Scilab Textbook Companion for Manufacturing Engineering & Technology by S. Kalpakjian and S. R. Schmid¹

Created by
Ishu Jain
B. TECH
Mechanical Engineering
Madan Mohan Malaviya University of Technology
College Teacher
None

Cross-Checked by
None

July 31, 2019

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Manufacturing Engineering & Technology

Author: S. Kalpakjian and S. R. Schmid

Publisher: Addison Wesley Ltd.

Edition: 4

Year: 2001

ISBN: 9788178081571

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lı	List of Scilab Codes		
2	Mechanical Behavior Testing and Manufacturing Properties of Materials	5	
9	Composite Materials Structure General Properties and Applicatons	7	
10	Fundamental of Metal Casting	9	
13	Rolling of Metals	11	
14	Forging of Metals	13	
15	Extrusion and Drawing of Metals	15	
16	Sheet Metal Forming Processes	17	
17	Processing of Powder Metals Ceramics Glass and Super- conductors	18	
18	Forming and Shaping Plastics And Composite Materials	20	
20	Machining Processes Used to Produce Round Shape	22	

22	Machining Processes Used to Produce Round Shape	24
23	Machining Processes Used to Produce Various Shape	27
25	Abrasive Machining and Finishing Operations	30
28	Solid State Welding Processes	33
32	Tribology Friction Wear and Lubrication	35
36	Quality Assurance Testing And Inspection	37

List of Scilab Codes

Exa 2.1	Calculation of Ultimate Tensile Strength	5
Exa 9.1	Calculation of fraction of load supported by	
	fibre	7
Exa 10.1	solidification time for various shapes	9
Exa 13.1	Calculation of Roll Force and Torque	11
Exa 14.1	Calculation of Forging Force	13
Exa 15.1	Calculation of Force in Hot Extrusion	15
Exa 16.1	Calculation of Punch Force	17
Exa 17.1	Calculation of Dimensional Changes During	
	Shaping of Ceramic Components	18
Exa 18.1	Calculation of Diameter of Die in Extrusion	20
Exa 18.2	Calculation of number of Gears In Injection	
	Moulding	21
Exa 20.1	Calculation of Energy used as friction In cut-	
	ting	22
Exa 20.2	Change in Tool Life by Changing the Cutting	
	Speed	23
Exa 22.1	Calculation of Material Removal Rate and Cut-	
	ting Force in Turning	24
Exa 22.2	Calculation of Material Removal Rate and Torqu	ıe
	in Drlling	25
Exa 23.1	Calculation of Material Removal Rate Power	
	Required Torque and Cutting Time in Slab	
	Milling	27
Exa 23.2	Calculation of Material Removal Rate Power	
	Required and Cutting Time in Face Milling	28
Exa 25.1	Calculation of Chip Dimensions in Surface	
	Grinding	30

Exa 25.2	Calculation of Force in Surface Grinding	31
Exa 28.1	Calculation of Heat Generated in Spot Weld-	
	ing	33
Exa 32.1	Calculation of Cofficient of Friction	35
Exa 36.1	Calculation of Loss Function and Payback Pe-	
	riod in Polymer Tubing	37
Exa 36.2	Calculation of Control Limits and Standard	
	Deviation	38

Mechanical Behavior Testing and Manufacturing Properties of Materials

Scilab code Exa 2.1 Calculation of Ultimate Tensile Strength

Composite Materials Structure General Properties and Applications

Scilab code Exa 9.1 Calculation of fraction of load supported by fibre

```
1 clc
2 // Given that
3 x=0.2// Area fraction of the fibre in the composite
4 Ef= 300 // Elastic modulus of the fibre in GPa
5 Em= 100 // Elastic modulus of the matrix in GPa
6 
7 // Sample Problem on page no. 229
8 
9 printf("\n # application of reinforced plastics # \n ")
10
11 Ec = x*Ef + (1-x)*Em
12 printf("\n\n The Elastic Modulus of the composite is = %d GPa", Ec)
13
14 //Let Pf/Pm be r
15 r=x*Ef/((1-x)*Em)
```

```
16
17 //Let Pc/Pf be R
18 R=1+(1/r) // from the relation Pc = Pf + Pm
19 P=(1*100)/R
20 printf("\n\n The Fraction of load supported by Fibre
        is = %f Percent",P)
21 // Answer in the book is approximated to 43 %
```

