Scilab Textbook Companion for Wireless Communications Principles and Practices by T. S. Rappaport¹

Created by
Priyanka Gavadu Patil
Wireless communication
Others
Pillai HOC College Of Engineering & Technology
College Teacher
None
Cross-Checked by
Spandana

July 31, 2019

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Wireless Communications Principles and Practices

Author: T. S. Rappaport

Publisher: Pearson, New Delhi

Edition: 2

Year: 2002

ISBN: 81-7808-648-4

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
2	Appendix B Noise figure calculations for link budgets	6
3	The cellular concept system design fundamentals	12
4	Mobile radio propagation large scale path loss	33
5	Mobile radio propagation small scale propagation	57
6	Modulation techniques for mobile radio	79
7	Equalization diversity and channel coding	101
8	Speech coding	106
9	Multiple access techniques for wireless communications	118

List of Scilab Codes

Exa 2.1	To determine SNR at the detector output stage	6
Exa 2.2	To compute noise figure of mobile receiver	
	system	7
Exa 2.3	To determine average output thermal noise	
	power	8
Exa 2.4	To determine average signal strength at the	
	antenna terminal	10
Exa 3.1	To compute the number of channels available	
	per cell for four cell reuse system and seven	
	cell reuse system and twelve cell reuse system	12
Exa 3.2	To find frequency reuse factor for path loss	
	exponent 4 and $3 \dots \dots \dots \dots$	15
Exa 3.4	To find number of users for Number of chan-	
	nels 1 and 5 and 10 and 20 and $100 \dots$	17
Exa 3.5	To find number of users for system A and sys-	
	tem B and system C	19
Exa 3.6	To find Number of cells in given area Num-	
	ber of channels per cell Traffic intensity per	
	cell Maximum carried traffic Total no of users	
	for 2percent GOS and Number of mobiles per	
	unique channel and Maximum number of users	
	could be served at one time	22
Exa 3.7	To find number of users per square km prob-	
	ability that delayed call have to wait longer	
	than 10sec and probability that call is delayed	
	more than $10 \sec \dots \dots \dots \dots$	25

Exa 3.8	To find number of channels in 3 km by 3 km	
	square centered around A in given Figure for	
	without use of microcell with the use of let-	
	tered microcells and all base stations are re-	
	placed by microcells	28
Exa 3.9	To analyze trunking efficiency capacity of sec-	
	toring and unsectoring	30
Exa 4.1	To find far field distance for antenna with	
	maximum dimensions and operating frequency	33
Exa 4.2	To find transmitter power in dBm and Trans-	
	mitter power in dBW and the received power	
	of antenna in dBm at free space distance of	
	100m from antenna and 10km	34
Exa 4.3	To find power at receiver Magnitude of E field	
	at receiver and rms voltage applied to receiver	
	input	36
Exa 4.5	To calculate the Brewster angle	39
Exa 4.6	To find the length and effective aperture of	
	receiving antenna and the received power at	
	mobile	40
Exa 4.7	To compute diffraction loss and identify Fres-	
	nel zone within which tip of obstruction lies	
	for height 25 m 0 m and negative 25m	43
Exa 4.8	To determine the loss due to knife edge diffrac-	
	tion and the heigth of obstacle required to in-	
	duce 6dB diffraction loss	46
Exa 4.9	To find The minimum mean square error The	
	standard deviation about mean value The re-	
	ceived power at 2 km The likelihood that the	
	received signal level at 2 km The percentage	
	of area within 2 km	49
Exa 4.10	To find the power at receiver	52
Exa 4.11	To find the mean path loss	54
Exa 5.1	To compute received carrier frequency if mo-	
	bile is moving towards the transmitter and	
	away from the transmitter and in the direc-	
	tion perpendicular to arrival direction of trans-	
	mitted signal	57

Exa 5.2	To find time delay width and maximum RF	00
D FO	bandwidth	60
Exa 5.3	To find average narrowband power and to com-	CO
D 5.4	pare average narrow band and wideband power	62
Exa 5.4	To compute RMS delay spread and maximum	0.0
D **	bit rate	66
Exa 5.5	To calculate mean excess delay rms delay spread	00
T * 0	and maximum excess delay	68
Exa 5.6	To determine proper spatial sampling interval	
	for small scale propagation number of sam-	
	ples required over 10m time required to make	
	these measurements and Doppler spread for	
_	this channel	71
Exa 5.7	To compute the positive going lvel crossing	
	rate and maximum velocity of mobile	73
Exa 5.8	To find the average fade duration	75
Exa 5.9	To find the average fade duration and aver-	
	age number of bit errors per second and to	
	determine whether the fading is slow or fast	76
Exa 6.1	To compute the carrier power and percentage	
	of total power in carrier power and power in	
	each side band	79
Exa 6.2	To compute the peak frequency deviation and	
	the modulation index	81
Exa 6.3	To determine the IF bandwidth necessary to	
	pass the given signal	83
Exa 6.4	To design an RLC network that implements	
	an IF quadrature FM detector	84
Exa 6.5	To determine the analog bandwidth and out-	
	put SNR improvement if modulation index	
	is increased from three to five and trade off	
	bandwidth for this improvement	87
Exa 6.6	To determine the maximum theoretical datarate	
	and to compare this rate to US digital cellular	
	standard	89
Exa 6.7	To determine the maximum theoretical datarate	
	and to compare this rate to GSM standard.	90

Exa 6.8	To find the first zero crossing RF bandwidth	
	of rectangular pulse and compare to raised	
	cosine filter pulse	92
Exa 6.9	To determine phase and values of Ik and Qk	
	during transmission of bit stream 001011 us-	
	ing pi by 4 DQPSK	94
Exa 6.10	To demonstrate how the received signal is de-	
	tected properly using baseband differential de-	
	tector	97
Exa 6.11	To find 3 dB bandwidth for Gaussian low pass	
	filter to produce 90 percent power bandwidth	99
Exa 7.3	To determine the maximum Doppler shift and	
	the coherence time of the channel and the	
	maximum number of symbols that could be	
	transmitted	101
Exa 7.4	To determine probability that the SNR will	
	drop below threshold SNR	104
Exa 8.1	To compute the mean square error distortion	
	and output signal to distortion ratio	106
Exa 8.2	To compute transmission bit rate average and	
	peak signal to quantization noise ratio	109
Exa 8.3	To compute the minimum encoding rate of given	
	4 sub band coder	110
Exa 8.4	To find the upper bound of the transmission	
	bit rate	113
Exa 8.5	To compute the gross channel data rate	115
Exa 9.1	To find the intermodulation frequencies gen-	
	erated	118
Exa 9.2	To find number of channels available	121
Exa 9.3	To find number of simultaneous users accom-	
	modated in GSM	121
Exa 9.4	To find the time duration of a bit and the time	
	duration of a slot and the time duration of a	
	frame and how long must a user occupying	
	single time slot wait between two successive	
	transmission	123
Exa 9.5	To find the frame efficiency	125
	J	_

Exa 9.6	To determine the maximum throughput using	
	ALOHA and slotted ALOHA	127
Exa 9.7	To evaluate 4 different radio standards and to	
	choose the one with maximum capacity	129
Exa 9.9	To determine the maximum number of users	
	using omnidirectional base station antenna and	
	no voice activity and three sectors at the base	
	station and voice activity detection	131

List of Figures

2.1	To determine SNR at the detector output stage	7
2.2	To compute noise figure of mobile receiver system	8
2.3	To determine average output thermal noise power	9
2.4	To determine average signal strength at the antenna terminal	10
3.1	To compute the number of channels available per cell for four cell reuse system and seven cell reuse system and twelve cell	
	reuse system	13
3.2	To find frequency reuse factor for path loss exponent 4 and 3	15
3.3	To find number of users for Number of channels 1 and 5 and	
	10 and 20 and 100	17
3.4	To find number of users for system A and system B and system C	19
3.5	To find Number of cells in given area Number of channels per cell Traffic intensity per cell Maximum carried traffic Total no of users for 2percent GOS and Number of mobiles per unique channel and Maximum number of users could be served at one	10
	time	22
3.6	To find number of users per square km probability that delayed call have to wait longer than 10sec and probability that call is	
	delayed more than 10 sec	25

3.7	To find number of channels in 3 km by 3 km square centered around A in given Figure for without use of microcell with the use of lettered microcells and all base stations are replaced by
3.8	microcells
4.1	To find far field distance for antenna with maximum dimensions and operating frequency
4.2	To find transmitter power in dBm and Transmitter power in dBW and the received power of antenna in dBm at free space distance of 100m from antenna and 10km
4.3	To find power at receiver Magnitude of E field at receiver and rms voltage applied to receiver input
4.4	To calculate the Brewster angle
4.5	To find the length and effective aperture of receiving antenna and the received power at mobile
4.6	To compute diffraction loss and identify Fresnel zone within which tip of obstruction lies for height 25 m 0 m and negative 25m
4.7	To determine the loss due to knife edge diffraction and the height of obstacle required to induce 6dB diffraction loss
4.8	To find The minimum mean square error The standard deviation about mean value The received power at 2 km The likelihood that the received signal level at 2 km The percent-
4.0	age of area within 2 km
4.9	To find the power at receiver
4.10	To find the mean path loss
5.1	To compute received carrier frequency if mobile is moving towards the transmitter and away from the transmitter and in the direction perpendicular to arrival direction of transmitted signal
5.2	To find time delay width and maximum RF bandwidth
5.3	To find average narrowband power and to compare average narrow band and wideband power
5.4	To compute RMS delay spread and maximum bit rate

5.5	To calculate mean excess delay rms delay spread and maximum excess delay
5.6	To determine proper spatial sampling interval for small scale propagation number of samples required over 10m time required to make these measurements and Doppler spread for this channel
5.7	To compute the positive going lvel crossing rate and maximum velocity of mobile
5.8	To find the average fade duration
5.9	To find the average fade duration and average number of bit errors per second and to determine whether the fading is slow or fast
6.1	To compute the carrier power and percentage of total power in carrier power and power in each side band
6.2	To compute the peak frequency deviation and the modulation index
6.3	To determine the IF bandwidth necessary to pass the given signal
6.4	To design an RLC network that implements an IF quadrature FM detector
6.5	To design an RLC network that implements an IF quadrature FM detector
6.6	To determine the analog bandwidth and output SNR improvement if modulation index is increased from three to five and trade off bandwidth for this improvement
6.7	To determine the maximum theoretical datarate and to compare this rate to US digital cellular standard
6.8	To determine the maximum theoretical datarate and to compare this rate to GSM standard
6.9	To find the first zero crossing RF bandwidth of rectangular pulse and compare to raised cosine filter pulse
6.10	To determine phase and values of Ik and Qk during transmission of bit stream 001011 using pi by 4 DQPSK
6.11	To demonstrate how the received signal is detected properly using baseband differential detector
6.12	To find 3 dB bandwidth for Gaussian low pass filter to produce 90 percent power bandwidth

7.1	To determine the maximum Doppler shift and the coherence time of the channel and the maximum number of symbols that could be transmitted	102
7.2	To determine probability that the SNR will drop below threshold SNR	103
8.1	To compute the mean square error distortion and output signal to distortion ratio	107
8.2	To compute transmission bit rate average and peak signal to quantization noise ratio	109
8.3	To compute the minimum encoding rate of given 4 sub band coder	111
8.4	To find the upper bound of the transmission bit rate	113
8.5	To compute the gross channel data rate	115
9.1	To find the intermodulation frequencies generated	119
9.2	To find number of channels available	120
9.3	To find number of simultaneous users accommodated in GSM	122
9.4	To find the time duration of a bit and the time duration of a slot and the time duration of a frame and how long must a user occupying single time slot wait between two successive	
	transmission	123
9.5	To find the frame efficiency	125
9.6	To determine the maximum throughput using ALOHA and	
	slotted ALOHA	127
9.7	To evaluate 4 different radio standards and to choose the one	
	with maximum capacity	128
9.8	To determine the maximum number of users using omnidirectional base station antenna and no voice activity and three	
	sectors at the base station and voice activity detection	131

Chapter 2

Appendix B Noise figure calculations for link budgets

Scilab code Exa 2.1 To determine SNR at the detector output stage

```
1 // Example no B.1
2 // To determine SNR at the detector output stage
3 // Page no. 613
5 clc;
6 clear all;
8 // Given data
9 SNRin=20;
      SNR at the receiver antenna input terminal in dB
                                                       //
10 F = 6;
      Noise figure in dB
11
12 // SNR at the detector output stage
13 SNRout=SNRin-F;
                                                      //
     SNR at the detector output stage in dB
14
```

Figure 2.1: To determine SNR at the detector output stage

Scilab code Exa 2.2 To compute noise figure of mobile receiver system

Figure 2.2: To compute noise figure of mobile receiver system

```
//Noise
11 F2=6;
      figure of phone in dB
12 F2=10^{(F2/10)};
                                                     //Noise
      figure of phone
13
14 Fsys=F1+((F2-1)/0.5);
                                                     //Noise
      figure of mobile receiver system
15 Fsys=10*log10 (Fsys);
                                                     //Noise
      figure of mobile receiver system in dB
16
17 // Displaying the result in command window
18 printf('\n Noise figure of mobile receiver system =
      \%0.0 \, \mathrm{f} \, \mathrm{dB}', Fsys);
```

Scilab code Exa 2.3 To determine average output thermal noise power

```
1\ //\ Example no B.3 2\ //\ To\ determine\ average\ output\ thermal\ noise\ power 3\ //\ Page\ no\ . 614
```


Figure 2.3: To determine average output thermal noise power

```
5 clc;
6 clear all;
7
8 // Given data
9 T0=300;

    // Ambient room temperature in K
10 Fsys=8;

    // Noise figure of the system
11 Tant=290;

    // Effective temperature of antenna in K
12 K=1.38*10^-23;

    // Boltzmann's constant in J/K
13 B=30000;

    // Effective bandwidth in Hz
14
15 Te=(Fsys-1)*T0;
```


