Scilab Textbook Companion for Engineering Physics by D. C. Ghosh, N. C. Ghosh and P. K. Haldar¹

Created by Pankaj Biswas Physics Physics Shri Mata Vaishno Devi University College Teacher Dr. Kamni Cross-Checked by Chaya

July 31, 2019

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Engineering Physics Author: D. C. Ghosh, N. C. Ghosh and P. K. Haldar Publisher: University Science, New Delhi Edition: 1 Year: 2008 ISBN: 978-81-318-0366-0 Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	List of Scilab Codes	
1	Classical Mechanics	5
2	Electricity and Magnetism	9
3	Vibration Waves and Light	14
4	Special Theory of Relativity	49
5	Quantum Mechanics	57
6	Classical Statistics and Quantum Statistics	76
7	Classical Statistics and Quantum Statistics	83
8	Laser and Fibre Optics	97
9	Nuclear Physics	101

List of Scilab Codes

$Exa \ 1.5$	Force of contact between two masses	5
Exa 1.6	Direction of motion of a ball after momentum	
	conservation during collision	6
Exa 1.9	Angular velocity of the combination of two	
	wheels	6
Exa 1.10	Common velocity of a car truck system	7
Exa 1.11	Velocity of third piece of the exploded object	8
Exa 2.12	Work done in moving a particle in force field	9
Exa 2.13	Evaluation of force integral	10
Exa 2.31	Electric flux through a surface area	10
Exa 2.32	Electric flux through an area in XY plane .	11
Exa 2.33	Electric flux through a surface in YZ plane .	11
Exa 2.39	Magnetic field due to a straight conductor	
	carrying current	12
Exa 2.40	Force between two current carrying straight	
	wires	13
Exa 3.a.02	Frequency of particle executing SHM	14
Exa 3.a.03	A body executing SHM	15
Exa 3.a.04	Time period of a body oscillating in the tun-	
	nel across the earth	16
Exa 3.a.05	Resultant amplitude and phase angle relative	
	to the first SHM	16
Exa 3.a.07	Two SHMs acting in the same direction	17
Exa 3.a.11	A spring disc system undergoing damped os-	
	cillation	17
Exa 3.a.12	A mass executing damped oscillations in one	
	dimension	18

Exa 3.a.14	A mass executing damped oscillations in one	
	dimension	20
Exa 3.a.15	Resisting force for critically damped motion	20
Exa 3.a.16	Damped oscillatory motion	21
Exa 3.a.17	Damped simple harmonic motion	22
Exa 3.a.21	Characteristics of progressive waves	23
Exa 3.a.22	A simple harmonic wave travelling along X	
	axis	24
Exa 3.a.23	Travelling wave characteristics and phase dif-	
	ference	25
Exa 3.b.101	Brewster angle and angle of refraction for glass	25
Exa 3.b.102	Polarizing angles for various pair of media .	26
Exa 3.b.103	Polarizing angle for glass	28
Exa 3.b.104	Polarization by reflection	28
Exa 3.b.105	Intensity ratio of two beams through analyser	29
Exa 3.b.106	Percentage reduction in the intensity of the	
	inident light	29
Exa 3.b.107	Angle of rotation of polaroid to reduce the	
	intensity	30
Exa 3.c.202	Ratio of maximum to minimum intensity in	
	the interference fringe system	31
Exa 3.c.203	Wavelength of light from interference of fringes	31
Exa 3.c.204	Fringe width from interference pattern	32
Exa 3.c.205	Distance between the two coherent sources .	32
Exa 3.c.206	Distance between consecutive interference bands	33
Exa 3.c.207	Wavelength of the light used in biprism ex-	
	periment	33
Exa 3.c.208	Number of fringes obtained with the given	
	wavelength \ldots	34
Exa 3.c.209	Wavelength of light from biprism interference	
	pattern	35
Exa 3.c.210	Fringe width observed at one metre distance	
	from biprism	35
Exa 3.c.211	Wavelength of light in Newton ring experiment	36
Exa 3.c.212	Radius of plano convex lens	37
Exa 3.c.213	Wavelenght of light used in obtaining Newton	
	rings	37
Exa 3.c.214	Diameter of the 20th dark ring	38

Exa 3.c.215	Radius of curvature of the lens and the thick-	
	ness of the air film	38
Exa 3.c.216	Newton rings observed in reflected light	36
Exa 3.c.217	Smallest thickness of the glass film in which	
	it appears dark	36
Exa 3.d.301	Wavelength of light used in diffraction due to	
	narrow slit	4(
Exa 3.d.302	Separation between the second minima on ei-	
	ther side of the central maximum	4(
Exa 3.d.303	Distance of the first dark band from the axis	4
Exa 3.d.304	Angle of diffraction for the principal maxima	42
Exa 3.d.305	Wavelength of the spectral line	43
Exa 3.d.306	Number of lines in one centimeter of the grat-	
	ing surface	4:
Exa 3.d.307	Highest order spectrum obtainable with the	
2110 0101001	given diffraction grating	44
Exa 3.d.308	Invisible third and higher order principal max-	
	ima in a diffraction grating	44
Exa 3.d.309	Number of lines per cm on the grating	4
Exa 3.d.310	Minimum number of lines on the diffraction	
	grating	46
Exa 3.d.311	Design of a plane transmission diffraction grat-	
	ing	46
Exa 3.d.312	Minimum number of lines per cm in grating	
	to just resolve the D1 and D2 lines of sodium	4
Exa 3.d.313	Maximum resolving power of a plane trans-	
	mission grating	4
Exa 3.d.314	Maximum number of lines of a grating	48
Exa 4.1	Fringe shift in the Michelson Morley experi-	
	ment	49
Exa 4.2	Apparent length of rod relative to the observer	49
Exa 4.3	Apparent length of a meter stick for different	-
	speeds	5(
Exa 4.4	Lorentz transformations applied to a rigid bar	51
Exa 4.5	Velocity of pi meson	52
Exa 4.6	Relative speed of the ships as measured by an	
	observer	5°
Exa 4.7	Velocity of one particle relative to the other	5

Exa 4.8	Velocity of the rocket as observed from the oarth
Exa 4 9	Velocity of the particle when its total energy
LAG 1.5	is thrice its rest energy
Exa 4 10	Relativisti variation of mass of electron with
	velocity
Exa 4.11	An electron subjected to relativistic motion
Exa 5.2	Temperature of the surface of sun
Exa 5.3	Wavelength of maximum intensity of radiation
Exa 5.4	Kinetic energy of the ejected photoelectrons
Exa 5.5	Possibility of electron emission with the given
Linu 0.0	incident wavelengths
Exa 5.6	Velocity of emitted photoelectrons
Exa 5.7	A photosensitive material emitting photoelec-
	trons
Exa 5.8	Maximum wavelength of radiation which would
	start the emission of photoelectrons
Exa 5 9	Potassium surface exposed to UV radiation
Exa 5.10	Planck constant and threshold wavelength of
	metal
Exa 5 11	Energy and wavelength of incident photon
Exa 5.12	Energy lost by an X ray photon in collsion
	with an electron
Exa 5 13	The Compton effect stidied at different scat-
	tering angles
Exa 5 15	de Broglie wavelength associated with moving
LAG 0.10	masses
Exa 5 16	Voltage applied to the electron microscope to
	produce the required wavelength
Exa 5 18	de Broglie wavelength of a neutron of given
	energy
Exa 5 19	Minimum uncertainty in momentum and ki-
LAG 0.15	netic energy of a proton confined within nu-
	cleus
Exa 5 20	Minimum uncertainty in the measurement of
LING 0.20	velocity of the electron
Exa 5 22	Minimum uncertainty in the position of the
LAU 0.22	narticle

Exa 5.23	Uncertainty with which position of the elec-	
	tron can be located \ldots \ldots \ldots \ldots \ldots	71
Exa 5.24	Minimum uncertainty in energy of the excited	
	state of an atom	71
Exa 5.25	Probable uncertainty in energy and frequency	
	of gamma ray photon	72
Exa 5.29	Lowest energy of an electron in one dimen-	
	sional force free region	72
Exa 5.30	The excited state energies of the particle en-	
	trapped in a one dimensional box	73
Exa 5.31	Probability of finding the particle within a	
	given interval	74
Exa 5.32	Probability of finding a particle within given	
	range of 1D box for different energy states .	74
Exa 6 1	Probability of distribution of distinguishable	• -
	particles	76
Exa 6 6	Most probable distribution for total energy	77
Exa 6.8	Probability for a Maxwell Boltzmann system	•••
	to be in given states	78
Exa 6 9	Number of microstates in the given macostate	•0
LIAG 0.0	of a Fermi Dirac system	78
Exa 6 10	Number of microstates formed by particles	10
LX4 0.10	obeying Fermi Dirac statistics	70
Eva 6 11	Fermi energy and internal energy for metallic	15
LAA 0.11	silver at 0 K	80
Evo 6 19	Number of conduction electrons per ce in sil	80
Exa 0.12	vor at 0 K	80
Evo 6 13	Formi operat of conduction electrons in cosium	81
Exa 0.15	Atomic packing fractions of SC ECC and BCC	01
Exa 1.1	upit colls	83
$\mathbf{E}_{\mathbf{W}2}$ 7.2	Distance between two adjacent stores in the	00
Exa (.5	NaCl	84
Exa 74	Type of unit cell of Cs	85
Exa 7.5	Miller indices of given planes	86
Exa 7.6	Meaning of hkl notation of planes	86
Exa 7.9	Lengths of intercents along v and z axis	88
$E_{xa} 7.0$	Interplanar spacing for a set of planes in a	00
Пла 1.10	aubic lattice	20
		09

Exa 7.11	Determining Planck constant from given set	
	of X ray data	89
Exa 7.12	Maximum speed of striking electron and the	
	shortest wavelength of X ray produced	90
Exa 7.13	Interatomic spacing using Bragg relation	91
Exa 7.14	Value of Planck constant from Bragg relation	92
Exa 7.15	Diffraction of X rays from a crystal	92
Exa 7.16	Wavelength of X rays from grating space of	
	the rock salt	93
Exa 7.17	Diffraction of X rays by the calcite crystal .	94
Exa 7.18	Interatomic spacing for given crystal planes	95
Exa 7.19	Smallest angle between the crystal plane and	
	the X ray beam	95
Exa 8.1	Image produced by laser beam	97
Exa 8.2	Pumping energy required for He Ne laser tran-	
	sition	98
Exa 8.3	Wavelength of radiation emitted at room tem-	
	perature	98
Exa 8.4	Refractive index of the cladding in an optical	
	fibre	99
Exa 8.5	Numerical aperture and acceptance angle of	
	the optical fibre	99
Exa 9.1.1	Binding energy per nucleon for Ni 1	01
Exa $9.1.2$	Binding energy per nucleon for deutron 1	02
Exa $9.1.3$	Packing fraction and binding energy per nu-	
	cleon for oxygen	02
Exa $9.1.4$	Atomic mass of neon	03
Exa 9.2.1	Average number of photons pe cubic metre in	
	a monochromatic beam	04
Exa $9.2.2$	Average number of photons pe cubic metre in	
	a monochromatic beam 1	04
Exa $9.2.3$	Photoelectric effect with silver 1	05
Exa $9.2.4$	Work function of the metallic surface \ldots 1	06
Exa $9.2.5$	Wavelength of the scattered photon 1	07
Exa $9.2.6$	de Broglie wavelength of the valence electron	
	in metallic sodium $\ldots \ldots \ldots \ldots \ldots \ldots 1$	07
Exa 9.2.7	de Broglie wavelength of a moving electron . $\ 1$	08

Exa $9.2.8$	Uncertainty in energy and frequency of emit-	
	$ted light \ldots \ldots$	108
Exa 9.2.9	Shortest wavelength present in the radiation	
	from an X ray machine	109
Exa 9.2.11	Q value of nuclear reaction	110
Exa 9.2.12	Threshold energy for the reactions	110
Exa 9.2.13	Finding unknown particles in the nuclear re-	
	actions	112
Exa 9.2.14	Comptom scattering	114
Exa 9.2.16	Miller indices for the lattice planes	115
Exa 9.2.19	Glancing angles for the second and third or-	
	der reflections	116

Chapter 1

Classical Mechanics

Scilab code Exa 1.5 Force of contact between two masses

1 // Scilab Code Ex1.5: Page-11 (2008)2 clc; clear; 3 m1 = 2; // Mass of first body, kg // Mass of second body, kg 4 m2 = 1;5 F = 3; // The horizontal force applied to the mass m1, N 6 F_prime = m2/(m1 + m2)*F; // Force of contact between m1 and m2, N 7 printf("\nThe force of contact between m1 and m2 = $\%3.1 \, f \, N$ ", F_prime); 8 F_prime = m1/(m1 + m2)*F; // Force of contact when F is applied to m2, N 9 printf("\nThe force of contact when F is applied to m2 = %3.1 f N", F_prime); 10 11 // Result 12 // The force of contact between m1 and m2 = 1.0 N 13 // The force of contact when F is applied to m2 =2.0 N

Scilab code Exa 1.6 Direction of motion of a ball after momentum conservation duri

Scilab code Exa 1.9 Angular velocity of the combination of two wheels

```
1 // Scilab Code Ex1.9: Page-14 (2008)
2 clc; clear;
3 omega1 = 500; // Angular speed of rotating shaft,
    r.p.m.
4 omega2 = 0; // Initial angular speed of the
    second wheel, r.p.m.
5 I = 1; // For simplicity assume moment of ineria
    of the wheels to be unity
6 I1 = I, I2 = I; // Moment of inertia of wheels A
    and B, kg-Sq.m
7 // As I1*omega1 + I2*omega2 = (I1 + I2)*omega,
```

```
solving for omega
```

```
8 omega = (I1*omega1 + I2*omega2)/(I1 + I2); //
Angular speed of the combination of two wheels, r
.p.m.
9 printf("\nThe angular speed of the combination of
two wheels = %3.0 f r.p.m.", omega);
10
11 // Result
12 // The angular speed of the combination of two
wheels = 250 r.p.m.
```

Scilab code Exa 1.10 Common velocity of a car truck system

```
1 // Scilab Code Ex1.10: : Page-14 (2008)
2 clc; clear;
              // Mass of the car, kg
3 m1 = 1200;
4 m2 = 3600;
                // Mass of the truck, kg
             // Speed of the car, m/s
5 \text{ u1} = 30;
             // Speed of the truck, m/s
6 \quad u2 = 20;
7 theta = 60; // Direction of motion of the truck w
     .r.t. that of car, degree
  // As m1*u1 + m2*u2 = (m1 + m2)*v, solving for v
     along x and y directions
9 v_x = (m1*u1 + m2*u2*cosd(theta))/(m1 + m2);
                                                   11
     Common speed along x-direction, m/s
10 \ u1 = 0;
            // The speed of the car after
     interlocking with the truck, m/s
11 v_y = (m1*u1 + m2*u2*sind(theta))/(m1 + m2);
                                                   Common speed along y-direction, m/s
12 v = sqrt(v_x^2 + v_y^2); // Common speed of the
     car-truck system, m/s
                           // Direction of common
13 theta = atand(v_y/v_x);
     velocity w.r.t. that of car, degree
14 printf("\nThe common speed of the car-truck system =
      %4.1 f m/s", v);
15 printf("\nThe direction of common velocity = \%4.1 f
```

Scilab code Exa 1.11 Velocity of third piece of the exploded object

```
1 // Scilab Code Ex1.11: Page-14 (2008)
2 clc; clear;
3 v1 = 20;
               // Velocity of first piece, m/s
              // Velocity of second piece, m/s
4 v2 = 30;
5 // From conservation of momentum, in x-direction
6 // m*v1*cosd(0)+m*v2*cosd(45)+m*v3*cosd(theta) = 0,
     solving for v3*cosd(theta)
7 v3_cos_theta = -(v1*cosd(0)+v2*cosd(45));
                                                // x-
     component of v3 along theta, m/s
8 // From conservation of momentum, in y-direction
9 // m*v1*sind(0)-m*v2*sind(45)+m*v3*sind(theta) = 0,
     solving for v3*sind(theta)
10 v3_sin_theta = -(v1*sind(0)-v2*sind(45));
                                                 // y-
     component of v3 along theta, m/s
11 theta = atand(v3_sin_theta/v3_cos_theta);
                                                 11
     Direction of velocity of third piece, degree
12 v3 = -(v1 * cosd(0) + v2 * cosd(45)) / cosd(theta + 180);
     // Velocity of third piece, m/s
13 printf("\nThe velocity of third piece is %4.1f m/s
     towards %d degree north of west", v3, ceil(theta
     +180));
14
15 // Result
16 // The velocity of third piece is 46.4 m/s towards
     153 degree north of west
```

Chapter 2

Electricity and Magnetism

Scilab code Exa 2.12 Work done in moving a particle in force field

```
1 // Scilab Code Ex2.12: Page-80 (2008)
2 clc; clear;
3 t = poly(0, 't');
4 x = t^2 + 1;
5 y = 2*t^2;
6 z = t^3;
7 F = [3*x*y - 5*z \ 10*x]; // Force acting on the
     particle, N
8 t1 = 1; // lower limit
9 t2 = 2;
            // upper limit
10 dr = [derivat(x); derivat(y); derivat(z)]; //
     Infinitesimal displacement, m
              // Work done or infinitesimally small
11 dW = F*dr;
     displcement, J
12 work_exp = sci2exp(dW); // Convert the polynomial
     to the expression
13 W = integrate(work_exp, 't', t1, t2); // Total
     work done in moving the particle in a force field
     , J
14 printf("\nThe total work done in moving the particle
      in a force field = \%d J", W);
```

15 16 // Result

Scilab code Exa 2.13 Evaluation of force integral

```
1 // Scilab Code Ex2.13: Page-80 (2008)
2 clc; clear;
3 x = poly(0, 'x');
4 y = x^2 - 4;
5 F = [x*y (x^2 + y^2)]; // Force acting on the
     particle, N
6 \text{ x1} = 2; // lower limit
7 x2 = 4; // upper limit
8 dr = [derivat(x); derivat(y);]; // Infinitesimal
     displacement, m
9 dW = F*dr;
              // Work done or infinitesimally small
     displcement, J
10 work_exp = sci2exp(dW); // Convert the polynomial
     to the expression
11 W = integrate(work_exp, 'x', x1, x2); // Total
     work done in moving the particle in a force field
     , J
12 printf("\nThe total work done in moving the particle
      in the x-y plane = \%d J", W);
13
14 // Result
15 // The total work done in moving the particle in the
      x-y plane = 732 J
```

Scilab code Exa 2.31 Electric flux through a surface area

```
1 // Scilab Code Ex2.31: Page-93 (2008)
2 clc; clear;
```

```
3 E = [3 4 8]; // Coefficients of i, j and k in the
electric field, N/C
4 S = [0; 0; 100]; // Coefficients of i, j and k in
the area vector, Sq. m
5 phi_E = E*S; // Electric flux through the surface
, N-Sq.m/C
6 printf("\nThe electric flux through the surface = %d
N-Sq.m/C", phi_E);
7
8 // Result
9 // The electric flux through the surface = 800 N-Sq.
m/C
```

