Scilab Textbook Companion for Advance Semiconductor Devices by S. Sharma¹

Created by Mohd Nasir B.Tech Electronics Engineering Raj Kumar Goel Institute Of Technology College Teacher Mr. Rahul Kumar Cross-Checked by Lavitha Pereira

July 31, 2019

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Advance Semiconductor Devices Author: S. Sharma Publisher: S. K. Kataria & Sons, New Delhi Edition: 1 Year: 2012 ISBN: 978-93-5014-215-8 Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Semiconductor Materials and Their Properties	5
2	Carrier Transport in Semiconductor	16
3	Excess Carriers In Semiconductors	32
4	Junctions and Interfaces	46
6	Microwave Diodes	60
7	Optoelectonic Devices	62
8	Metal Semiconductor Field Effect Transistor	65
9	MOS Transistors	76

List of Scilab Codes

Volume density of Si
Density of copper crystal 6
Wavelength of X ray
Spacing of automatic layer in the crystal 7
Interplaner spacing
Interplaner spacing
Glacing angle
Wavelength of X ray
Glacing angle
Wavelength of X ray 10
Lattice constant
Distance between d211 planes
Density of copper
Number of atom per unit cell
Radius of element atom 13
Packing factor
Number of unit cell
Distance between K and F
Energy gap 16
Wavelength 16
Position of Fermi level
Probability 17
Thermal equilibrium hole concentration 18
Mobility of electrons in copper
Density of free electrons
Drift velocity
Mobility of charge carriers
Conductivity of pure Si

$Exa \ 2.11$	Number of donor atoms	21
Exa 2.12	Conductivity of speciman	22
Exa 2.13	Mobility of electrons in Ge	22
Exa 2.14	Density and mobility of holes	23
Exa 2.15	Current produced	23
Exa 2.16	Resistivity of doped Ge	24
Exa 2.17	Current produced	24
Exa 2.18	Conductivity of pure Si	25
Exa 2.19	Hall voltage produced	26
Exa 2.20	Hall coefficient and mobility of electrons	26
Exa 2.21	Ratio of electron to hole concentration	27
Exa 2.22	Hall angle	27
Exa 2.23	Current density in speciman	28
Exa 2.24	Relaxation time	28
Exa 2.25	Temperature	29
Exa 2.26	Thermal equilibrium hole concentration	29
Exa 2.27	Required doping concentration	30
Exa 2.28	Quasi Fermi energy levels	31
Exa 3.1	Hole concentration at equilibrium	32
Exa 3.3	Position of Fermi level	32
Exa 3.4	Diffusion coefficients of electrons	33
$Exa \ 3.5$	Diffusion length	33
Exa 3.6	Concentration of holes and electrons	34
Exa 3.7	Electron transit time	35
Exa 3.8	Resistivity drops	35
Exa 3.9	Electron concentration	36
Exa 3.10	Ratio of donor atoms to Si atom	36
Exa 3.11	Equillibrium electron and hole densities	37
Exa 3.12	Carrier concentration	37
Exa 3.13	Generation rate due to irradiation	38
Exa 3.14	Mobility of minority charge carrier	38
Exa 3.15	Hole and electron diffusion current	38
Exa 3.16	Energy band gap of semiconductor material	
	used	40
Exa 3.17	Current density in Si	40
Exa 3.18	Resistance of the bar	41
Exa 3.19	Depletion width	41
Exa 3.20	Minority carrier density	42

Exa 3.21	Collector current density
Exa 3.22	Band gap
Exa 3.23	Total energy absorbed by sample 43
Exa 3.24	Hole current
Exa 4.2	Junction width
Exa 4.4	Diode voltage
Exa 4.5	Contact difference of potential
Exa 4.6	Height of the potential energy barrier 48
Exa 4.7	Voltage 49
Exa 4.8	Anticipated factor
Exa 4.9	Leakage resistance 51
Exa 4.10	Dynamic resistance
Exa 4.11	Barrier capacitance of a Ge pn junction 52
Exa 4.12	Width of the depletion layer
Exa 4.13	Current in the junction
Exa 4.14	Forward biasing voltage
Exa 4.15	Theoretical diode current
Exa 4.16	Diode dynamic resistance
Exa 4.17	DC load line and operating point 55
Exa 4.18	AC resistance of a Ge diode
Exa 4.19	Width of the depletion layer
Exa 4.20	Diameter
Exa 4.21	Temperature of junction
Exa 4.22	Reverse saturation current
Exa 6.1	Tuning range of circuit 60
Exa 7.1	Component value
Exa 7.2	Open circuit voltage
Exa 7.3	Photocurrent density
Exa 8.1	Drain current
Exa 8.2	Transconductance curve
Exa 8.3	Maximum and minimum transconductance . 67
Exa 8.4	Drain current
Exa 8.5	Drain current
Exa 8.7	Minimum value of VDS
Exa 8.8	Value of Vgs and gm
Exa 8.9	Gate source voltage
Exa 8.10	Value of transconductance
Exa 8.11	AC drain resistance