Figure 2.4: To determine average signal strength at the antenna terminal

```
// Effective noise temperature in K
16 Ttotal=Tant+Te;

    // Overall system noise temperature in K
17
18 // To determine average output thermal noise power
19 Pn=(1+(Ttotal/T0))*K*T0*B;

    Average output thermal noise power in W
20 Pn=10*log10(Pn/(10^-3));

    // Average output thermal noise power in dBm
21
22 // Displaying the result in command window
23 printf('\n Average output thermal noise power = %0.1 f dBm',Pn);
```

Scilab code Exa 2.4 To determine average signal strength at the antenna terminal

```
1 // Example no B.4
2 // To determine average signal strength at the
     antenna terminal
3 // Page no. 614
5 clc;
6 clear all;
8 // Given data
9 Pn = -119.5;
     // Average output thermal noise power in dBm
10 SNR=30;
     // SNR at the receiver output in dB
11
12 // To determine average signal strength at the
     antenna terminal to provide 30dB SNR
13 Ps=SNR+Pn;
     // Average signal strength at the antenna
     terminal
14
15 // Displaying the result in command window
16 printf('\n Average signal strength at the antenna
     terminal to provide 30dB SNR = \%0.1 f dBm', Ps);
```

Chapter 3

The cellular concept system design fundamentals

Scilab code Exa 3.1 To compute the number of channels available per cell for four

Figure 3.1: To compute the number of channels available per cell for four cell reuse system and seven cell reuse system and twelve cell reuse system

```
11 Nc = 2;
     // Number of simplex channels
12 Bc=Bc*Nc;
     // Channel bandwidth in Hz
13
14 Ntotal=B/Bc;
                                                       //
       Total number of channels
15
16 //a) To compute the number of channels available per
       cell for four-cell reuse system
17 N=4;
     // frequency reuse factor
18 chpercell=Ntotal/N;
                                                // number
       of channels available per cell for four-cell
     reuse system
19
20 // Displaying the result in command window
```

```
21 printf('\n The number of channels available per cell
      for 4-cell reuse system = \%0.0 f channels',
      chpercell);
22 printf('\n One control channel and 160 voice
      channels would be assigned to each cell.');
23
24 // b) To compute the number of channels available
     per cell for seven-cell reuse system
25 N = 7;
     // frequency reuse factor
26 chpercell=ceil(Ntotal/N);
                                               // number
      of channels available per cell for seven-cell
     reuse system
27
28 // Answer is varrying due to round-off error
29
30 // Displaying the result in command window
31 printf('\n \n The number of channels available per
      cell for 7-cell reuse system = \%0.0 f channels',
      chpercell);
32 printf('\n Each cell would have one control channel,
      four cells would have 90 voice channels and
      three cells would have 91 voice channels.');
33
34 // c) To compute the number of channels available
     per cell for 12-cell reuse system
35 N = 12;
     // frequency reuse factor
36 chpercell=Ntotal/N;
     number of channels available per cell for seven-
      cell reuse system
37
38 // Displaying the result in command window
39 printf('\n \n The number of channels available per
```

```
Fire 664 Central Applications ?

| Image: Applications | Image: Application | Image: App
```

Figure 3.2: To find frequency reuse factor for path loss exponent 4 and 3

```
cell for 12-cell reuse system = %0.0 f channels',
    chpercell);
40 printf('\n Each cell would have one control channel,
    eight cells would have 53 voice channels and
    four cells would have 54 voice channels.');
```

Scilab code Exa 3.2 To find frequency reuse factor for path loss exponent 4 and 3

```
1 // Example 3.2
2 // To find frequency reuse factor for path loss
        exponent (n) a)n=4 b)n=3
3 // Page No.72
4
5 clc;
6 clear;
7
8 // Given data
9 SIdB=15;  // Signal to
    interference(dB)
```

```
// Number of cochannel
10 io=6;
      cell
11
12 // For n=4
13 \quad n1=4;
                                     // Path loss exponent
14 N1=7;
                                     // First consideration:
       frequency reuse factor N=7
15 DR1 = sqrt(3*N1);
                                     // Co-channel reuse
      ratio
                                     // Signal to
16 \text{ si1} = (1/\text{io}) * (DR1)^n1;
      interference
17 sidB1=10*log10(si1);
                                     // Signal to
      interference (dB)
18
19 // For n=3
20 \text{ n} 2 = 3;
                                     // Path loss exmponent
21 \text{ si} = (1/\text{io}) * (DR1)^n2;
                                     // Signal to
      interference for first consideration: frequency
      reuse factor N=7
                                     // Signal to
22 \text{ sidB} = 10 * \frac{\log 10}{\sin 3};
      interference (dB)
23
24 N2 = 12;
                                     // second consideration
        : frequency reuse factor N=12 since sidB<SIdB
25 \quad DR2 = sqrt(3*N2);
                                     // Co-channel reuse
      ratio
26 \text{ si2}=(1/\text{io})*(DR2)^n2;
                                     // Signal to
      interference
  sidB2=10*log10(si2);
                                     // Signal to
      interference (dB)
28
29 // Displaying the result in command window
30 printf('\n Signal to noise ratio for n=4 with
      frequency reuse factor N=7 = \%0.2 \, f \, dB', sidB1);
31 printf('\n Signal to noise ratio for n=3 with
      frequency reuse factor N=7 = \%0.2 \, f \, dB', sidB);
32 printf('\n Signal to noise ratio for n=3 with
      frequency reuse factor N=12 = \%0.2 \, f \, dB', sidB2);
```

Figure 3.3: To find number of users for Number of channels 1 and 5 and 10 and 20 and 100

```
33 printf('\n Since SIR is for n=3 with frequency reuse factor N=7 greater than the minimum required, so N=12 is used.');
```

Scilab code Exa 3.4 To find number of users for Number of channels 1 and 5 and 10

```
(12 // a) To find number of users for C=1
13 C1=1;
                            // Number of channels
                             // Total traffic intensity
14 \quad A1 = 0.005;
      from Erlangs B chart
15 U1 = (A1/Au);
                             // Number of users
                             // Since one user could be
16 U1=1;
      supported on one channel
17
18 // b) To find number of users for C=5
19 C2=5;
                            // Number of channels
                             // Total traffic intensity
20 \quad A2 = 1.13;
      from Erlangs B chart
21 U2=round(A2/Au);
                            // Number of users
22
23 // c)To find number of users for C=10
24 C3=10;
                             // Number of channels
25 \quad A3 = 3.96;
                             // Total traffic intensity
      from Erlangs B chart
26 \quad U3 = round(A3/Au);
                            // Number of users
27
28 // Answer is varrying due to round off error
29
30 // d) To find number of users for C=20
31 \quad C4 = 20;
                            // Number of channels
                             // Total traffic intensity
32 \quad A4 = 11.10;
      from Erlangs B chart
33 \quad U4 = round(A4/Au);
                            // Number of users
34
35 // Answer is varrying due to round off error
36
37 // e)To find number of users for C=100
                            // Number of channels
38 \quad C5 = 100;
39 \quad A5 = 80.9;
                             // Total traffic intensity
      from Erlangs B chart
                            // Number of users
40 U5=round(A5/Au);
41
42 // Displaying the result in command window
43 printf('\n Total number of users for 1 channel = \%0
```


Figure 3.4: To find number of users for system A and system B and system C

 ${f Scilab\ code\ Exa\ 3.5}$ To find number of users for system A and system B and system C

```
1 // Example 3.5
2 // To find number of users for a)system A b)system B
        c)system C
3 // Page No.83
4
5 clc;
```

```
6 clear;
8 // Given data
                                            // Grade of
9 \text{ GOS} = 0.02;
      Service (Probability of bloacking)
10 \quad lamda=2;
                                            // Average calls
       per hour
                                            // Call duration
11 H = (3/60);
       in seconds
12
                                            // Traffic
13 Au=lamda*H;
      intensity per user
14
15 // a) To find number of users for System A
16 C1=19;
                                          // Number of
      channels used
                                              Traffic
17 A1=12;
      intensity from Erlang B chart
18 U1=round(A1/Au);
                                          // Number of
      users per cell
19 cells1=394;
                                          // Total number
20 \text{ TU1=U1*cells1};
      of users
21 MP1=TU1/(2*10^6)*100;
                                          // Market
      penetration percentage
22
23 // b) To find number of users for System B
24 C2 = 57;
                                         // No. of channels
       used
                                         // Traffic
25 \quad A2 = 45;
      intensity from Erlang B chart
26 U2=round(A2/Au);
                                         // Number of users
       per cell
27 \text{ cells2=98};
                                         // Total no. of
  TU2=U2*cells2;
      users
29 MP2=TU2/(2*10^6)*100;
                                         // Market
      penetration percentage
```

```
30
31 // c)To find number of users for System C
32 \quad C3 = 100;
                                         // Number of
      channels used
                                         // traffic
33 \quad A3 = 88;
      intensity from Erlang B chart
34 \quad U3 = round(A3/Au);
                                         // Number of users
      per cell
35 \text{ cells} 3 = 49;
                                         // Total no. of
36 \text{ TU3=U3*cells3};
      users
37 \text{ MP3}=TU3/(2*10^6)*100;
                                         // Market
      penetration percentage
38
39 \quad TU = TU1 + TU2 + TU3;
                                         // Total number of
      users in all 3 systems
40 MP=TU/(2*10^6)*100;
                                         // Combined Market
      penetration percentage
41
42 // Displaying the result in command window
43 printf('\n Total number of users in system A = \%0.0 f
      ', TU1);
44 printf('\n The percentage market penetration of
      system A = \%0.2 \,\mathrm{f}', MP1);
45 printf('\n \n Total number of users in system B = \%0
      .0 f ', TU2);
46 printf('\n The percentage market penetration of
      system B = \%0.3 \, \text{f}', MP2);
  printf('\n \n Total number of users in system C = %0
      .0 f ', TU3);
48 printf('\n The percentage market penetration of
      system C = \%0.3 \, f', MP3);
49 printf('\n \n Total number of users in all 3 systems
       = \%0.0 \, f', TU);
50 printf('\n The combined Market penetration
      percentage of all systems = \%0.3 \,\mathrm{f}, MP);
```


Figure 3.5: To find Number of cells in given area Number of channels per cell Traffic intensity per cell Maximum carried traffic Total no of users for 2percent GOS and Number of mobiles per unique channel and Maximum number of users could be served at one time

 ${
m Scilab\ code\ Exa\ 3.6}$ To find Number of cells in given area Number of channels per c

```
1 // Example 3.6
2 // To find a)Number of cells in given area b)Number of channels/cell c)Traffic intensity per cell d)
    Maximum carried traffic e)Total number of users for 2% GOS f) Number of mobiles per unique channel g)Maximum number of users could be served at one time
3 // Page No.84
4
5 clc;
6 clear;
7
8 // Given data
```

```
// Total
9 Area=1300;
      coverage area in m<sup>2</sup>
10 R=4;
                                             // Radius of
      cell in m
11 N = 7;
                                             // Frequecy
      reuse factor
12 S = 40 * 10^6;
                                             // Allocated
      spectrum in Hz
13 Ch=60*10^3;
                                             // Channel width
       in Hz
14
15 // a) Number of cells
16 CA = 2.5981 * R^2;
                                             // Area of
      hexagonal cell in m<sup>2</sup>
                                             // Number of
17 Nc=round(Area/CA);
      cells
18
19 // Displaying the result in command window
20 printf('\n Number of cells in given system = \%0.0 \,\mathrm{f}
      cells', Nc);
21
22 // b) Number of channels/cell
                                              // Number of
23 C1 = round(S/(Ch*N));
      channels
24
25 // Displaying the result in command window
26 printf('\n \n Number of channels per cell in given
      system = \%0.0 f channels/cell',C1);
27
28 // c) Traffic intensity per cell
                                              // Number of
29 \text{ C1} = 95;
      channels from b)
30 \text{ GOS} = 0.02;
                                              // Grade of
      service
31 \quad A = 84;
                                              // Traffic
      intensity from Erlang B chart
32
33 // Displaying the result in command window
```

```
34 printf('\n \n Traffic intensity in given system = \%0
      .0 f Erlangs/cell', A);
35
36 // d) Maximum carried traffic
37 traffic=Nc*A;
                                          // Maximum
      carried traffic
38
39 // Displaying the result in command window
40 printf('\n \n Maximum carried traffic in given
      system = \%0.0 \, \text{f} Erlangs', traffic);
41
42 // e) Total number of users for 2% GOS
43 trafficperuser=0.03;
                                           // Given
      traffic per user
44 U=traffic/trafficperuser;
                                           // Total number
       of users
45
46 // Displaying the result in command window
47 printf('\n \n Total number of users = \%0.0f users', U
      );
48
  // f) Number of mobiles per unique channel
49
50 C=666;
                                           // Number of
      channels
51 mobilesperchannel=round(U/C);
                                           // Number of
      mobiles per unique channel
52
53 // Displaying the result in command window
54 printf('\n \n Number of mobiles per unique channel =
       \%0.0 \, \text{f mobiles/channel', mobilesperchannel)};
55
56 // g) Maximum number of users could be served at one
      time
57 printf('\n \n Theoretically maximum number of served
       mobiles is the number of available channels in
      the system.')
58 C = C1 * Nc;
                                            // Maximum
      number of users could be served at one time
```


Figure 3.6: To find number of users per square km probability that delayed call have to wait longer than 10sec and probability that call is delayed more than 10 sec

```
59
60 // Displaying the result in command window
61 printf('\n Theoretical Maximum number of users could
be served at one time = %0.0 f users',C);
62 disp('It is 3.4% of customer base.');
```