Scilab code Exa 2.32 Electric flux through an area in XY plane

```
1 // Scilab Code Ex2.32: Page-93 (2008)
2 clc; clear;
3 = [8 4 3];
                  // Coefficients of i, j and k in the
      electric field , N/C
4 S = [0; 0; 100]; // Coefficients of i, j and k in
      the area vector, Sq. m
5 phi_E = E * S;
                 // Electric flux through the surface
     , N-Sq.m/C
6 printf("\nThe electric flux through the area in XY
     plane = \%d N-Sq.m/C", phi_E);
7
8 // Result
9 // The electric flux through the area in XY plane =
     300 \text{ N-Sq.m/C}
```

Scilab code Exa 2.33 Electric flux through a surface in YZ plane

1 // Scilab Code Ex2.33: Page-93 (2008)

```
2 clc; clear;
3 E = [2 3 4]; // Coefficients of i, j and k in the
electric field, N/C
4 S = [10; 0; 0]; // Coefficients of i, j and k in
the area vector, Sq. m
5 phi_E = E*S; // Electric flux through the surface
, N-Sq.m/C
6 printf("\nThe electric flux through the surface in
YZ plane = %d N-Sq.m/C", phi_E);
7
8 // Result
9 // The electric flux through the surface in YZ plane
= 20 N-Sq.m/C
```

Scilab code Exa 2.39 Magnetic field due to a straight conductor carrying current

1 // Scilab Code Ex2.39: Page-96 (2008) 2 clc; clear; 3 mu_0 = 4*%pi*1e-007; // Absolute magnetic permeability of free space, N/ampere-square 4 I = 15; // Current through the wire, A 5 x = 1e-002; // Distance of observation point from the wire, m $6 B = mu_0/(4*\%pi)*2*I/x;$ // Magnetic field at 1 cm distance, T 7 printf("\nThe magnetic field due to the current carrying wire at %d cm distance = %1.0e tesla", x /1e-002, B); // Distance of observation point from the 8 x = 5;infinite straight conductor, m 9 I = 100;// Current through the straight conductor, A 10 B = $mu_0/(4*\%pi)*2*I/x$; // Magnetic field at 1 cm distance, T 11 printf("\nThe magnetic field due to the current

```
carrying infinite straight conductor at %d m
distance = %1.0e tesla", x, B);
12
13 // Result
14 // The magnetic field due to the current carrying
wire at 1 cm distance = 3e-004 tesla
15 // The magnetic field due to the current carrying
infinite straight conductor at 5 m distance = 4e
-006 tesla
```

Scilab code Exa 2.40 Force between two current carrying straight wires

```
1 // Scilab Code Ex2.40: Page-96 (2008)
2 clc; clear;
3 mu_0 = 4*%pi*1e-007; // Absolute magnetic
     permeability of free space, N/ampere-square
4 I1 = 30; // Current through the first wire, A
5 I2 = 40; // Current through the second wire, A
6 x = 2; // Separation distance between two wires,
     m
7 F = mu_0/(4*%pi)*2*I1*I2/x; // Force between two
     current carrying straight wires, N
8 printf("\nThe force between two current carrying
     straight wires = \%3.1 \text{ e N}", F);
9
10 // Result
11 // The force between two current carrying straight
     wires = 1.2 e - 004 N
```

Chapter 3

Vibration Waves and Light

Scilab code Exa 3.a.02 Frequency of particle executing SHM

```
1 // Scilab Code Ex3a.a.2: Page-132 (2008)
2 clc; clear;
            // Mass of the particle, g
3 m = 10;
4 x = poly(0, 'x');
5 V = 50 * x^2 + 100;
                     // Potential field surrounding
     the particle, erg/g
6 U = m * V; // Potential energy of the particle
     field system, erg
7 F = -derivat(U); // Force acting on the particle,
      dyne
8 // As F = -m*a = -m*omega^2*x = -m*(2\%pi*f)^2*x,
     solving for f
                                                      11
9 f = sqrt(eval(pol2str(-pdiv(F,x)/m)))/(2*%pi);
      Frequency of oscillations of the particle
     executing SHM, Hz
10 printf("\nThe frequency of oscillations of the
      particle executing SHM = \%4.2 f Hz", f);
11
12 // Result
13 // The frequency of oscillations of the particle
     executing SHM = 1.59 Hz
```

Scilab code Exa 3.a.03 A body executing SHM

```
1 // Scilab Code Ex3a.a.3: Page-133 (2008)
2 clc; clear;
3 v1 = 80;
               // Velocity of the body at 3 cm
      displacement, cm/s
4 v2 = 60;
              // Velocity of the body at 4 cm
      displacement, cm/s
             // Displacement of the body at velocity
  x1 = 3;
5
      of 80 \text{ cm/s}
6 x2 = 4;
             // Displacement of the body at velocity
      of 60 \text{ cm/s}
7 // As v = \text{omega} * \text{sqrt} (a^2 - x^2), solving for a
8 a = poly(0, 'a');
9 a = roots(v1^2*(a^2-16) - v2^2*(a^2 - 9));
10 omega = v1/sqrt(a(1)^2 - x1^2);
                                     // Angular
      ferquency of the oscillations, rad/s
11 x = a(1);
             // Maximum displacement, cm
12 // As x = a * sin(omega * t), solving for t
13 t_ex = asin(x/a(1))/omega; // Time taken to reach
      the +ve extremity, s
14 d = a(1) - 2.5;
                      // Distance of the point from the
      mean position, cm
15 t = asin(d/a(1))/omega;
                             // Time taken to travel
     from mean position to positive extremity, s
16 printf("\nThe time taken to travel from 2.5 cm from
     +ve extremity = \%5.3 \text{ f s}", t_ex - t);
17
18 // Result
19 // The time taken to travel from 2.5 cm from +ve
      extremity = 0.052 s
```

Scilab code Exa 3.a.04 Time period of a body oscillating in the tunnel across the

```
1 // Scilab Code Ex3a.a.4: Page-134 (2008)
2 clc; clear;
3 R = 6.4e + 006;
                   // Radius of the earth, m
4 g = 10;
             // Acceleration due to gravity, m/sec-
     square
5 T = 2*%pi*sqrt(R/g);
                          // Time period of
     oscillations of the body, s
6 printf("\nThe time period of oscillations of the
     body = \%4.1 \, \text{f} \, \text{min}", T/60);
7
8 // Result
9 // The time period of oscillations of the body =
     83.8 min
```

Scilab code Exa 3.a.05 Resultant amplitude and phase angle relative to the first S

```
1 // Scilab Code Ex3a.a.5: Page-135 (2008)
2 clc; clear;
3 \text{ phi1} = 0;
                // Phase of the first SHM, degree
                // Phase of the second SHM, degree
// Phase of the third SHM, degree
4 \text{ phi2} = 60;
5 \text{ phi3} = 90;
6 a1 = 1.0;
                 // Amplitude of the first SHM, cm
                // Amplitude of the second SHM, cm
7 a2 = 1.5;
8 a3 = 2.0;
                // Amplitude of the third SHM, cm
9 A = sqrt((a1 + a2*cosd(phi2)+a3*cosd(phi3))^2 + (a2*
      sind(phi2)+a3*sind(phi3))^2);
                                       // Resultant
      amplitude relative to the first SHM, cm
10 phi = atand((a2*sind(phi2)+a3*sind(phi3))/(a1 + a2*
      cosd(phi2)+a3*cosd(phi3)));
                                     // Resultant phase
       angle relative to the first SHM, degree
11 printf("\nThe resultant amplitude and phase angle
      relative to the first SHM = \%4.2 f cm and \%2d
      degrees respectively", A, phi);
```

```
12
13 // Result
14 // The resultant amplitude and phase angle relative
    to the first SHM are 3.73 cm and 62 degrees
    respectively
```

Scilab code Exa 3.a.07 Two SHMs acting in the same direction

```
1 // Scilab Code Ex3a.a.7:Page-136 (2008)
2 clc; clear;
3 \text{ phi1} = 0;
               // Phase of the first SHM, degree
                // Phase of the second SHM, degree
4 \text{ phi2} = 45;
5 a1 = 0.005;
                // Amplitude of the first SHM, m
                 // Amplitude of the second SHM, m
6 a2 = 0.002;
7 A = sqrt((a1 + a2*cosd(phi2))^2 + (a2*sind(phi2))^2)
     ; // Resultant amplitude relative to the first
      SHM, m
8 phi = atand(a2*sind(phi2)/(a1 + a2*cosd(phi2)));
     // Resultant phase angle relative to the first
     SHM, degree
9 printf("\nThe amplitude of the resultant
     displacement and phase angle relative to the
      first SHM are %7.5 f m and %5.2 f degrees
     respectively", A, phi);
10
11 // Result
12 // The amplitude of the resultant displacement and
     phase angle relative to the first SHM are 0.00657
      m and 12.43 degrees respectively
```

Scilab code Exa 3.a.11 A spring disc system undergoing damped oscillation

1 // Scilab Code Ex3a.b.1: Page-138 (2008)

2 clc; clear; 3 m = 100;// Mass of the horizontal disc, g // Time during which the amplitude 4 t = 60;reduces to half of its undamped value, s // Frequency of oscillations of the 5 f = 10;system, Hz 6 omega_prime = 2*%pi*f; // Angular frequency of the oscillations, rad/s 7 AO = 1;// Assume the amplitude of undamped oscillations to be unity, cm 8 // As A = A0 * exp(-k*t), solving for k 9 A = A0/2; // Amplitude of damped oscillations after 1 min, cm 10 k = $\log(AO/A)/t$; // Resisting force per unit mass per unit velocity, nepers/sec 11 r = 2*k*m; // Resistive force constant, sec/cm 12 tau = 1/k; // Relaxation time, sec 13 Q = m*omega_prime/r; // Quality factor 14 s = m*(omega_prime^2 + k^2); // Force constant of the spring, dynes/Sq.cm 15 printf("\nThe resistive force constant = %4.2 f dynesec/cm", r); 16 printf("\nThe relaxation time of the system = %4.2 f sec", tau); 17 printf("\nThe quality factor, $Q = \% 4.2 \, \text{f}$ ", Q); 18 printf("\nThe force constant of the spring = %4.2 edyne/Sq.cm", s); 1920 // Result 21 // The resistive force constant = 2.31 dyne-sec/cm 22 // The relaxation time of the system = 86.56 sec 23 // The quality factor, Q = 2719.4224 // The force constant of the spring = 3.95e+005 dyne /Sq.cm

Scilab code Exa 3.a.12 A mass executing damped oscillations in one dimension

```
1 // Scilab Code Ex3a.b.2: Page-139 (2008)
2 clc; clear;
3 function m = check_motion_type(k, omega0)
       if k > omega0 then
4
           m = 'aperiodic';
5
6
       else if k == omega0 then
               m = 'criticallydamped';
7
           else if k < omega0 then</pre>
8
                   m = 'oscillatory';
9
10
               end
11
           end
12
       end
13 endfunction
             // Mass of the body, g
14 m = 10;
             // Restoring force, dyne/cm
15 \, s = 10;
             // Resistive force constant, dyne.sec/cm
16 r = 2;
17 k = r/(2*m); // Resisting force, nepers/sec
18 // As omega0^2 = s/m, solving for omega0
19 omega0 = sqrt(s/m); // Angular frequency, rad/s
20 motion = check_motion_type(k, omega0);
                                           // Check
     for the type of motion
21 r_new = 2*sqrt(m*s); // Resistive force constant,
      dyne-sec/cm
22 m = r^2/(4*s);
                    // Mass for which the given forces
      makes the motion critically damped, g
23 printf("\nThe motion is %s in nature", motion);
24 printf("\nThe resistive force constant = %d dyne-sec
     /cm", r_new);
25 printf("\nThe mass for which the given forces makes
     the motion critically damped = \%3.1 \text{ f g}", m);
26
27 // Result
28 // The motion is oscillatory in nature
29 // The resistive force constant = 20 dyne-sec/cm
30 // The mass for which the given forces makes the
     motion critically damped = 0.1 g
```

Scilab code Exa 3.a.14 A mass executing damped oscillations in one dimension

```
1 // Scilab Code Ex3a.b.4: Page-140 (2008)
2 clc; clear;
3 m = 1;
             // Mass of the suspended body, kg
4 \, s = 25;
             // Stifness constant of the spring, N/m
5 r = poly(0, 'r');
6 // \text{As } f0/f_\text{prime} = 2/\text{sqrt}(3), solving for r
7 r = roots(4*(s/m-r^2/(4*m^2))-3*s/m);
                                            // Damping
      factor, kg/sec
8 printf("\nThe damping factor of damped oscillations
     = \% d kg/sec", r(1));
9
10 // Result
11 // The damping factor of damped oscillations = 5 \text{ kg/}
      sec
```

Scilab code Exa 3.a.15 Resisting force for critically damped motion

```
1
2 // Scilab Code Ex3a.b.5: Page-141 (2008)
3 clc; clear;
4 function m = check_motion_type(k, omega0)
       if k > omega0 then
5
           m = 'aperiodic';
6
7
       else if k == omega0 then
                m = 'criticallydamped';
8
           else if k < omega0 then</pre>
9
                    m = 'oscillatory';
10
11
                end
12
           end
```

```
13
       end
14 endfunction
15 \text{ m} = 10;
            // Mass of the oscillating body, g
            // Resisting force, dyne-sec/cm
16 r = 2;
17 s = 5; // Restoring force, dyne/cm
18 k = r/(2*m); // Resisting force, nepers/sec
19 // As omega0^2 = s/m, solving for omega0
20 omega0 = sqrt(s/m); // Angular frequency, rad/s
21 motion = check_motion_type(k, omega0); // Check
      for the type of motion
22 r = 2*sqrt(m*s);
                     // Resistive force constant for
      critical damping, dyne-sec/cm
23 printf("\nThe motion is %s in nature", motion);
24 printf("\nThe resistive force constant for critical
     damping = \%4.1 \, \text{f} \, \text{dyne-sec/cm}, r);
25
26 // Result
27 // The motion is oscillatory in nature
28 // The resistive force constant for critical damping
      = 14.1 \text{ dyne-sec/cm}
```

Scilab code Exa 3.a.16 Damped oscillatory motion

```
1 // Scilab Code Ex3a.b.6: Page-141 (2008)
2 clc; clear;
3 m = 0.1;
           // Mass of the oscillating body, kg
             // Time during which the energy of system
4 t = 50;
      decays to 1/e of its undamped value, s
5 s = 10; // Spring constant, N/m
            // Assume the energy of undamped
6 E0 = 1;
     oscillations to be unity, erg
7 // As E = E0 \exp(-k t) and E/E0 = 1/e, solving for
    k
8 = E0/\%e;
             // Energy of damped oscillations after
     50 \text{ sec}, \text{ erg}
```

```
9 k = log(EO/E)/t; // Resisting force per unit mass
      per unit velocity, nepers/sec
              // A resistive force constant, N-s/m
10 p = m * k;
11 omega0 = sqrt(s/m); // Angular frequency in the
     absence of damping, rad/sec
12 omega_prime = sqrt(omega0^2 - k^2/4); // Angular
     frequency when damping takes place, rad/sec
13 Q = omega_prime/k; // Quality factor
14 printf("\nThe resistive force constant, p = \%1.0 e N-
     s/m", p);
15 printf("\nThe quality factor, Q = \%d", ceil(Q));
16
17 // Result
18 // The resistive force constant, p = 2e - 003 \text{ N-s/m}
19 // The quality factor, Q = 500
```

Scilab code Exa 3.a.17 Damped simple harmonic motion

```
1 // Scilab Code Ex3a.b.7: Page-142 (2008)
2 clc; clear;
3 t = 10;
            // Time during which the amplitude
     reduces to 1/10 \,\mathrm{th} of its undamped value, s
            // Frequency of oscillations of the
4 f = 200;
     system, Hz
  omega0 = 2*%pi*f; // Angular frequency of the
5
      oscillations, rad/s
           // Assume the amplitude of undamped
6 \quad A0 = 1;
     oscillations to be unity, cm
7 // As A = A0 * exp(-k*t), solving for k
              // Amplitude of damped oscillations
8 A = A0/10;
     after 10 sec, cm
9 k = \log(AO/A)/t;
                      // Resisting force per unit mass
      per unit velocity, nepers/sec
10 tau = 1/(2*k); // Relaxation time, sec
11 Q = omegaO*tau; // Quality factor
```

12 EO = 1; // Assume energy of undamped oscillations to be unity, erg // Energy of damped oscillations after 13 E = E0/10;t sec, erg 14 // As E = E0 * exp(-2*k*t), solving for t 15 t = $1/(2*k)*\log(E0/E)$; // Time during which the energy falls to 1/10 of its initial value, sec 16 printf("\nThe relaxation time = $\%4.2 \,\text{f}$ sec", tau); 17 printf("\nThe quality factor, Q = % d", Q); 18 printf("\nThe time during which the energy falls to 1/10 of its initial value = %d sec", t); 19 printf("\nThe damping constant, k = % 4.2 f", k); 2021 // Result 22 // The relaxation time = 2.17 sec 23 // The quality factor, Q = 272824 // The time during which the energy falls to 1/10 of its initial value = 5 sec 25 // The damping constant, k = 0.2326 // The answer for Q is given wrongly in the textbook

Scilab code Exa 3.a.21 Characteristics of progressive waves

```
1 // Scilab Code Ex3a.c.1: Page-143 (2008)
2 clc; clear;
3 // Comparing with the standard progressive wave
equation, we have
4 a = 0.5; // Amplitude of the wave, m
5 lambda = 2*%pi/12.56; // Wavelength of the wave,
m
6 v = 314/12.56; // Wave velocity, m/s
7 nu = v/lambda; // Frequency of the wave, Hz
8 printf("\nThe amplitude of the wave = %3.1f m", a);
9 printf("\nThe wavelength of the wave = %3.1f m",
lambda);
```

```
Scilab code Exa 3.a.22 A simple harmonic wave travelling along X axis
```

```
1 // Scilab Code Ex3a.c.2: Page-144 (2008)
2 clc; clear;
3 // Comparing with the standard progressive wave
      equation, we have
          // Amplitude of the wave, m
4 = 5:
5 nu = 0.2; // Frequency of the wave, Hz
6 lambda = 1/0.5; // Wavelength of the wave, m
                    // Wave velocity, m/s
7 v = nu*lambda;
8 printf("\nThe amplitude of the wave = \%3.1 f m", a);
9 printf("\nThe wavelength of the wave = \%3.1 f m",
      lambda);
10 printf("\nThe velocity of the wave = \%3.1 \text{ fm/s}", v);
11 printf("\nThe frequency of the wave = \%3.1 f Hz", nu)
      ;
12
13 // Result
14 // The amplitude of the wave = 5.0 \text{ m}
15 // The wavelength of the wave = 2.0 \text{ m}
16 // The velocity of the wave = 0.4 \text{ m/s}
17 // The frequency of the wave = 0.2 Hz
```

Scilab code Exa 3.a.23 Travelling wave characteristics and phase difference

```
1 // Scilab Code Ex3a.c.3: Page-144 (2008)
2 clc; clear;
3 // Comparing with the standard progressive wave
     equation, we have
          // Amplitude of the wave, cm
4 = 8;
5 nu = 4/2; // Frequency of the wave, Hz
6 lambda = 2/0.02; // Wavelength of the wave, cm
                    // Wave velocity, cm/s
7 v = nu*lambda;
8 delta_x = 20;
                    // Path difference between two
     particles, cm
9 delta_phi = delta_x*2*%pi/lambda*180/%pi;
                                                Phase difference between two particles, degree
10 printf("\nThe amplitude of the wave = \%3.1 f cm", a);
11 printf("\nThe wavelength of the wave = \%3.1 f cm",
     lambda);
12 printf("\nThe velocity of the wave = \%3.1 \text{ f cm/s}", v)
13 printf("\nThe frequency of the wave = \%d Hz", nu);
14 printf("\nThe phase difference between two particles
      = %d degree", delta_phi);
15
16 // Result
17 // The amplitude of the wave = 8.0 cm
18 // The wavelength of the wave = 100.0 cm
19 // The velocity of the wave = 200.0 \text{ cm/s}
20 // The frequency of the wave = 2 Hz
21 // The phase difference between two particles = 72
     degree
```

