60Hz,480v is %f A
      ", I2st)
31 mprintf("\nTo compute the starting current at 50Hz
      ,400 \, \mathrm{v}:")
32 Vsnew=Vnew/sqrt(3);
33 Xeqnew=(fd/f)*Xeq;//inductive reactance at 50Hz
34 \quad I2stnew=Vsnew/sqrt((R1+R2)^(2)+Xeqnew^(2));//
      starting current at 50Hz in A
35 mprintf("\nThe starting current at 50Hz,400v is %f A
```

Scilab 5.5.2 Consoli

```
The input current if the machine is in the linear region is 21.592850 A The input current if the machine is in the saturation region is 37.523530 A \rightarrow
```

Figure 7.9: compute the input current

```
",I2stnew)
36 mprintf("\nThe starting current is almost unchanged due to the v/f control")
```

Scilab code Exa 7.9 compute the input current

```
1 //Book Name: Fundamentals of electrical drives by
     Mohamad A. El- Sharkawi
2 //chapter 7
3 //example 7.9
4 // edition 1
5 //publisher and place: Nelson Engineering
6 clc;
7 clear;
8 V=480; //terminal voltage in volt
9 p=6; //number of poles
10 f=60; //frequency in hertz
11 X1=3; //inductive reactance in ohm
12 Rs=.2; //stator resistance in ohm
13 X2=2; //rotor reactance in ohm
14 R2=0.1; //resistance reffered to the stator in ohm
15 Xm=120; // magnetizing reactance in the linear region
     in ohm
16 Xm1=42; // magnetizing reactance in the saturation
      region in ohm
```

```
Scilab 5.5.2 Console

The frequency of the CSI to drive the machine at 900 rpm is 45.668298 Hz

-->
```

Figure 7.10: compute the frequency of the CSI to drive the machine at 900 rpm

```
17 Td=100; //constant load torque in Nm
18 n=900; //speed of the motor in rpm
19 ns=(120*f)/p;//synchronous speed of the machine in
     rpm
20 s=(ns-n)/ns; // slip of the machine
21 //If the machine is in the linear region
22 rps=ns/60;
23 omegas=(2*%pi*rps);
24 Is=sqrt(((Td*s*omegas)*((R2/s)^2+(X2+Xm)^2))/(3*Xm)
      ^2*R2));
25 costheta=0.7; //assumed power factor value
  I1rated=(Td*omegas)/(sqrt(3)*V*costheta);
27 mprintf("\nThe input current if the machine is in
      the linear region is %f A", I1rated)
28 //if the machine is in saturation region
29 Is1=sqrt(((Td*s*omegas)*((R2/s)^2+(X2+Xm1)^2))/(3*Xm)
      ^2*R2));
30 mprintf("\nThe input current if the machine is in
      the saturation region is %f A", Is1)
```

 ${\it Scilab\ code\ Exa\ 7.10}$ compute the frequency of the CSI to drive the machine at 900

```
3 //example 7.10
4 //edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
8 V = 480;
                                   //terminal voltage in
      volt
9 p=6;
                                  //number of poles
10 f=60;
                                 //frequency in hertz
11 X1=3;
                                //inductive reactance in
      ohm
12 Rs=.2;
                               //stator resistance in ohm
13 X2=2;
                             //rotor reactance in ohm
14 R2 = 0.1;
                            //resistance reffered to the
      stator in ohm
15 \text{ Xm} = 120;
                           //magnetizing reactance in the
       linear region in ohm
16 \text{ Xm} 1 = 42;
                          //magnetizing reactance in the
      saturation region in ohm
                        //constant load torque in Nm
17 Td=100;
18 n = 900;
                       //speed of the motor in rpm
19 Is = 21.6;
20 \text{ rps=n/60};
21 omega=(2*%pi*rps);
22 f = (((3*Is^{(2)}*R2)/((2*\%pi*Td)/f))+n)*(p/Xm);
23 mprintf("\nThe frequency of the CSI to drive the
      machine at 900 rpm is %f Hz",f)
```

Chapter 9

Braking of dc motors

 ${f Scilab\ code\ Exa\ 9.1}$ calculate no load and motor speed then developed torque and Ea