Fundamental of Metal Casting

Scilab code Exa 10.1 solidification time for various shapes

```
1 clc
2 // Given that
3 //three metal piece being cast have the same volume
     but different shapes
4 //shapes are sphere, cube, cylinder(height=diameter)
6 // Sample Problem on page no. 252
8 printf("\n #solidification time for various shapes#
     \n")
10 //solidification time is inversely proportional to
      the square of surface area
11
12 //for sphere
13 r = (3/(4*3.14))^{(1/3)} / radius of the sphere from
     volume of sphere v = (4*3.14*r^3)/3
14 A=4*3.14*((r)^2)
15 \text{ time1=1/(A)^2}
16 printf("\n the solidification time for the sphere is
      %fC",time1)
```

```
17
18 // for cube
19 a=1//edge of the cube
20 A = 6 * a^2
21 \text{ time2=1/(A)^2}
22 printf("\n the solidification time for the cube is
      %fC",time2)
23
24 //for cylinder
25 //given height =diameter
26 // radius = 2*height
27 r = (1/(2*3.14))^{(1/3)} / radius of the cylinder from
      volume of the cylinder v=3.14*r^2*h
28 A = (6*3.14*(r^2)) / \text{area of the cylinder} = (2*3.14*)
      radius^2 + (2*3.14*radius*height)
29 \text{ time3=1/(A)}^2
30 printf("\n the solidification time for the sphere is
       \% fC",time3)
```

Rolling of Metals

Scilab code Exa 13.1 Calculation of Roll Force and Torque

```
19 F1=F*4.448/(10^6)//in mega newton
20 printf("\n\nRoll force = %f MN ",F1)
21
22 //answer in the book is round off and given 363000lb
23
24 P=(2*3.14*F*L*N)/(33000*12)
25 P1=P*7.457*(10^2)/(10^3)//in KW
26 printf("\n\proxper roll = %f KW ",P1)
27
28 //answer in the book is 670 KW due to round off of
     the roll force
29
30 Tp=2*P1//total power
31 printf("\n\n Total power = \%f KW ", Tp)
32
33 //answer in the book is 1340KW due to round off of
     the roll force
```

Forging of Metals

Scilab code Exa 14.1 Calculation of Forging Force

```
1 clc
2 // Given that
3 d=150//in mm Diameter of the solid cylinder
4 Hi=100 //in mm Height of the cylinder
5 u=0.2 // Cofficient of friction
7 // Sample Problem on page no. 344
9 printf("\n # Calculation of forging force #\n")
10
11 //cylinder is reduced in height by 50%
12 \text{ Hf} = 100/2
13 //Volume before deformation= Volume after
      deformation
14 \text{ r=sqrt}((3.14*75^2*100)/(3.14*50))//r \text{ is the final}
      radius of the cylinder
15 E=log(Hi/Hf)//absolute value of true strain
16 //given that cylinder is made of 304 stainless steel
17 Yf = 1000 //in Mpa flow stress of the material from
      data in the book
18 F = Yf*(10^6)*3.14*(r^2)*10^-6*(1+((2*u*r)/(3*Hf)))
```

```
//Forging Force

19 F1=F/(10^6)

20 printf("n\n Forging force = %d MN",F1)
```

Extrusion and Drawing of Metals

Scilab code Exa 15.1 Calculation of Force in Hot Extrusion

16 //Answer in the book is approximated to 5.5MN

Sheet Metal Forming Processes

Scilab code Exa 16.1 Calculation of Punch Force

```
1 clc
2 // Given that
3 d=1//in inch Diameter of the hole
4 T=(1/8)//in inch thickness of the sheet
5
6 // Sample Problem on page no. 396
7
8 printf("\n # Calculation of Punch Force# \n")
9
10 UTS=140000//in psi Ultimate Tensile Strength of the titanium alloy Ti-6Al-4V
11 L=3.14*d//total length sheared which is the perimeter of the hole
12 F=0.7*T*L*UTS
13 F1=F*4.448/(10^6)
14 printf("\n\n Extrusion force=%f MN",F1)
15
16 // Answer in the book is approximated to 0.17MN
```

Processing of Powder Metals Ceramics Glass and Superconductors

Scilab code Exa 17.1 Calculation of Dimensional Changes During Shaping of Ceramic

```
16  printf("\n\n Initial Length=%f mm", Lo)
17
18  //Answer in the book is approximated to 22.77mm
19
20  //part(b)
21
22  Pf=0.03//Fired Porosity
23  r = (1-Pf)// Where r = Va/Vf
24  R = 1/((1-Sf)^3)// Where R = Vd/Vf
25  Pd = (1-r/R)
26  printf("\n\nDried porosity is %d percent", Pd*100)
```