Scilab code Exa 3.b.101 Brewster angle and angle of refraction for glass

```
1 // Scilab Code Ex3b.1: Page-163 (2008)
2 clc; clear;
```

```
3 mu = 1.5; // Refractive indexof glass
4 i_p = atand(mu); // Angle of polarization from
Brewster's law, degree
5 r = 90 - i_p; // Angale of refraction, degree
6 printf("\nThe Brewster angle for glass = %4.1f
degree", i_p);
7 printf("\nThe angle of refraction for glass = %4.1f
degree", r);
8
9 // Result
10 // The Brewster angle for glass = 56.3 degree
11 // The angle of refraction for glass = 33.7 degree
```

Scilab code Exa 3.b.102 Polarizing angles for various pair of media

```
1 // Scilab Code Ex3b.2: Page-163 (2008)
2 clc; clear;
3 // Function to convert degree to degree-minute
4 function [d,m] = deg2deg_min(deg)
      d = int(deg);
5
6
      m = (deg - d) * 60;
7 endfunction
8 mu_air = 1; // Refractive index fo air
9 mu_glass = 1.54; // Refractive index of glass
10 mu_water = 1.33; // Refractive index of water
11 // Air to glass incidence
12 i_p = atand(mu_glass/mu_air); // Angle of
     polarization for air to glass incidence, degree
13 printf("\nFor air to glass, i_p = \% d degree", i_p);
14 // glass to air incidence
15 i_p = atand(mu_air/mu_glass); // Angle of
     polarization for glass to air incidence, degree
16 printf("\nFor glass to air, i_p = \% d degree", ceil(
     i_p));
17 // Water to glass incidence
```

- 20 printf("\nFor water to glass, i_p = %d degree %d min
 ", d, m);
- 21 // Glass to water incidence
- 23 [d,m] = deg2deg_min(i_p); // Call function to convert to deg-min
- 25 // Air to water incidence
- 26 i_p = atand(mu_water/mu_air); // Angle of polarization for air to water incidence, degree
- 27 [d,m] = deg2deg_min(i_p); // Call function to convert to deg-min
- 29 // Water to air incidence

```
31 [d,m] = deg2deg_min(i_p); // Call function to
convert to deg-min
```

32 printf("\nFor water to air, i_p = %d degree %d min",
 d, m);

```
33
```

```
34 // Result
```

```
35 // For air to glass, i_p = 57 degree
```

```
36 // For glass to air, i_p = 33 degree
37 // For water to glass, i_p = 49 degree 11 min
```

```
38 // For glass to water, i_p = 40 degree 48 min
```

```
39 // For air to water, i_p = 53 degree 3 min
```

```
40 // For water to air , i_p = 36 degree 56 min
```

Scilab code Exa 3.b.103 Polarizing angle for glass

```
1 // Scilab Code Ex3b.3: Page-163 (2008)
2 clc; clear;
3 C = 40; // Critical angle for glass to air
4 mu = 1/sind(C); // Refractive index of glass w.r.
t. air
5 i_p = atand(mu); // Polarizing angle for glass,
degree
6 printf("\nThe polarizing angle for glass = %4.1f
degree", i_p);
7
8 // Result
9 // The polarizing angle for glass = 57.3 degree
```

Scilab code Exa 3.b.104 Polarization by reflection

```
1 // Scilab Code Ex3b.4: Page-164 (2008)
2 clc; clear;
3 i = 60; // Angle of incidence, degree
4 i_p = i; // Angle of polarization, degree
5 mu = tand(i_p); // Refractive index of the medium
6 r = 90 - i; // Angle of refraction, degree
7 printf("\nThe refractive index of transparent medium
= %5.3 f", mu);
8 printf("\nThe angle of refraction, r = %d degree", r
);
9 printf("\nThe reflected and transmitted components
are at right angles to each other.");
10
11 // Result
```

```
12 // The refractive index of transparent medium = 1.732
```

```
13 // The angle of refraction , r = 30 degree
```

14 // The reflected and transmitted components are at right angles to each other.

Scilab code Exa 3.b.105 Intensity ratio of two beams through analyser

```
1 // Scilab Code Ex3b.5: Page-164 (2008)
2 clc; clear;
3 \text{ theta}_A = 30;
                   // Angle between principal sections
      of polariser and analyser for beam A, degree
4 theta_B = 60; // Angle between principal sections
      of polariser and analyser for beam B, degree
5 // As I_A * cosd (theta_A)^2 = I_B * cosd (theta_B)^2,
     solving for I ratio
6 I_ratio = cosd(theta_B)^2/cosd(theta_A)^2;
                                                 // The
      intensity ratio of the two beams
7 printf("\nThe intensity ratio of the two beams = \%4
     .2 f", I_ratio);
8
9 // Result
10 // The intensity ratio of the two beams = 0.33
```

Scilab code Exa 3.b.106 Percentage reduction in the intensity of the inident light

```
1 // Scilab Code Ex3b.6: Page-165 (2008)
2 clc; clear;
3 theta = [30 45 60 90]; // Angles between
        principal sections of polariser and analyser,
        degree
4 for i = 1:1:4
```
```
P_{red} = (1 - cosd(theta(i))^2) * 100;
5
                                              Percentage reduction in intensity of incident
           light
       printf ("\nFor theta = \%d degree, percentage
6
          reduction = \%1.0 f percent", theta(i), P_red);
7
  end
8
9 // Result
10 // For theta = 30 degree, percentage reduction = 25
     percent
11 // For theta = 45 degree, percentage reduction = 50
     percent
12 // For theta = 60 degree, percentage reduction = 75
     percent
13 // For theta = 90 degree, percentage reduction = 100
      percent
```

Scilab code Exa 3.b.107 Angle of rotation of polaroid to reduce the intensity

```
1 // Scilab Code Ex3b.7: Page-165 (2008)
2 clc; clear;
3 // For half reduction in intensity
4 I_ratio = 1/2; // Intensity ratio
5 theta = acosd(sqrt(I_ratio));
                                   // Angle of
     rotation of polaroid, degree
6 printf("\nFor half reduction in intensity, the angle
      of rotation = \%d degree", theta);
7 // For one-fourth reduction in intensity
8 \, \text{I_ratio} = 1/4;
                  // Intensity ratio
9 theta = acosd(sqrt(I_ratio));
                                   // Angle of
     rotation of polaroid, degree
10 printf("\nFor one-fourth reduction in intensity, the
      angle of rotation = %d degree", theta);
11
12 // Result
```

```
13 // For half reduction in intensity, the angle of rotation = 45 degree
```

```
14 // For one-fourth reduction in intensity, the angle
of rotation = 60 degree
```

Scilab code Exa 3.c.202 Ratio of maximum to minimum intensity in the interference

```
1 // Scilab Code Ex3c.2: Page-184 (2008)
2 clc; clear;
3 I2 = 1;
           // Assume intensity of light beam from
     the second source to be unity
4 I1 = 81*I2; // Intensity of light beam from the
     first source
5 a = sqrt(I1); // Width of the first slit, mm
6 b = sqrt(I2); // Width of the second slit, mm
7 I_max = (1+a/b)^2; // Maximum intensity in the
     fringe pattern
8 I_min = (1-a/b)^2;
                     // Minimum intensity in the
     fringe pattern
9 fact = gcd([I_max,I_min]); // Find l.c.m. of I_max
     and I_min
10 printf("\nThe ratio of maximum to minimum intensity
     in the fringe system, I_max:I_min = %d:%d", I_max
     /4, I_min/4);
11
12 // Result
13 // The ratio of maximum to minimum intensity in the
     fringe system, I_{max}: I_{min} = 25:16
```

Scilab code Exa 3.c.203 Wavelength of light from interference of fringes

```
1 // Scilab Code Ex3c.3: Page-184 (2008)
2 clc; clear;
```

```
3 d = 0.1; // Separation between the two slits, cm
4 D = 100; // Distance between the source and the
slit, cm
5 bita = 0.05; // Fringe width, cm
6 lambda = bita*d/D; // Wavelength of light, cm
7 printf("\nThe wavelength of light used = %4d
angstrom", lambda/le-008);
8
9 // Result
10 // The wavelength of light used = 5000 angstrom
```

```
Scilab code Exa 3.c.204 Fringe width from interference pattern
```

```
1 // Scilab Code Ex3c.4: Page-184 (2008)
2 clc; clear;
3 d = 0.3; // Separation between the two slits, cm
4 D = 60; // Distance between the source and the
slit, cm
5 lambda = 59e-006; // Wavelength of light, cm
6 bita = lambda*D/d; // Fringe width, cm
7 printf("\nThe fringe width = %4.2e cm", bita);
8
9 // Result
10 // The fringe width = 1.18e-002 cm
```

Scilab code Exa 3.c.205 Distance between the two coherent sources

```
1 // Scilab Code Ex3c.5: Page-185 (2008)
2 clc; clear;
3 D = 80; // Distance between the source and the
    slit, cm
4 lambda = 5890e-008; // Wavelength of light, cm
5 bita = 9.424e-002; // Fringe width, cm
```

```
6 d = lambda*D/bita; // Separation between the two
    slits, cm
7 printf("\nThe distance between the two coherent
    sources = %4.2 f cm", d);
8
9 // Result
10 // The distance between the two coherent sources =
    0.05 cm
```

Scilab code Exa 3.c.206 Distance between consecutive interference bands

```
1 // Scilab Code Ex3c.6: Page-185 (2008)
2 clc; clear;
3 D = 100;
              // Distance between the source and the
     slit, cm
4 lambda = 5893e-008; // Wavelength of light, cm
5 d1 = 4.05e-001; // Distance between the images of
      the two slits in one position, cm
6 d2 = 2.90e-001; // Distance between the images of
      the two slits in second position, cm
7 d = sqrt(d1*d2); // Separation between the two
     slits, cm
8 bita = lambda*D/d; // Fringe width, cm
9 printf("\nThe distance between consecutive
     interference bands = \%6.4 \, \text{f cm}", bita);
10
11 // Result
12 // The distance between consecutive interference
     bands = 0.0172 cm
```

Scilab code Exa 3.c.207 Wavelength of the light used in biprism experiment

1 // Scilab Code Ex3c.7: Page-185 (2008)

```
2 clc; clear;
3 D = 1.2;
              // Distance between the source and the
     slit, m
4 d = 7.5e-004; // Separation between the two slits,
      \mathbf{cm}
5 n = 20; // Number of fringes crossed in the field
      of view
6 bita = 1.888e-002/n; // Fringe width, cm
7 lambda = bita*d/D; // Wavelength of light, cm
8 printf("\nThe wavelength of the light used in
     biprism experiment = \%4d angstrom", lambda/1e
     -010);
9
10 // Result
11 // The wavelength of the light used in biprism
     experiment = 5900 angstrom
```

Scilab code Exa 3.c.208 Number of fringes obtained with the given wavelength

```
1 // Scilab Code Ex3c.8: Page-186 (2008)
2 clc; clear;
3 lambda1 = 5893; // First wavelength of light,
     angstrom
4 lambda2 = 4358; // Second wavelength of light,
     angstrom
           // Number of fringes obtained with first
5 n = 40;
     wavelength
6 // As bita1/bita2 = lambda1/lambda2, so
7 x = n*lambda1/lambda2; // Number of fringes
     obtained with the seocond wavelength
8 printf("\nThe number of fringes obtained with the
     given wavelength = \%d", x);
9
10 // Result
11 // The number of fringes obtained with the given
```

wavelength = 54

Scilab code Exa 3.c.209 Wavelength of light from biprism interference pattern

```
1 // Scilab Code Ex3c.9: Page-186 (2008)
2 clc; clear;
              // Distance between the source and the
3 D = 100;
     slit, cm
4 bita = 0.0135; // Fringe width, cm
5 alpha = %pi/360; // Angle of refracting face with
      the base of biprism, radian
              // Refractive index of the material of
6 \text{ mu} = 1.5;
     biprism
7 x = 50;
           // Distance between slit and the biprism,
      cm
8 d = 2*(mu-1)*x*alpha; // Separation between the
     two virtual slits, cm
9 lambda = bita*d/D; // Wavelength of light, cm
10 printf("\nThe wavelength of light from biprism
     interference pattern = %4d angstrom", lambda/1e
     -008);
11
12 // Result
13 // The wavelength of light from biprism interference
      pattern = 5890 angstrom
```

Scilab code Exa 3.c.210 Fringe width observed at one metre distance from biprism

```
1 // Scilab Code Ex3c.10: Page-187 (2008)
2 clc; clear;
3 mu = 1.5; // Refractive index of the material of
            biprism
4 alpha = %pi/180; // Base angle of biprism, radian
```

```
5 D = 110; // Distance between the source and the
slit, cm
6 x = 10; // Distance between slit and the biprism,
cm
7 d = 2*(mu-1)*x*alpha; // Separation between the
two virtual slits, cm
8 lambda = 5900e-008; // Wavelength of light, cm
9 bita = lambda*D/d; // Fringe width, cm
10 printf("\nThe fringe width observed at one metre
distance from biprism = %6.4 f cm", bita);
11
12 // Result
13 // The fringe width observed at one metre distance
from biprism = 0.0372 cm
```

Scilab code Exa 3.c.211 Wavelength of light in Newton ring experiment

```
1 // Scilab Code Ex3c.11: Page-187 (2008)
2 clc; clear;
3 D_n = 0.42; // Diameter of nth ring, cm
4 D_mplusn = 0.7; // Diameter of (m+n) th ring, cm
5 m = 14; // Difference between (m+n) th and nth
     rings
6 R = 100;
            // Radius of curvature of the plano-
     convex lens, m
7 lambda = (D_mplusn^2 - D_n^2)/(4*m*R);
                                            Wavelength of the light, cm
8 printf("\nThe wavelength of the light used = \%4d
     angstrom", lambda/1e-008);
9
10 // Result
11 // The wavelength of the light used = 5600 angstrom
```

Scilab code Exa 3.c.212 Radius of plano convex lens

```
1 // Scilab Code Ex3c.12: Page-187 (2008)
2 clc; clear;
3 D5 = 0.336; // Diameter of 5th ring, cm
4 D10plus5 = 0.590; // Diameter of (10+5)th ring,
     \mathrm{cm}
5 m = 10;
             // Difference between (10+5)th and 5th
     rings
  lambda = 5890e-008; // Wavelength of the light,
6
     cm
7 R = (D10plus5<sup>2</sup> - D5<sup>2</sup>)/(4*m*lambda); // Radius
     of curvature of the plano-convex lens, m
8 printf("\nThe radius of plano convex lens = \%5.2 f cm
     ", R);
9
10 // Result
11 // The radius of plano convex lens = 99.83 cm
```

Scilab code Exa 3.c.213 Wavelenght of light used in obtaining Newton rings

```
1 // Scilab Code Ex3c.13: Page-187 (2008)
2 clc; clear;
3 D3 = 0.181; // Diameter of 3rd ring, cm
4 D23 = 0.501;
                 // Diameter of 23rd ring, cm
5 m = 23-3; // Difference between (m+n)th and nth
     rings
6 R = 50;
           // Radius of curvature of the plano-
     convex lens, m
  lambda = (D23^2 - D3^2)/(4*m*R); // Wavelength of
7
      the light, cm
8 printf("\nThe wavelength of the light used = \%4d
     angstrom", lambda/1e-008);
9
10 // Result
```

```
Scilab code Exa 3.c.214 Diameter of the 20th dark ring
1 // Scilab Code Ex3c.14: Page-188 (2008)
2 clc; clear;
3 D4 = 0.4; // Diameter of 4th ring, cm
4 D12 = 0.7; // Diameter of 12th ring, cm
5 m = 12-4; // Difference between (m+n)th and nth
rings
6 lambda_R = (D12^2 - D4^2)/(4*m); // Wavelength-
Radius product, Sq.cm
7 D20 = sqrt(80*lambda_R); // Diameter of the 20th
dark ring, cm
8 printf("\nThe diameter of the 20th dark ring = %5.3f
cm", D20);
9
10 // Result
11 // The diameter of the 20th dark ring = 0.908 cm
```

Scilab code Exa 3.c.215 Radius of curvature of the lens and the thickness of the a

```
Scilab code Exa 3.c.216 Newton rings observed in reflected light
```

```
1 // Scilab Code Ex3c.16: Page-188 (2008)
2 clc; clear;
3 \text{ D10} = 5e-003;
                   // Diameter of 10th ring, cm
4 n = 10; // Number of dark fringe
5 lambda = 5.9e-007; // Wavelength of reflected
     light, m
6 R = D10<sup>2</sup>/(4*n*lambda); // Radius of curvature of
      the lens, cm
                     // Thickness of the air film, cm
7 t = D10^2/(8*R);
8 printf("\nThe radius of curvature of the lens = \%5.3
      f m", R);
9 printf("\nThe thickness of the air film = \%4.2 \,\mathrm{e} m",
     t);
10
11 // Result
12 // The radius of curvature of the lens = 1.059 m \,
13 // The thickness of the air film = 2.95e - 006 m
```

Scilab code Exa 3.c.217 Smallest thickness of the glass film in which it appears de 1 // Scilab Code Ex3c.17: Page-189 (2008) 2 clc; clear; 3 lambda = 5893e-010; // Wavelength of light used,

```
m
```

```
4 mu = 1.5; // Refractive index of glass film
5 r = 60; // Angle of reflection in the film,
    degree
6 t = lambda/(2*mu*cosd(r)); // Smallest thickness
    of the
7 printf("\nThe smallest thickness of the glass film
    when it appears dark = %6.1f angstrom", t/le-010)
    ;
8
9 // Result
10 // The smallest thickness of the glass film when it
    appears dark = 3928.7 angstrom
```

Scilab code Exa 3.d.301 Wavelength of light used in diffraction due to narrow slit

```
1 // Scilab Code Ex3d.1: Page-205 (2008)
2 clc; clear;
3 D = 200; // Distance between the source and the
slit, cm
4 a = 0.02; // Slit width, cm
5 x = 0.5; // Position of first minimum, cm
6 n = 1; // Order of diffraction
7 lambda = a*x/(D*n); // Wavelength of light used,
cm
8 printf("\nThe wavelength of light used = %4d
angstrom", lambda/1e-008);
9
10 // Result
11 // The wavelength of light used = 5000 angstrom
```

Scilab code Exa 3.d.302 Separation between the second minima on either side of the

1 // Scilab Code Ex3d.2: Page-205 (2008)

```
2 clc; clear;
3 f = 20; // Focal length of the lens, cm
4 a = 0.06; // Slit width, cm
5 n = 2; // Order of diffraction
6 lambda = 6e-005; // Wavelength of light used, cm
7 x = 2*lambda*f/a; // Separation between the
second minima on either side of the central
maximum, cm
8 printf("\nThe separation between the second minimum
an central maximum = %4.2 f cm", x);
9
10 // Result
11 // The separation between the second minimum an
central maximum = 0.04 cm
```