```
1 //Book name: Fundamentals of electrical drives by
     Mohamad A. El- Sharkawi
2 / \text{chapter } 9
3 // \text{example } 9.1
4 // edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
8 V=440; //source voltage in volt
9 Ia=76; //armature current in ampere
10 ns=1000;//speed of the DC shunt motor in rpm
11 Ra=.377; //armature resistance of the motor in ohm
12 Rf=110; // field resistance of the motor in ohm
13 Prloss=1000; //rotational losses in watt
14 se=60; //seconds for 1 minute
15 Ea=V-(Ra*Ia);
16 rps=ns/se;
17 omega=(2*%pi*rps);//angular speed of the motor
18 KQ=Ea/omega; // field constant
```

```
a) To calculate no load speed of the motor:
The no load speed of the motor in rpm is 1069.653918
b) To calculate motor speed when Ia=60 ampere:
The speed of the motor in rpm is 1124.643854
c) To calculate the torque developed during regenerative braking:
The torque developed during regenerative braking in Nm is 235.685043
d) To calculate Ea during regenerative braking:
The back emf in volt is 462.620000
e) Power delivered by the source
The power delivered by the source in watt is 35200.000000
f) To calculate terminal current under regenerative braking:
The terminal current under regenerative braking in ampere is 56.000000
g) To calculate power generator during regenerative braking
power generater during regenerative braking in watt is 27757.200000
h) To calculate total losses under regenerative braking
The total losses under regenerative braking in watt is 4117.200000
i) To calculate power delivered under regenerative braking:
The power delivered under regenerative braking in watt is 23640.000000
-->
```

Figure 9.1: calculate no load and motor speed then developed torque and Ea and terminal current and total losses during regenerative braking and also power delivered

```
32 \quad \text{Ea3=KQ*omega3};
33 mprintf("The back emf in volt is %f", Ea3)
34 disp('e) Power delivered by the source')
35 \text{ If=V/Rf};
36 I1=Ia+If;
37 Ps = I1 * V;
38 mprintf("The power delivered by the source in watt
      is %f", Ps)
39 disp('f)To calculate terminal current under
      regenerative braking: ')
40 \quad I3 = Ia3 - If;
41 mprintf('The terminal current under regenerative
      braking in ampere is %f', I3)
42 disp('g)To calculate power generater during
      regenerative braking')
43 Pg=Ea3*Ia3;
44 mprintf("power generater during regenerative braking
       in watt is %f", Pg)
45 disp('h)To calculate total losses under regenerative
       braking')
46 Ploss=(Ra*(Ia3^(2)))+((V^(2))/Rf)+Prloss;
47 mprintf("The total losses under regenerative braking
       in watt is %f", Ploss)
48 disp('i)To calculate power delivered under
      regenerative braking: ')
49 Pd=Pg-Ploss;
50 mprintf("The power delivered under regenerative
      braking in watt is %f",Pd)
```

Scilab code Exa 9.2 calculate the speed

1 //Book name: Fundamentals of electrical drives by Mohamad A. El- Sharkawi

```
Scilab 5.5.2 Console

The speed at steady state operating point in rpm is -231.029801
-->
```

Figure 9.2: calculate the speed

```
The triggering angle required to keep the downward speed equal in magnitude to the upward speed in degree is 137.663941
```

Figure 9.3: calculate the triggering angle

```
//chapter 9
//example 9.2
//edition 1
//publisher and place: Nelson Engineering
clc;
clear;
Ib=40;//current of the motor in ampere
Rb=2;//braking resistance in ohm
Ra=0.377;//armature resistance in ohm
KQ=3.93;//field constant
comega=-(Ib*(Ra+Rb))/KQ;//angular speed in rad/sec
se=60;//seconds in 1 minute
n=omega*(se/(2*%pi));
mprintf("The speed at steady state operating point in rpm is %f",n)
```

Scilab code Exa 9.3 calculate the triggering angle

Scilab 5.5.2 Console

ine triggering angle at the motor changes during the upward motion to keep the motor constant in degree is 86.16804:

Figure 9.4: calculate the triggering angle