 ${f Scilab\ code\ Exa\ 3.7}$ To find number of users per square km probability that delayed

```
1 // Example 3.7
2 // To find a)number of users per square km b)
    probability that delayed call have to wait longer
        than t=10sec c)probability that call is delayed
        more than 10 sec
3 // Page 85
4
5 clc;
6 clear;
```

```
8 // Given data
9 R=1.387;
                                                // Radius
      of cell in m
10 Area=2.598*R^2;
                                                // Area of
      hexagonal cell in m<sup>2</sup>
11 cellpercluster=4;
                                                // Number
      of cells/cluster
12 channels=60;
                                                // Number
      of channels
13
14 channelspercell=channels/cellpercluster; // Number
      of channels per cell
15
16 // a) To find number of users per square km
17 A = 0.029;
                                                // Traffic
       intensity per user
                                                // Grade
18 delayprob=0.05;
      of service
19 traffic=9;
                                                   Traffic
       intensity from Erlang chart C
20 U1=traffic/A;
                                                   Total
     number of users in 5sq.km.
21 U=round(U1/Area);
                                                // Number
      of users per square km
22
23 // Displaying the result in command window
24 printf('\n Number of users per square km in given
      system = \%0.0 \,\mathrm{f} users/sq km',U);
25
  // b)To find the probability that delayed call have
      to wait longer than t=10sec
  lambda=1;
                                                // Holding
      time
  H1=A/lambda;
      Duration of call
29 H=H1*3600;
      Duration of call in second
```


Figure 3.7: To find number of channels in 3 km by 3 km square centered around A in given Figure for without use of microcell with the use of lettered microcells and all base stations are replaced by microcells

```
30 t = 10;
31 Pr=exp(-(channelspercell-traffic)*t/H)*100;
     // probability that delayed call have to wait
     longer than t=10 \sec.
32
33 // Displaying the result in command window
34 printf('\n \n Percentage of probability that delayed
       call have to wait longer than t=10 sec = \%0.2 f
     percent', Pr);
35
  // c)To find the probability that call is delayed
36
     more than 10 sec
37 Pr10=delayprob*Pr;
     probability that call is delayed more than 10 sec
38
  // Displaying the result in command window
40 printf('\n \n Percentage of probability that call is
       delayed more than 10 \sec = \%0.2 f percent', Pr10);
```

Scilab code Exa 3.8 To find number of channels in 3 km by 3 km square centered aro

```
1 // Example 3.8
2 // To find number of channels in 3 km by 3 km square
      centered around A in Figure 3.9 for a) without
      use of microcell b) with the use of lettered
      microcells c) all base stations are replaced by
      microcells
3 // Page 89
5 clc;
6 clear;
8 // Given data
9 R = 1;
    // Cell radius in km
10 r = 0.5;
     // Micro-cell radius in km
11 Nc = 60;
     // Number of channels in base station
12
13 // a) To find number of channels without use of
      microcell
14 Nb1=5;
     // Number of base stations in given area
15 N1 = Nb1 * Nc;
     // Number of channels without use of microcell
16
17 // b) To find number of channels with the use of
```

```
lettered microcells
18 \text{ Nb2=6};
      // Number of lettered microcells
19 Nb2 = Nb1 + Nb2;
      // Total number of base stations in given area
20 \text{ N2=Nb2*Nc};
      // Number of channels with the use of lettered
      microcells
21
22 // c)To find number of channels if all base stations
       are replaced by microcells
23 \text{ Nb3} = 12;
      // Number of all the microcells
24 \text{ Nb3} = \text{Nb1} + \text{Nb3};
      // Total number of base stations in given area
25 \text{ N3=Nb3*Nc};
      // Number of channels if all base stations are
      replaced by microcells
26
27 // Displaying the result in command window
28 printf('\n Number of channels without use of
      microcell = \%0.0 f channels', N1);
29 printf('\n \n Number of channels with the use of
      lettered microcells = \%0.0 f channels', N2);
30 printf('\n \n Number of channels if all base
      stations are replaced by microcells = \%0.0 \,\mathrm{f}
      channels', N3);
```


Figure 3.8: To analyze trunking efficiency capacity of sectoring and unsectoring

Scilab code Exa 3.9 To analyze trunking efficiency capacity of sectoring and unsec

```
1 // Example 3.9
2 // To analyze trunking efficiency capacity of
      sectoring and unsectoring
  // Page 92
4
5 clc;
6 clear all;
8 // Given data
9 \text{ H}=2/60;
      // Average call duration in hour
10 GOS = 0.01;
      // Probability of blocking
11
12 // Unsectored system
13 \text{ C1} = 57;
      // Number of traffic channels per cell in
```

```
unsectored system
14 A = 44.2;
     // Carried traffic in unsectored system
15 calls1=1326;
     // Number of calls per hour in unsectored system
     from Erlangs B table
16
17 // 120 degree sectored system
18 C2 = C1/3;
     // Number of traffic channels per antenna sector
     in 120 degree sectored system
19 calls2=336;
     // Number of calls per hour in 120 degree
      sectored system from Erlangs B table
20 \text{ Ns1}=3;
     // Number of sectors
21 capacity=Ns1*calls2;
                                                 // Cell
      capacity or number of calls handled by system per
      hour
22
23 dif=calls1-capacity;
      decrease in cell capacity in 120 degree sectored
     system
24 percentdif = (dif/calls1) *100;
                                        // decrease in
      cell capacity in 120 degree sectored system in
      percentage
25
26 // Displaying the result in command window
27 printf('\n Cell capacity of unsectored system = \%0.0
      f calls/hour',calls1);
```

Chapter 4

Mobile radio propagation large scale path loss

Scilab code Exa 4.1 To find far field distance for antenna with maximum dimensions

```
1 // Example 4.1
2 // To find far field distance for antenna with
     maximum dimensions and operating frequency
3 // Page No.109
5 clc;
6 clear all;
8 // Given data
9 D=1;
                          // Maximum dimension in m
                          // Operating frequency in Hz
10 f=900*10^6;
11 C=3*10^8;
                          // Speed of light in m/sec
12
                          // Carrier wavelength in m
13 lambda=C/f;
14
15 // To find far field distance
16 df = (2*D^2)/lambda;
                       //Far field distance
```


Figure 4.1: To find far field distance for antenna with maximum dimensions and operating frequency

```
17
18 // Displaying the result in command window
19 printf('\n Far field distance = %0.0 f meter', df);
```

 ${f Scilab\ code\ Exa\ 4.2}$ To find transmitter power in dBm and Transmitter power in dBW

```
1 // Example 4.2
2 // To find a) transmitter power in dBm b) Transmitter
    power in dBW and the received power of antenna in
    dBm at free space distance of 100m from antenna
    and 10km
3 // Page No.109
4
5 clc;
6 clear all;
7
8 // Given data
```


Figure 4.2: To find transmitter power in dBm and Transmitter power in dBW and the received power of antenna in dBm at free space distance of 100m from antenna and 10km

```
9 Pt=50;
     // Transmitter power in W
10 fc=900*10^6;
     // Carrier frequency in Hz
  C = 3 * 10^8;
                                                        //
       Speed of light in m/s
12
13 //a) Transmitter power in dBm
14 PtdBm=round(10*log10(Pt/(1*10^(-3))));
                                                        //
      Transmitter power in dBm
15
  // Displaying the result in command window
17 printf('\n Transmitter power = \%0.1 f dBm', PtdBm);
19 //b) Transmitter power in dBW
                                                       //
  PtdBW=round(10*log10(Pt/1));
      Transmitter power in dBW
21
22 // Displaying the result in command window
23 printf('\n Transmitter power = \%0.1 f dBW', PtdBW);
24
```

```
25 // To find receiver power at 100m
26 \text{ Gt} = 1;
                                                           //
      Transmitter gain
27 \text{ Gr} = 1;
      Receiver gain
28 d = 100;
      Free space distance from antenna in m
29 L=1;
                                                           //
      System loss factor since no loss in system
  lambda=C/fc;
      Carrier wavelength in m
31 Pr=(Pt*Gt*Gr*lambda^2)/((4*\%pi)^2*d^2*L);
      Receiver power in W
32 PrdBm = 10 * log 10 (Pr/10^(-3));
                                                           //
      Receiver power in dBm
33
34 // Displaying the result in command window
35 printf('\n Receiver power = \%0.1 \, \text{f dBm'}, PrdBm);
36
37 / \text{For Pr}(10 \text{km})
38 d0 = 100;
      Reference distance
39 d=10000;
      Free space distance from antenna
40 Pr10km=PrdBm+20*log10(d0/d);
      Received power at 10km from antenna in dBm
41
42 // Displaying the result in command window
43 printf('\n Receiver power at 10km from antenna = \%0
      .1 f dBm', Pr10km);
```

Scilab code Exa 4.3 To find power at receiver Magnitude of E field at receiver and

Figure 4.3: To find power at receiver Magnitude of E field at receiver and rms voltage applied to receiver input

```
1 // Example 4.3
2 // To find a) power at receiver b) magnitude of E-
      field at receiver c)rms voltage applied to
      receiver input
3 // Page no. 112
5 clc;
6 clear all;
8 // Given data
9 \text{ Pt} = 50;
     // Transmitter power in Watt
10 fc=900*10^6;
     // Carrier frequency in Hz
11 Gt=1;
     // Transmitter antenna gain
12 Gr = 2;
     // Receiver antenna gain
```

```
13 Rant=50;
      // Receiver antenna resistance in ohm
14
15 // a) Power at receiver
16 d=10*10^3;
      // Distance from antenna in meter
17 lambda=(3*10^8)/fc;
      // Carrier wavelength in meter
18 Prd1=10*log10((Pt*Gt*Gr*lambda^2)/((4*%pi)^2*d^2));
                               // Power at transmitter
      in dBW
19 Prd=10*log10(((Pt*Gt*Gr*lambda^2)/((4*%pi)^2*d^2))
      /(10^-3));
                                 // Power at transmitter
       in dBm
20
21 // Displaying the result in command window
22 printf('\n Power at receiver = \%0.1 f dBW', Prd1);
23 printf('\n Power at receiver = \%0.1 \, \text{f dBm'}, Prd);
24
25 // b) Magnitude of E-field at receiver
26 Ae=(Gr*lambda^2)/(4*\%pi);
     // Aperture gain
27 Pr=10^(Prd1/10);
     // Receiver power in W
28 E=sqrt((Pr*120*%pi)/Ae);
      // Magnitude of E-field at receiver
29
30 // Displaying the result in command window
31 printf('\n \n Magnitude of E-field at receiver = \%0
      .4 f V/m', E);
32
33 // c)rms voltage applied to receiver input
```


Figure 4.4: To calculate the Brewster angle

```
34 Vant=sqrt(Pr*4*Rant)*10^3;

    // rms voltage applied to receiver input
35 //Answer is varrying due to round-off error
36
37 //Displaying the result in command window
38 printf('\n \n RMS voltage applied to receiver input
    = %0.3 f mV', Vant);
```

Scilab code Exa 4.5 To calculate the Brewster angle

```
1 // Example no. 4.5
2 // To calculate the Brewster angle
3 // Page no. 119
4
5 clc;
6 clear all;
7
8 // Given data
```


Figure 4.5: To find the length and effective aperture of receiving antenna and the received power at mobile

 ${
m Scilab\ code\ Exa\ 4.6}$ To find the length and effective aperture of receiving antenna

```
1 // Example no 4.6
2 // To find a)the length and effective aperture of
    receiving antenna b)the received power at mobile
3 // Page no. 125
4
```

```
5 clc;
6 clear;
8 // Given data
9 d=5*10^3;
      distance of mobile from base station in m
10 E0=1*10^-3;
                                                    // E-
      field at 1Km from transmitter in V/m
11 d0=1*10^3;
      Distance from transmitter in m
12 f=900*10^6;
      Carrier frequency used for the system in Hz
13 c=3*10^8;
                                                      //
     Speed of ligth in m/s
14 gain=2.55;
     Gain of receiving antenna in dB
15 G=10^(gain/10);
                                               // Gain
      of receiving antenna
16
17 // a)To find the length and effective aperture of
      receiving antenna
18 lambda=c/f;
                                                    //
     Wavelength
19 L=lambda/4;
     Length of antenna
20 Ae=(G*lambda^2)/(4*\%pi);
                                      // Effective
      aperture of receiving antenna
21
```

```
22 // Displaying the result in command window
23 printf('\n Length of antenna = \%0.4 \, \text{f m',L});
24 printf(' = \%0.2 \, \text{f cm', L*10^2});
25 printf('\n Effective aperture of receiving antenna =
       \%0.3 \, \text{f m}^2', Ae);
26
27 // b) To find the received power at mobile
28 // Given data
29 \text{ ht} = 50;
      // Heigth of transmitting antenna
30 \text{ hr} = 1.5;
      // Heigth of receiving antenna
31 ERd = (2*E0*d0*2*\%pi*ht*hr)/(d^2*lambda);
                         // Electic field at distance d in
       V/m
32 \text{ Prd} = ((ERd^2/377) * Ae);
                                               // The received
        power at mobile in W
33 PrddB=10*log10(Prd);
                                                // The
      received power at mobile in dBW
34 PrddBm=10*log10(Prd/10^-3);
                                        // The received power
        at mobile in dBm
35 Prd=((ERd^2/377)*Ae)*10^13;
                                        // The received power
        at mobile in 10^-13W
36
37 // Displaying the result in command window
38 printf('\n \n The received power at mobile = \%0.1 \, \mathrm{f} \, \mathrm{X}
       10^{-13} \; \mathrm{W'}, Prd);
39 printf(' = \%0.2 \text{ f dBW'}, PrddB);
40 printf (' = \%0.2 \text{ f dBm}', PrddBm);
```


Figure 4.6: To compute diffraction loss and identify Fresnel zone within which tip of obstruction lies for height 25 m 0 m and negative 25m