Exa 8.12	Pinch off voltage
Exa 8.13	Value of VGS
Exa 8.14	Drain current
Exa 8.15	Value of transconductance
Exa 8.16	Value of transconductance
Exa 9.1	Value of current
Exa 9.2	IDQ and VDSQ
Exa 9.3	Biasing circuit
Exa 9.4	IDQ VGSQ and VDS
Exa 9.5	IDSQ VGSQ and VDSQ
Exa 9.6	Value of ID and VDS
Exa 9.7	DC load line and operating point 81
Exa 9.8	Region of MOSFET 81
Exa 9.9	$IDQ and VDSQ \dots 82$
Exa 9.10	Value of Rs
Exa 9.11	ID and VDS
Exa 9.12	NMOS CS circuit
Exa 9.13	Value of IDQ and VDS
Exa 9.14	Region of MOSFET 86
Exa 9.15	VGS VDS and ID
Exa 9.16	All dc voltages
Exa 9.17	Value of ID and VDS
Exa 9.18	Various voltage and current 90
Exa 9.19	Q point values
Exa 9.20	IDQ VGSQ and VD
Exa 9.21	ID VD VS and VG
Exa 9.22	Value of RD
Exa 9.23	Coordinates of operating point
Exa 9.24	IDSQ VGSQ and VDSQ
Exa 9.25	ID VDS VGS and Av
Exa 9.26	VGS ID and VDS
Exa 9.27	Drain current and source to drain voltage . 97
Exa 9.28	IDQ VGSQ VD and VS
Exa 9.29	VDD RD and VGS
Exa 9.30	ID VDS VG VS
Exa 9.31	Voltage at all nodes and currents through all
	branches
Exa 9.32	Value of Av Ri and Ro

Exa 9.34	Current flow through M1 MOSFET	102
Exa 9.35	Value of R and VD	102
Exa 9.36	ID and VDS	103

Chapter 1

Semiconductor Materials and Their Properties

Scilab code Exa 1.3 Volume density of Si

```
1 // Exa 1.3
2 clc;
3 clear;
4 close;
5 // Given data
6 = 5.3; // in
7 a= a * 10<sup>-10</sup>;// in m
8 N_A = 6.023 * 10^23;
9 At_Si = 28; // atomic weight of Si
10 n = 4;
11 m = At_Si/N_A; // in gm
12 m= m*10^-3;// in kg
13 V = a^3; // in m^3
14 Rho = (m*n)/V; // in kg/m<sup>3</sup>
15 disp(Rho," Density of silicon crystal in kg/m<sup>3</sup> is");
16
17 // Note: There is calculation error to find the
      value of density. So the answer in the book is
      wrong.
```

Scilab code Exa 1.4 Density of copper crystal

```
1 // Exa 1.4
2 clc;
3 clear;
4 close;
5 // Given data
6 n = 4;
7 r = 1.278; // in
8 a = (4*r)/(sqrt(2));// in
9 a = a * 10^{-10}; // in m
10 V = (a)^3; // in m^3
11 At_W = 63.5; // atomic weight
12 N_A = 6.023 * 10^23;
13 m = At_W / N_A; // in gm
14 \text{ m} = \text{m} * 10^{-3}; // \text{ in kg}
15 Rho = (m*n)/V; // in kg/m<sup>3</sup>
16 disp(Rho," Density of the crystal in kg/m<sup>3</sup> is");
17
18
19 // Note: There is calculation error to find the
      value of density. So the answer in the book is
      wrong.
```

Scilab code Exa 1.5 Wavelength of X ray

```
1 // Exa 1.5
2 clc;
3 clear;
4 close;
5 // Given data
```

```
6 d = 2.82; // in
7 d = d * 10<sup>-10</sup>; // in m
8 n = 1;
9 theta1 = 10; // in degree
10 lembda = 2*d*sind(theta1); // in m
11 lembda = lembda * 10<sup>10</sup>; // in
12 disp(lembda,"Wavaelength of X ray in is");
```