```
\frac{3}{2} //example 9.3
4 // edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
8 Ra=.5; //armature resistance in ohm
9 KQ=3; // field constant
10 V=277; //source voltage in volt
11 Tup=100; //upward directional load torque in Nm
12 a=20; // triggering angle in degree
13 Tdw=200; //downward directional load torque in Nm
14 Vm=V*sqrt(2);
15 Veq = ((2*Vm)/\%pi)*cosd(a);
16 omega1=((Veq/KQ))-((Ra*Tup)/KQ^(2));
17 n1=omega1*(60/(2*\%pi));//downward speed in rpm
18 b1=((-KQ*omega1)+((Ra*Tdw)/KQ))/((2*Vm)/%pi);
19 alpha2=acosd(b1);
20 mprintf("The triggering angle required to keep the
     downward speed equal in magnitude to the upward
      speed in degree is %f",alpha2)
```

Scilab code Exa 9.4 calculate the triggering angle

```
Scilab 5.5.2 Console

The maximum braking resistance in ohm is 55.287629

-->
```

Figure 9.5: calculate the value of braking resistance

```
5 //publisher and place:Nelson Engineering
6 clc;
7 clear;
8 Ra=.5; //armature resistance in ohm
9 KQ=3; // field constant
10 V=277; //source voltage in volt
11 Tup=100; //upward directional load torque in Nm
12 Vm=V*sqrt(2);
13 b1=((Ra*Tup)/KQ)/((2*Vm)/%pi);
14 alpha3=acosd(b1); // triggering angle at the upward motion
15 mprintf("The triggering angle at the motor changes during the upward motion to keep the motor constant in degree is %f",alpha3)
```

Scilab code Exa 9.5 calculate the value of braking resistance

School 50.2 Corsole

The triggering angle for scr 3 and 4 to reduce the minimum braking current in degree is 119.721530

-->

Figure 9.6: calculate the triggering angle

```
8 Ra=1; // armature resistance in ohm
9 KQ=3; // field constant
10 V=320; // Terminal voltage in volts
11 n=1000; // motor speed in rpm
12 omega=(2*%pi*n)/60;
13 Ea1=KQ*omega;
14 Ia=(V-Ea1)/Ra; // normal field current in ampere
15 Ib=2*Ia; // maximum braking current which is twice the armature voltage in A
16 Rb=-(V+Ea1+(Ib*Ra))/Ib; // braking resistance
17 Rb=abs(Rb);
18 mprintf("The maximum braking resistance in ohm is %f ",Rb)
19 // the answer given in the book is wrong
```

Scilab code Exa 9.6 calculate the triggering angle

```
Scilab 5.5.2 Console

The triggering angle for scr 3 and 4 in degree is 84.689097

-->
```

Figure 9.7: calculate the triggering angle

```
11 Tl=120;//load torque in Nm
12 alpha=30;//triggering angle of SCR 1 and 2
13 Vm=V*sqrt(2);
14 Iave1=Tl/KQ;
15 omega1=(((2*Vm)/%pi)*cosd(alpha)-(Iave1*Ra))/KQ;
16 se=60;//seconds in one minute
17 n1=(omega1*se)/(2*%pi);
18 Ib=-3*Iave1;
19 b1=-((KQ*omega1)-(3*Iave1))/((2*Vm)/%pi);
20 alpha2=acosd(b1);
21 mprintf("The triggering angle for scr 3 and 4 to reduce the minimum braking current in degree is %f",alpha2)
```

Scilab code Exa 9.7 calculate the triggering angle

```
Scilab 5.5.2 Console

The new steady state speed in is -190.985932 rpm

The armature current at new speed in is 60 A

-->
```

Figure 9.8: calculate new steady state speed and the armature current

```
9 KQ=3; // field constant
10 V=480; // Terminal voltage in volts
11 Tl=120; // load torque in Nm
12 Vm=V*sqrt(2);
13 Iave1=T1/KQ;
14 omega3=0; // motor speed at holding condition
15 Iave3=-Iave1;
16 b1=((KQ*omega3)+(Ra*Iave3))/-((2*Vm)/%pi);
17 alpha2=acosd(b1);
18 mprintf("The triggering angle for scr 3 and 4 in degree is %f", alpha2)
```

Scilab code Exa 9.8 calculate new steady state speed and the armature current