 ${f Scilab\ code\ Exa\ 4.7}$ To compute diffraction loss and identify Fresnel zone within w

```
1 // Example no 4.7
2 // To compute diffraction loss and identify Fresnel
    zone within which tip of obstruction lies for a)h
    =25m b)h=0 c)h=-25m
3 // Page no. 132
4
5 clc;
6 clear;
7
8 // Given data
9 lambda=1/3;
    // Wavelength in meter
10 d1=1*10^3;
    // Distance between transmitter and obstructing
    screen in m
```

```
11 d2=1*10^3;
      // Distance between receiver and obstructing
      screen in m
12
13 // a) For h=25m
14 h=25;
      // Effective heigth of obstruction screen in m
15 v=h*sqrt((2*(d1+d2))/(lambda*d1*d2));
      // Fresnel diffraction parameter
  printf('\n a) For h=25m Fresnel diffraction
      parameter v = \%0.2 f', v;
17 printf('\n From the plot of Knife-edge diffraction
      gain as a function of Fresnel diffraction
      parameter, diffraction loss is 22dB.');
18 Gd = -20 * log 10 (0.225/v);
                                     // Diffraction loss
       for v > 2.4 in dB
19 printf('\n Using numerical approximation,
      diffraction loss for v > 2.4 = \%0.1 f dB', Gd);
20 delta=(h^2/2)*((d1+d2)/(d1*d2));
      // Path length difference between direct and
      diffracted rays
21 n=(2*delta)/lambda;
      // Number of Fresnel zones in which the
      obstruction lies
22 printf('\n Fresnel zone within which tip of
      obstruction lies = \%0.2 \,\mathrm{f}, n);
23 printf('\n Therefore, the tip of obstruction
      completely blocks the first three Fresnel zones.'
      );
24
25 // b) For h=0
26 h=0:
      // Effective heigth of obstruction screen in m
v=h*sqrt((2*(d1+d2))/(lambda*d1*d2));
      // Fresnel diffraction parameter
28 printf('\n \n b) For h=0 Fresnel diffraction
      parameter v = \%0.0 \, f', v;
```

```
29 printf('\n From the plot of Knife-edge diffraction
      gain as a function of Fresnel diffraction
      parameter, diffraction loss is 6dB.');
30 Gd = -20 * log 10 (0.5 - 0.62 * v);
      // Diffraction loss for v=0 in dB
31 printf('\n Using numerical approximation,
      diffraction loss for v=0 = \%0.0 \, f \, dB', Gd);
32 delta=(h^2/2)*((d1+d2)/(d1*d2));
      // Path length difference between direct and
      diffracted rays
33 n=(2*delta)/lambda;
      // Number of Fresnel zones in which the
      obstruction lies
34 printf('\n Fresnel zone within which tip of
      obstruction lies = \%0.0 \,\mathrm{f}',n);
35 printf('\n Therefore, the tip of obstruction lies in
       middle of first Fresnel zone.');
36
37 // c) For h=-25m
38 h = -25;
                                                        //
       Effective heigth of obstruction screen in m
39 v=h*sqrt((2*(d1+d2))/(lambda*d1*d2));
                       // Fresnel diffraction parameter
40 printf('\n \n c) For h=-25m Fresnel diffraction
      parameter v = \%0.2 f', v);
41 printf('\n From the plot of Knife-edge diffraction
      gain as a function of Fresnel diffraction
      parameter, diffraction loss is approximately 1dB.
      ');
42 \text{ Gd} = 0;
                                                        //
       Diffraction loss for v<-1 in dB
43 printf('\n Using numerical approximation,
      diffraction loss for v < -1 = \%0.0 f in dB', Gd);
44 delta=(h^2/2)*((d1+d2)/(d1*d2));
      // Path length difference between direct and
      diffracted rays
```


Figure 4.7: To determine the loss due to knife edge diffraction and the height of obstacle required to induce 6dB diffraction loss

```
45 n=(2*delta)/lambda;
    // Number of Fresnel zones in which the
    obstruction lies
46 printf('\n Fresnel zone within which tip of
    obstruction lies = %0.2f',n);
47 printf('\n Therefore, the tip of obstruction
    completely blocks the first three Fresnel zones
    but diffraction loss is negligible.');
```

 ${
m Scilab\ code\ Exa\ 4.8}$ To determine the loss due to knife edge diffraction and the he

```
1 // Example no 4.8
2 // To determine a)the loss due to knife-edge
          diffraction b)the height of obstacle required to
        induce 6dB diffraction loss
3 // Page no. 133
4
5 clc;
```

```
6 clear;
8 // Given data
9 f=900*10<sup>6</sup>;
     // Operating frequency in Hz
10 c=3*10^8;
     // Speed of ligth in m/s
11 hr=25;
     // Heigth of receiver in m
12 \text{ ht} = 50;
     // Heigth of transmitter in m
13 h=100;
     // Heigth of obstruction in m
14 d1 = 10 * 10^3;
     // Distance between transmitter and obstruction
      in m
15 d2 = 2 * 10^3;
     // Distance between receiver and obstruction in m
16
17 // a)To determine the loss due to knife-edge
      diffraction
18 lambda=c/f;
                                                         //
       Operating wavelength in m
19 ht=ht-hr;
     // Hegth of transmitter after subtracting
      smallest heigth (hr)
20 h=h-hr;
      // Heigth of obstruction after subtracting
```

```
smallest heigth (hr)
21 bet=atan((h-ht)/d1);
                                              // From
      geometry of environment in rad
22 gamm = atan(h/d2);
                                                   // From
       geometry of environment in rad
23 alpha=bet+gamm;
                                                    //
     From geometry of environment in rad
24 v=alpha*sqrt((2*d1*d2)/(lambda*(d1+d2)));
                        // Fresnel diffraction parameter
25
26 // the loss due to knife-edge diffraction
27 Gd = -20 * log 10 (0.225/v);
      Diffraction loss for v>2.4 in dB
28
29 // Displaying the result in command window
30 printf('\n The loss due to knife-edge diffraction =
     \%0.1 \, f \, dB', Gd);
31
32 // b) To determine the height of obstacle required to
      induce 6dB diffraction loss
33 \text{ Gd} = 6;
      // Diffraction loss in dB
34 v = 0;
     // Fresnel diffraction parameter from the plot of
      Knife-edge diffraction gain as a function of
      Fresnel diffraction parameter
35 // v=0 is possible only if alpha=0. Therefore bet=-
     gamm
36 // By considering this situation, the geometry of
      environment provides (h/d2)=(ht/(d1+d2))
37 h = (ht*d2)/(d1+d2);
                                                // the
```


Figure 4.8: To find The minimum mean square error The standard deviation about mean value The received power at 2 km The likelihood that the received signal level at 2 km The percentage of area within 2 km

```
heigth of obstacle required to induce 6dB diffraction loss

38

39 // Displaying the result in command window

40 printf('\n The heigth of obstacle required to induce 6dB diffraction loss = %0.2 f m',h);
```

 ${f Scilab\ code\ Exa\ 4.9}$ To find The minimum mean square error The standard deviation a

```
1 // Example no 4.9
2 // To find a)the minimum mean square error b)the
    standard deviation about mean value c)received
    power at d=2 km d)the likelihood that the
    received signal level at 2 km e) the percentage
```

```
of area within 2 km
3 // Page no. 143
5 clc;
6 clear all;
8 // Given data
9 d0 = 100;
                                                       //
      First receiver distance in meter
10 d1 = 200;
      Second receiver distance in meter
11 d2=1000;
      Third receiver distance in meter
12 d3=3000:
      Fourth receiver distance in meter
13 p0=0;
      Receved power of first receiver in dBm
14 \text{ p1} = -20;
      Receved power of second receiver in dBm
15 p2 = -35;
      Receved power of third receiver in dBm
16 p3 = -70;
      Received power of forth receiver in dBm
17
18 // a) To find the minimum mean square error
19 n=2887.8/654.306;
      Loss exponent after differentiating and equating
      the squared error function with zero
20
21 // Displaying the result in command window
22 printf('\n Loss exponent = \%0.0 \, \text{f}',n);
23
24 // b) To find the standard deviation about mean value
25 P0 = -10 * n * log 10 (d0/100);
                                                       //
      The estimate of p0 with path loss model
26 P1 = -10 * n * log 10 (d1/100);
                                                       //
      The estimate of p1 with path loss model
27 P2 = -10 * n * log 10 (d2/100);
                                                       //
```

```
The estimate of p2 with path loss model
28 P3=-10*n*log10(d3/100);
                                                       //
      The estimate of p3 with path loss model
  J=(p0-P0)^2+(p1-P1)^2+(p2-P2)^2+(p3-P3)^2;
      Sum of squared error
30 \text{ SD=} \text{sqrt}(J/4);
                                                       //
      The standard deviation about mean value
31
32 // Displaying the result in command window
33 printf('\n The standard deviation about mean value =
       \%0.2 \text{ f dB}', \text{SD});
34 // The decimal point is not given in the answer
      given in book.
35
36 // c) To find received power at d=2 km
37 d=2000;
                                                        The distance of receiver
38 P=-10*n*log10(d/100);
      The estimate of p2 with path loss model
39
40 // Displaying the result in command window
41 printf ('\n The received power (at d=2 \text{ km}) = \%0.2 \text{ f}
     dBm',P);
42 // Answer is varying due to round off error
43
44 // d)To find the likelihood that the received signal
       level at 2 km
45 \text{ gam} = -60;
      The received power at 2km will be greater than
      this power
46 z = (gam - P)/SD;
47 Pr = (1/2) * (1 - erf(z/sqrt(2)));
      The probability that received signal will be
      greater than -60dBm
48
49 // Displaying the result in command window
50 printf('\n The probability that received signal will
       be greater than -60dBm = \%0.1f percent', Pr*100);
```


Figure 4.9: To find the power at receiver

$Scilab \ code \ Exa \ 4.10$ To find the power at receiver

```
1 // Example no 4.10
2 // To find the power at receiver
3 // Page no. 152
4
5 clc;
6 clear all;
```

```
8 // Given data
9 d=50*10^3;
     // Distance between transmitter and receiver in m
10 hte=100;
     // Effective heigth of transmitter in m
11 hre=10;
      // Effective heigth of receiver in m
12 EIRP=1*10^3;
      // Radiated power in Watt
13 f=900*10^6;
     // Operating frequency in Hz
14 c=3*10^8;
     // Speed of ligth in m/s
15 lambda=c/f;
     // operating wavelength in m
16 EIRP=20*log10(EIRP);
     // Radiated power in dB
17 Gr = 0;
     // Receiving gain in dB
18
19 Lf=-10*log10(lambda^2/(4*%pi*d)^2);
                                          // Free space
      path loss in dB
20 \text{ Amu} = 43;
     // Attenuation relative to free space in dB from
      Okumuras curve
21 Garea=9;
```

```
// Gain due to type of environment in dB from
      Okumuras curve
22 Ghte=20*log10 (hte/200);
      Base station antenna heigth gain factor for 1000m
       > hte > 30m
23 Ghre=20*log10(hre/3);
      // Mobile antenna heigth gain factor for 10 \mathrm{m} >
      hre > 3m
24 L50=Lf+Amu-Ghte-Ghre-Garea;
                                                       //
      Total mean path loss
25
26 // The median received power
27 \text{ Pr} = \text{EIRP} - \text{L50} + \text{Gr};
29 // Displaying the result in command window
30 printf('\n The power at receiver = \%0.2 \, \text{f dBm',Pr});
31
32 //Answer is varrying due to round-off error
```

Scilab code Exa 4.11 To find the mean path loss

```
1 // Example no 4.11
2 // To find the mean path loss
3 // Page no. 166
4
5 clc;
6 clear;
7
8 // Given data
```

```
Solab SAI Console

File Edit Control Applications ?

File Edit Control Applications ?

File Edit Control Applications ?

Solab SAI Control

7

The mean path loss at manufact floor = 130.2 dB

The mean path loss at multiple floor = 108.6 dB

-->
```

Figure 4.10: To find the mean path loss

```
9 d0=1;
     // Reference distance in m
10 d=30;
     // Distance from transmitter in m
11 nSF = 3.27;
     // Exponent value for same floor
12 nMF = 5.22;
     // Path loss exponent value for multiple floors
13 FAF = 24.4;
     // Floor attenuation factor for specified floor
     in dB
14 n=2;
     // Number of blocks
15 PAF = 13;
     // Particular attenuation factor for paricular
      obstruction in dB
16 PLSFd0=31.5;
     // Attenuation at reference distance for same
      floor in dB
17 PLMFd0=5.5;
     // Attenuation at reference distance for multiple
       floor in dB
18
```

```
//Mean path loss at same floor
PL1=PLSFd0+10*nSF*log10(d/d0)+FAF+n*PAF;

//Mean path loss at multiple floor
PL2=PLMFd0+10*nMF*log10(d/d0)+n*PAF;

//Displaying the result in command window
printf('\n The mean path loss at same floor = %0.1 f dB',PL1);
printf('\n The mean path loss at multiple floor = %0.1 f dB',PL2);
```

Chapter 5

Mobile radio propagation small scale propagation

 ${f Scilab\ code\ Exa\ 5.1}$ To compute received carrier frequency if mobile is moving towa

Figure 5.1: To compute received carrier frequency if mobile is moving towards the transmitter and away from the transmitter and in the direction perpendicular to arrival direction of transmitted signal

```
11 v = 60;
      // Speed of receiver (vehicle) in mph
12 \quad v = v * 0.44704;
                                                     //
      Speed of receiver (vehicle) in m/s
13 lambda=0.162; //c/f;
                                              //
      Wavelength in m
14
  // a)To compute received carrier frequency if mobile
       is moving towards the transmitter
16 theta=0;
      // Angle between direction of receiver and
      transmitter
17 fd=(v/lambda)*cos(theta);
                                       // Doppler shift
18 f = (fc+fd)*10^-6;
                                                 //
      Received carrier frequency in MHz
```

```
19
20 // Displaying the result in command window
21 printf('\n The received carrier frequency when
     mobile is moving towards the transmitter = \%0.5 f
     MHz',f);
22
23 // b) To compute received carrier frequency if mobile
      is moving away from the transmitter
24 theta=180;
                                                      //
     Angle between direction of receiver and
      transmitter
25 fd=(v/lambda)*cos(theta);
                                      // Doppler shift
26 f = (fc+fd)*10^-6;
                                                //
     Received carrier frequency in MHz
27
28 // Displaying the result in command window
29 printf('\n The received carrier frequency when
     mobile is moving away from the transmitter = \%0.6
     f MHz',f);
30
31 // c)To compute received carrier frequency if mobile
      is moving in the direction perpendicular to
      arrival direction of transmitted signal
32 theta=90;
                                                       //
       Angle between direction of receiver and
      transmitter
33 fd=(v/lambda)*cos(theta);
                                      // Doppler shift
34 f = (fc + fd) * 10^-6;
                                                //
     Received carrier frequency in MHz
35
36 // Displaying the result in command window
37 printf('\n The received carrier frequency when
```