Scilab code Exa 3.d.303 Distance of the first dark band from the axis

```
1 // Scilab Code Ex3d.3: Page-206 (2008)
2 clc; clear;
3 n = 1; // Order of diffraction
4 f = 40; // Focal length of the lens, cm
5 a = 0.03; // Slit width, cm
6 lambda = 5890e-008; // Wavelength of the light
     used, cm
7 // As a*sind(theta) = n*lambda, solving for theta
8 theta = asin(n*lambda/a); // The angle of
     diffraction corresponding to the first minimum,
     radian
9 x = f*theta; // The distance of the first dark
     band from the axis, cm
10 printf("\nThe distance of the first dark band from
     the axis = \%6.4 \, \text{f cm}", x);
11
12 // Result
13 // The distance of the first dark band from the axis
```

Scilab code Exa 3.d.304 Angle of diffraction for the principal maxima

```
1 // Scilab Code Ex3d.4: Page-206 (2008)
2 clc; clear;
3 lambda1 = 5890e-008; // Wavelength of D1 line of
     sodium lamp, cm
4 lambda2 = 5896e-008; // Wavelength of D2 line of
     sodium lamp, cm
5 d_lambda = lambda2 - lambda1; // Wavelength
     difference, cm
6 w = 0.5; // Width of the grating, cm
7 N = 2500; // Total number of grating lines
8 N_prime = N/w; // Number of lines per cm, lines/
     cm
9 a_plus_b = 1/N_prime; // Grating element, cm
10 n = 1; // Order of diffraction
11 // Case 1
12 theta = asind(n*lambda1/a_plus_b); // Angle of
     diffraction for D1 line, degree
13 // Case 2
14 theta_prime = asind(n*lambda2/a_plus_b); // Angle
      of diffraction for D2 line, degree
15 printf("\nThe angle of diffraction for D1 and D2
     lines of sodium are %5.2f dgree and %5.2f degree
     respectively.", theta, theta_prime);
16 // From the condition for just resolution, lambda/
     d_{lambda} = n*N, solving for N
17 N_min = lambda1/(d_lambda*n); // Minimum number
     of lines required on the grating
18 if N_min < N then
     printf("\nThe two lines are well resolved.");
19
20 else
21
      printf("\nThe two lines are not resolved.");
```

```
22 end
23
24 // Result
25 // The angle of diffraction for D1 and D2 lines of
      sodium are 17.13 dgree and 17.15 degree
      respectively.
26 // The two lines are well resolved.
```

Scilab code Exa 3.d.305 Wavelength of the spectral line

```
1 // Scilab Code Ex3d.5: Page-207 (2008)
2 clc; clear;
3 N = 4250;
               // Number of lines per cm of grating,
     lines/cm
4 a_plus_b = 1/N; // Grating element, cm
5 n = 2; // Order of diffraction
6 theta = 30; // Angle of diffraction, degree
7 lambda = sind(theta)*a_plus_b/n; // Wavelength of
      spectral line from diffraction condition, cm
8 printf("\nThe wavelength of spectral line from
     diffraction condition = \%4d angstrom", lambda/1e
     -008);
9
10 // Result
11 // The wavelength of spectral line from diffraction
     condition = 5882 angstrom
```

Scilab code Exa 3.d.306 Number of lines in one centimeter of the grating surface

```
1 // Scilab Code Ex3d.6: Page-207 (2008)
2 clc; clear;
3 n = 2; // Order of diffraction
4 lambda = 5e-005; // Wavelength of light, cm
```

```
5 theta = 30; // Angle of diffraction, degree
6 N = sind(theta)/(n*lambda); // Number of lines
    per cm of grating, lines/cm
7 printf("\nThe number of lines per cm of grating =
    %4d per cm", ceil(N));
8
9 // Result
10 // The number of lines per cm of grating = 5000 per
    cm
```

Scilab code Exa 3.d.307 Highest order spectrum obtainable with the given diffracti

```
1 // Scilab Code Ex3d.7: Page-208 (2008)
2 clc; clear;
3 N = 5000;
               // Number of lines per cm ruled on
     grating, lines/cm
4 lambda = 6e-005; // Wavelength of light, m
5 a_plus_b = 1/N; // Grating element, m
6 theta = 90; // Maximum angle of diffraction,
     degree
7 n = a_plus_b*sind(theta)/lambda;
                                      // Order of
     diffraction
8 printf("\nIn highest order spectrum obtainable with
     the given diffraction grating = \%4.2 f", n);
9
10 // Result
11 // In highest order spectrum obtainable with the
     given diffraction grating = 3.33
```

Scilab code Exa 3.d.308 Invisible third and higher order principal maxima in a dif

```
1 // Scilab Code Ex3d.8: Page-208 (2008)
2 clc; clear;
```

```
3 lambda = 5.5e-007; // Wavelength of light, m
4 a_plus_b = 1.5e-006; // Grating element, m
5 theta = 90; // Maximum angle of diffraction,
    degree
6 n = a_plus_b*sind(theta)/lambda; // Order of
    diffraction
7 printf("\nIn this diffraction grating only %dnd
    order will be visible while %drd and higher
    orders are not possible.", n, n+1);
8
9 // Result
10 // In this diffraction grating only 2nd order will
    be visible while 3rd and higher orders are not
    possible.
```

```
Scilab code Exa 3.d.309 Number of lines per cm on the grating
```

```
1 // Scilab Code Ex3d.9: Page-208 (2008)
2 clc; clear;
                  // Maximum angle of diffraction,
3 \text{ theta} = 30;
     degree
4 lambda1 = 5400e-010; // Wavelength of light
     giving certain diffraction order, m
5 lambda2 = 4050e-010; // Wavelength of light
     giving higher diffraction order, m
6 n = poly(0, 'n');
7 n = roots(lambda1*n-(n+1)*lambda2); // Order of
     diffraction for first wavelength
8 a_plus_b = n*lambda1/sind(theta); // Grating
     element, m
                   // Number of lines per cm ruled
9 N = 1/a_plus_b;
     on grating, lines/cm
10 printf("\nThe number of lines per cm on the
      diffraction grating = \%d lines per cm<sup>"</sup>, N/100);
11
```

```
12 // Result
13 // The number of lines per cm on the diffraction
    grating = 3086 lines per cm
```

Scilab code Exa 3.d.310 Minimum number of lines on the diffraction grating

```
1 // Scilab Code Ex3d.10: Page-209 (2008)
2 clc; clear;
3 lambda = 5890e-008; // Wavelength of light, cm
4 n = 1; // Order of diffraction
5 d_lambda = 6e-008; // Difference in wavelengths
of D1 and D2 lines, cm
6 N = lambda/(n*d_lambda); // Number of lines on
grating
7 printf("\nThe minimum number of lines on the
diffraction grating = %d", ceil(N));
8
9 // Result
10 // The minimum number of lines on the diffraction
grating = 982
```

Scilab code Exa 3.d.311 Design of a plane transmission diffraction grating

```
1 // Scilab Code Ex3d.11: Page-209 (2008)
2 clc; clear;
3 lambda = 6000e-008; // Wavelength of light, cm
4 n = 2; // Order of diffraction
5 d_lambda = 6e-008; // Difference in wavelengths
of D1 and D2 lines, cm
6 N = lambda/(n*d_lambda); // Number of lines on
grating
7 printf("\nThe minimum number of lines in the
required diffraction grating = %d", N);
```

```
8
9 // Result
10 // The minimum number of lines in the required
diffraction grating = 500
```

Scilab code Exa 3.d.312 Minimum number of lines per cm in grating to just resolve

```
1 // Scilab Code Ex3d.12: Page-209 (2008)

2 clc; clear;

3 lambda = 5890e-008; // Wavelength of light, cm

4 n = 2; // Order of diffraction

5 d_lambda = 6e-008; // Difference in wavelengths

of D1 and D2 lines, cm

6 w = 2.5; // Width of the grating, cm

7 N = lambda/(n*d_lambda); // Number of lines on

grating

8 printf("\nThe minimum number of lines per cm in the

diffraction grating = %5.1f", N/w);

9

10 // Result

11 // The minimum number of lines per cm in the

diffraction grating = 196.3
```

Scilab code Exa 3.d.313 Maximum resolving power of a plane transmission grating

```
1 // Scilab Code Ex3d.13: Page-210 (2008)
2 clc; clear;
3 lambda = 5000e-008; // Wavelength of light, cm
4 theta = 90; // Angle of diffraction for the
    maximum resolving power, degree
5 N = 40000; // Number of lines on grating
6 a_plus_b = 12.5e-005; // Grating element, cm
7 n = 2; // Order of diffraction
```

```
8 n_max = N*a_plus_b*sind(theta)/lambda; // Maximum
resolving power
9 printf("\nThe maximum resolving power = %d", n_max);
10
11 // Result
12 // The maximum resolving power = 100000
```

Scilab code Exa 3.d.314 Maximum number of lines of a grating

```
1 // Scilab Code Ex3d.14: Page-209 (2008)
2 clc; clear;
3 lambda = 5890e-008; // Wavelength of light, cm
4 n = 3; // Order of diffraction
5 d_lambda = 6e-008; // Difference in wavelengths
of D1 and D2 lines, cm
6 N = lambda/(n*d_lambda); // Maximum number of
lines of a grating
7 printf("\nThe maximum number of lines of the grating
= %d", N);
8
9 // Result
10 // The maximum number of lines of the grating = 327
```

Chapter 4

Special Theory of Relativity

Scilab code Exa 4.1 Fringe shift in the Michelson Morley experiment

```
1 // Scilab Code Ex4.1: Page-233 (2008)
2 clc; clear;
3 c = 3e+008; // Speed of light in vacuum, m/s
4 v = 3e+004; // Speed of earth, m/s
5 d = 7; // Effective length of each path, m
6 lambda = 7000e-010; // Wavelength of light used,
m
7 n = 2*d*v^2/(lambda*c^2); // Fringe shift
8 printf("\nThe expected fringe shift = %3.1f", n);
9
10 // Result
11 // The expected fringe shift = 0.2
```

Scilab code Exa 4.2 Apparent length of rod relative to the observer

```
1 // Scilab Code Ex4.2: Page-233 (2008)
2 clc; clear;
3 c = 3e+008; // Speed of light in vacuum, m/s
```

```
4 v = 3e+007; // Speed of metre rod, m/s
5 L0 = 1; // Actual length of the rod, m
6 L = L0*sqrt(1-v^2/c^2); // Apparent length of rod
from Lorentz transformation, m
7 printf("\nThe apparent length of rod realtive to the
observer = %5.3 f m", L);
8
9 // Result
10 // The apparent length of rod realtive to the
observer = 0.995 m
```

Scilab code Exa 4.3 Apparent length of a meter stick for different speeds

```
1 // Scilab Code Ex4.3: Page-234 (2008)
2 clc; clear;
3 c = 3e + 008;
                  // Speed of light in vacuum, m/s
4 v = [c c/sqrt(2) sqrt(3)/2*c c/2 0.8*c];
                                                   - / /
      Different speeds of metre rod, m/s
              // Actual length of the rod, cm
5 \text{ L0} = 100;
6 \text{ for } i = 1:1:5
7
       L = L0 * sqrt(1 - v(i)^2/c^2); // Apparent length
            of rod from Lorentz transformation, m
       printf("\nFor v = \%4.2 \,\text{em/s}, L = \%4.1 \,\text{fcm}", v(i)
8
           , L);
9 end
10
11 // Result
12 // For v = 3.00 e + 008 m/s, L = 0.0 cm
13 // For v = 2.12 e + 008 m/s, L = 70.7 cm
14 // For v = 2.60 e + 008 m/s, L = 50.0 cm
15 // For v = 1.50 e + 008 m/s, L = 86.6 cm
16 // For v = 2.40 e + 008 m/s, L = 60.0 cm
```

Scilab code Exa 4.4 Lorentz transformations applied to a rigid bar

```
1 // Scilab Code Ex4.4: Page-235-236 (2008)
2 clc; clear;
3 c = 3e + 008;
              // Speed of light in vacuum, m/s
4 // Part (a)
5 v = 0.98*c ; // Speed of the rigid bar, m/s
               // Length of the rigid bar in S_prime
6 L2 = 1.5;
     frame, m
  L1 = L2*sqrt(1-v^2/c^2); // Apparent length of
7
     rod from Lorentz transformation, m
8 theta2 = 45; // Angle which the bar makes w.r.t.
     x-aixs in S_prime frame, degree
9 theta1 = atand(tand(theta2)/sqrt(1-v^2/c^2));
                                                    Orientation of bar relative to S frame, degree
10 printf("\nThe orientation of the %d m bar relative
     to S frame = \%4.1 f degree", L2, theta1);
11 // Part(b)
12 v = 0.6*c; // Speed of the rigid bar, m/s
13 L2 = 5; // Length of the rigid bar in S_{prime}
     frame, m
14 L1 = L2*sqrt(1-v^2/c^2); // Apparent length of
     rod from Lorentz transformation, m
15 theta2 = 30; // Angle which the bar makes w.r.t.
     x-aixs in S_prime frame, degree
16 theta1 = atand(tand(theta2)/sqrt(1-v^2/c^2)); //
     Orientation of bar relative to S frame, degree
17 printf("\nThe orientation of the %d m bar relative
     to S frame = \%4.1 \, \text{f} degree", L2, theta1);
18
19 // Result
20 // The orientation of the 1 m bar relative to S
     frame = 78.7 degree
21 // The orientation of the 5 m bar relative to S
```

```
frame = 35.8 degree
```

Scilab code Exa 4.5 Velocity of pi meson

```
1 // Scilab Code Ex4.5: Page-236 (2008)

2 clc; clear;

3 c = 3e+008; // Speed of light in vacuum, m/s

4 t0 = 2.5e-008; // Proper life time of pi-meson, s

5 t = 2.5e-007; // MEan life time of pi-meson, s

6 // As t = t0/(sqrt(1-v^2/c^2)), solving for v

7 v = sqrt(1-(t0/t)^2)*c; // Velocity of pi meson,

m/s

8 printf("\nThe velocity of pi meson = %5.3f c = %4.2e

m/s", v/c, v);

9

10 // Result

11 // The velocity of pi meson = 0.995 c = 2.98e+008 m/

s
```

Scilab code Exa 4.6 Relative speed of the ships as measured by an observer

```
1 // Scilab Code Ex4.6: Page-237 (2008)
2 clc; clear;
3 c = 3e+008; // Speed of light in vacuum, m/s
4 v = 0.8*c; // Speed of the first spaceship, m/s
5 u_prime = 0.9*c; // Speed of the second spaceship
, m/s
6 u = (u_prime+v)/(1+u_prime*v/c^2); // Relative
speed of the ships as measured by the observer on
either one from Velocity addition rule, m/s
7 printf("\nThe relative speed of the ships as
measured by an observer in either one = %5.3 f c =
%4.2 e m/s", u/c, u);
```

```
8
```

9 // Result

10 // The relative speed of the ships as measured by an observer in either one = 0.988 c = 2.97e+008 m/s

```
Scilab code Exa 4.7 Velocity of one particle relative to the other
```

```
1 // Scilab Code Ex4.7: Page-237 (2008)
2 clc; clear;
3 c = 3e + 008;
                  // Speed of light in vacuum, m/s
4 v = 0.9*c; // Speed of the first particle, m/s
5 u_prime = 0.9*c; // Speed of the oppositely
     moving second particle, m/s
6 u = (u_prime+v)/(1+u_prime*v/c^2); // Velocity of
      one particle relative to the other from Velocity
      addition rule, m/s
7 printf("\nThe velocity of one particle relative to
     the other = \%5.3 \,\text{f} c = \%4.2 \,\text{e} m/s", u/c, u);
8
9 // Result
10 // The velocity of one particle relative to the
     other = 0.994 c = 2.98e + 008 m/s
```

Scilab code Exa 4.8 Velocity of the rocket as observed from the earth

```
1 // Scilab Code Ex4.8: Page-237 (2008)
2 clc; clear;
3 c = 3e+008; // Speed of light in vacuum, m/s
4 // Case 1: when velocity of firing is away from the
earth
5 v = 0.5*c; // Speed of the rocket away from the
earth, m/s
6 u_prime = 0.8*c; // Speed of the outgoing
spaceship relative to earth, m/s
```

```
7 u = (u_prime+v)/(1+u_prime*v/c^2); // Velocity of
       rocket moving away relative to the earth, m/s
8 printf("\nThe velocity of rocket moving away
      relative to the earth = \%4.2 \text{ f} c = \%4.2 \text{ e} m/s", u/c
      , u);
9 // Case 2: when velocity of firing is towards the
      earth
10 v = 0.5 * c;
               // Speed of the rocket moving towards
      the earth , m/s
11 u_prime = -0.8*c;
                       // Speed of the outgoing
      spaceship relative to earth, m/s
12 u = (u_prime+v)/(1+u_prime*v/c^2); // Velocity of
       approaching rocket relative to the earth, m/s
13 printf("\nThe velocity of approaching rocket
      relative to the earth = \%3.1 \text{ f} c = \%3.1 \text{ e} m/s", u/c
      , u);
14
15 // Result
16 // The velocity of rocket moving away relative to
      the earth = 0.93 c = 2.79 e + 008 m/s
17 // The velocity of approaching rocket relative to
      the earth = -0.5 \text{ c} = -1.5 \text{ e} + 008 \text{ m/s}
```

Scilab code Exa 4.9 Velocity of the particle when its total energy is thrice its r

```
1 // Scilab Code Ex4.9: Page-237 (2008)
2 clc; clear;
3 c = 3e+008; // Speed of light in vacuum, m/s
4 E0 = 1; // Assume the rest energy of the particle
to be unity
5 E = 3*E0; // Total energy of the particle
6 v = sqrt(1-(E0/E)^2)*c; // Velocity of the
particle from relativistic variation of mass with
speed, m/s
7 printf("\nThe velocity of the particle when its
```

```
total energy is thrice its rest energy = %5.3e cm
/s", v);
8
9 // Result
10 // The velocity of the particle when its total
energy is thrice its rest energy = 2.828e+008 cm/
s
```

Scilab code Exa 4.10 Relativisti variation of mass of electron with velocity

```
1 // Scilab Code Ex4.10: Page-238 (2008)
2 clc; clear;
3 c = 3e + 008;
                 // Speed of light in vacuum, m/s
4 mO = 9.1e-O31; // Rest mass of the electron, kg
5 E0 = m0*c^2; // Rest energy of the electron, J
6 printf("\nThe rest energy of the electron = \%4.2 f
     MeV", E0/1.6e-013);
                // Total energy of the particle
7 = 1.25 \times E0;
8 v = sqrt(1-(E0/E)^2)*c; // Velocity of the
     particle from relativistic variation of mass with
      speed, m/s
9 printf("\nThe velocity of the electron when its
     total energy is 1.25 times its rest energy = \%3.1
     f c = \%3.1 e cm/s", v/c, v);
10
11 // Result
12 // The rest energy of the electron = 0.51 MeV
13 // The velocity of the electron when its total
     energy is 1.25 times its rest energy = 0.6 c =
     1.8 e + 008 cm/s
```