Scilab code Exa 1.6 Spacing of automatic layer in the crystal

```
1 // Exa 1.6
2 clc;
3 clear;
4 close;
5 // Given data
6 lembda = 1.6; // in
7 theta = 14.2; // in degree
8 n = 1;
9 d = (n*lembda)/(2*sind(theta)); // in
10 disp(d, "The spacing of atomic layer in crystal in
is");
11
12 // Note: The unit of the answer in the book is wrong
.
```

Scilab code Exa 1.7 Interplaner spacing

```
1 // Exa 1.7
2 clc;
3 clear;
4 close;
5 // Given data
6 n = 1;
```

```
7 theta1 = 30; // in degree
8 lembda = 1.78; // in
9 d = (n*lembda)/(2*sind(theta1)); // in
10 disp(d,"The interplanner spacing in is");
```

Scilab code Exa 1.8 Interplaner spacing

```
1 // Exa 1.8
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ lembda} = 0.58; // in
7 n = 1;
8 theta1 = 6.45; // in degree
9 d = (n*lembda)/(2*sind(theta1));// in
10 disp(d,"Part (i) : At angle of 6.45 , Interplaner
      spacing of the crystal in
                                   is ");
11 theta2 = 9.15; // in degree
12 d1 = (n*lembda)/(2*sind(theta2));//in
13 disp(d1,"Part(ii) : At angle of 9.15 , Interplaner
      spacing of the crystal in
                                is ");
14 theta3 = 13; // in degree
15 n2 = 1;
16 \ d2 = (n2*lembda)/(2*sind(theta3)); // in
17 disp(d2,"Part(iii) : At angle of 13 , Interplaner
     spacing of the crystal in is ");
18 // For
19 n=2;
20 d2 = (n*lembda)/(2*sind(theta3));//in
21 disp(d2,"Part (iv) : The interplaner spacing in
     is : ")
22 disp(d1," The interplaner spacing for some other set
     of reflecting in
                          is : ")
```

Scilab code Exa 1.9 Glacing angle

```
1 // Exa 1.9
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 = 2.814; // in
7 \ 1 = 0;
8 h = 1;
9 k = 0;
10 //d= a/(sqrt(h^2+k^2+l^2)), So
11 d=a;// in
12 n = 2;
13 lembda = 0.710;// in
14 theta = asind(n*lembda/(2*d));
15 disp(theta,"The glancing angle for a cubic in degree
       is :");
```

Scilab code Exa 1.10 Wavelength of X ray

```
1 //Exa 1.10
2 clc;
3 clear;
4 close;
5 // Given data
6 a = 3.65; // in
7 a = 3.65*10^-10; // in m
8 h = 1;
9 k = 0;
10 l = 0;
11 d= a/(sqrt(h^2+k^2+l^2)); // in m
```

```
12 n = 1;
13 theta = 60; // in degree
14 lembda = 2*d*sind(theta); // in m
15 lembda = lembda * 10<sup>10</sup>; // in
16 disp(lembda,"Wavelength of X ray in is");
```

Scilab code Exa 1.11 Glacing angle

```
1 // Exa 1.11
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ lembda} = 1.54; // in
7 density = 9.024; // in gm/cc
8 n = 1;
9 \text{ MI} = 100;
10 At_W = 63.54;// atomic weight
11 N_A = 6.023 * 10^23;
12 m = At_W/N_A; // in gm
13 a =(density*m)^(1/3);// in cm
14 h = 1;
15 \ k = 0;
16 \ 1 = 0;
17 d= a/(sqrt(h^2+k^2+l^2));
18 theta = asind( (lembda * 10^{-8})/(2*d) );// in degree
19 disp(theta,"The glancing angle in degree is");
```

Scilab code Exa 1.12 Wavelength of X ray

1 // Exa 1.12 2 clc; 3 clear;

```
4 close;
5 // Given data
6 = 3.615; // in
7 theta = 22; // in degree
8 n = 1;
9 h = 1;
10 k = h;
11 l = k;
12 d = a/(sqrt((h)^2) + ((k)^2) + ((1)^2)); // in
13 lembda = 2*d*sind(theta);// in
14 disp(lembda,"The wavelength of X ray in
                                            is");
15 theta2 =asind( lembda/d );// in degree
16 theta2 = theta2 * 2; // in degree
17 disp(theta2,"To get the 2nd order spectrum the
     position of the detector in degree is");
```

Scilab code Exa 1.13 Lattice constant

```
1 // Exa 1.13
2 clc;
3 clear;
4 close;
5 // Given data
6 n = 1;
7 lembda = 1.54; // in
8 theta = 21.7; // in degree
9 d = lembda/(2*sind(theta)); // in
10 h = 1;
11 k = h;
12 l = k;
13 a = d*sqrt(h^2+k^2+l^2); // in
14 disp(a,"Lattice constant in is");
```