Figure 5.2: To find time delay width and maximum RF bandwidth

```
mobile is moving in the direction perpendicular to arrival direction of transmitted signal = \%0.0 f MHz',f);
```

Scilab code Exa 5.2 To find time delay width and maximum RF bandwidth

```
1 // Example no 5.2
2 // To find a)time delay width (deltat) b)maximum RF
     bandwidth
3 // Page no. 189
4
5 clc;
6 clear all;
7
8 // Given data
9 tN1=100*10^-6;
// Excess delays for RF radio channels
```

```
10 tN2=4*10^-6;
      // Excess delays for microcellular channels
11 tN3=500*10^-9;
      // Excess delays for indoor channels
12 N = 64;
      // Number of multipath bins
13
14 // a) To find time delay width (deltat)
15 deltat1=(tN1/N)*10^6;
                                                     //
      Time delay width for RF radio channels
16 deltat2=(tN2/N)*10^9;
      Time delay width for microcellular channels
17 deltat3=(tN3/N)*10^9;
                                                     //
      Time delay width for indoor channels
18
19 // Displaying the result in command window
20 printf('\n The time delay width for RF radio
      channels = \%0.4 \,\mathrm{f} microsecond', deltat1);
21 printf('\n The time delay width for microcellular
      channels = \%0.1 f nanosecond', deltat2);
22 printf('\n The time delay width for indoor channels
      = \%0.4 \, \text{f nanosecond'}, \text{deltat3};
23
24 //b) To find maximum RF bandwidth
25 bandwidth1=(2/deltat1);
      Maximum RF bandwidth for RF radio channels in MHZ
26 bandwidth2=(2/deltat2)*10^3;
                                             //Maximum RF
      bandwidth for microcellular channels in MHZ
27 bandwidth3=(2/deltat3)*10^3;
                                             //Maximum RF
```

```
The narrowband instantaneous power = 282 pN
The narrowband instantaneous power = 282 pN
The narrowband instantaneous power (at t=0.1s) = 79.3 pN
The narrowband instantaneous power (at t=0.2s) = 79.3 pN
The narrowband instantaneous power (at t=0.2s) = 79.3 pN
The narrowband instantaneous power (at t=0.2s) = 79.3 pN
The narrowband instantaneous power (at t=0.5s) = 282 pN
The narrowband instantaneous power (at t=0.5s) = 79.3 pN
The narrowband instantaneous power (at t=0.4s) = 79.3 pN
The narrowband instantaneous power (at t=0.4s) = 79.3 pN
The narrowband instantaneous power (at t=0.4s) = 79.3 pN
The narrowband instantaneous power (at t=0.4s) = 79.3 pN
The narrowband instantaneous power (at t=0.5s) = 79.3 pN
The videband received power = 150 pN
Comparing narrowband and wideband received power, it is observed that they are vertually identical. But CN signal fades over observation interval (0-0.5s)
```

Figure 5.3: To find average narrowband power and to compare average narrow band and wideband power

```
bandwidth for indoor channels in MHZ

28
29 // Displaying the result in command window
30 printf('\n The maximum RF bandwidth for RF radio channels = %0.2 f MHz', bandwidth1);
31 printf('\n The maximum RF bandwidth for microcellular channels = %0.0 f MHz', bandwidth2);
32 printf('\n The maximum RF bandwidth for indoor channels = %0.0 f MHz', bandwidth3);
```

 ${f Scilab\ code\ Exa\ 5.3}$ To find average narrowband power and to compare average narrow

```
1 // Example no 5.3
2 // To find average narrowband power & to compare
         average narrow band and wideband power
3 // Page no. 190
4
5 clc;
```

```
6 clear all;
8 // Given data
9 v = 10;
      // Velocity of moving mobile
10 f = 1000 * 10^6;
      // Carrier frequency in Hz
11 c=3*10^8;
      // Speed of ligth in air (m/s)
12 P1 = -70;
      // Received power of first component in dBm
13 P2=P1-3;
      // Received power of second component in dBm
14 theta=0;
      // Initial phase for both component
15 P1 = (10^{(P1/10)})*10^{-3};
      Received power of first component in Watt
16 P2=(10^{(P2/10)})*10^{-3};
      Received power of second component in Watt
17 lambda=c/f;
      // Wavelength
18
19 // Narrowband instantaneous power
20 \text{ rt2} = (\text{sqrt}(P1) * \text{cosd}(0) + \text{sqrt}(P2) * \text{cosd}(0))^2;
                                 // Narrowband
      instantaneous power in pW
21
22 // Displaying the result in command window
23 printf('\n The narrowband instantaneous power = \%0.0
```

```
f pW',rt2*10^12);
24
25 // Answer is varrying due to round-off error
26
27 // To find average narrowband instantaneous power
28 t = 0.1;
      // Time interval in seconds
29 theta=((2*\%pi*v*t)/lambda)/10;
                                            // Phase
      interval in rad
30 theta=theta*(180/\%pi);
                                                     //
      Phase interval in degree
31 theta1=theta;
      // Phase of first component at t=0.1s
32 theta2=-theta;
      // Phase of second component at t=0.1s
33 rt21=(sqrt(P1)*(complex(cosd(theta1),sind(theta1)))+
      sqrt(P2)*(complex(cosd(theta2), sind(theta2))))^2;
                    // Narrowband instantaneous power in
      pW at t=0.1s
34 mgrt21=sqrt((real(rt21))^2+(imag(rt21))^2);
35
36 // Displaying the result in command window
37 printf('\n The narrowband instantaneous power (at t
      =0.1 \,\mathrm{s}) = \%0.1 \,\mathrm{f} \,\mathrm{pW}', \text{mgrt21*10^12};
38
39 theta1=theta1+theta;
                                                       //
      Phase of first component at t=0.2s
40 theta2=theta2-theta;
      Phase of second component at t=0.2s
41 rt22=(sqrt(P1)*(complex(cosd(theta1), sind(theta1)))+
      sqrt(P2)*(complex(cosd(theta2), sind(theta2))))^2;
```

```
// Narrowband instantaneous power in pW
       at t = 0.2 s
42 mgrt22=sqrt((real(rt22))^2+(imag(rt22))^2);
43
44 // Displaying the result in command window
45 printf('\n The narrowband instantaneous power (at t
      =0.2 s) = \%0.1 f pW', mgrt22*10^12);
46
47 theta1=theta1+theta;
                                                         //
      Phase of first component at t=0.3s
48 theta2=theta2-theta;
                                                         //
      Phase of second component at t=0.3s
49 rt23=(sqrt(P1)*(complex(cosd(theta1), sind(theta1)))+
      sqrt(P2)*(complex(cosd(theta2), sind(theta2))))^2;
                //Narrowband instantaneous power in pW
      at t = 0.3 s
50 mgrt23=sqrt((real(rt23))^2+(imag(rt23))^2);
51
52 // Displaying the result in command window
53 printf('\n The narrowband instantaneous power (at t
      =0.3 \,\mathrm{s}) = \%0.0 \,\mathrm{f} \,\mathrm{pW}', \,\mathrm{mgrt23*10^12};
54
55 mgrt24=mgrt21;
      // Narrowband instantaneous power in pW at t=0.4s
       due to repeating phase
56
57 // Displaying the result in command window
58 printf('\n The narrowband instantaneous power (at t
      =0.4 \,\mathrm{s}) = \%0.1 \,\mathrm{f} \,\mathrm{pW'}, mgrt24*10^12);
59
60 mgrt25=mgrt22;
      // Narrowband instantaneous power in pW at t=0.5s
       due to repeating phase
61
```

```
62 // Displaying the result in command window
63 printf('\n The narrowband instantaneous power (at t
      =0.5 \,\mathrm{s}) = \%0.1 \,\mathrm{f} \,\mathrm{pW'}, mgrt25*10^12);
64
65 rt=(rt2+mgrt21+mgrt22+mgrt23+mgrt24+mgrt25)/6;
                                        // The average
      narrowband instantaneous power in pW
66
67 // Displaying the result in command window
68 printf('\n An average narrowband instantaneous power
       = \%0.0 \, f \, pW', rt*10^12;
69
70 // Wideband power
71 Pwb = (P1 + P2);
      // Widebnd received power in pW
72
73 // Displaying the result in command window
74 printf('\n The wideband received power = \%0.0 \,\mathrm{f} pW',
      Pwb*10^12);
75
76 printf('\n Comparing narrowband and wideband
      received power, it is observed that they are
      vertually identical. But CW signal fades over
      observation interval (0-0.5S)');
```

Scilab code Exa 5.4 To compute RMS delay spread and maximum bit rate

```
1 //Example no 5.4
2 //To compute a)RMS delay spread b)maximum bit rate
3 //Page no. 201
4
5 clc;
```

```
© Lie Est Central Applications ?

© Lie St. Convole

The RMS delay spread = 0.5 microseconds
The maximim bit rate = 200 kpps

→
```

Figure 5.4: To compute RMS delay spread and maximum bit rate

```
6 clear all;
8 //Given data
9 t1=0;
      //Excess delay of first signal
10 \text{ a1=0};
      //Power level of first signal in dB
11 t2=1*10^-6;
      //Excess delay of second signal
12 \ a2=0;
      //Power level of second signal in dB
13 a1=10^(a1);
      //Power level of first signal in Watt
14 \ a2=10^(a2);
      //Power level of second signal in Watt
15
16 //a)To compute RMS delay spread
```

```
17 t=((a1*t1+a2*t2)/(a1+a2))*10^6;
                                      //Mean excess delay
18 t2=((a1*t1^2+a2*t2^2)/(a1+a2))*10^12;
                                 //Mean square excess
      delay
19 sigmat = sqrt(t2-t^2);
                                                   //RMS
      delay spread in microseconds
20
21 // Displaying the result in command window
22 printf('\n The RMS delay spread = \%0.1f microseconds
      ', sigmat);
23
24 //b) To compute maximum bit rate
25 Ts=(sigmat*10^-6)/0.1;
                                                 //Sampling
      time of BPSK modulated signal
26 \text{ Rs} = (1/\text{Ts}) * 10^{-3};
                                                       //
      Maximum bit rate in kbps
27
28 // Displaying the result in command window
29 printf('\n The maximum bit rate = \%0.0 \, \text{f kbps',Rs});
```

 ${
m Scilab\ code\ Exa\ 5.5}$ To calculate mean excess delay rms delay spread and maximum ex

```
1 // Example no 5.5
2 // To calculate mean excess delay, rms delay spread
    and maximum excess delay
3 // Page no. 202
4
5 clc;
6 clear all;
```

Figure 5.5: To calculate mean excess delay rms delay spread and maximum excess delay

```
7
8 // Given data
9 t10dB=5*10^-6;

    // By definition of maximum excess delay (10dB)
10 t1=0;

    // Excess delay of first signal in seconds
11 a1=-20;

    // Power level of first signal in dB
12 t2=1*10^-6;

    // Excess delay of second signal in seconds
13 a2=-10;

    // Power level of second signal in dB
14 t3=2*10^-6;

    // Excess delay of third signal in seconds
15 a3=-10;
```

```
// Power level of third signal in dB
16 t4=5*10^-6;
     // Excess delay of fourth signal in seconds
17 \quad a4=0;
     // Power level of fourth signal in dB
18 a1=10^(a1/10);
     // Power level of first signal in Watt
19 a2=10^(a2/10);
     // Power level of second signal in Watt
20 \quad a3=10^{(a3/10)};
     // Power level of third signal in Watt
21 \quad a4=10^{(a4/10)};
     // Power level of fourth signal in Watt
22
23 // Mean excess delay
24 t = ((a1*t1+a2*t2+a3*t3+a4*t4)/(a1+a2+a3+a4));
                                // Mean excess delay in
     seconds
25 tsquare=((a1*t1^2+a2*t2^2+a3*t3^2+a4*t4^2)/(a1+a2+a3)
     +a4));
                         // Mean square excess delay
26
27 // RMS delay spread
28 sigmat=sqrt(tsquare-t^2);
                                                    // RMS
       delay spread
29
30 // Coherence bandwidth
31 Bc=1/(5*sigmat);
     // 50% Coherence bandwidth
32 // The answer is varrying due to round-off error
33
```


Figure 5.6: To determine proper spatial sampling interval for small scale propagation number of samples required over 10m time required to make these measurements and Doppler spread for this channel

```
// Displaying the result in command window
printf('\n The maximum excess delay (10 dB) = %0.0 f
    microsecond',t10dB*10^6);

printf('\n The mean excess delay = %0.2 f microsecond
    ',t*10^6);

printf('\n The RMS delay spread = %0.2 f microsecond'
    ,sigmat*10^6);

printf('\n The coherence bandwidth = %0.0 f KHz',Bc
    *10^-3);

printf('\n Since coherence bandwidth is greater than
    30 KHz, AMPS will work without an equalizer.
    However, GSM requires 200 KHz bandwidth which
    exceeds coherence bandwidth,\n thus an equalizer
    would be needed for this channel');
```