Scilab code Exa 4.11 An electron subjected to relativistic motion

```
1 // Scilab Code Ex4.11: Page-238 (2008)
2 clc; clear;
               // Speed of light in vacuum, m/s
3 c = 3e + 008;
4 v = 0.99*c; // Speed of the electron, m/s
5 mO = 9.1e-O31; // Rest mass of the electron, kg
6 m = m0/sqrt(1-v^2/c^2); // Moving mass of the
     electron, kg
              // Total energy of the electron, J
7 E = m * c^2;
8 printf("\nThe total energy of the electron = \%4.2 \text{ e J}
     ", E);
9 KE_ratio = m0/(2*(m-m0))*(v/c)^2;
                                         // Ratio of
     Newtonian kinetic energy to the relativistic
     kinetic energy
10 printf("\nThe ratio of Newtonian kinetic energy to
     the relativistic kinetic energy = \% 4.2 \text{ f}",
     KE_ratio);
11
12 // Result
13 // The total energy of the electron = 5.81e-013 J
14 // The ratio of Newtonian kinetic energy to the
      relativistic kinetic energy = 0.08
```

Chapter 5

Quantum Mechanics

Scilab code Exa 5.2 Temperature of the surface of sun

```
1 // Scilab Code Ex5.2: Page-284 (2008)
2 clc; clear;
3 lambda_m = 4753e-010; // Wavelength from the sun
at which maximum energy is emitted, m
4 b = 2.88e-003; // Wein's constant, m-K
5 T = b/lambda_m; // Temperature of the surface of
sun
6 printf("\nThe temperature of the surface of sun = %d
K", ceil(T));
7
8 // Result
9 // The temperature of the surface of sun = 6060 K
```

Scilab code Exa 5.3 Wavelength of maximum intensity of radiation

```
1 // Scilab Code Ex5.3: Page-284 (2008)
2 clc; clear;
3 b = 2.898e-003; // Wein's constant, m-K
```

```
4 T = 3000 + 273; // Temperature of the source, K
5 lambda_m = b/T; // Wavelength of maximum
    intensity of radiation emitted from the source, m
6 printf("\nThe wavelength of maximum intensity of
    radiation emitted from the source = %d angstrom",
    lambda_m/le-010);
7
8 // Result
9 // The wavelength of maximum intensity of radiation
```

emitted from the source = 8854 angstrom

```
Scilab code Exa 5.4 Kinetic energy of the ejected photoelectrons
```

```
1 // Scilab Code Ex5.4: Page-285 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 c = 3e+008; // Speed of light, m/s
5 lambda = 2300e-010; // Thereshold wavelength for
     tungsten, m
6 phi = h*c/lambda; // Work function for tungsten,
     J
  lambda = 1800e-010; // Wavelength of incident
7
     radiation, m
8 E = h*c/lambda;
                   // Energy of the incidnt
     radiation, J
9 KE = E - phi;
                  // Kinetic energy of the ejected
     photoelectrons, J
10 printf("\nThe kinetic energy of the ejected
     photoelectrons = \%3.1 \text{ f eV}", KE/1.6e-019);
11
12 // Result
13 // The kinetic energy of the ejected photoelectrons
     = 1.5 \text{ eV}
```

Scilab code Exa 5.5 Possibility of electron emission with the given incident wavel

```
1 // Scilab Code Ex5.5: Page-285 (2008)
2 clc; clear;
3 function [] = check_energy(E, L)
4 phi = 4.8; // Work function for tungsten, eV
      if E > phi then
5
          printf("\nThe wavelength %d angstrom will be
6
              able to liberate an electron.", ceil(L/1
             e-010));
7
      else
8
          printf("\nThe wavelength %d angstrom will
             not be able to liberate an electron.",
             ceil(L/1e-010));
9
      end
10 endfunction
11 h = 6.62e-034; // Planck's constant, Js
12 c = 3e+008; // Speed of light, m/s
13 // Case 1
14 lambda = 2000e-010; // Wavelength of incident
     radiation, m
15 E = h*c/(lambda*1.6e-019); // Energy of the
     incidnt radiation, eV
                           // Check for the
16 check_energy(E, lambda);
     wavelength
17 // Case 2
18 lambda = 5000e-010; // Wavelength of incident
     radiation, m
19 E = h*c/(lambda*1.6e-019); // Energy of the
     incidnt radiation, eV
20 check_energy(E, lambda); // Check for the
     wavelength
21
22 // Result
```

- 23 // The wavelength 2000 angstrom will be able to liberate an electron.
- 24 // The wavelength 5000 angstrom will not be able to liberate an electron.

Scilab code Exa 5.6 Velocity of emitted photoelectrons

```
1 // Scilab Code Ex5.6: Page-286 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 c = 3e+008; // Speed of light, m/s
                 // Energy quivalent of 1 eV, J
5 e = 1.6e - 019;
                   // Work function for material, J
6 phi = 2.28*e;
                // Mass of an electron, kg
7 m = 9.1e - 031;
8 lambda = 3000e-010; // Wavelength of incident
     radiation, m
9 E = h*c/lambda;
                  // Energy of the incidnt
     radiation, J
10 KE = E - phi;
                // Kinetic energy of the ejected
     photoelectrons, J
11 v = sqrt(2*KE/m); // Velocity of emitted electron
     , m/s
12 printf("\nThe velocity of the emitted electron = \%4
     .2 e m/s", v);
13
14 // Result
15 // The velocity of the emitted electron = 8.08e+005
     m/s
```

Scilab code Exa 5.7 A photosensitive material emitting photoelectrons

```
1 // Scilab Code Ex5.7: Page-286 (2008)
2 clc; clear;
```

```
3 h = 6.62e-034; // Planck's constant, Js
4 c = 3e+008; // Speed of light, m/s
5 e = 1.6e-019; // Energy quivalent of 1 eV, J
6 phi = 4.2*e; // Work function for material, J
7 lambda = 2000e-010; // Wavelength of incident
     radiation, m
                   // Energy of the incidnt
8 = h*c/lambda;
     radiation, J
9 KE_fast = (E - phi)/e; // Kinetic energy of the
     fastest photoelectron, eV
               // Kinetic energy of the slowest
10 KE_slow = 0;
     photoelectron, eV
11 printf("\nThe kinetic energy of the fastest
     photoelectron = \%d eV", KE_fast);
12 printf("\nThe kinetic energy of the slowest
     photoelectron = \%d eV", KE_slow);
13 V = (E - phi)/e; // Stopping potential, V
14 printf("\nThe stopping potential = \%d volt", V);
15
16 // Result
17 // The kinetic energy of the fastest photoelectron =
      2 \text{ eV}
18 // The kinetic energy of the slowest photoelectron =
      0 \text{ eV}
19 // The stopping potential = 2 volt
```

Scilab code Exa 5.8 Maximum wavelength of radiation which would start the emission

```
radiation , cm
7 printf("\nThe maximum wavelength of radiation which
would start the emission of photoelectrons = %d
angstrom", lambda0/le-008);
8
9 // Result
10 // The maximum wavelength of radiation which would
start the emission of photoelectrons = 6000
angstrom
```

```
Scilab code Exa 5.9 Potassium surface exposed to UV radiation
```

```
1 // Scilab Code Ex5.9: Page-287 (2008)
2 clc; clear;
3 h = 6.62e - 0.034;
                      // Planck's constant, Js
4 c = 3e+008; // Speed of light, m/s
5 e = 1.6e-019; // Energy quivalent of 1 eV, J
6 phi = 2.1*e; // Work function for material,
                    // Work function for material, J
7 lambda = 3500e-010; // Wavelength of incident UV
      radiation, m
8 E = 1e-004; // Energy incident per sec on 1 Sq.
     cm of potassium surface, J
                     // Efficiency of potassium surface
9 eta = 0.5/100;
10 KE = (h*c/lambda-phi)/e; // Maximum kinetic
      energy of the ejected photoelectrons, eV
11 N = eta*E/(KE*e); // Number of photoelectrons
      emitted per second per Sq. cm of potassium
      surface
12 printf("\nThe maximum kinetic energy of the incidnt
      radiation = \%4.2 \text{ f eV}", KE);
13 printf("\nThe number of photoelectrons emitted per
      second per Sq. cm of potassium surface = \%4.2e^{\circ},
      N);
14
15 // Result
```

- 16 // The maximum kinetic energy of the incidnt radiation = 1.45 eV
- 17 // The number of photoelectrons emitted per second per Sq. cm of potassium surface = 2.16 e+012

Scilab code Exa 5.10 Planck constant and threshold wavelength of metal

```
1 // Scilab Code Ex5.10: Page-288 (2008)
2 clc; clear;
3 c = 3e + 008;
               // Speed of light, m/s
4 KE1 = 3.62e-019; // Maximum kinetic energy of
     photoelectrons with first wavelength, eV
  lambda1 = 3000; // First wavelength of incident
5
     radiation, angstrom
6 KE2 = 0.972e-019; // Maximum kinetic energy of
     photoelectrons with second wavelength, eV
  lambda2 = 5000; // Second wavelength of incident
7
     radiation, angstrom
8 A = [c/lambda1, -1; c/lambda2, -1]; // Declare a
     square matrix as per Einstein's Photoelectric
     relation, KE = h*c/lambda - phi
9 B = [KE1; KE2]; // Put KEs in a column matrix
10 X = inv(A)*B; // Apply inverse multiplication of
     a matrix to fing h and phi
11 lambda0 = X(1) * 1e - 010 * c/X(2);
                                  // Threshold
     wavelength of metal, m
12 printf("\h = \%4.2 e Js \nphi = \%1.0 e J", X(1)*1e-010,
      X(2));
13 printf("\nThe threshold wavelength of metal = \%d
     angstrom", ceil(lambda0/1e-010));
14
15 // Result
16 / / h = 6.62 e - 034 Js
17 // \text{phi} = 3e - 019 \text{ J}
18 // The threshold wavelength of metal = 6620 angstrom
```

Scilab code Exa 5.11 Energy and wavelength of incident photon

```
1 // Scilab Code Ex5.11: Page-288 (2008)
2 clc; clear;
3 c = 3e + 008;
                    // Speed of light, m/s
4 e = 1.6e-019; // Energy equivalent of 1 eV, J
5 h = 6.62e-034; // Planck's constant, Js
6 m0 = 9.1e-031; // Rest mass of an electr
                       // Rest mass of an electron, kg
                   // Scattering angle for X-ray photon,
7 \text{ alpha} = 90;
       degree
8 d_lambda = h/(m0*c)*(1-cosd(alpha));
                                                11
      Wavelength shift after collision, m
9 lambda = d_lambda;
                         // Wavelength of the incident
      photon according to the condition, m
10 E = h*c/(lambda*e*1e+006);
                                   // Energy of the
      incident photon, MeV
11 printf("\nThe wavelength of the incident photon = \%6
      .4\,\mathrm{e}~\mathrm{m}", lambda);
12 printf("\nThe energy of the incident photon = \%4.2 f
      MeV", E);
13
14 // Result
15 // The wavelength of the incident photon = 2.4249e
      -012 \text{ m}
16 // The energy of the incident photon = 0.51 MeV
```

Scilab code Exa 5.12 Energy lost by an X ray photon in collsion with an electron

```
1 // Scilab Code Ex5.12: Page-289 (2008)
2 clc; clear;
3 c = 3e+008; // Speed of light, m/s
```

```
4 e = 1.602e-019; // Energy equivalent of 1 eV, J
                    // Planck's constant, Js
5 h = 6.6e - 0.034;
                    // Wavelength of X ray photon,
6 \quad \text{lambda} = 0.1;
      angstrom
7 \text{ m0} = 9.1 \text{e} - 0.031;
                     // Rest mass of an electron, kg
8 \text{ alpha} = 90;
                   // Scattering angle for X-ray photon,
       degree
9 d_lambda = h/(m0*c*1e-010)*(1-cosd(alpha));
                                                      Wavelength shift after collision, angstrom
10 lambda_prime = lambda + d_lambda;
                                         // Wavelength
      of the scattered photon, angstrom
11 dE = h*c*1e+010/e*(1/lambda - 1/lambda_prime);
                                                         ||
       Energy lost by the X ray photon by collision, eV
12 printf("\nThe energy lost by the X ray photon by
      collision = \%4.1 \text{ f KeV}", dE/1e+003);
13
14 // Result
15 // The energy lost by the X ray photon by collision
     = 24.1 \text{ KeV}
```

Scilab code Exa 5.13 The Compton effect stidied at different scattering angles

```
1 // Scilab Code Ex5.13: Page-289 (2008)
2 clc; clear;
                  // Speed of light, m/s
3 c = 3e + 008;
4 e = 1.602e-019; // Energy equivalent of 1 eV, J
5 h = 6.6e-034; // Planck's constant, Js
6 \text{ mO} = 9.1e-031; // Rest mass of an electron, kg
7 alpha = [90 60 45 180];
                           // Different scattering
     angle for X-ray photon, degrees
8 \text{ d_lambda} = \text{zeros}(4);
9 for i = 1:1:4
       d_lambda(i) = h/(m0*c*1e-010)*(1-cosd(alpha(i)))
10
               // Wavelength shift after collision,
          ;
          angstrom
```
```
11
       printf ("\nFor alpha = \%d degree, d_lambda = \%6.4
          f angstrom", alpha(i), d_lambda(i));
12 end
13 \text{ lambda} = 0.2;
                    // Given wavelength of incident X-
      ray photon, angstrom
14 lambda_prime = lambda + d_lambda(3);
      Wavelength of the scattered photon at 45 degree,
      angstrom
15 printf("\nThe wavelength of the photon scattered at
      45 degree = \%5.3 f angstrom", lambda_prime);
16 lambda_prime = lambda + d_lambda(4);
                                           // Maximum
      wavelength of the photon scattered at 180 degree,
       angstrom
17 KE_max = h*c*1e+010*(1/lambda - 1/lambda_prime);
      // Maximum kinetic energy of the recoil electron,
       Т
18 printf("\nThe maximum kinetic energy of the recoil
      electron = \%4.2 \text{ e} J", KE_max);
19
20 // Result
21 // For alpha = 90 degree, d_lambda = 0.0242 angstrom
22 // For alpha = 60 degree, d_lambda = 0.0121 angstrom
23 // For alpha = 45 degree, d_lambda = 0.0071 angstrom
24 // For alpha = 180 degree, d_lambda = 0.0484
      angstrom
25
  // The wavelength of the photon scattered at 45
      degree = 0.207 angstrom
26 // The maximum kinetic energy of the recoil electron
      = 1.93 e - 015 J
```

Scilab code Exa 5.15 de Broglie wavelength associated with moving masses

```
1 // Scilab Code Ex5.15: Page-292 (2008)
2 clc; clear;
3 h = 6.6e-034; // Planck's constant, Js
```

```
4 // For golf ball
5 \text{ m} = 0.046; // Mass of the golf ball, kg
6 v = 36; // Velocity of the golf ball, m/s
7 lambda = h/(m*v); // de-Broglie wavelength
      associated with the moving golf ball, m
8 printf("\nThe de-Broglie wavelength associated with
      the moving golf ball = \%1.0 \,\mathrm{e} m", lambda);
9 if lambda/le-010 > 0.1 then
       printf("\nThe moving golf ball may exhibit wave
10
          character.");
11 end
12 // For an electron
                    // Mass of the electron, kg
13 \text{ m} = 9.11 \text{e} - 031;
                // Velocity of the electron , m/s
14 v = 1e+007;
15 lambda = h/(m*v); // de-Broglie wavelength
      associated with the moving electron, m
16 printf("\nThe de-Broglie wavelength associated with
      the moving electron = \%3.1e m", lambda);
17 if lambda/le-010 > 0.1 then
18
       printf("\nThe moving electron may exhibit wave
          character.");
19 end
20
21 // Result
22 // The de-Broglie wavelength associated with the
     moving golf ball = 4e - 034 m
23 // The de-Broglie wavelength associated with the
     moving electron = 7.2 e - 0.001 m
24 // The moving electron may exhibit wave character.
```

Scilab code Exa 5.16 Voltage applied to the electron microscope to produce the req

```
1 // Scilab Code Ex5.16: Page-292 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
```

```
4 e = 1.602e-019; // Energy equivalent of 1 eV, J
5 lambda = 0.40e-010; // de-Broglie wavelength
    associated with the moving electron, m
6 m = 9.11e-031; // Rest mass of an electron, kg
7 V = (h/lambda)^2/(2*m*e); // Voltage applied to
    the electron microscope to produce the required
    wavelength, volt
8 printf("\nThe voltage applied to the electron
    microscope to produce the required de-Broglie
    wavelength = %5.1f volt", V);
9
10 // Result
11 // The voltage applied to the electron microscope to
    produce the required de-Broglie wavelength = 938.4 volt
```

Scilab code Exa 5.18 de Broglie wavelength of a neutron of given energy

```
1 // Scilab Code Ex5.18: Page-293 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
                    // Energy equivalent of 1 eV, J
4 = 1.602e - 019;
5 E_k = 12.8e+006; // Energy of the moving neutron,
      eV
6 m0 = 1.675e-027; // Rest mass of a neutron, kg
7 lambda = h/sqrt(2*m0*E_k*e) // de-Broglie wavelength
      associated with the moving neutron, m
8 printf("\nThe de-Broglie wavelength of the moving
     neutron = \%3.1e angstrom", lambda/le-010);
9
10 // Result
11 // The de-Broglie wavelength of the moving neutron =
      8.0e-005 angstrom
```

Scilab code Exa 5.19 Minimum uncertainty in momentum and kinetic energy of a proto

```
1 // Scilab Code Ex5.19: Page-294 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 e = 1.602e-019; // Energy equivalent of 1 eV, J
5 m = 1.67e-027; // Rest mass of a proton, kg
6 r = 5e-015; // Radius of the nucleus, m
                   // Minimum uncertainty in position
7 delta_x = 2*r;
       of the proton, m
8 delta_p = h/(2*%pi*delta_x); // Minimum
      uncertainty in proton's momentum, kg-m/s
9 KE = delta_p^2/(2*m); // Minimum kinetic emergy
      of the proton, J
10 printf("\nThe minimum uncertainty in momentum of the
       proton = \%4.2 \text{ kg-m/s"}, delta_p);
11 printf("\nThe minimum kinetic emergy of the proton =
       \%5.3 \text{ f MeV}, KE/(e*1e+006));
12
13 // Result
14 // The minimum uncertainty in momentum of the proton
      = 1.05 e - 020 kg - m/s
15 // The minimum kinetic emergy of the proton = 0.207
     MeV
```

Scilab code Exa 5.20 Minimum uncertainty in the measurement of velocity of the ele

```
1 // Scilab Code Ex5.20: Page-294 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 m = 9.11e-031; // Rest mass of a electron, kg
```

```
5 delta_x = 1e-009; // Minimum uncertainty in
    position of the electron, m
6 delta_p_min = h/delta_x; // Minimum uncertainty
    in electron's momentum, kg-m/s
7 delta_v = delta_p_min/m; // Minimum uncertainty
    in the measurement of velocity of the electron, m
    /s
8 printf("\nThe minimum uncertainty in the measurement
    of velocity of the electron = %4.2 e m/s",
    delta_v);
9
10 // Result
11 // The minimum uncertainty in the measurement of
    velocity of the electron = 7.27e+005 m/s
```