```
9 KQ=3; // field resistance
10 V=200; // source voltage in volt
11 T=180; // troque of the forklift in Nm
12 V1=-30; // terminal voltage of the motor in volt
13 omega5=((V1/KQ))-((Ra*T)/KQ^(2));
14 se=60; // seconds in one minute
15 n5=omega5*(se/(2*%pi)); // new steady state speed at point 5 in rpm
16 mprintf("The new steady state speed in is %f rpm", n5
)
17 I5=(V1-(KQ*omega5))/Ra; // current at point 5
18 mprintf("\n The armature current at new speed in is %d A", I5)
```

Chapter 10

Braking of induction motors

Scilab code Exa 10.1 calculate motor speed and power delivered to the electrical s

```
1 //Book name: Fundamentals of electrical drives by
     Mohamad A. El- Sharkawi
2 //chapter 10
3 //example 10.1
4 // edition 1
5 // publishing place: Thomson Learning
6 clc;
7 clear;
8 V=208;//source voltage in volts
9 p=6;//number of poles
10 R1=0.6; //given resistance in ohm
11 R2=0.4; //given R'2 in ohm
12 Xeq=5; //given Xeq in ohm
13 Td=30; //load torque of the motor in ohm
14 f=60; //frequency for 3 phase line
15 \text{ ns} = (120*f)/p
16 disp('a)To find the regenerative speed:')
17 Tl=-Td//reversed load torque
18 rpss=ns/60;
```

```
a)To find the regenerative speed:
The regenerative speed is 1241.825938 rpm
b)To calculate the regenerative speed:
The power delivered to the electric supply is 3572.811096 watt
-->
```

Figure 10.1: calculate motor speed and power delivered to the electrical supply

```
19 omegas=(2*%pi*rpss); // angular speed
20 s=(Tl*omegas*R2)/V^2;
21 n=ns*(1-s);
22 mprintf("The regenerative speed is %f rpm",n)
23 disp('b)To calculate the regenerative speed :')
24 rps=n/60;
25 omega=(2*%pi*rps);
26 Pd=Td*omega;
27 I2=sqrt(-Pd/(3*(R2/s)*(1-s))); // to find I'2 which is taken as I2
28 Ploss=3*(R1+R2)*I2'^(2)
29 Pds=Pd-Ploss;
30 mprintf("The power delivered to the electric supply is %f watt",Pds)
```

 ${
m Scilab\ code\ Exa\ 10.2}$ calculate the duty ratio of the FWM

```
1 //Book name: Fundamentals of electrical drives by
Mohamad A. El- Sharkawi
2 //chapter 10
```

Scilab 5.5.2 Console

```
The duty ratio of the FWM is 0.118652 -->
```

Figure 10.2: calculate the duty ratio of the FWM

```
Scalab 5.5.2 Console

The torque developed is 60 Nm

The slip is -0.041888

The current of the induction motor does not surge to high value when the concurrent braking is implemented -->
```

Figure 10.3: calculate slip and current and also torque at all operating points

```
//example 10.2
//edition 1
//publishing place:Thomson Learning
clc;
clear;
Vdc=200;//voltage at the dc link in volt
I=25;//motor current in A
R1=0.5;//stator resistance in ohm
Ib=3*I;
Vb=Ib*1.5*R1;//braking voltage in volt
d=1.5*(Vb/Vdc)^2;
mprintf("\nThe duty ratio of the FWM is %f",d)
```

Scilab code Exa 10.3 calculate slip and current and also torque at all operating p