Forming and Shaping Plastics And Composite Materials

Scilab code Exa 18.1 Calculation of Diameter of Die in Extrusion

```
1 clc
2 // Given that
3 W=400//in mm Lateral(width) Dimension of a plastic
     shopping bag
5 // Sample Problem on page no. 484
7 printf("\n # Blown Film # \n")
9 // part (a)
10
11 P=2*W//in mm Perimeter of bag
12 D=P/3.14//in mm blown diameter calculated from
     Permeter = 3.14 * diameter
13 //Given in this process, a tube is expanded to form
     1.5 to 2.5 in times the extrusion die diameter,
     so take maximum value 2.5
14 Dd=D/2.5//Extrusion die diameter
15 printf("\n Extrusion Die Diameter =\%d mm", Dd)
```

```
16
17 //Answer in the book is approximated to 100mm
18
19 //part(b) is theoritical
```

Scilab code Exa 18.2 Calculation of number of Gears In Injection Moulding

```
1 clc
2 // Given that
3 W=250//in ton Weight of injection moulding machine
4 d=4.5//in inch diameter of spur gear
5 t=0.5//in inch thickness of spur gear
6 //Gears have a fine tooth profile
8 // Sample Problem on page no. 488
10 printf("\n # Injection Molding of Parts #\n")
11
12 //because of fine tooth profile pressure required in
      the mould cavity is assumed to be of the order
     100 MPa or 15 Ksi
13 p=15//inKsi
14 A = (3.14*(d^2))/4//in inch^2 area of the gear
15 F = A * 15 * 1000
16 n=(W*2000)/F //weight is converted into lb by
      multiplying it by 2000
17 printf("\n Number of gears that can be injected =
     %d",n)
18
19 // Second part of this question is theoritical
```

Machining Processes Used to Produce Round Shape

Scilab code Exa 20.1 Calculation of Energy used as friction In cutting

```
1 clc
2 // Given that
3 to=0.005//in inch depth of cut
4 V=400//in ft/min cutting speed
5 X=10//in degree rake angle
6 \text{ w=0.25//in inch width of cut}
7 tc=0.009//in inch chip thickness
8 Fc=125//in lb Cutting force
9 Ft=50//in lb thrust force
10
11 // Sample Problem on page no. 548
12
13 printf("\n \# Relative Energies in cutting \# \n")
14
15 r=to/tc//cutting ratio
16 R = sqrt((Ft^2) + (Fc^2))
17 B=acosd(Fc/R)+X//friction angle
18 F=R*sind(B)
19 P=((F*r)/Fc)*100
```

```
20 printf("\n\n Percentage of total energy going into overcoming friction =%d pecrent", P)
21
22 //Answer in the book is approximated to 32 due to approximation in calculation of R and B
```

Scilab code Exa 20.2 Change in Tool Life by Changing the Cutting Speed

```
1 clc
2 // Given that
3 n=0.5//exponent that depends on tool and workpiece
      material
4 C=400//constant
6 // Sample Problem on page no. 555
8 printf("\n # Increasing tool life by Reducing the
      Cutting Speed \# \n")
10 \text{ V1=poly}(0,"V1")
11 r=0.5// it is the ratio of V2/V1 where V1 and V2 are
       the initial and final cutting speed of the tool
12 //let t=T2/T1 where T1 and T2 are the initial and
      final tool life
13 t=1/(r^{(1/n)})/from the relation V1*(T1^n)=V2*(T2^n)
14 P = (t-1) * 100
15 printf("\n\n Percent increase in tool life =\%d
      Percent", P)
```

Machining Processes Used to Produce Round Shape

 ${f Scilab\ code\ Exa\ 22.1}$ Calculation of Material Removal Rate and Cutting Force in Tur

```
1 clc
2 // Given that
3 1=6//in inch Length of rod
4 di=1/2//in inch initial diameter of rod
5 df=0.480//in inch final diameter of rod
6 N=400//in rpm spindle rotation
7 Vt=8//in inch/minute axial speed of the tool
9 // Sample Problem on page no. 600
10
11 printf("\n # Material Removal Rate and Cutting Force
       in Turning \# \n")
12
13 V = 3.14 * di * N
14 printf("\n\n Cutting speed=%d in/min", V)
16 v1=3.14*df*N//cutting speed from machined diameter
17 d = (di - df)/2//depth of cut
18 f = Vt/N//feed
```

```
19 Davg=(di+df)/2
20 MRR=3.14*Davg*d*f*N
21 printf("\n\ Material Removal Rate %f=in^3/min", MRR)
22
23 t=1/(f*N)
24 printf("\n Cutting time=%f min",t)
25
26 P=(4/2.73)*MRR//average value of stainless steel is
     taken as 4 ws/mm3 or 4/2.73 hpmin/mm3
27 printf("\n\ Cutting power=\%f hp",P)
28
29 Fc = ((P*396000)/(N*2*3.14))/(Davg/2)
30 printf("\n\ Cutting force=%d lb",Fc)
31
32 //answer in the book is given 118 lb due to
      approximation
```