Scilab code Exa 5.6 To determine proper spatial sampling interval for small scale

```
1 // Example no 5.6
2 // To determine proper spatial sampling interval for
      small scale propagation, number of samples
      required over 10m, time required to make these
      measurements and Doppler spread for this channel
3 // Page no. 204
5 clc;
6 clear all;
8 // Given data
9 fc=1900*10^6;
      // Carrier frequency in Hz
10 \quad v = 50;
     // Velocity of propagation in m/s
11 c=3*10^8;
      // Speed of ligth in air in m/s
12 Tc = (9*c)/(16*\%pi*v*fc);
                                                 //
      Coherence time
13
14 // The spatial sampling interval
15 deltax=(v*Tc)/2;
                                                       //
       Spatial sampling interval in meter
16
17 // The number of samples required over 10m travel
      distance
18 d=10;
      // Distance to be travelled
19 Nx=d/deltax;
      // Number of samples required over 10m
20 // Answer is varrying due to round-off error
```

```
21
22 // The time required to make these measurements
23 t=d/v;
      // Time required to make these measurements
24
25 // Doppler spread for this channel
26 BD=(v*fc)/c;
      // Doppler spread for this channel
  // Answer is varrying due to round-off error
29 // Displaying the result in command window
30 printf('\n The proper spatial sampling interval for
      small scale propagation = \%0.2 \, \text{f cm}', deltax*10^2);
31 printf('\n The number of samples required over 10m
      travel distance = \%0.0 \,\mathrm{f}', Nx);
32 printf('\n The time required to make these
      measurements = \%0.1 \, \text{f} \, \text{seconds}',t);
33 printf('\n The Doppler spread for this channel = \%0
      .2 f Hz', BD);
```

 ${f Scilab\ code\ Exa\ 5.7}$ To compute the positive going lvel crossing rate and maximum v

```
1 // Example no 5.7
2 // To compute the positive-going lvel crossing rate
    and maximum velocity of mobile
3 // Page no. 224
4
5 clc;
6 clear all;
7
8 // Given data
```


Figure 5.7: To compute the positive going lvel crossing rate and maximum velocity of mobile

```
9 rho=1;
      Value of normalized level of fading amplitude to
     rms amplitude
10 fm = 20;
                                                  //
     Maximum Doppler frequency in Hz
11 fc=900*10^6;
      Carrier frequency in Hz
12 c=3*10^8;
                                                  //
     Speed of ligth in air in m/s
13
  // The positive-going level crossing rate
14
15 NR=sqrt(2*%pi)*fm*rho*exp(-rho^2);
     Number of zero level crossings per second
  lambda=c/fc;
16
      Carrier wavelength
17
18 // The maximum velocity of mobile
19 v=fm*lambda;
     Maximum velocity of mobile in m/s
```

Figure 5.8: To find the average fade duration

${\it Scilab\ code\ Exa\ 5.8}$ To find the average fade duration

```
1 // Example no 5.8
2 // To find the average fade duration
3 // Page no. 225
4
5 clc;
6 clear all;
7
8 // Given data
```

```
9 rho1=0.01;
                                                     //
      Threshold level
10 rho2=0.1;
      Threshold level
11 rho3=1;
      Threshold level
12 fm = 200;
      Doppler frequency
13
14 t1 = (\exp(rho1^2) - 1)/(rho1*fm*sqrt(2*%pi));
                   // The average fade duration
15 t2=(exp(rho2^2)-1)/(rho2*fm*sqrt(2*%pi));
                   // The average fade duration
16 t3=(\exp(rho3^2)-1)/(rho3*fm*sqrt(2*%pi));
                   // The average fade duration
17
18 // Displaying the result in command window
19 printf('\n The average fade duration (for rho =
      0.01) = \%0.1 f \text{ microseconds}', t1*10^6);
20 printf('\n The average fade duration (for rho = 0.1)
       = \%0.0 \, \text{f microseconds',t2*10^6};
21 printf('\n The average fade duration (for rho = 1) =
       \%0.2 \text{ f microseconds',t3*10^3};
```

Scilab code Exa 5.9 To find the average fade duration and average number of bit er

```
1 // Example no 5.9
2 // To find the average fade duration and average number of bit errors per second. & to determine
```


Figure 5.9: To find the average fade duration and average number of bit errors per second and to determine whether the fading is slow or fast

```
whether the fading is slow or fast.
  // Page no. 225
5 clc;
6 clear all;
8 // Given data
9 \text{ rho} = 0.707;
      // Threshold level
10 fm = 20;
      // Doppler frequency
11 datarate=50;
      Bit duration of binary digital modulation in bps
12 \text{ errho=0.1};
      // Threshold level below which bit error occurs
13
14 t=(exp(rho^2)-1)/(rho*fm*sqrt(2*%pi));
                           // The average fade duration
```

```
15 tb=1/datarate;
                                                    // Bit
       period
16 t1=(exp(errho^2)-1)/(errho*fm*sqrt(2*%pi));
                     // The average fade duration
17
18 // Displaying the result in command window
19 printf('\n The average fade duration (for rho =
      0.707) = \%0.1 \text{ f ms}', t*10^3);
20 printf('\n The bit period = \%0.0 \,\mathrm{f} \,\mathrm{ms}',tb*10^3);
21 printf('\n Since the bit period is greater than
      average fade duration, for 50bps datarate the
      signal undergoes fast Rayleigh fading.');
22 printf('\n \n The average fade duration of the
      threshold level below which bit error occurs (for
       rho = 0.1) = \%0.3 f', t1);
23 printf('\n Since the average fade duration of the
      threshold level below which bit error occurs is
      less than duration of one bit,\n only one bit on
      average will be lost');
```

Chapter 6

Modulation techniques for mobile radio

Scilab code Exa 6.1 To compute the carrier power and percentage of total power in

Figure 6.1: To compute the carrier power and percentage of total power in carrier power and power in each side band

```
12 // To compute the carrier power
13 Pc = PAM/(1+k^2/2);
      // The carrier power
14
  // To compute percentage of total power in carrier
15
      power
16 PercentPc=(Pc/PAM)*100;
      // Percentage of total power in carrier power
17
18 // To compute power in each sideband
19 Psideband = (PAM - Pc)/2;
      // The power in each sideband
   // Answer is varrying due to round-off error
20
21
22 // Displaying the result in command window
23 printf('\n The carrier power = \%0.2 \text{ f kW'}, Pc*10^-3);
24 printf('\n The percentage of total power in carrier
      power = \%0.1 \, \text{f} percentage', PercentPc);
25 printf('\n The power in each sideband = \%0.3 \, \text{f kW'},
```


Figure 6.2: To compute the peak frequency deviation and the modulation index

```
Psideband*10^-3);
```

 ${
m Scilab\ code\ Exa\ 6.2}$ To compute the peak frequency deviation and the modulation ind

Figure 6.3: To determine the IF bandwidth necessary to pass the given signal

```
// Modulating frequency in Hz
11 A = 4;
      // Maximum instantaneous value of input signal in
12
13 // To compute the peak frequency deviation
14 deltaf=A*kf;
      // The peak frequency deviation in Hz
15
16 // To compute the modulation index
17 betaf = deltaf / fm;
                                                           //
      The modulation index
18
19 // Displaying the result in command window
20 printf('\n The peak frequency deviation = \%0.0\,\mathrm{f} kHz'
      ,deltaf *10<sup>-3</sup>);
21 printf('\n The modulation index = \%0.0 \,\mathrm{f}', betaf);
```

Scilab code Exa 6.3 To determine the IF bandwidth necessary to pass the given sign

```
1 // Example no 6.3
2 // To determine the IF bandwidth necessary to pass
     the given signal.
3 // Page no. 267
5 clc;
6 clear all;
8 // Given data
9 fm = 100 * 10^3;
     // Modulating frequency in Hz
10 deltaf=500*10^3;
     Peak frequency deviation in Hz
11 betaf=deltaf/fm;
      Modulation index
12
13 // The IF bandwidth occupied by FM signal using
     Carson's rule
14 BT = 2*(betaf + 1)*fm;
                                                  // The
     IF bandwidth necessary to pass the given signal
15
16 // Displaying the result in command window
17 printf('\n Using Carson rule, the IF bandwidth
      occupied by FM signal = \%0.0 \,\text{f} kHz',BT*10^-3);
```


Figure 6.4: To design an RLC network that implements an IF quadrature FM detector

 ${f Scilab\ code\ Exa\ 6.4}$ To design an RLC network that implements an IF quadrature FM d

Figure 6.5: To design an RLC network that implements an IF quadrature FM detector

```
//Bandwidth in Hz
12 phi=5;
      //phase shift for good system in degree
13 Q=tand(phi)/((fc+B/2)/fc-fc/(fc+B/2));
                           //Q-factor
14 L=10*10^{(-6)};
      Chosen value of inductor
15 R=Q*2*\%pi*fc*L;
                                                    //
      Value of Resistor
16 c1=12.13*10^{(-12)};
                                                  //Chosen
       value of C1
17 c = (Q/(R*2*\%pi*fc))-c1;
                                             //Value of
      capacitor
```

```
18
19 // Displaying the result in command window
20 printf('\n Value of Resistor required for RLC
      circuit = \%0.3 \text{ f kohm}', R*10^(-3);
21 printf('\n Value of Inductor required for RLC
      circuit = \%0.0 \text{ f microH}', L*10^(6);
22 printf('\n Value of Capacitor required for RLC
      circuit = \%0.0 \,\text{f} \,\text{pF}',c*10^(12));
23
24 // Magnitude plot
25 \quad f = 0.95 * 10^7 : 0.05 * 10^7 : 1.2 * 10^7;
                                   // Frequency range for
      plotting in Hz
26 mgh = (2*\%pi*f*R*c1)/sqrt(1+Q^2*((f^2-fc^2)/(f*fc))^2)
            // Magnitude transfer function
27 subplot (211);
28 plot(f, mgh);
29 a=gca();
30 a.data_bounds=[0.95*10^7 0;1.2*10^7 2];
                          // To see the vertical line
      hidden by the y axis
31 xlabel("Frequency", "color", "blue");
32 ylabel("Magnitude", "color", "blue");
33 title("Magnitude response", "fontsize", "6", "color", "
      red");
34
35 // Phase plot
36 f=0.95*10^7
                                                         //
      Initial frequency for plotting
37 \text{ for } i=1:6
38
       if f<1.25*10^7 then
            phH(i) = (\%pi/2) + atan(Q*((f^2-fc^2)/(f*fc)));
                     // Phase transfer function
            f = f + 0.05 * 10^7;
40
41
       end
42 end
43
```


Figure 6.6: To determine the analog bandwidth and output SNR improvement if modulation index is increased from three to five and trade off bandwidth for this improvement

 ${f Scilab\ code\ Exa\ 6.5}$ To determine the analog bandwidth and output SNR improvement i

```
1 // Example no 6.5
2 // To determine the analog bandwidth, output SNR improvement if modulation index is increased from
```

```
3 to 5 and tradeoff bandwidth for this
     improvement.
  // Page no. 277
4
5 clc;
6 clear all;
8 // Given data
9 fm=5*10^3;
                                                       //
      Audio bandwidth of FM signal
10 betaf1=3;
       Initial modulation index
11 betaf2=5;
       Final modulation index
12
13 // To determine analog bandwidth
14 BT1=2*(betaf1+1)*fm;
     // The analog bandwidth
15 BT2=2*(betaf2+1)*fm;
     // The analog bandwidth
16
  // To determine output SNR improvement factor
17
18 SNR1=3*betaf1^3+3*betaf1^2;
                                                      //
     Output SNR factor for modulation index=3
19 SNR1 = 10 * log 10 (SNR1);
     Output SNR factor for modulation index=3 in dB
20 SNR2=3*betaf2^3+3*betaf2^2;
      Output SNR factor for modulation index=3
  SNR2=10*log10(SNR2);
21
     Output SNR factor for modulation index=3 in dB
22
23 // To determine improvement in output SNR by
      increasing modulation index
                                                      //
24 improvedSNR=SNR2-SNR1;
     Improvement in output SNR by increasing
     modulation index
25
26 // Displaying the result in command window
```


Figure 6.7: To determine the maximum theoretical datarate and to compare this rate to US digital cellular standard

```
27 printf('\n Using Carson rule, the analog bandwidth
    at 3 modulation index occupied by FM signal = %0
        .0 f KHz',BT1*10^-3);
28 printf('\n Using Carson rule, the analog bandwidth
    at 5 modulation index occupied by FM signal = %0
        .0 f KHz',BT2*10^-3);
29 printf('\n Improvement in output SNR by increasing
        modulation index = %0.1 f dB',improvedSNR);
30 printf('\n \n This improvement is achieved at the
        expenses of bandwidth. For modulation index = 3,
        a bandwidth of 40kHz is needed,\n while for
        modulation index = 5 requires bandwidth = 60kHz.'
    );
```

Scilab code Exa 6.6 To determine the maximum theoretical datarate and to compare t

```
1 // Example no 6.6
```

```
2 // To determine the maximum theoretical datarate and
      to compare this rate to US digital cellular
     standard
3 // Page no. 280
5 clc;
6 clear all;
8 // Given data
9 SNR=20;
     // Signal to noise ratio of wireless
     communication link in dB
10 B=30*10^3;
     // RF bandwidth in Hz
11 SNR=10^(SNR/10);
     // Signal to noise ratio of wireless
     communication link
12
13 // To determine the maximum theoretical datarate
14 C=B*(log10(1+SNR)/log10(2));
     // The maximum theoretical datarate in bps
15
16 // Displaying the result in command window
17 printf('\n The maximum theoretical datarate = \%0.2 \,\mathrm{f}
     kbps',C*10^-3);
18 printf('\n The USDC data rate is 48.6 kbps, which is
       only about one fourth the theoretical limit
     under 20dB SNR condition.');
```

Scilab code Exa 6.7 To determine the maximum theoretical datarate and to compare t

```
1 // Example no 6.7 2 // To determine the maximum theoretical datarate and
```


Figure 6.8: To determine the maximum theoretical datarate and to compare this rate to GSM standard

```
to compare this rate to GSM standard
  // Page no. 280
4
5 clc;
6 clear all;
8 // Given data
  SNR1=10;
                                                        //
       Signal to noise ratio in dB
  SNR2=30;
                                                        //
       Signal to noise ratio in dB
  B=200*10^3;
      RF bandwidth of channel in Hz
12
  SNR1 = 10^{(SNR1/10)};
13
       Signal to noise ratio
  SNR2=10^{(SNR2/10)};
                                                        //
       Signal to noise ratio
15
16 // To determine the maximum theoretical datarate
17 C1=B*(log10(1+SNR1)/log10(2));
      The maximum theoretical datarate for SNR=10dB
```