Scilab code Exa 5.22 Minimum uncertainty in the position of the particle

```
1 // Scilab Code Ex5.22: Page-295 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 m = 1e-009; // Mass of the particle, kg
5 v = 1; // Velocity of the particle, m/s
6 delta_v = v*0.01/100; // Minimum uncertainty in
     the velocity of the particle, m/s
  delta_x = h/(m*delta_v); // Minimum uncertainty
7
     in the position of the particle, m
8 printf("\nThe minimum uncertainty in the position of
      the particle = \%4.2 \,\mathrm{e} m", delta_x);
9
10 // Result
11 // The minimum uncertainty in the position of the
     particle = 6.62 e - 021 m
```

Scilab code Exa 5.23 Uncertainty with which position of the electron can be locate

```
1 // Scilab Code Ex5.23: Page-295 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 m = 9.1e-031; // Mass of the electron, kg
5 v = 1e+003; // Velocity of the electron, m/s
6 delta_v = v*0.05/100; // Minimum uncertainty in
     the velocity of the electron, m/s
  delta_x = h/(m*delta_v); // Minimum uncertainty
7
     in the position of the electron, m
8 printf("\nThe minimum uncertainty in the position of
      the electron = \%4.2 \,\text{em}", delta_x);
9
10 // Result
11 // The minimum uncertainty in the position of the
     electron = 1.45 e - 003 m
```

 $m Scilab\ code\ Exa\ 5.24$ Minimum uncertainty in energy of the excited state of an atom

```
1 // Scilab Code Ex5.24: Page-295 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 e = 1.602e-019; // Energy equivalent of 1 eV, J
5 delta_t = 1e-008; // Life time of excited state
of an atom, s
6 delta_E = h/(2*%pi*delta_t); // Minimum
uncertainty in the energy of the excited state of
the atom, J
7 printf("\nThe minimum uncertainty in the energy of
the excited state of the atom = %3.1e eV",
delta_E/e);
8
9 // Result
10 // The minimum uncertainty in the energy of the
```

Scilab code Exa 5.25 Probable uncertainty in energy and frequency of gamma ray pho

```
1 // Scilab Code Ex5.25: Page-296 (2008)
2 clc; clear;
3 h = 6.62e-034; // Planck's constant, Js
4 delta_t = 1e-012; // Life time of a nucleus in
     the excited state, s
5 delta_E = h/(2*%pi*delta_t); // Minimum
      uncertainty in the energy of the excited state of
      the nucleus, J
6 // As E = h*nu, solving for delta_nu
7 delta_nu = delta_E/h; // Minimum uncertainty in
      the frequency of the excited state of the nucleus
      , Hz
8 printf("\nThe minimum uncertainty in the energy of
     the excited state of the nucleus = \%5.3 \text{ e J}",
     delta_E);
9 printf("\nThe minimum uncertainty in the frequency
     of the excited state of the nucleus = \%4.2 \,\mathrm{e} MHz",
      delta_nu/1e+006);
10
11 // Result
12 // The minimum uncertainty in the energy of the
     excited state of the nucleus = 1.054e - 022 J
13 // The minimum uncertainty in the frequency of the
     excited state of the nucleus = 1.59 e+005 MHz
```

Scilab code Exa 5.29 Lowest energy of an electron in one dimensional force free re

```
1 // Scilab Code Ex5.29: Page-300 (2008)
2 clc; clear;
```

```
3 h = 6.62e-034; // Planck's constant, Js
4 e = 1.602e-019; // Energy equivalent of 1 eV, J
5 m = 9.11e-031; // Rest mass of the electron, kg
6 l = 4e-010; // Length of the force free region, m
7 n = 1; // Principal quantum number for lowest
energy state
8 E1 = n^2*h^2/(8*m*l^2); // Lowest energy of an
electron in one dimensional force free region, J
9 printf("\nThe lowest energy of an electron in one
dimensional force free region = %4.2f eV", E1/e);
10
11 // Result
12 // The lowest energy of an electron in one
dimensional force free region = 2.35 eV
```

Scilab code Exa 5.30 The excited state energies of the particle entrapped in a one

```
1 // Scilab Code Ex5.30: Page-300 (2008)
2 clc; clear;
3 e = 1.602e-019; // Energy equivalent of 1 eV, J
4 E1 = 3.2e-018/e; // Minimum energy possible for a
      particle entrapped in a one dimensional box, eV
                   // Principal quantum number for K,
5 n = [1 2 3 4];
      L, M and N states
6 printf("\nThe next three energies which the particle
       can have are:");
7 \text{ for } i = 2:1:4
       printf("\nE\%d = \%d \ eV", i, ceil(i^2*E1));
8
9 end
10
11 // Result
12 // The next three energies which the particle can
     have are:
13 / E2 = 80 \text{ eV}
14 / E3 = 180 \text{ eV}
```

15 // E4 = 320 eV

Scilab code Exa 5.31 Probability of finding the particle within a given interval

```
1 // Scilab Code Ex5.31: Page-301 (2008)
2 clc; clear;
3 delta_x = 4; // Interval at the centre of the box
      at which the probability is to be found out,
     angstrom
            // Width of one dimensional infinite
4 \ 1 = 10;
     height box, angstrom
5 P = 2*delta_x/l; // Probability of finding the
     particle within 4 angstrom interval
6 printf("\nThe probability of finding the particle
     within the %d angstrom interval at the centre of
     the box = \%3.1 \, \text{f}", delta_x, P);
7
8 // Result
9 // The probability of finding the particle within
     the 4 angstrom interval at the centre of the box
     = 0.8
```

Scilab code Exa 5.32 Probability of finding a particle within given range of 1D bo

```
1 // Scilab Code Ex5.32: Page-301 (2008)
2 clc; clear;
3 L = 1; // Assume the length of the box to be
    unity, m
4 L1 = 0.4*L; // Lower limit, m
5 L2 = 0.6*L; // Upper limit, m
6 x = (L1+L2)/2; // Mean position of particle, m
7 delta_x = L2 - L1; // Uncertainty in position of
    the particle, m
```

Chapter 6

Classical Statistics and Quantum Statistics

Scilab code Exa 6.1 Probability of distribution of distinguishable particles

```
1 // Scilab Code Ex6.1: Page-345 (2008)
2 clc; clear;
3 n = 14; // Total number of particles
4 C = 2; // Total number of compartments
5 N_micro = C^n; // Total number of microstates
6 n1 = [10 7 14]; // Set of number of particles in
     first compartment
                // Set of number of particles in
7 n2 = [4 7 0];
     second compartment
8 for i = 1:1:3
9
      W = factorial(n1(i) + n2(i))/(factorial(n1(i))*
         factorial(n2(i)));
      P = W/N_{micro};
10
11
      printf("\nThe probability of microstate (%d, %d)
          = %8.6 f", n1(i), n2(i), P);
12 end
13
14 // Result
15 // The probability of microstate (10, 4) = 0.061096
```

```
16 // The probability of microstate (7, 7) = 0.209473
17 // The probability of microstate (14, 0) = 0.000061
```

```
Scilab code Exa 6.6 Most probable distribution for total energy
1 // Scilab Code Ex6.6: Page-348 (2008)
2 clc; clear;
3 \text{ MAX} = 10;
4 // Look for all the possible set of values for n1,
      n2 and n3
5 printf("\nThe most probable distribution is for ");
6 \text{ for } i = 0:1:5
7
       for j = 0:1:5
            for k = 0:1:5
8
9
         // Check for the condition and avoid
            repetition of set of values
                if ((i + j + k) == 5) \& ((j+2*k) == 3)
10
                   then
                    W = factorial(i + j + k)/(factorial(
11
                       i)*factorial(j)*factorial(k));
12
                    if W > MAX then
                        printf ("\n1 = \%d, n2 = %d and n3
13
                            = \% d", i, j, k);
14
                     end
15
                end
16
            end
17
       end
18 end
19
20 // Result
21 // The most probable distribution is for
22 // n1 = 3, n2 = 1 and n3 = 1
```

Scilab code Exa 6.8 Probability for a Maxwell Boltzmann system to be in given stat

```
1 // Scilab Code Ex6.8: Page-349 (2008)
2 clc; clear;
3 k = 1.38e - 016;
                   // Boltzmann constant, erg/K
4 T = 100; // Given temperature, K
5 E1 = 0; // Energy of the first state, erg
6 E2 = 1.38e-014; // Energy of the second state,
     erg
7
  E3 = 2.76e-014; // Energy of the third state, erg
8 g1 = 2, g2 = 5, g3 = 4;
                            // Different ways of
     occuring for E1, E2 and E3 states
9 P1 = g1 * exp(-E1/(k*T));
                            // Probability of
     occurence of state E1
10 P2 = g2*exp(-E2/(k*T));
                            // Probability of
     occurence of state E2
                            // Probability of
11 P3 = g3 * exp(-E3/(k*T));
     occurence of state E3
12 PE_3 = P3/(P1+P2+P3);
                          // Probability for the
     system to be in any one microstates of E3
13 PO = P1/(P1+P2+P3); // Probability for the system
      to be in ground state
14 printf("\nThe probability for the system to be in
     any one microstates of E3 = \%6.4 \, \text{f}", PE_3);
15 printf("\nThe probability for the system to be in
     ground state = \%5.3 \, \text{f}", PO);
16
17 // Result
18 // The probability for the system to be in any one
     microstates of E3 = 0.1236
19 // The probability for the system to be in ground
     state = 0.457
```

Scilab code Exa 6.9 Number of microstates in the given macostate of a Fermi Dirac

```
1 // Scilab Code Ex6.9: Page-350 (2008)
2 clc; clear;
3 \text{ g1} = 6, \text{ g2} = 8; // Total number of cells in the
     first and the second compartments respectively
4 n1 = 2, n2 = 3; // Given number of cells in the
     first and the second compartments respectively
     for given macrostate
5 W_23 = factorial(g1)/(factorial(n1)*factorial(g1 -
     n1))*factorial(g2)/(factorial(n2)*factorial(g2 -
           // Total number of microstates in the
     n2));
     macrostate (2, 3)
6 printf("\nThe total number of microstates in the
     macrostate (\%d, \%d) = \%d", n1, n2, W_23);
7
8 // Result
9 // The total number of microstates in the macrostate
      (2, 3) = 840
```

Scilab code Exa 6.10 Number of microstates formed by particles obeying Fermi Dirac

```
1 // Scilab Code Ex6.10: Page-350 (2008)
2 clc; clear;
3 g1 = 8, g2 = 10; // Total number of cells in the
first and the second compartments respectively
4 n1 = 3, n2 = 4; // Given number of cells in the
first and the second compartments respectively
for given macrostate
5 W_34 = factorial(g1)/(factorial(n1)*factorial(g1 -
n1))*factorial(g2)/(factorial(n2)*factorial(g2 -
n2)); // Total number of microstates in the
macrostate (3, 4)
6 printf("\nThe total number of microstates in the
macrostate (%d, %d) = %d", n1, n2, W_34);
7 
8 // Result
```

9 // The total number of microstates in the macrostate (3, 4) = 11760

Scilab code Exa 6.11 Fermi energy and internal energy for metallic silver at 0 K

```
1 // Scilab Code Ex6.11: Page-351 (2008)
2 clc; clear;
                  // Planck's constant, Js
3 h = 6.6e - 0.034;
                    // Mass of an electron, kg
4 m = 9.1e - 031;
5 e = 1.6e-019; // Energy equivalent of 1 \text{ eV}, J
6 rho = 10.5; // Density of silver, g/cc
            // Atomic weight of Ag, g/mole
7 A = 108;
8 N_A = 6.023e+023; // Avogadro's number
9 E_F0 = h^2/(8*m)*(3*N_A*rho*1e+006/(%pi*A))^(2/3);
          // Fermi energy of silver at 0 K, J
10 U = 3/5*(N_A*rho*1e+006/A)*E_F0; // Internal
      energy of the electron gas per unit volume at 0 K
      , J/metre-cube
11 printf("\nThe Fermi energy of silver at 0 \text{ K} = \%3.1 \text{ f}
     eV", E_F0/e);
12 printf("\nThe internal energy of the electron gas
      per unit volume at 0 \text{ K} = \%4.2 \text{ e } \text{J/cubic-metre}, U)
      ;
13
14 // Result
15 // The Fermi energy of silver at 0 \text{ K} = 5.5 \text{ eV}
16 // The internal energy of the electron gas per unit
      volume at 0 K = 3.07 e+010 J/cubic-metre
```

Scilab code Exa 6.12 Number of conduction electrons per cc in silver at 0 K

```
1 // Scilab Code Ex6.12: Page-351 (2008)
2 clc; clear;
```

```
3 h = 6.6e - 0.034;
                     // Planck's constant, Js
                     // Mass of an electron, kg
4 m = 9.1e - 031;
                     // Energy equivalent of 1 eV, J
5 e = 1.6e - 0.19;
                     // Fermi energy of silver at 0 K,
6 E_F0 = 5.48;
      eV
7 N_bar = (8*m/h^2)^{(3/2)}*%pi/3*(E_F0*e)^{(3/2)};
                                                       | |
      Number density of conduction electrons in silver
      at 0 K, per cc
8 printf("\nThe number density of conduction electrons
       in silver at 0 K = \%3.1e per cc", N_bar*1e-006);
9
10 // Result
11 // The number density of conduction electrons in
      silver at 0 \text{ K} = 5.9 \text{ e} + 022 \text{ per cc}
```

Scilab code Exa 6.13 Fermi energy of conduction electrons in cesium

```
1 // Scilab Code Ex6.13: Page-351 (2008)
2 clc; clear;
                     // Planck's constant, Js
3 h = 6.6e - 0.034;
4 m = 9.1e - 031;
                    // Mass of an electron, kg
                     // Energy equivalent of 1 eV, J
5 e = 1.6e - 019;
6 E_FO_Be = 14.44
                         // Fermi energy of Be at 0 K,
      eV
7 \text{ N}_{bar}Be = 24.2e+022;
                            // Number density of
      conduction electrons in Be at 0 K, per cc
                             // Number density of
8 \text{ N}_{bar}Cs = 0.91e+022;
      conduction electrons in Cs at 0 K, per cc
9 E_FO_Cs = E_FO_Be*(N_bar_Cs/N_bar_Be)^{(2/3)};
                                                       11
      Fermi energy of conduction electrons in cesium,
      eV
10 printf("\nThe Fermi energy of conduction electrons
      in cesium = \%5.3 \,\mathrm{f} eV", E_F0_Cs);
11
12 // Result
```

- 13 // The Fermi energy of conduction electrons in cesium = 1.621 eV
- $14\ //$ The answer is given wrongly in the textbook

Chapter 7

Classical Statistics and Quantum Statistics

Scilab code Exa 7.1 Atomic packing fractions of SC FCC and BCC unit cells

1 // Scilab Code Ex7.1: Page-376 (2008) 2 clc; clear; 3 a = poly(0, 'a'); // Lattice parameter for a cubic unit cell, m 4 // For simple cubic cell 5 n = 1; // Number of atoms per simple cubic unit cell // Atomic radius for a simple cubic cell 6 r = a/2;, m 7 f = pol2str(int(numer(n*4/3*%pi*r^3/a^3)*100)); // Atomic packing fraction for a simple cubic cell 8 printf("\nFor simple cubic cell, f = %s percent", f) 9 // For face centered cubic cell 10 n = 2; // Number of atoms per face centered cubic unit cell 11 r = sqrt(3)/4*a; // Atomic radius for a face centered cubic cell, m

- 12 f = pol2str(int(numer(n*4/3*%pi*r^3/a^3)*100));
 // Atomic packing fraction for a face centered
 cubic cell
- 14 // For body centered cubic cell
- 15 n = 4; // Number of atoms per body centered cubic
 unit cell
- 17 f = pol2str(int(numer(n*4/3*%pi*r^3/a^3)*100));
 // Atomic packing fraction for a body centered
 cubic cell

19

20 // Result

- 21 // For simple cubic cell, f = 52 percent
- 22 // For face centered cubic cell, f = 68 percent 23 // For body centered cubic cell, f = 74 percent

Scilab code Exa 7.3 Distance between two adjacent atoms in the NaCl

```
1 // Scilab Code Ex7.3: Page-377 (2008)
2 clc; clear;
3 M = 58.46;
              // Gram atomic mass of NaCl, g/mole
4 N = 6.023e+023; // Avogadro's number
5 rho = 2.17; // Density of NaCl, g/cc
6 m = M/N;
            // Mass of each NaCl molecule, g
              // Number of NaCl molecules per unit
7 n = rho/m;
    volume, molecules/cc
8 N = 2*n;
             // Number of atoms per unit volume,
    atoms/cc
9 a = (1/N)^{(1/3)}; // Distance between two adjacent
     atoms in the NaCl, cm
```

Scilab code Exa 7.4 Type of unit cell of Cs

```
1 // Scilab Code Ex7.4: Page-377 (2008)
2 clc; clear;
3 function p = find_cell_type(x)
4
       if x == 1 then
           p = 'simple cubic';
5
6
       end
7
       if x == 2 then
           p = 'body centered';
8
9
       end
       if x == 4 then
10
           p = 'face centered';
11
12
       end
13 endfunction
14 M = 130;
             // Gram atomic weight of Cs, g/mole
15 N = 6.023e+023; // Avogadro's number
             // Density of Cs, g/cc
16 \text{ rho} = 2;
17 a = 6e - 008;
                  // Distance between two adjacent
     atoms in the Cs, cm
18 m = M/N;
               // Mass of each Cs atom, g
19 x = rho*a^3*N/M; // Number of Cs atoms in cubic
     unit cell
20 c_type = find_cell_type(int(x));
                                        // Call function
      to determine the type of cell
21 printf("\nThe cubic unit cell of Cs is %s.", c_type)
      ;
22
```

23 // Result 24 // The cubic unit cell of Cs is body centered.