Scilab code Exa 22.2 Calculation of Material Removal Rate and Torque in Drlling

```
1 clc
2 // Given that
3 d=10//in mm diameter of drill bit
4 f=0.2//in mm/rev feed
5 N=800//in rpm spindle rotation
6
7 // Sample Problem on page no. 632
8
9 printf("\n # Material Removal Rate and Torque in Drilling # \n")
10
11 MRR=[((3.14*(d^2))/4)*f*N]/60
12 printf("\n\n Material Removal Rate %d=mm^3/sec",MRR)
13
```

Machining Processes Used to Produce Various Shape

 ${f Scilab\ code\ Exa\ 23.1}$ Calculation of Material Removal Rate Power Required Torque and

```
1 clc
2 // Given that
3 l=12//in inch Length of block
4 w=4//in inch width
5 f=0.01//in inch/tooth feed
6 d=1/8//in inch depth of cut
7 D=2//in inch diameter of cutter
8 n=20/no. of teeth
9 N=100//in rpm spindle rotation
10 Vt=8//in inch/minute axial speed of the tool
11
12 // Sample Problem on page no. 600
14 printf("\n # Material Removal Rate , Power required
      and Cutting Time in slab milling \# \n")
15
16 \text{ v=f*N*n}
17 \quad MRR = w * d * v
18 printf("\n\n Material Removal Rate = %d in 3/min",
```

 ${f Scilab\ code\ Exa\ 23.2}$ Calculation of Material Removal Rate Power Required and Cutti

```
1 clc
2 // Given that
3 1=500//in mm Length
4 w=60//in \text{ mm width}
5 \text{ v=0.6//in m/min}
6 d=3//in mm depth of cut
7 D=150//in mm diameter of cutter
8 n=10//no. of inserts
9 N=100//in rpm spindle rotation
10
11 // Sample Problem on page no. 655
12
13 printf("\n # Material Removal Rate, Power Required
      and Cutting Time in Face Milling #\n")
14
15 MRR=w*d*v*1000
16 printf("\n Material Removal Rate = %d mm3/min", MRR
```

```
)
17
18 lc=D/2
19 t=((1+(2*1c))/((v*1000)/60)) // velocity is
      converted into mm/sec
20 t1=t/60
21 printf("\n\n Cutting time= %ff min",t1)
22
23 f=(v*1000*60)/(60*N*n) // N is converted into rev/
      \sec by dividing by 60 , velocity is converted
      into mm/sec
24 printf("\n\n Feed per Tooth= %f mm/tooth",f)
25
26 //for high strength aluminium alloy unit power is
      taken as 1.1 W s/mm3
27 P=(1.1*MRR)/60 // MRR is converted into mm3/sec by
      dividing by 60
28 \text{ P1=P/(1000)}//\text{in KW}
29 printf("\n\ Cutting power=\%f KW",P1)
```

Abrasive Machining and Finishing Operations

Scilab code Exa 25.1 Calculation of Chip Dimensions in Surface Grinding

```
1 clc
2 // Given that
3 D=200//in mm Grinding Wheel diameter
4 d=0.05//in mm depth of cut
5 v=30/m/min workpiece velocity
6 V=1800//in m/min wheel velocity
8 // Sample Problem on page no. 713
10 printf("\n # Chip Dimensions in Surface Grinding # \
     n")
11
12 l = sqrt(D*d)
13 \quad 11=1/2.54*(10^-1)
14 printf("\n Undeformed Chip Length = \%f mm",11)
15
16 //the answer in the book is approximated to 0.13 in
17
18 //assume
```