Figure 6.9: To find the first zero crossing RF bandwidth of rectangular pulse and compare to raised cosine filter pulse

```
The maximum theoretical datarate for SNR=30dB

// Displaying the result in command window
printf('\n The maximum theoretical datarate for 10dB
SNR = %0.3 f kbps',C1*10^-3);

printf('\n The maximum theoretical datarate for 30dB
SNR = %0.2 f Mbps',C2*10^-6);

printf('\n \n The GSM data rate is 270.833 kbps,
which is only about 40 percent of the theoretical
limit of 10dB SNR condition\n and about 14
percent of theoretical limit of 30dB SNR
condition');
```

Scilab code Exa 6.8 To find the first zero crossing RF bandwidth of rectangular pu

```
1 // Example no 6.8
```

```
2 // To find the first zero-crossing RF bandwidth of
      rectangular pulse and compare to raised cosine
      filter pulse
3 // Page no. 291
4
5 clc;
6 clear all;
8 // Given data
9 RectTs=41.06*10^-6;
                                                     Symbol period of rectangular pulse
10 cosineTs = 41.06*10^-6;
                                                   //
      Symbol period of cosine filter pulse
11 alpha=0.35;
      // Rolloff factor of cosine filter pulse
12
13 // To find the first zero-crossing RF bandwidth of
      rectangular pulse
14 B1=2/RectTs;
      // The first zero-crossing RF bandwidth of
      rectangular pulse
15
16 // The first zero-crossing RF bandwidth of cosine
      filter pulse
17 B2=(1/cosineTs)*(1+alpha);
                                              // The first
       zero-crossing RF bandwidth of cosine filter
      pulse
18
19 // Displaying the result in command window
20 printf('\n The first zero-crossing RF bandwidth of
      rectangular pulse = \%0.2 \, \text{f kHz}', B1*10^-3);
21 printf('\n The first zero-crossing RF bandwidth of
      cosine filter pulse = \%0.2 \,\mathrm{f} \,\mathrm{kHz}', B2*10^-3);
```


Figure 6.10: To determine phase and values of Ik and Qk during transmission of bit stream 001011 using pi by 4 DQPSK

 ${f Scilab\ code\ Exa\ 6.9}$ To determine phase and values of Ik and Qk during transmission

```
// Carrier phase shift for the input bit pair 11
     [Feh91], [Rap91b]
11 phi2=(3*\%pi)/4;
     // Carrier phase shift for the input bit pair 01
     [Feh91], [Rap91b]
12 phi3=(-3*\%pi)/4;
     // Carrier phase shift for the input bit pair 00
     [Feh91], [Rap91b]
13 phi4 = -\%pi/4;
     // Carrier phase shift for the input bit pair 10
     [Feh91], [Rap91b]
14
15 // For transmission of first pair of bits 00
16 theta1=theta0+phi3;
     // Phase of signal during transmission of first
     bit pair 00
// In-phase pulse produced at the output of
     signal mapping
18 Q1=sin(theta1);
     // Quadrature pulse produced at the output of
      signal mapping
19
20 // For transmission of second pair of bits 10
21 theta2=theta1+phi4;
     // Phase of signal during transmission of second
     bit pair 10
22 \quad I2 = \cos(\text{theta2});
     // In-phase pulse produced at the output of
```

```
signal mapping
23 Q2=sin(theta2);
      // Quadrature pulse produced at the output of
      signal mapping
24
25 // For transmission of third pair of bits 11
26 theta3=theta2+phi1;
      // Phase of signal during transmission of third
      bit pair 11
27 I3=cos(theta3);
      // In-phase pulse produced at the output of
      signal mapping
28 \quad Q3 = \sin(\text{theta3});
      // Quadrature pulse produced at the output of
      signal mapping
29
30 // Displaying the result in command window
31 printf('\n Phase of signal during transmission of
      first bit pair 00 = \%0.0 \,\mathrm{f} degree', theta1*(180/\%pi
      ));
32 printf('\n In-phase pulse produced during
      transmission of first bit pair 00 = \%0.3 \,\mathrm{f}, I1);
33 printf('\n Quadrature pulse produced during
      transmission of first bit pair 00 = \%0.3 \,\mathrm{f}, Q1);
34
35 printf('\n \n Phase of signal during transmission of
       second bit pair 10 = \%0.0 \,\mathrm{f} degree', theta2*(180/
      %pi));
36 printf('\n In-phase pulse produced during
      transmission of second bit pair 10 = \%0.0 \,\mathrm{f}, I2);
37 printf('\n Quadrature pulse produced during
      transmission of second bit pair 10 = \%0.0 \,\mathrm{f}, Q2);
38
39 printf('\n \n Phase of signal during transmission of
```

Figure 6.11: To demonstrate how the received signal is detected properly using baseband differential detector

 ${f Scilab\ code\ Exa\ 6.10}$ To demonstrate how the received signal is detected properly w

```
1 // Example no 6.10
2 // To demonstrate how the received signal is
         detected properly using baseband differential
         detector.
3 // Page no. 310
4
5 clc;
6 clear all;
7
```

```
8 // Given data
9 \times 1 = -0.707;
10 y1 = -0.707;
11 x2=0.707;
12 y2 = -0.707;
13 \times 3 = 0.707;
14 y3=0.707;
15
16 if x1<0 then
      // Applying decision rule
17 printf('S1 = 0');
18 else
19 printf('\n S1 = 1');
20 end
21 if y1<0 then
22 printf('\n S2 = 0');
23 else
24 printf('\n S2 = 1');
25 end
26 if x2<0 then
27 printf('\n S3 = 0');
28 else
29 printf('\n S3 = 1');
30 \text{ end}
31 if y2<0 then
32 printf('\n S4 = 0');
33 else
34 printf('\n S4 = 1');
35 end
36 if x3<0 then
37 printf('\n S5 = 0');
38 else
39 printf('\n S5 = 1');
40 \, \text{end}
41 if y3<0 then
42 printf('\n S6 = 0');
43 else
```


Figure 6.12: To find 3 dB bandwidth for Gaussian low pass filter to produce 90 percent power bandwidth

```
44 printf('\n S6 = 1');
45 end
```

 ${f Scilab\ code\ Exa\ 6.11}$ To find 3 dB bandwidth for Gaussian low pass filter to produce

```
1 // Example no 6.11
2 // To find 3-dB bandwidth for gaussian low pass
        filter to produce 0.25GMSK, 90% power bandwidth.
3 // Page no. 321
4
5 clc;
6 clear all;
7
8 // Given data
9 Rb=270*10^3;
// Channel data rate in bps
```

```
10 BT=0.25;
      // 3-dB bandwidth-bit duration product
11
12 T=1/Rb;
      // Time
13 B=BT/T;
      // 3-dB bandwidth in Hz
14 // Answer is varrying due to round-off error
16 // 90% power bandwidth
17 B1=0.57*Rb;
      // The 90% power bandwidth
18 // Answer is varrying due to round-off error
20 // Displaying the result in command window
21 printf('\n The 3-dB bandwidth-bit duration product =
       \%0.3 \text{ f kHz}', B*10^-3);
22 printf('\n The 90 percent power bandwidth = \%0.1 \,\mathrm{f}
      kHz', B1*10^-3);
```

Chapter 7

Equalization diversity and channel coding

Scilab code Exa 7.3 To determine the maximum Doppler shift and the coherence time

Figure 7.1: To determine the maximum Doppler shift and the coherence time of the channel and the maximum number of symbols that could be transmitted

```
// Velocity of mobile in km/hr
12 v = v * (5/18);
     // Velocity of mobile in m/s
13 lambda=c/f;
     // Carrier wavelength in meter
14
15 // a) To determine the maximum Doppler shift
16 fd=v/lambda;
     // The maximum Doppler shift in \rm Hz
17
18 // b) To determine the coherence time of the channel
19 Tc=sqrt(9/(16*%pi*fd^2));
                                          // The
      coherence time of the channel
20 // Answer is varrying due to round-off error
22 // c)To determine the maximum number of symbols that
```


Figure 7.2: To determine probability that the SNR will drop below threshold SNR

Scilab code Exa 7.4 To determine probability that the SNR will drop below threshol

```
1 // Example no 7.4
2 // To determine probability that the SNR will drop
      below threshold SNR
3 // Page no. 383
5 clc;
6 clear all;
8 // Given data
9 M1 = 4;
                                                    // Number
      of branch diversity
10 M2 = 1;
                                                    // Number
      of branch diversity
11 gamm=10;
      Specified SNR threshold in dB
12 gamm=10^(gamm/10);
      Specified SNR threshold
13 Gamma=20;
                                                    // Average
       SNR in dB
14 \operatorname{Gamma=10^{\circ}(\operatorname{Gamma/10})};
                                                    // Average
       SNR
15
16 // Probability that the SNR will drop below 10dB
      when 4 branch diversity is used
17 P4 = (1 - \exp(-gamm/Gamma))^M1;
      Probability that the SNR will drop below 10dB
18
19 // Probability that the SNR will drop below 10dB
      when single branch diversity is used
20 P1 = (1 - \exp(-\operatorname{gamm}/\operatorname{Gamma}))^M2;
      Probability that the SNR will drop below 10dB
21
22 // Displaying the result in command window
23 printf('\n Probability that the SNR will drop below
      10dB when 4 branch diversity is used = \%0.6 \,\mathrm{f}, P4)
      ;
```

- 24 printf('\n Probability that the SNR will drop below 10dB when single branch diversity is used = $\%0.3 \, \text{f}$ ',P1);
- 25 printf('\n \n From above results, it is observed that without diversity the SNR drops below the specified threshold with a probability that is three orders of magnitude greater \n than if four branch diversity is used.')

Chapter 8

Speech coding

 ${\it Scilab\ code\ Exa\ 8.1\ To\ compute\ the\ mean\ square\ error\ distortion\ and\ output\ signal}$

Figure 8.1: To compute the mean square error distortion and output signal to distortion ratio

```
21 D1=integrate('(x^3-2*x^2+x)/32', 'x',L1,U1);
                                 // Mean square error
      distortion of 1st level
22 D2=integrate('(x^3-6*x^2+9*x)/32','x',U1,U2);
                               // Mean square error
      distortion of 2nd level
23 D3=integrate('(x^3-10*x^2+25*x)/32', 'x',U2,U3);
                             // Mean square error
      distortion of 3rd level
24 D4=integrate('(x^3-14*x^2+49*x)/32', 'x', U3, U4);
                             // Mean square error
      distortion of 4th level
25 D = D1 + D2 + D3 + D4;
      // Total square error distortion
26
27 P=integrate ('x^3/32', 'x',L1,U4);
                                             // Signal
      power
28
29 SDR=10*log10(P/D);
      // Output signal-to-distortion ratio.
30
  // Displaying the result in command window
31
32 printf('\n The mean square error distortion = \%0.3 \,\mathrm{f}'
      ,D);
33 printf('\n The output signal-to-distortion ratio =
      \%0.2\,\mathrm{f}~\mathrm{dB}^{\,\prime},SDR);
34 printf('\n To minimize the distortion, we need to
      place the quantization levels closer at
      amplitudes close to 8 and farther at amplitudes
      close to zero.');
35 printf('\n This quantizer would be optimal for an
      input with a uniform pdf.');
```


Figure 8.2: To compute transmission bit rate average and peak signal to quantization noise ratio

 ${
m Scilab\ code\ Exa\ 8.2}$ To compute transmission bit rate average and peak signal to qu

```
Number of bits per sample
11 stepsize=10*10^-3;
                                                       //
      Time after which step size is recomputed
12 overhead=5;
      Number of overhead bits
13
14 N=fs*n;
      Number of information bits pe second
15 Toverhead = overhead / stepsize;
                                                       // The
       number of overhead bits/second
16
17 // Effective transmission bit rate
18 bitrate=N+Toverhead;
      Transmission bit rate in bps
19
20 // Peak signal to quantization noise ratio
                                                      // Peak
21 \quad PSQNR = 6.02*n+4.77;
       signal to quantization noise ratio in dB
22
23 // Average signal to quantization noise ratio
24 \text{ ASQNR} = 6.02*n;
      Average signal to quantization noise ratio in dB
25
26 // Displaying the result in command window
27 printf('\n Effective transmission bit rate = \%0.1 \,\mathrm{f}
      kbps',bitrate*10^-3);
28 printf('\n Peak signal to quantization noise ratio =
       \%0.2 \,\mathrm{f}\,\mathrm{dB}', PSQNR);
29 printf('\n Average signal to quantization noise
      ratio = \%0.2 \, \text{f dB}', ASQNR);
```

Scilab code Exa 8.3 To compute the minimum encoding rate of given 4 sub band coder

Figure 8.3: To compute the minimum encoding rate of given 4 sub band coder

```
1 // Example no 8.3
2 // To compute the minimum encoding rate of given 4
     sub-band coder
3 // Page no. 427
4
5 clc;
6 clear all;
8 // Given data
9 N = 4;
     // Total number of sub-bands
10 L1=225;
                                                        //
      Lower limit of first sub-band
11 U1 = 450;
      Lower limit of first sub-band
12 L2 = 450;
       Lower limit of second sub-band
13 U2 = 900;
```

```
Lower limit of second sub-band
14 L3=1000;
                                                         //
      Lower limit of third sub-band
15 \quad U3 = 1500;
      Lower limit of third sub-band
16 L4 = 1800;
                                                         //
      Lower limit of fourth sub-band
17 \quad U4 = 2700;
                                                         //
      Lower limit of fourth sub-band
18 E1=4;
      // Encoding bit of first sub-band
19 E2=3;
      // Encoding bit of second sub-band
20 E3=2;
      // Encoding bit of third sub-band
21 \quad E4=1;
      // Encoding bit of fourth sub-band
22
23 // Sampling rate of the sub-bands according to
      Nyquist theorem
24 \text{ sr1}=2*(U1-L1);
      Sampling rate of first sub-band in samples/second
25 \text{ sr2}=2*(U2-L2);
      Sampling rate of second sub-band in samples/
      second
26 \text{ sr3}=2*(U3-L3);
      Sampling rate of third sub-band in samples/second
```