```
1 //Book Name: Fundamentals of electrical drives by
      Mohamad A. El- Sharkawi
2 //chapter 10
3 //example 10.3
4 // edition 1
5 //publishing place: Thomson Learning
6 clc;
7 clear;
8 n1=1150; // full load speed in rpm
9 V=300; //terminal voltage in volt
10 f=80; //frequency in Hz
11 Rr=0.5; //rotor resistance of the motor in ohm
12 Xeq=3; //equivalent inductive reactance in ohm
13 ns=1200; //nearest synchronous speed in rpm
14 rpss=ns/60;
15 omegas=(2*\%pi*rpss);
16 \text{ s1} = (\text{ns} - \text{n1}) / \text{ns};
17 T6=(V^{(2)}*s1)/(omegas*Rr); //torque at the point 6
18 T6 = ceil(T6);
19 mprintf("\nThe torque developed is %d Nm", T6)//
      approximated value
20 s6=(T6*Rr*(-omegas))/V^{(2)};
21 mprintf("\nThe slip is %f",s6)
22 \quad n6 = (-ns) * (1-s6);
23 mprintf("\nThe current of the induction motor does
      not surge to high value when the concurrent
      braking is implemented")
```

Chapter 11

Dynamics of electric drive systems

Scilab code Exa 11.1 calculate the motor speed

Figure 11.1: calculate the motor speed

Scilab 5.5.2 Console

To achieve the desired starting current the gear ratio n1/n2 must be between 0.632456 -->

Figure 11.2: calculate and show how to achieve the desired starting time

```
7 clear;
                                //constant in Vsec
8 \text{ Kphi}=3;
                               //resistance in ohm
9 \text{ Ra=1};
                              //inductance in mH
10 La=10;
11 V = 600;
                              //rated voltage of the
      motor in volt
12 Vt = 150;
                             //starting voltage in volt
13 T1=20;
                           //constant torque in Nm
                           //total moment of inertia in
14 m=6;
     Nm sec^2
15 omegaf = (Vt/Kphi) - ((Ra*T1)/Kphi^(2));
16 nf=(omegaf*60)/(2*%pi);
17 mprintf("\nThe motor speed after 5 sec is %d rpm",nf
18 //The plot obtained in the book is using a
      simulation software using specific design that is
       avaliable in the software. In scilab or xcos
      there is no option to simulate DC shunt motor
```

Scilab code Exa 11.3 calculate and show how to achieve the desired starting time

```
Scilab 5.5.2 Console

The time required to change the motor speed is 0.810097 sec

-->
```

Figure 11.3: calculate the time required to change the motor speed

```
//publishing place:Thomson Learning
clc;
clear;
Ra=2;//armature resistance in ohm
Tst1=2;//limited starting time in sec
Kphi=3;//field constant in V sec
Jm=1;//motor moment of inertia in Nm
Jl=5;//load moment of inertia in Nm
tau=((Jl+Jm)*Ra)/Kphi^(2);
Tst=3*tau;//starting time of the motor based on given data in sec
Jeq=(Tst1*(Kphi^(2)))/(3*Ra);
gr=sqrt((Jeq-Jm)/J1);//gear ratio n1/n2
mprintf("To achieve the desired starting current the gear ratio n1/n2 must be between %f",gr)
```

Scilab code Exa 11.4 calculate the time required to change the motor speed

```
Scalab 5.5.2 Console

The terminal voltage that stop the motor and keep it at holding is 6.666667 V

The traveling time during the braking is 2 sec

-->
```

Figure 11.4: calculate terminal voltage and traveling time during braking

```
8 Ra=1; //armature resistance in ohm
9 Kphi=3;//field constant in V sec
10 Vt=500; //terminal voltage in volt
11 Vf=600; //increased motor voltage in volt
12 Td=20; //constant torque of thmotor in Nm
13 J=6; //total moment of inertia of the drive in Nm
14 omega0=(Vt/Kphi)-((Ra*Td)/Kphi^(2));//initial speed
     in rad/sec
  omegaf = (Vf/Kphi) - ((Ra*Td)/Kphi^(2)); //final speed in
15
      rad/sec
16 tau=(J*Ra)/Kphi^(2);
17 t=-(tau*log((0.05*omegaf)/(omegaf-omega0)));//
      obtained from the equation of omega=omega(f)(1-e
     -t/tau)+omega(0)e-t/tau
18 mprintf ("The time required to change the motor speed
      is %f sec",t)
```

 ${f Scilab\ code\ Exa\ 11.5}$ calculate terminal voltage and traveling time during braking

```
Scilab 5.52 Console

The starting time of the motor at no load and full voltage and frequency is 5.182045 sec -->
```

Figure 11.5: compute the starting time of the motor at no load and full load voltage