Scilab code Exa 7.5 Miller indices of given planes

```
1 // Scilab Code Ex7.5: Page-378 (2008)
2 clc; clear;
3 m = 2; n = 3; p = 6; // Coefficients of intercepts
      along three axes
4 \text{ m_inv} = 1/\text{m};
                          // Reciprocate the first
      coefficient
5 n_{inv} = 1/n;
                          // Reciprocate the second
      coefficient
                          // Reciprocate the third
6 p_{inv} = 1/p;
      coefficient
7 mul_fact = double(lcm(int32([m,n,p]))); // Find l.c.
      m. of m, n and p
8 m1 = m_inv*mul_fact; // Clear the first fraction
9 m2 = n_inv*mul_fact; // Clear the second fraction
10 m3 = p_inv*mul_fact; // Clear the third fraction
11 printf("\nThe required miller indices are : (%d %d
      %d) ", m1,m2,m3);
12
13 // Result
14 // The required miller indices are : (3 \ 2 \ 1)
```

Scilab code Exa 7.6 Meaning of hkl notation of planes

```
5 \text{ m_inv} = 1/\text{m};
                         // Reciprocate the first
      coefficient
6 n_inv = 1/n;
                         // Reciprocate the second
      coefficient
7 \, p_{inv} = 1/p;
                         // Reciprocate the third
      coefficient
8 mul_fact = double(lcm(int32([m,n,p]))); // Find l.c.
     m. of m, n and p
                         // Clear the first fraction
9 m1 = m_inv*mul_fact;
                            // Clear the second fraction
10 m2 = n_inv*mul_fact;
11 m3 = p_inv*mul_fact; // Clear the third fraction
12 printf("\nThe plane (%d %d %d) has intercepts %da,
      %db and %dc on the three axes.", m, n, p, m1, m2,
       m3);
13 // For second set (1 \ 1 \ 1)
14 m = 1; n = 1; p = 1; // Coefficients of intercepts
      along three axes
15 \text{ m_inv} = 1/\text{m};
                         // Reciprocate the first
      coefficient
16 \, n_{inv} = 1/n;
                         // Reciprocate the second
      coefficient
17 p_{inv} = 1/p;
                         // Reciprocate the third
      coefficient
18 mul_fact = double(lcm(int32([m,n,p]))); // Find l.c.
     m. of m, n and p
19 m1 = m_inv*mul_fact; // Clear the first fraction
                         // Clear the second fraction
// Clear the third fraction
20 m2 = n_inv*mul_fact;
21 m3 = p_inv*mul_fact;
22 printf("\nThe plane (%d %d %d) has intercepts a, b
      and c on the three axes.", m, n, p);
23
24 // Result
25 // The plane (3 \ 2 \ 2) has intercepts 2a, 3b and 3c on
       the three axes.
26 // The plane (1 \ 1 \ 1) has intercepts a, b and c on
      the three axes.
```

Scilab code Exa 7.9 Lengths of intercepts along y and z axis

```
1 // Scilab Code Ex7.9: Page-379 (2008)
2 clc; clear;
3 h = 2; k = 3; l = 1; // Miller indices of the set of
      planes
                  // Reciprocate h
4 p = 1/h;
                 // Reciprocate k
5 q = 1/k;
6 r = 1/1;
                 // Reciprocate l
7 lx = 1.2;
               // Intercept cut by plane along x-axis,
      angstrom
8 a = 1.2, b = 1.8, c = 2; // Primitives of the
     crystal, angstrom
9 mul_fact = double(lcm(int32([h, k, 1]))); // Find 1.
     c.m. of h, k and l
10 pa = mul_fact*p*a;
11 gb = mul_fact*g*b;
12 rc = mul_fact*r*c;
13 ly = lx*qb/pa; // Length of intercept along y-
     axis
14 lz = lx*rc/pa; // Length of intercept along z-
     axis
15 printf("\nThe length of intercept along y-axis = \%3
     .1f angstrom", ly);
16 printf("\nThe length of intercept along z-axis = \%3
     .1f angstrom", lz);
17
18 // Result
19 // The length of intercept along y-axis = 1.2
     angstrom
20 // The length of intercept along z-axis = 4.0
     angstrom
```

Scilab code Exa 7.10 Interplanar spacing for a set of planes in a cubic lattice

Scilab code Exa 7.11 Determining Planck constant from given set of X ray data

```
1 // Scilab Code Ex7.11: Page-380 (2008)
2 clc; clear;
3 e = 1.6e - 0.19;
                  // The energy equivalent of 1 eV, J
4 c = 3e + 008;
                 // Speed of light in vacuum, m/s
5 V = [30 44 50 200]; // Operating voltages of X
     ray, kV
6 \text{ lambda_min} = [0.414 \ 0.284 \ 0.248 \ 0.062];
                                               Minimum wavelengths of emitted continuous X rays,
      angstrom
7 \text{ for } i = 1:1:4
8
      h = e*V(i)*1e+003*lambda_min(i)*1e-010/c;
                                                      Planck's constant, Js
      printf("\nFor V = \%d kV and lambda_min = \%5.3 f
9
         angstrom, h = \%4.2 e Js", V(i), lambda_min(i),
```

Scilab code Exa 7.12 Maximum speed of striking electron and the shortest wavelengt

```
1 // Scilab Code Ex7.12: Page-381 (2008)
2 clc; clear;
3 e = 1.6e - 0.19;
                     // The energy equivalent of 1 eV, J
                     // Rest mass of an electron, kg
4 m = 9.11e - 031;
                      // Planck's constant, Js
5 h = 6.62e - 0.034;
  c = 3e + 008;
                  // Speed of light in vacuum, m/s
6
7 V = [20 100];
                     // Operating voltages of X ray, kV
  for i = 1:1:2
8
9
       v = sqrt(2*e*V(i)*1e+003/m);
                                        // Maximum
          striking speed of the electron, m/s
       lambda_min = c*h/(e*V(i)*1e+003*1e-010);
10
          Minimum wavelength of emitted continuous X
          rays, angstrom
       printf("\nFor V = \% d kV:", V(i));
11
       printf("\nThe maximum striking speed of the
12
          electron = \%5.2 e m/s", v);
13
       printf("\nThe minimum wavelength of emitted
          continuous X rays = \%5.3 f angstrom \n",
          lambda_min);
14 end
```

96

15 16 // Result 17 // For V = 20 kV: 18 // The maximum striking speed of the electron = 8.38 e+007 m/s 19 // The minimum wavelength of emitted continuous X rays = 0.621 angstrom 20 // 21 // For V = 100 kV: 22 // The maximum striking speed of the electron = 1.87 e+008 m/s 23 // The minimum wavelength of emitted continuous X rays = 0.124 angstrom 24 // There are small variation in the answers as approximations are used in the text

Scilab code Exa 7.13 Interatomic spacing using Bragg relation

```
1 // Scilab Code Ex7.13: Page-381 (2008)
2 clc; clear;
3 n = 1;
           // Order of diffraction
4 lambda = 1.75e-010; // Wavelength of X rays, m
5 h = 1, k = 1, l = 1; // Miller indices for the
     set of planes
                // Bragg's angle, degree
6 \text{ theta} = 30;
7 // As from Bragg's law, 2*d*sind(theta) = n*lambda
     and d = a/sqrt(h^2+k^2+l^2). solving for a we
     have
8 a = sqrt(h^2+k^2+l^2)*n*lambda/(2*sind(theta)*1e
     -010);
              // Interatomic spacing of the crystal,
     angstrom
9 printf("\nThe interatomic spacing of the crystal =
     \%5.3 f angstrom", a);
10
11 // Result
```

12 // The interatomic spacing of the crystal = 3.031 angstrom

Scilab code Exa 7.14 Value of Planck constant from Bragg relation

```
1 // Scilab Code Ex7.14: Page-382 (2008)
2 clc; clear;
3 e = 1.6e - 019;
                   // The energy equivalent of 1 eV, J
4 c = 3e+008; // Speed of light in vacuum, m/s
5 n = 1; // Order of diffraction
6 d = 2.82e-010; // Interplanar spacing, m
7 V = 9.1e+003; // Operating voltage of X rays
8 theta = 14; // Bragg's angle, degree
9 lambda = 2*d*sind(theta)/n; // Wavelength of X
     rays, m
10 nu = c/lambda; // Frequency of X rays, Hz
11 h = e*V/nu; // Planck's constant, Js
12 printf("\nThe value of Planck constant, h = \%4.2 e Js
     ", h);
13
14 // Result
15 // The value of Planck constant, h = 6.62 e - 0.034 Js
```

Scilab code Exa 7.15 Diffraction of X rays from a crystal

```
1 // Scilab Code Ex7.15: Page-382 (2008)
2 clc; clear;
3 e = 1.6e-019; // The energy equivalent of 1 eV, J
4 c = 3e+008; // Speed of light in vacuum, m/s
5 lambda = 0.5e-010; // Wavelength of X rays, m
6 theta = 5; // Bragg's angle, degree
7 n = 1; // Order of diffraction
```

```
8 d = n*lambda/(2*sind(theta)*1e-010);
                                           Interplanar spacing, angstrom
         // Ordr of diffraction
9 n = 2;
10 theta1 = asind(n*lambda/(2*d*1e-010)); // Angle
     at which the second maximum occur, degree
11 printf("\nThe spacing between adjacent planes of the
      crystal = \%4.2 f angstrom", d);
12 printf("\nThe angle at which the second maximum
     occur = \%5.2 f degree", theta1);
13
14 // Result
15 // The spacing between adjacent planes of the
     crystal = 2.87 angstrom
16 // The angle at which the second maximum occur =
     10.04 degree
```

Scilab code Exa 7.16 Wavelength of X rays from grating space of the rock salt

```
1 // Scilab Code Ex7.16: Page-383 (2008)
2 clc; clear;
3 M = 58.5
              // Gram atomic mass of NaCl, kg/mole
4 \text{ N} = 6.023 \text{e}+026; // Avogadro's number per kmol
5 rho = 2.17e+003; // Density of NaCl, kg/metre-
     cube
6 m = M/N;
            // Mass of each NaCl molecule, g
7 V = m/rho; // Volume of each NaCl molecule, metre
     -cube
8 d = (V/2)^{(1/3)}/1e^{-010}; // Atomic apacing in the
     NaCl crystal, angstrom
9 theta = 26; // Bragg's angle, degree
10 n = 2; // Order of diffraction
11 lambda = 2*d*sind(theta)/n; // Wavelength of X
     rays, m
12 printf("\nThe grating spacing of rock salt = \%4.2 f
     angstrom", d);
```

```
13 printf("\nThe wavelength of X rays = %4.2f angstrom"
, lambda);
14
15 // Result
16 // The grating spacing of rock salt = 2.82 angstrom
17 // The wavelength of X rays = 1.24 angstrom
```

```
Scilab code Exa 7.17 Diffraction of X rays by the calcite crystal
```

```
1 // Scilab Code Ex7.17: Page-383 (2008)
2 clc; clear;
3 d = 3.02945e-010; // Atomic apacing in the
     calcite crystal, m
4 lambda_alpha = 0.563e-010; // Wavelength of the K
     -alpha line of Ag, m
5 n = 1; // Order of diffraction
6 theta = asind(n*lambda_alpha/(2*d)); // Angle of
     reflection for the first order, degree
7 theta_max = 90; // Angle of reflection for the
     highest order, degree
8 n = 2*d*sind(theta_max)/lambda_alpha;
                                          // The
     highest order for which the line may be observed
9 printf("\nThe angle of reflection for the first
     order = \%4.2 f degree", theta);
10 printf("\nThe highest order for which the line may
     be observed = \%d", n);
11
12 // Result
13 // The angle of reflection for the first order =
     5.33 degree
14 // The highest order for which the line may be
     observed = 10
```

Scilab code Exa 7.18 Interatomic spacing for given crystal planes

```
1 // Scilab Code Ex7.18: Page-384 (2008)
2 clc; clear;
3 lambda = 1.8e-010; // Wavelength of the X rays, m
4 n = 1; // Order of diffraction
5 theta = 60; // Angle of diffraction for the first
      order, degree
6 d = n*lambda/(2*sind(theta)); // Interplanar
     spacing, m
7 // Since for a simple cubic lattice, d_111 = d = a/d_1
     sqrt(3), solving for a
8 a = sqrt(3)*d; // The interatomic spacing for the
      given crystal planes, m
9 printf("\nThe interatomic spacing for the given
     crystal planes, a = \%3.1 f angstrom", a/1e-010;
10
11 // Result
12 // The interatomic spacing for the given crystal
     planes, a = 1.8 angstrom
```

Scilab code Exa 7.19 Smallest angle between the crystal plane and the X ray beam

```
12 n = 1; // Order of diffraction
13 d = 3.02945e-010; // Interplanar spacing, m
14 theta = asind(n*lambda_min/(2*d)); // The
smallest angle between the crystal plane and the
X ray beam, degree
15 [deg , m] = deg2degmin(theta);
16 printf("\nThe smallest angle between the crystal
plane and the X ray beam = %d degree %d min", deg
, m);
17
18 // Result
19 // The smallest angle between the crystal plane and
the X ray beam = 2 degree 21 min
```

Chapter 8

Laser and Fibre Optics

Scilab code Exa 8.1 Image produced by laser beam

```
1 // Scilab Code Ex8.1: Page-397 (2008)
2 clc; clear;
3 lambda = 6000e-008; // Wavelength of the lase
     beam, cm
4 P = 10e-003; // Power of the laser beam, W
5 theta = 1.5e-004; // Angular spread of laser beam,
      rad
           // Focal length of the lens, cm
6 f = 10;
7 r = f*theta; // Radius of the image, cm
8 rho = P/(%pi*r^2*1e+003); // Power density of the
     image, kW/Sq.cm
9 L_w = lambda/(theta/10); // Coherence width, mm
10 printf("\nThe radius of the image = \%3.1e cm", r);
11 printf("\nThe power density of the image = \%3.1 f kW/
     Sq.cm", rho);
12 printf("\nThe coherence width = \%d mm", L_w);
13
14 // Result
15 // The radius of the image = 1.5 e - 03 cm
16 // The power density of the image = 1.4 \text{ kW/Sq.cm}
17 // The coherence width = 4 mm
```

Scilab code Exa 8.2 Pumping energy required for He Ne laser transition

```
1 // Scilab Code Ex8.2: Page-398 (2008)
2 clc; clear;
3 \text{ lambda} = 632.8e-009;
                             // Wavelength of the lase
     beam, cm
                      // Energy of 2P level, J
4 E_{2P} = 15.2e - 019;
                      // Planck's constant, Js
5 h = 6.626e - 034;
                 // Speed of light, m/s
6 c = 3e + 008;
7 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
8 E_Pump = E_2P + h*c/lambda; // The required pumping
     energy, J
9 printf("\nThe pumping energy required for He Ne
     laser transition = \%5.2 \text{ f eV}", E_Pump/e);
10
11 // Result
12 // The pumping energy required for He Ne laser
      transition = 11.46 eV
```

Scilab code Exa 8.3 Wavelength of radiation emitted at room temperature

```
1 // Scilab Code Ex8.3: Page-398 (2008)
2 clc; clear;
3 h = 6.626e-034; // Planck's constant, Js
4 c = 3e+008; // Speed of light, m/s
5 T = 27+273; // Room temperature, K
6 k = 1.38e-023; // Boltzmann constant, J/mol/K
7 lambda = h*c/(k*T); // Wavelength of radiation
mitted at room temperature, m
8 printf("\nThe wavelength of radiation mitted at room
temperature = %3.1e m", lambda);
```

```
9
10 // Result
11 // The wavelength of radiation mitted at room
    temperature = 4.8e-05 m
```

Scilab code Exa 8.4 Refractive index of the cladding in an optical fibre

```
1 // Scilab Code Ex8.4: Page-398 (2008)
2 clc; clear;
3 NA = 0.5; // Numerical aperture of the optical
fibre
4 n1 = 1.54; // Refractive index of the core material
5 n2 = sqrt(n1^2-NA^2); // Refractive index of the
cladding in an optical fibre
6 printf("\nThe refractive index of the cladding in
the optical fibre = %4.2f", n2);
7
8 // Result
9 // The refractive index of the cladding in the
optical fibre = 1.46
```

Scilab code Exa 8.5 Numerical aperture and acceptance angle of the optical fibre

```
1 // Scilab Code Ex8.5: Page-398 (2008)
2 clc; clear;
3 n1 = 1.51; // Refractive index of the core material
4 n2 = 1.47; // Refractive index of the cladding
5 NA = sqrt(n1^2-n2^2); // Numerical aperture of the
optical fibre
6 n0 = 1; // Refractive index of air
7 theta_a = asin(NA/n0); // Acceptance angle of the
optical fibre, rad
```

8 printf("\nThe numerical aperture of the optical fibre = %6.4 f", NA);

- 9 printf("\nThe acceptance angle of the optical fibre = %4.2 f degrees", theta_a*180/3.14);
- 10

```
11 // Result
```

- 12 // The numerical aperture of the optical fibre = 0.3453
- 13 // The acceptance angle of the optical fibre = 20.21 degrees

Chapter 9

Nuclear Physics

Scilab code Exa 9.1.1 Binding energy per nucleon for Ni

1 // Scilab Code Ex9.1.1: Page-411 (2008) 2 clc; clear; 3 u = 931.508;// Energy equivalent of 1 amu, MeV 4 Z = 28; // Atomic number of ni-645 A = 64; // Mass number of Ni-64 6 m_p = 1.007825; // Mass of a proton, u 7 m_n = 1.008665; // Mass of a neutron, u 8 M_Ni = 63.9280; // Atomic mass of Ni-64 nucleus, u 9 delta_m = Z*m_p + (A-Z)*m_n - M_Ni; // Mass difference, u // Binding energy of Ni-64 10 BE = delta_m*u; nucleus, MeV // Binding energy per nucleon of 11 BE_bar = BE/A; Ni-64 nucleus, MeV 12 printf("\nThe binding energy per nucleon for Ni-64nucleus = %4.2 f MeV/nucleon", BE_bar); 1314 // Result 15 // The binding energy per nucleon for Ni-64 nucleus = 8.78 MeV/nucleon
Scilab code Exa 9.1.2 Binding energy per nucleon for deutron

```
1 // Scilab Code Ex9.1.2: Page-411 (2008)
2 clc; clear;
3 e = 1.6e - 013;
                 // Energy equivalent of 1 MeV, J
4 m_p = 1.672e-027; // Mass of a proton, kg
5 m_n = 1.675e-027; // Mass of a neutron, kg
6 M_D = 3.343e-027; // Mass of a deutron, kg
7 c = 3.00e+008; // Speed of light in vacuum, m/s
8 delta_m = m_p + m_n - M_D; // Mass defect, kg
9 E_B = delta_m*c^2/e; // Binding energy for the
     deutron, MeV
10 BE_bar = E_B/2;
                    // Binding energy per nucleon for
       the deutron, MeV
11 printf("\nThe binding energy per nucleon for the
      deutron = \%5.3 f MeV/nucleon", BE_bar);
12
13 // Result
14 // The binding energy per nucleon for the deutron =
      1.125 MeV/nucleon
```

Scilab code Exa 9.1.3 Packing fraction and binding energy per nucleon for oxygen

```
1 // Scilab Code Ex9.1.3:Page-411 (2008)
2 clc; clear;
3 u = 931.508; // Energy equivalent of 1 amu, MeV
4 Z = 8; // Atomic number of O-16
5 A = 16; // Mass number of O-16
6 m_p = 1.008142; // Mass of a proton, u
7 m_n = 1.008982; // Mass of a neutron, u
8 M_O = 15.994915; // Atomic mass of O-16 nucleus,
u
```

```
9 delta_m = Z*m_p + (A-Z)*m_n - M_O; // Mass
     difference, u
10 BE = delta_m*u; // Binding energy of O-16 nucleus
    , MeV
11 BE_bar = BE/A; // Binding energy per nucleon of O
     -16 nucleus, MeV
12 delta_m = abs(M_O - A); // Mass difference, u
13 PF = delta_m/A; // Packing fraction for O-16
     nucleus, u
14 printf("\nThe binding energy per nucleon for O-16
     nucleus = \%4.2 \text{ f MeV/nucleon}, BE_bar);
15 printf("\nThe packing fraction for O-16 nucleus = \%5
     .3 e u", PF);
16
17 // Result
18 // The binding energy per nucleon for O-16 nucleus =
      8.27 MeV/nucleon
19 // The packing fraction for O-16 nucleus = 3.178e
```

Scilab code Exa 9.1.4 Atomic mass of neon

-004 u

```
1 // Scilab Code Ex9.1.4: Page-411 (2008)
2 clc; clear;
3 u = 931.508; // Energy equivalent of 1 amu, MeV
4 Z = 10; // Atomic number of Ne-20
5 A = 20; // Mass number of Ne-0
6 m_p = 1.007825; // Mass of a proton, u
7 m_n = 1.008665; // Mass of a neutron, u
8 BE = 160.64; // Binding energy of Ne-20 nucleus,
MeV
9 M = Z*m_p + (A-Z)*m_n + Z*0.51/u - BE/u; //
Atomic mass of Ne-20 nucleus, u
10 printf("\nThe atomic mass of Ne = %7.4 f a.m.u", M);
11
```

```
12 // Result
13 // The atomic mass of Ne = 19.9979 a.m.u
```