Figure 8.4: To find the upper bound of the transmission bit rate

Scilab code Exa 8.4 To find the upper bound of the transmission bit rate

```
1 // Example no 8.4
2 // To find the upper bound of the transmission bit
    rate
```

```
3 // Page no. 439
5 clc;
6 clear all;
8 // Given data
9 FL=810*10^6;
     // Lower limit of forward channel frequency band
10 FU=826*10^6;
     // Upper limit of forward channel frequency band
11 N = 1150;
     // Number of simultaneous users;
12 SE=1.68;
     // Spectral efficiency in bps/Hz
13 CR = 0.5;
     // Coder rate
14 \text{ bandused=}90/100;
                                                    // 90
     % bandwidth is used
15
16 bandwidth=bandused*(FU-FL);
                                         // Total
     bandwidth available for traffic channels in Hz
17 Cbandwidth=bandwidth/N;
                                             // Maximum
      channel bandwidth in Hz
18 ChannelDR=SE*Cbandwidth;
                                            // Maximum
      channel data rate in bps
19 DR=ChannelDR*CR;
                                                    //
     Maximum net data rate in bps
20
```

```
The gross channel bit rate = 16.75 kbps
```

Figure 8.5: To compute the gross channel data rate

```
21 // Displaying the result in command window
22 printf('\n Maximum net data rate = %0.1 f kbps', DR
    *10^-3);
```

Scilab code Exa 8.5 To compute the gross channel data rate

```
The first bits in Type-1 channel
11 CRC1=10;
                                                    //
     Number of CRC bits in Type-1 channel
12 FEC=0.5;
     FEC rate for Type-1 channel
13 B2=132;
     Next bits in Type-2 channel
14 CRC2=5;
     Number of CRC bits in Type-2 channel
15 B3=78;
                                                      //
     The last bits in Type-3 channel
16
17 N1=(B1+CRC1)/FEC;
                                           // Total
     number of bits transmitted in Type-1 channel
18 N2 = (B2 + CRC2);
     number of bits transmitted in Type-2 channel
19 N3=B3;
      Total number of bits transmitted in Type-3
      channel
20 N = N1 + N2 + N3;
                                                 // Total
      number of channel bits transmitted enery t
     seconda
21
22 // The gross channel data rate
23 BR=N/t;
                                                     //
     The gross channel data rate in bps
24
25 // Displaying the result in command window
```

26 printf('\n The gross channel bit rate = $\%0.2\,\mathrm{f}$ kbps', BR*10^-3);

Chapter 9

Multiple access techniques for wireless communications

Scilab code Exa 9.1 To find the intermodulation frequencies generated

```
1 // Example no 9.1
2 // To find the intermodulation frequencies generated
3 // Page no. 451
5 clc;
6 clear all;
8 // Given data
9 f1=1930;
                                                      //
     First carrier frequency
10 f2=1932;
                                                      //
     second carrier frequency
11 F1=1920;
                                                      //
     Lower frequency of the band
12 F2=1940;
                                                      //
     Upper frequency of the band
13
```

```
Schab 5.41 Centode Applications ?

File Edit Control Applications ?

Schab 5.41 Centode

7

File Edit Control Applications ?

Fire Equation y 1930 Mix lies inside the band

If frequency 1930 Mix lies inside the band

If frequency 1926 Mix lies inside the band

If frequency 1928 Mix lies inside the band

If frequency 1930 Mix lies cutside the band
```

Figure 9.1: To find the intermodulation frequencies generated

```
14 \text{ for } n=0:3
15
        x1 = (2*n+1)*f1-2*n*f2
        if x1 < = F2 then
16
            printf('\n IF frequency %0.0 f MHz lies
17
                inside the band', x1);
18
        else
            printf('\n IF frequency %0.0 f MHz lies
19
                outside the band', x1);
20
        end
21
   end
22
23
  for n=0:3
        x2=(2*n+2)*f1-(2*n+1)*f2
24
        if x2 < = F2 then
25
26
            printf('\n IF frequency %0.0 f MHz lies
                inside the band', x2);
27
        else
            printf('\n IF frequency %0.0 f MHz lies
28
                outside the band', x2);
29
        end
30 \text{ end}
31
32 \text{ for } n=0:3
```


Figure 9.2: To find number of channels available

```
x3 = (2*n+1)*f2-2*n*f1
33
34
       if x3 < = F2 then
            printf('\n IF frequency %0.0 f MHz lies
35
               inside the band', x3);
36
       else
            printf('\n IF frequency %0.0 f MHz lies
37
               outside the band',x3);
38
       end
39
  end
40
  for n=0:3
41
42
       x4 = (2*n+2)*f2 - (2*n+1)*f1
       if x4 < = F2 then
43
            printf('\n IF frequency %0.0 f MHz lies
44
               inside the band', x4);
       else
45
            printf('\n IF frequency %0.0 f MHz lies
46
               outside the band', x4);
47
       end
48
  end
```

Scilab code Exa 9.2 To find number of channels available

```
1 // Example no 9.2
2 // To find number of channels available
3 // Page no. 452
4
5 clc;
6 clear all;
8 // Given data
9 Bt=12.5*10^6;
                                                    //
      Total spectrum allocation in Hz
10 Bguard=10*10^3;
                                                  // Guard
      band allocated in Hz
11 Bc=30*10^3;
                                                      //
      Channel bandwidth in Hz
12
13 // The number of channels available
14 N=(Bt-2*Bguard)/Bc;
                                             // The
      number of channels available
15
16 // Displaying the result in command window
17 printf('\n The number of channels available in FDMA
      system = \%0.0 \,\mathrm{f}',N);
```

Scilab code Exa 9.3 To find number of simultaneous users accommodated in GSM

Figure 9.3: To find number of simultaneous users accommodated in GSM

```
1 // Example no 9.3
2 // To find number of simultaneous users accommodated
      in GSm
3 // Page no. 455
4
5 clc;
6 clear all;
8 // Given data
9 m = 8;
     // Maximum speech channels supported by single
     radio channel
10 Bc = 200 * 10^3;
     // Radio channel bandwidth in Hz
11 Bt = 25 * 10^6;
     // Total spectrum allocated for forward link
12 Bguard=0;
     // Guard band allocated in Hz
13
14 // The number of simultaneous users accommodated in
     GSm
15 N=(m*(Bt-2*Bguard))/Bc;
     // The number of simultaneous users
```


Figure 9.4: To find the time duration of a bit and the time duration of a slot and the time duration of a frame and how long must a user occupying single time slot wait between two successive transmission

Scilab code Exa 9.4 To find the time duration of a bit and the time duration of a

```
1 // Example no 9.4
2 // To find a) the time duration of a bit b) the time
    duration of a slot c) the time duration of a frame
    d) how long must a user occupying single time
    slot wait between two successive transmission
3 // Page no. 456
4
5 clc;
6 clear all;
7
```

```
8 // Given data
9 N = 8;
      // Number of time slots in each frame
10 Nb=156.25;
      // Number of in each time slot
11 DR=270.833*10<sup>3</sup>;
                                                      //
      Data rate of transmission in channel
12
13 // a) To find the time duration of a bit
14 Tb=1/DR;
      // The time duration of a bit in sec
15
16 // b) To find the time duration of a slot
17 Tslot=Nb*Tb;
                                                        //
      The time duration of a slot
18
19 // c) To find the time duration of a frame
20 \quad Tf = N * Tslot;
                                                         //
      The time duration of a frame
21
22 //d) The waiting time between two successive
      transmission
23 Tw = Tf;
      // The arrival time of new frame for its next
      transmission
24
25 // Displaying the result in command window
26 printf('\n The time duration of a bit = \%0.3 \,\mathrm{f}
      microseconds', Tb*10^6);
27 printf('\n The time duration of a slot = \%0.3 \,\mathrm{f} ms',
      Tslot *10^3);
```

```
The frame efficiency = 74.24 percentage
```

Figure 9.5: To find the frame efficiency

Scilab code Exa 9.5 To find the frame efficiency

```
10 Bg=8.25;
                                                        //
       Number of guard bits per slot
11 Btrain=26;
      Number of training bits per slot
12 Nb=2;
     // Number of burst
13 Bburst = 58;
                                                       //
     Number of bits in each burst
14 Nslot=8;
       Number of slots in each frame
16 N=Btrail+Bg+Btrain+2*Bburst;
                                   // Total number of
      bits in each slot
17 Nf = Nslot * N;
                                                      //
      Total number of bits in a frame
18 bOH=Nslot*Btrail+Nslot*Bg+Nslot*Btrain;
                       // Number of overhead bits per
      frame
19
20 // To find the frame efficiency
21 nf = (1 - (bOH/Nf)) * 100;
                                           // Frame
      efficiency
22
23 // Displaying the result in command window
24 printf('\n The frame efficiency = \%0.2 \, \text{f} percentage',
     nf);
```


Figure 9.6: To determine the maximum throughput using ALOHA and slotted ALOHA

 ${f Scilab\ code\ Exa\ 9.6}$ To determine the maximum throughput using ALOHA and slotted AL

Figure 9.7: To evaluate 4 different radio standards and to choose the one with maximum capacity

```
12 // Displaying the result in command window
13 printf('\n The maximum throughput using ALOHA = \%0.4
     f',T);
14
  //The maximum throughput using slotted ALOHA
15
16 Rmax=1;
     Maximum rate of arrival calculated by equating
     slotted ALOHA throughput formula derivative to
     zero
17 T=Rmax*exp(-1);
                                            //The
     maximum throughput using slotted ALOHA
18
  // Displaying the result in command window
20 printf('\n The maximum throughput using slotted
     ALOHA = \%0.4 \, f', T);
```

Scilab code Exa 9.7 To evaluate 4 different radio standards and to choose the one

```
1 // Example no 9.7
2 // To evaluate 4 different radio standards and to
     choose the one with maximum capacity
3 // Page no. 472
5 clc;
6 clear all;
8 // Given data
9 ABc=30*10^3;
                                                     //
      Channel bandwidth of system A
10 ACImin=18;
      The tolerable value of carrier to interference
      ratio for system A
11 BBc=25*10^3;
                                                     //
      Channel bandwidth of system B
12 BCImin=14;
      The tolerable value of carrier to interference
      ratio for system B
13 CBc=12.5*10^3;
                                                  //
      Channel bandwidth of system C
14 CCImin=12;
      The tolerable value of carrier to interference
      ratio for system C // Value of CCImin is given
     wrong in book
15 DBc=6.25*10<sup>3</sup>;
                                                  //
      Channel bandwidth of system D
16 DCImin=9;
                                                       //
```

```
The tolerable value of carrier to interference
      ratio for system D
17 Bc=6.25*10^3;
                                                  //
     Bandwidth of particular system
18
19 ACIeq=ACImin+20*log10(Bc/ABc);
                                 // Minimum C/I for
     system A when compared to the (C/I)min for
      particular system
20 BCIeq=BCImin+20*log10(Bc/BBc);
                                 // Minimum C/I for
     system B when compared to the (C/I)min for
      particular system
21 CCIeq=CCImin+20*log10(Bc/CBc);
                                 // Minimum C/I for
     system C when compared to the (C/I)min for
      particular system
22 DCIeq=DCImin+20*log10(Bc/DBc);
                                 // Minimum C/I for
     system D when compared to the (C/I)min for
      particular system
23
24 // Displaying the result in command window
25 printf('\n Minimum C/I for system A when compared to
      the (C/I) min for particular system = \%0.3 f dB',
     ACIeq);
26 printf('\n Minimum C/I for system B when compared to
       the (C/I) min for particular system = \%0.2 f dB',
     BCIeq);
27 printf('\n Minimum C/I for system C when compared to
       the (C/I) min for particular system = \%0.0 f dB',
     CCIeq);
28 printf('\n Minimum C/I for system D when compared to
       the (C/I) min for particular system = \%0.0 f dB',
     DCIeq);
29 printf('\n \n Based on comparison, the smallest
      value of C/I should be selected for maximum
```


Figure 9.8: To determine the maximum number of users using omnidirectional base station antenna and no voice activity and three sectors at the base station and voice activity detection

```
capacity. So, System B offers the best capacity.'
```

 ${f Scilab\ code\ Exa\ 9.9}$ To determine the maximum number of users using omnidirectional

```
1 // Example no 9.9
2 // To determine the maximum number of users using a)
    omnidirectional base station antenna and no voice
    activity b)three-sectors at the base station and
    voice activity detection
3 // Page no. 472
4
5 clc;
6 clear all;
7
8 // Given data
```

```
9 W=1.25*10^6;
     // Total RF bandwidth in Hz
10 R=9600;
     // Baseband information bit rate in bps
11 EbNo=10;
     // Minimum acceptable SNR in dB
12
13 // a) Maximum number of users using omnidirectional
      base station antenna and no voice activity
14 N1=1+(W/R)/EbNo;
     // Maximum number of users using omnidirectional
15
16 // b) Maximum number of users using three-sectors at
      the base station antenna and voice activity with
      alpha=3/8
17 alpha=3/8;
     // Voice activity factor
18 Ns=1+(1/alpha)*((W/R)/EbNo);
     // Maximum number of users
19 N2 = 3 * Ns;
     // Maximum number of users using three-sectors
20
21 // Displaying the result in command window
22 printf('\n Maximum number of users using
      omnidirectional base station antenna and no voice
       activity = \%0.0 \,\mathrm{f}', N1);
23 printf('\n Maximum number of users using three-
      sectors at the base station antenna and voice
      activity (with alpha=3/8) = \%0.0 f', N2);
```