Scilab code Exa 25.2 Calculation of Force in Surface Grinding

```
1 clc
2 // Given that
3 D=10//in inch Grinding Wheel diameter
4 N = 4000 // in rpm
5 \text{ w=1//in inch}
6 d=0.002//in inch depth of cut
7 v=60//inch/min feed rate of the workpiece
9 // Sample Problem on page no. 715
10
11 printf("\n # force in Surface Grinding # \n")
12
13 Mrr=d*w*v//material removal rate
14 //for low carbon steel , the specific energy is 15hp
      min/in3
15 u=15//in hp min/in3
16 P=u*Mrr*396000//in lb/min
17 Fc = P/(2*3.14*N*(D/2))
18
19 printf("\n\ Cutting Force = \%f lb",Fc)
20 // Answer in the book is approximated to 5.7 lb
21
```

```
22 // from the experimental data in book thrust force
    is taken as 30% higher than cutting force
23 Fn = Fc+(30/100)*Fc
24
25 printf("\n\n Thrust Force = %f lb",Fn)
26 // Answer in the book is approximated to 7.4 lb
```

Solid State Welding Processes

Scilab code Exa 28.1 Calculation of Heat Generated in Spot Welding

```
1 clc
2 // Given that
3 t=1//in mm thickness of chip
4 I=5000//in Ampere current
5 T=0.1//in sec
6 d=5//in mm diameter of electrode
8
9 // Sample Problem on page no. 805
11 printf("\n # Heat Generated in Spot Welding #\n")
12
13 //It is assumed in the book that effective restiance
      = 200 \text{ micro ohm}
14 R = 200 * (10^-6)
15 H = (I^2) *R*T
16
17 printf("\n Heat Generated = %d J", H)
18
19 // It is assumed in the book that
20 V=30//in mm3 volume
```

Tribology Friction Wear and Lubrication

Scilab code Exa 32.1 Calculation of Cofficient of Friction

```
1 clc
2 // Given that
3 hi=10//in mm height of specimen
4 ODi=30//in mm outside diameter
5 IDi=15//in mm inside diameter
6 ODf=38//in mm outside diameter after deformation
7 //Specimen is reduced in thickness by 50%
8 \text{ hf} = (50/100) * \text{hi}
10 // Sample Problem on page no. 886
11
12 printf("\n # Determination of Cofficient of Friction
      #\n")
13
14 IDf = sqrt((ODf^2) - ((((ODi^2) - (IDi^2))*hi)/hf)) / new
      internal diameter calculated, by comparing the
     volume before and after deformation (3.14/4)*(ODi
      ^2-IDi^2 = (3.14/4)*(ODf^2-IDf^2)*hf
15 ID=((IDi-IDf)/IDi)*100//change in internal diameter
```

17 printf("\n\n With a 50 percent reduction in height and a %d reduction in internal diameter, from the book data Cofficient of Friction = 0.21", ID)

Quality Assurance Testing And Inspection

 ${f Scilab\ code\ Exa\ 36.1}$ Calculation of Loss Function and Payback Period in Polymer Tu

```
1
2 clc
3 // Given that
4 T=2.6//in mm wall thickness
5 USL=3.2//in mm upper specification limit
6 LSL=2//in mm lower specification limit
7 Y=2.6//in mm mean
8 s=0.2//in mm standard deviation
9 C1=10//in dollar shipping included cost
10 C2=50000//in dollars improvement cost
11 n=10000//sections of tube per month
12 // Sample Problem on page no. 978
13
14 printf("\n # Production of Polymer Tubing # \n")
15
16 \text{ k=C1/(USL-T)^2}
17 LossCost=k*(((Y-T)^2)+(s^2))
18 // after improvement the variation is half
19 \text{ s1} = 0.2/2
```

Scilab code Exa 36.2 Calculation of Control Limits and Standard Deviation

```
1 clc
2 // Given that
3 n=5// in inch sample size
4 m=10// in inch number of samples
5 // The table of the queston is given of page no.990
     Table 36.3
7 // Sample Problem on page no. 990
9 printf("\n # Calculation of Control Limits and
     Standard Deviation#\n")
10 avgx=44.296 //from the table 36.3 by adding values
     of mean of x
11 x = avgx/m
12 avgR=1.03 //from the table 36.3 by adding values of
     R
13 R = avgR/m
14 //from the data in the book
```

```
15 \quad A2 = 0.577
16 \quad D4 = 2.115
17 D3=0
18 UCLx = x+(A2*R)
19 \quad LCLx = x - (A2*R)
20 printf("\n Control Limits for Averages are =\n
      UCLx = \%f \text{ in } \ \ UCLy = \%f \text{ in } \ \ UCLx, LCLx)
21
22 \text{ UCLR} = D3*R
23 LCLR = D4 *R
24
25 printf("\n Control Limits for Ranges are =\n UCLR
      = \%f in \n UCLR = \%f in , UCLR, LCLR)
26
27 //from table
28 d2=2.326
29 \text{ sigma= } R/d2
30 printf("\n\ Standard Deviation = %f in", sigma)
```