```
6 clc;
7 clear;
8 Ra=1; //armature resistance in ohm
9 Kphi=3;//field constant in V sec
10 Vt=500;//terminal voltage in volt
11 Td=20; //constant torque of the motor in Nm
12 J=6; //total moment of inertia of the drive in Nm
13 omegaf = 0;
14 Vb=(omegaf+((Ra*Td)/Kphi^(2)))*Kphi;
15 mprintf("\nThe terminal voltage that stop the motor
     and keep it at holding is %f V", Vb)
16 tau=(J*Ra)/Kphi^(2);
17 t=3*tau; // the motor reaches the holding state when
     speed is 5% of initial speed
18 mprintf("\nThe traveling time during the braking is
     \%d sec",t)
```

 ${f Scilab\ code\ Exa\ 11.6}$ compute the starting time of the motor at no load and full lo

```
Scilab 5.5.2 Console
```

```
The starting time of the induction machine is 4.311044 sec -->
```

Figure 11.6: compute the starting time

```
6 clc;
7 clear;
8 V=480; //terminal voltage in volt
9 n=1120; //related full load speed of the motor in rpm
10 R1=1; //stator resistance in ohm
11 R2=1; //rotor resistance referred to stator in ohm
12 X1=5; // equivalent winding resistance in ohm
13 J=4; //inertia of the motor in NM sec^2
14 ns=1200;//nearest synchronous speed of the motor in
     rpm
15 \text{ K} = 1.196;
16 rps=ns/60;
17 omegas=(2*%pi*rps);
18 Tmax=V^{(2)}/(2*omegas*(R1+sqrt(R1^{(2)}+X1^{(2)})));
19 tau=(J*omegas)/Tmax;
20 smax=R2/sqrt(R1^{(2)}+X1^{(2)});
21 tst=(tau/K)*((0.25/smax)+(1.95*smax)+smax);
22 mprintf("The starting time of the motor at no load
      and full voltage and frequency is %f sec", tst)
```

Scilab code Exa 11.7 compute the starting time

```
Scilab 5.5.2 Console

The magnitude of motor voltage during braking is 458.261365 volt

-->
```

Figure 11.7: compute the magnitude of the motor voltage

```
4 // edition 1
5 //publishing place: Thomson Learning
6 clc;
7 clear;
8 V=480; //terminal voltage in volt
9 n=1120; //related full load speed of the motor in rpm
10 R1=1; //stator resistance in ohm
11 R2=1; //rotor resistance referred to stator in ohm
12 Radd=1; //starting resistance inserted in the rotor
      circuit in ohm
13 X1=5; //equivalent winding resistance in ohm
14 J=4; //inertia of the motor in NM sec^2
15 ns=1200; // nearest synchronous speed of the motor in
     rpm
16 rps=ns/60;
17 omegas = (2*%pi*rps);
18 smax=(R2+Radd)/sqrt(R1^(2)+X1^(2));
19 K=1.392;
20 Tmax=V^{(2)}/(2*omegas*(R1+sqrt(R1^{(2)}+X1^{(2)})));
21 tau=(J*omegas)/Tmax;
22 tst=(tau/K)*((0.25/smax)+(1.95*smax)+smax);
23 mprintf("The starting time of the induction machine
      is \%f \sec", tst)
```

Scilab code Exa 11.8 compute the magnitude of the motor voltage

```
1 //Book Name: Fundamentals of electrical drives by
      Mohamad A. El- Sharkawi
2 //chapter 11
\frac{3}{2} //example 11.8
4 // edition 1
5 //publishing place: Thomson Learning
6 clc;
7 clear;
8 V=480; // terminal voltage in volt
9 n=1120; //related full load speed of the motor in rpm
10 R1=1; //stator resistance in ohm
11 R2=1;//rotor resistance referred to stator in ohm
12 X1=5; //equivalent winding resistance in ohm
13 J=4; //inertia of the motor in NM sec^2
14 ns=1200; // nearest synchronous speed of the motor in
15 tbr=15; //time taken to stop the motor in sec
16 \text{ s1=2};
17 	 s2=1;
18 rps=ns/60;
19 omegas = (2 * %pi * rps);
20 smax=R2/sqrt(R1^{(2)}+X1^{(2)});
21 Tmax=V^{(2)}/(2*omegas*(R1+sqrt(R1^{(2)}+X1^{(2)})));
22 \quad tau = (2*tbr)/(((s1^(2)-s2^(2))/(2*smax))+(smax*log(s1))
      /s2))+(2*smax*(s1-s2)));
23 Tmax1=(J*omegas)/tau;
24 Vbr=sqrt(Tmax1/Tmax)*V;
25 mprintf("The magnitude of motor voltage during
      braking is %f volt", Vbr)
26 //The answer provided in the textbook is wrong
```