Scilab code Exa 1.14 Distance between d211 planes

```
1 // Exa 1.14
2 clc;
3 clear;
4 close;
5 // Given data
6 h = 2;
7 k = 1;
8 l = 1;
9 a = 4.8;// in
10 d_211 = a/(sqrt(h^2+k^2+l^2));// in
11 disp(d_211,"The distance between planes in is");
```

Scilab code Exa 1.15 Density of copper

```
1 // Exa 1.15

2 clc;

3 clear;

4 close;

5 // Given data

6 r = 1.28; // in

7 a = (4*r)/(sqrt(2)); // in

8 a = a * 10<sup>-8</sup>; // in cm

9 n = 4;

10 M = 63.5;

11 N_A = 6.023*10<sup>23</sup>;

12 Rho = (n*M)/( N_A*((a)<sup>3</sup>)); // in gm/cc

13 disp(Rho," Density in gm/cc is");
```

Scilab code Exa 1.16 Number of atom per unit cell

1 // Exa 1.16

```
2 clc;
3 clear;
4 close;
5 // Given data
6 M = 55.85;
7 a = 2.9; // in
8 a = a * 10<sup>-8</sup>; // in cm
9 Rho = 7.87; // in gm/cc
10 N_A = 6.023*10<sup>23</sup>;
11 n = (Rho*N_A*((a)<sup>3</sup>))/M; // atom per unit
12 disp("A lattice having "+string(round(n))+" atom per
unit cell is a BCC structure");
```

Scilab code Exa 1.17 Radius of element atom

```
1 // Exa 1.17
2 clc;
3 clear;
4 close;
5 // Given data
6 M = 60; // in gm/mole
7 Rho = 6.23; // in gm/cc
8 n = 4;
9 N_A = 6.023*10^23;
10 a = ((n*M)/(N_A * Rho))^(1/3); // in cm
11 r = (a*sqrt(2))/n; //radius of atom in cm
12 r = r * 10^8; // in
13 disp(r, "Radius of atom in is");
```

Scilab code Exa 1.18 Packing factor

1 // Exa 1.18 2 clc;

```
3 clear;
4 close;
5 // Given data
6 Rho = 5.96; // in gm/cc
7 M = 50;
8 n = 2;
9 N_A = 6.023*10^23;
10 a =((n*M)/(Rho*N_A))^(1/3); // in cm
11 r = (a*sqrt(3))/4; // in cm
12 P_f = (2*(4/3)*%pi*((r)^3))/((a)^3); // packing
factor
13 disp(P_f, "Packing factor is ");
```

Scilab code Exa 1.19 Number of unit cell

 ${
m Scilab\ code\ Exa\ 1.20}$ Distance between K and F

1 // Exa 1.20 2 clc; 3 clear;

```
4 close;
5 // Given data
6 Rho = 2.48; // in gm/c.c
7 n = 4;
8 M = 58;
9 N_A = 6.023*10^23;
10 a = ( (n*M)/(Rho*N_A) )^(1/3); // in cm
11 a = a * 10^8; // in
12 r = (a*sqrt(2))/n; // in
13 r = 2*r; // in
14 disp(r,"The center to center distance between ions
in is");
```

Chapter 2

Carrier Transport in Semiconductor

Scilab code Exa 2.1 Energy gap

```
1 // Exa 2.1
2 clc;
3 clear;
4 close;
5 // Given data
6 lembda = 11000; // in
7 lembda = lembda * 10^-10;
8 h = 6.625*10^-34;
9 c = 3*10^8;
10 q = 1.6*10^-19; // in C
11 E_g = h*c/lembda; // in J
12 E_g = E_g/q; // in eV
13 disp(E_g, "The energy gap in Si in eV is");
14
15 // Note: The answer in the book is not correct
```

Scilab code Exa 2.2 Wavelength

```
1 // Exa 2.2

2 clc;

3 clear;

4 close;

5 // Given data

6 E_g = 0.75; // in eV

7 q=1.6*10^-19; // in C

8 E_g = E_g*q; // in J

9 h = 6.63*10^-34; // in J

10 c = 3*10^8; // in m/s

11 lembda = (h*c)/E_g; // in m

12 lembda = lembda * 10^10; // in

13 disp(lembda,"The wavelength in is");
```