Scilab code Exa 9.2.1 Average number of photons pe cubic metre in a monochromatic

```
1 // Scilab Code Ex9.2.1: Page-414 (2008)
2 clc; clear;
3 h = 6.63e-034; // Planck's constant, Js
4 c = 3.00e+008; // Speed of light in vacuum, m/s
5 I = 1e+004; // Intensity of monochromatic beam, W
     /Sq.m
6 nu = 1e+004; // Frequency of monochromatic beam,
     Hz
7 n = I/(h*nu*c); // Average number of photons per
     cubic metre, photons/metre-cube
8 printf("\nThe average number of photons in the
     monochromatic beam of radiation = %4.2e photons/
     metre-cube", n);
9
10 // Result
11 // The average number of photons in the
     monochromatic beam of radiation = 5.03 e + 024
     photons/metre-cube
```

Scilab code Exa 9.2.2 Average number of photons pe cubic metre in a monochromatic

```
6 nu = 1e+004; // Frequency of monochromatic beam,
Hz
7 n = I/(h*nu*c); // Average number of photons per
cubic metre, photons/metre-cube
8 printf("\nThe average number of photons in the
monochromatic beam of radiation = %4.2e photons/
metre-cube", n);
9
10 // Result
11 // The average number of photons in the
monochromatic beam of radiation = 5.03e+024
photons/metre-cube
```

Scilab code Exa 9.2.3 Photoelectric effect with silver

```
1 // Scilab Code Ex9.2.3: Page-414 (2008)
2 clc; clear;
3 h = 6.63e-034; // Planck's constant, Js
                   // Speed of light in vacuum, m/s
4 c = 3.00e + 008;
5 e = 1.6e-019; // Energy equivalent of 1 eV, J
6 m_e = 9.1e - 031;
                     // Rest mass of an electron, kg
 lambda0 = 2762e-010; // Thereshold wavelength of
7
     silver, m
  lambda = 2000e-010; // Wavelength of ultraviolet
8
     rays, m
9 E_max = h*c*(1/lambda - 1/lambda0); // Maximum
     kinetic energy of the ejected electrons from
     Einstein's photoelectric equation, J
10 // As E_{max} = 1/2 * m_e * v^2, solving for v
11 v_max = sqrt(2*E_max/m_e); // Maximum velocity of
      the photoelectrons, m/s
12 VO = E_max/e; // Stopping potential for the
     electrons, V
13 printf("\nThe maximum kinetic energy of the ejected
     electrons = \%5.3 \text{ e} J", E_max);
```

20 // The stopping potential for the electrons = 1.715 V

Scilab code Exa 9.2.4 Work function of the metallic surface

```
1 // Scilab Code Ex9.2.4: Page-415 (2008)
2 clc; clear;
3 \text{ lambda1} = 3333e-010;
                           // First wavelength of the
     incident light, m
4 \ \text{lambda2} = 2400e-010;
                        // Second wavelength of the
     incident light, m
5 c = 3e+008; // Speed of light in free space, m/s
6 = 1.6e-019; // Energy equivalent of 1 eV, J
               // Kinetic energy of the emitted
7 E1 = 0.6;
     photoelectrons for the first wavelength, eV
8 E2 = 2.04;
                  // Kinetic energy of the emitted
     photoelectrons for the second wavelength, eV
9 h = (E2 - E1)*lambda1*lambda2*e/(c*(lambda1 -
     lambda2)); // Planck's constant, Js
10 WO = (E2*lambda2 - E1*lambda1)/(lambda1 - lambda2);
        // Work function of the metal, eV
11 printf("\nThe value of Planck constant = \%3.1e Js",
     h);
12 printf("\nThe work function of the metal = \%3.1 f eV"
     , WO);
```

```
13

14 // Result

15 // The value of Planck constant = 6.6e-0.34 Js

16 // The work function of the metal = 3.1 \text{ eV}
```

Scilab code Exa 9.2.5 Wavelength of the scattered photon

```
1 // Scilab Code Ex9.2.5: Page-415 (2008)
2 clc; clear;
3 c = 3e + 008;
              // Speed of light in free space, m/s
4 h = 6.63e-034; // Planck's constant, Js
5 m_e = 9.11e-031; // Rest mass of an electron, kg
6 lambda = 0.3; // Wavelength of incident X-ray
     photon, angstrom
7 phi = 45; // The angle of scattering, degrees
8 lambda_prime = lambda + h/(m_e*c*1e-010)*(1-cosd(phi
           // The wavelength of the scattered photon,
     ));
      angstrom
9 printf("\nThe wavelength of the scattered photon =
     %6.4f angstrom", lambda_prime);
10
11 // Result
12 // The wavelength of the scattered photon = 0.3071
     angstrom
```

Scilab code Exa 9.2.6 de Broglie wavelength of the valence electron in metallic so

```
1 // Scilab Code Ex9.2.6: Page-416 (2008)
2 clc; clear;
3 h = 6.63e-034; // Planck's constant, Js
4 m_e = 9.11e-031; // Rest mass of an electron, kg
5 e = 1.6e-019; // Energy equivalent of 1 eV, J
```

```
6 K = 3*e; // Kinetic energy of the electron in
metllic sodium, J
7 lambda = h/sqrt(2*m_e*K)/le-010; // de Broglie
wavelength of the valence electron, angstrom
8 printf("\nThe de-Broglie wavelength of the valence
electron = %3.1f angstrom", lambda);
9
10 // Result
11 // The de-Broglie wavelength of the valence electron
= 7.1 angstrom
```

Scilab code Exa 9.2.7 de Broglie wavelength of a moving electron

```
1 // Scilab Code Ex9.2.7: Page-416 (2008)
2 clc; clear;
3 h = 6.63e-034; // Planck's constant, Js
                    // Rest mass of an electron, kg
4 m = 9.11e - 031;
                // Speed of light in vacuum, m/s
5 c = 3e + 008;
                  // Boost parameter
6 bita = 3/5;
7 v = 3/5 * c;
              // Spped of the electron, m/s
8 lambda = h/(m*v)*sqrt(1-bita^2);
                                       // de Broglie
      wavelength of the electron, m
9 printf("\nThe de-Broglie wavelength of the moving
      electron = \%6.4 \, \text{f} angstrom", lambda/le-010);
10
11 // Result
12 // The de-Broglie wavelength of the moving electron
     = 0.0323 angstrom
```

Scilab code Exa 9.2.8 Uncertainty in energy and frequency of emitted light

```
1 // Scilab Code Ex9.2.8: Page-416 (2008)
2 clc; clear;
```

```
3 h = 6.63e-034; // Planck's constant, Js
4 h_bar = h/(2*%pi); // Reduced Planck's constant,
5 delta_t = 1e-008; // Time during which the
      radiation is emitted, s
6 delta_E = h_bar/delta_t; // Minimum uncertainty
     in energy of emitted light, J
7 // As delta_E = h*delta_nu from Planck's quantum
     theory, solving for delta_nu
8 delta_nu = delta_E/h; // Minimum uncertainty in
     frequency of emitted light, Hz
9 printf("\nThe minimum uncertainty in energy of
     emitted light = \%5.3 \text{ e} J", delta_E);
10 printf("\nThe minimum uncertainty in frequency of
     emitted light = \%4.2 \,\mathrm{e} Hz", delta_nu);
11
12 // Result
13 // The minimum uncertainty in energy of emitted ligh
      = 1.055 e - 026 J
14 // The minimum uncertainty in frequency of emitted
     ligh = 1.59 e + 007 Hz
```

Scilab code Exa 9.2.9 Shortest wavelength present in the radiation from an X ray may

```
1 // Scilab Code Ex9.2.9: Page-417 (2008)
2 clc; clear;
3 h = 6.63e-034; // Planck's constant, Js
4 c = 3e+008; // Speed of light in free space, m/s
5 e = 1.6e-019; // Energy equivalent of 1 eV, J
6 V = 50000; // Accelerating potential, V
7 lambda_min = h*c/(e*V); // The shortest
    wavelength present in the radiation from an X-ray
    machine, m
8 printf("\nThe shortest wavelength present in the
    radiation from an X-ray machine = %6.4 f nm",
```

```
lambda_min/1e-009);
9
10 // Result
11 // The shortest wavelength present in the radiation
from an X-ray machine = 0.0249 nm
```

Scilab code Exa 9.2.11 Q value of nuclear reaction

```
1 // Scilab Code Ex9.2.11: Page-418(2008)
2 clc; clear;
3 u = 931.5; // Energy equivalent of 1 amu, MeV
4 m_x = 4.002603;
                     // Mass of projectile (alpha-
     particle), u
                     // Mass of emitted particle (
5 m_y = 1.007825;
     proton), u
6 M_X = 14.0031; // Mass of target nucleus (N-14),
     \mathbf{u}
7 M_Y = 16.9994; // Mass of daughter nucleus (O-16)
    , u
8 Q = ((m_x + M_X) - (m_y + M_Y))*u; // Q-value of
     the reaction, MeV
9 printf("\nThe Q-value of the nuclear reaction = \%5.3
     f MeV", Q);
10
11 // Result
12 // The Q-value of the nuclear reaction = -1.418 MeV
```

```
Scilab code Exa 9.2.12 Threshold energy for the reactions
```

```
1 // Scilab Code Ex9.2.12: Page-418(2008)
2 clc; clear;
3 u = 931.5; // Energy equivalent of 1 amu, MeV
4 // First reaction
```

 $5 m_x = 1.007825;$ // Mass of projectile (proton), u // Mass of emitted particle ($6 m_y = 2.014102;$ deutron), u $7 M_X = 208.980394;$ // Mass of target nucleus (Bi -209), u $8 M_Y = 207.979731;$ // Mass of daughter nucleus (Bi -208), u 9 $Q = ((m_x + M_X) - (m_y + M_Y))*u;$ // Q-value of the reaction, MeV 10 Ex_threshold = $-Q*(m_x + M_X)/M_X;$ // The smallest value of the projectile energy, MeV 11 printf("\nThe threshold energy of the reaction Bi $(209,83) + p \longrightarrow Bi(208,83) + d = \%4.2 f MeV$, Ex_threshold); 12 // Second reaction $13 m_x = 4.002603;$ // Mass of projectile (alphaparticle), u // Mass of emitted particle ($14 \text{ m_y} = 1.007825;$ proton), u $15 M_X = 27.98210;$ // Mass of target nucleus (Al -27), u $16 M_Y = 30.973765;$ // Mass of daughter nucleus (P -31), u 17 $Q = ((m_x + M_X) - (m_y + M_Y))*u;$ // Q-value of the reaction, MeV 18 Ex_threshold = $-Q*(m_x + M_X)/M_X;$ // The smallest value of the projectile energy, MeV 19 printf("\nThe threshold energy of the reaction Al $(27,13) + \text{He} \longrightarrow P(31,15) + p = \%4.2 \text{ f MeV}$, Ex_threshold); 2021 // Result 22 // The threshold energy of the reaction Bi(209,83) $+ p \longrightarrow Bi(208,83) + d = 5.25 MeV$ 23 // The threshold energy of the reaction Al(27,13) +He --> P(31, 15) + p = -3.31 MeV

117

Scilab code Exa 9.2.13 Finding unknown particles in the nuclear reactions

```
1 // Scilab Code Ex9.2.13: Page - 418(2008)
2 clc; clear;
3 \text{ function } p = Find(Z, A)
       if Z == 2 \& A == 4 then
4
5
            p = 'alpha';
6
       end
7
       if Z == -1 \& A == 0 then
8
           p = 'beta - ';
9
       end
       if
           Z == 1 \& A == 0  then
10
11
            p = 'beta+';
12
       end
13 endfunction
14 R1 = cell(4,3);
15 R2 = cell(4,3);
16 // Enter data for first cell (Reaction)
17 R1(1,1).entries = 'Li'; // Element
18 R1(1,2).entries = 3; // Atomic number
                            // Mass number
19 R1(1,3).entries = 6;
20 R1(2,1).entries = 'd';
21 R1(2,2).entries = 1;
22 R1(2,3).entries = 2;
23 R1(3,1).entries = 'X';
24 \text{ R1(3,2).entries} = 0;
25 \text{ R1}(3,3) \text{.entries} = 0;
26 R1(4,1). entries = 'He';
27 R1(4,2) . entries = 2;
28 R1(4,3).entries = 4;
29 // Enter data for second cell (Reaction)
30 R2(1,1).entries = "Te";
31 R2(1,2).entries = 52;
32 R2(1,3).entries = 122;
```

```
33 R2(2,1).entries = 'X';
34 R2(2,2).entries = 0;
35 R2(2,3).entries = 0;
36 R2(3,1).entries = 'I';
37 R2(3,2).entries = 53;
38 R2(3,3).entries = 124;
39 R2(4,1).entries = 'd';
40 R2(4,2).entries = 1;
41 R2(4,3).entries = 2;
42 R1(3,2).entries = R1(1,2).entries+R1(2,2).entries-R1
      (4,2).entries
43 R1(3,3).entries = R1(1,3).entries+R1(2,3).entries-R1
      (4,3).entries
44 particle = Find(R1(3,2).entries, R1(3,3).entries);
         // Find the unknown particle
45 printf("\nFor the reaction\n")
               printf("\t\%s(\%d) + \%s(\%d) --> \%s + \%s(\%d)
46
                  )\n X must be an %s particle", R1
                  (1,1).entries, R1(1,3).entries, R1
                  (2,1).entries, R1(2,3).entries, R1
                  (3,1).entries, R1(4,1).entries, R1
                  (4,3).entries, particle);
47 R2(2,2).entries = R2(3,2).entries+R2(4,2).entries-R2
      (1,2).entries
48 R2(2,3).entries = R2(3,3).entries+R2(4,3).entries-R2
     (1,3).entries
49
  particle = Find(R2(2,2).entries, R2(2,3).entries);
         // Find the unknown particle
50 printf("\n\n")
               printf("\t\%s(\%d) + %s --> %s(\%d)+%s(\%d)\
51
                  n X must be an %s particle", R2(1,1).
                  entries, R2(1,3).entries, R2(2,1).
                  entries, R2(3,1).entries, R2(3,3).
                  entries, R2(4,1).entries, R2(4,3).
                  entries, particle);
52
53 // Result
54 // For the reaction
```

55 // $\text{Li}(6) + d(2) \longrightarrow X + \text{He}(4)$ 56 // X must be an alpha particle 57 58 // For the reaction 59 // $\text{Te}(122) + X \longrightarrow I(124) + d(2)$ 60 // X must be an alpha particle

Scilab code Exa 9.2.14 Comptom scattering

```
1 // Scilab Code Ex9.2.14: Page - 419(2008)
2 clc; clear;
3 h = 6.63e - 034;
                     // Planck's constant, Js
4 c = 3e+008; // Speed of light, m/s
5 lambda = 10e-012; // Wavelength of incident X-
     rays, m
6
  lambda_c = 2.426e-012; // Compton wavelength for
     the electron, m
             // Angle of scattering of X-rays,
7 \text{ phi} = 45;
     degree
8 lambda_prime = lambda + lambda_c*(1 - cosd(phi));
        // Wavelength of scattered X-rays, m
9 // For maximum wavelength
              // Angle for maximum scattering,
10 phi = 180;
     degree
11
  lambda_prime_max = lambda + lambda_c*(1 - cosd(phi))
      ; // Maximum wavelength present in the
     scattered X-rays, m
12 KE_max = h*c*(1/lambda-1/lambda_prime_max);
                                                   Maximum kinetic energy of the recoil electrons, J
13 printf("\nThe wavelength of scattered X-rays = \%5.2 \,\mathrm{e}
      m", lambda_prime);
14 printf("\nThe maximum wavelength present in the
     scattered X-rays = \%6.3 f pm", lambda_prime_max/1e
     -012);
15 printf("\nThe maximum kinetic energy of the recoil
```

electrons = %5.3e J", KE_max);
16
17 // Result
18 // The wavelength of scattered X-rays = 1.07e-011 m
19 // The maximum wavelength present in the scattered X
-rays = 14.852 pm
20 // The maximum kinetic energy of the recoil
electrons = 6.498e-015 J

Scilab code Exa 9.2.16 Miller indices for the lattice planes

```
1 // Scilab Code Ex9.2.16: Page-420(2008)
2 clc; clear;
3 m = 3; n = 3; p = 2; // Coefficients of intercepts
     along three axes
                       // Reciprocate the first
4 \text{ m_inv} = 1/\text{m};
     coefficient
5 n_{inv} = 1/n;
                        // Reciprocate the second
      coefficient
6 \, p_{inv} = 1/p;
                       // Reciprocate the third
      coefficient
7 mul_fact = double(lcm(int32([m,n,p]))); // Find l.c.
     m. of m, n and p
8 m1 = m_inv*mul_fact; // Clear the first fraction
                           // Clear the second fraction
9 m2 = n_inv*mul_fact;
10 m3 = p_inv*mul_fact; // Clear the third fraction
11 printf("\nThe miller indices for planes with set of
     intercepts (%da, %db, %dc) are (%d %d %d) ", m, n
     , p, m1, m2, m3);
12 m = 1; n = 2; p = \%inf; // Coefficients of
     intercepts along three axes
13 m_inv = 1/m;
                       // Reciprocate the first
      coefficient
14 n_inv = 1/n;
                        // Reciprocate the second
     coefficient
```

```
15 p_inv = 1/p; // Reciprocate the third
     coefficient
16 mul_fact = double(lcm(int32([m,n]))); // Find l.c.m.
     of m, n and p
17 m1 = m_inv*mul_fact; // Clear the first fraction
18 m2 = n_inv*mul_fact; // Clear the second fraction
19 m3 = p_inv*mul_fact; // Clear the third fraction
20 printf("\nThe miller indices for planes with set of
     intercepts (%da, %db, %dc) are (%d %d %d) ", m, n
     , p, m1, m2, m3);
21
22 // Result
23 // The miller indices for planes with set of
     intercepts (3a, 3b, 2c) are (2 \ 2 \ 3)
24 // The miller indices for planes with set of
     intercepts (1a, 2b, Infc) are (2 \ 1 \ 0)
```

Scilab code Exa 9.2.19 Glancing angles for the second and third order reflections

```
1 // Scilab Code Ex9.2.19: Page - 421(2008)
2 clc; clear;
3 d = 1; // For simplicity assume interplanar
     spacing to be unity, m
4 theta = 15; // Glancing angle for first order,
     degree
5 n = 1;
          // Order of reflection
6 // From Bragg's law, 2*d*sind(theta) = n*lambda,
     solving for lambda
7 lambda = 2*d*sind(theta)/n; // Wavelength of
     incident X-ray, angstrom
8 // For second order reflection
9 n = 2
10 theta = asind(n*lambda/(2*d)); // Glancing angle
     for second order reflection, degree
11 printf("\nThe glancing angle for the second order
```

```
reflection = %4.1f degree", theta);
12 // For third order reflection
13 n = 3;
14 theta = asind(n*lambda/(2*d)); // Glancing angle
for third order reflection, degree
15 printf("\nThe glancing angle for the third order
reflection = %4.1f degree", theta);
16
17 // Result
18 // The glancing angle for the second order
reflection = 31.2 degree
19 // The glancing angle for the third order reflection
= 50.9 degree
```