```
Scilab 5.5.2 Console

The value of braking resistance to minimize the braking time is 2.805417 ohm

-->
```

Figure 11.8: compute the value of braking resistance

Scilab code Exa 11.9 compute the value of braking resistance

```
1 //Book Name: Fundamentals of electrical drives by
      Mohamad A. El- Sharkawi
2 //chapter 11
3 //example 11.9
4 // edition 1
5 // publisher and place: Nelson Engineering
6 clc;
7 clear;
8 V=480;//terminal voltage in volt
9 n=1120; //related full load speed of the motor in rpm
10 R1=1; //stator resistance in ohm
11 R2=1; //rotor resistance referred to stator in ohm
12 Xeq=5; //equivalent winding resistance in ohm
13 J=4; //inertia of the motor in NM sec^2
14 ns=1200; // nearest synchronous speed of the motor in
     rpm
15 \text{ K} = 1.196;
16 \text{ rps=ns/60};
17 omegas = (2*%pi*rps);
18 \text{ s1=2};
19 s2=1;
20 Tmax=V^{(2)}/(2*omegas*(R1+sqrt(R1^{(2)}+Xeq^{(2)})));
21 tau=(J*omegas)/Tmax;
22 smax = sqrt((s2^2-s1^2)/(((-log(s1/s2))-(2*(s1-s2)))
      *2));//the equation is obtained by
      differentiating thr with respect to smax
23 Radd=(smax*sqrt(R1^2+Xeq^2))-R2;//equation to find
```

```
Scilab 5.5.2 Console

The starting time of the induction machine is 16.926780 sec -->
```

Figure 11.9: compute the starting time

```
the Radd
24 mprintf("\nThe value of braking resistance to minimize the braking time is %f ohm", Radd)
```

Scilab code Exa 11.10 compute the starting time

```
1 //Book Name: Fundamentals of electrical drives by
                                              Mohamad A. El- Sharkawi
     2 //chapter 11
     \frac{3}{2} = \frac{1}{2} \cdot \frac{1}
     4 // edition 1
     5 // publisher and place: Nelson Engineering
     6 clc;
     7 clear;
     8 V=480;//terminal voltage in volt
     9 n=1120; //related full load speed of the motor in rpm
10 R1=1; //stator resistance in ohm
11 R2=1;//rotor resistance referred to stator in ohm
12 X1=5; //equivalent winding resistance in ohm
13 J=4; //inertia of the motor in NM sec^2
14 ns=1200; //nearest synchronous speed of the motor in
                                             rpm
15 K=1.196;
```

```
16 T1=60; //load torque in Nm
17 rps=ns/60;
18 omegas=(2*\%pi*rps);
19 Tmax1=V^{(2)}/(2*omegas*(R1+sqrt(R1^{(2)}+X1^{(2)})));
20 \quad \text{Tmax} = \text{fix} (\text{Tmax}1)
21 tau=(J*omegas)/Tmax;
22 smax=R2/sqrt(R1^(2)+X1^(2));
23 TR=T1/Tmax;
24 A=2*(smax^(2)-((K*smax)/TR));
25 Q=A^(2)-(4*smax^(2));
26 B=1+A+smax^{(2)};
27 mB = abs(B);
28 D1=(-2/\operatorname{sqrt}(Q))*(\operatorname{atanh}(\operatorname{abs}(2+A)/\operatorname{sqrt}(Q)));
29 D = abs(D1);
30 tst=(tau/TR)*(1-(((0.5*A)-smax^(2))*(abs(A*D)+log10(
      mB))));
31 mprintf("\nThe starting time of the induction
      machine is %f sec",tst)
```