Scilab code Exa 2.3 Position of Fermi level

```
1 // Exa 2.3
2 clc;
3 clear;
4 close;
5 // Given data
6 del_E = 0.3; // value of E_C-E_F in eV
7 T1 = 330; // in K
8 T = 300; // in K
9 del_E1 = del_E*(T1/T); // value of E_C-E_F in eV
10 disp(del_E1, "The position of fermi level in eV is");
11 disp("Hence the Fermi level will be "+string(del_E1)
+" eV below the conduction band")
```

Scilab code Exa 2.4 Probability

Scilab code Exa 2.5 Thermal equilibrium hole concentration

```
1 // Exa 2.5

2 clc;

3 clear;

4 close;

5 // Given data

6 N_V = 1.04*10^19; // in cm^-3

7 T1 = 400; // in K

8 T2 = 300; // in K

9 del_E = 0.27; // value of E_F-E_V in eV

10 K = 0.0259;

11 N_V= N_V*(T1/T2)^(3/2); // in cm^-3

12 KT = K*(T1/T2); // in eV

13 p_0 = N_V*exp( (-del_E)/(KT) ); // in /cm^3

14 disp(p_0, "The hole concentration per cm^3 is");
```

Scilab code Exa 2.6 Mobility of electrons in copper

Scilab code Exa 2.7 Density of free electrons

```
1 // Exa 2.7
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 \, d = 8.96; // in \, gm/cc
7 At = 63.5; // atomic weight
8 N_A = 6.02*10^23; // in /gm mole
9 \ 1 = 0.1; // \text{ in m}
10 e = 1.6*10<sup>-19</sup>;// in C
11 A = 1.7 \times 10^{-6}; // in m<sup>2</sup>
12 R = 0.1; // in ohm
13 n = (N_A/At)*d; // in /cc
14 n = n * 10^6; // in /m<sup>3</sup>
15 Rho = (R*A)/1; // in ohm.m
16 Sigma = 1/Rho;// in mho/m
17 Miu_e = Sigma/(n*e); // in m^2/V-sec
18 disp(Miu_e, "The electron mobility in m^2/V-sec is ")
```

Scilab code Exa 2.8 Drift velocity

;

```
1 // Exa 2.8
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 N_A = 6.025*10^23; // in /gm mole
7 \, d = 10.5; // in gm/cc
8 At = 108; // atomic weight of
9 n = (N_A/At)*d; // in /cm^3
10 n = n * 10^6; // in /m<sup>3</sup>
11 r = 10^{-3}; // in m
12 A = %pi * ((r)^2);// in m^2
13 \quad q = 1.6 * 10^{-19};
14 I = 2; // in A
15 V = I/(n*q*A); // in m/s
16 disp(V,"The drift velocity of an electron in m/s is"
      );
17
18 // Note: There is calculation error to find the
      value of V (i.e. drift velocity), So the answer
      in the book is wrong
```

Scilab code Exa 2.9 Mobility of charge carriers

1 // Exa 2.9
2 clc;
3 clear;
4 close;
5 // Given data

Scilab code Exa 2.10 Conductivity of pure Si

```
1 // Exa 2.10

2 clc;

3 clear;

4 close;

5 // Given data

6 Miu_e = 1500; // in cm^2/volt.sec

7 Miu_h = 500; // in cm^2/volt.sec

8 n_i = 1.6*10^10; // in /cm^3

9 e = 1.6*10^-19; // in C

10 Sigma_i = n_i*(Miu_e+Miu_h)*e; // in mho/cm

11 Sigma = Sigma_i; // in mho/cm

12 disp(Sigma, "The conductivity of pure silicon in mho/

cm is");
```

Scilab code Exa 2.11 Number of donor atoms

```
1 // Exa 2.11
2 clc;
3 clear;
4 close;
5 // Given data
6 Miu_d = 500; // in cm^2/V.S
7 Rho = 10; // in ohm cm
8 e = 1.6*10^-19; // in C
9 n_d = 1/(Rho*e*Miu_d); // in /cm^3... correction
10 disp(n_d, "The number of donor atom per cm^3 is");
```

Scilab code Exa 2.12 Conductivity of speciman

```
1 // Exa 2.12

2 clc;

3 clear;

4 close;

5 // Given data

6 d = 5.32; // in gm/cc

7 N_A = 6.02*10^23; // in atoms/gm.mole

8 At = 72.6; //atomic weight

9 Miu = 3800; // in cm^2/v.s

10 n_d = (N_A/At) * d; // in /cm^3

11 n_d = n_d * 10^-8; // in /cc

12 e = 1.6*10^-19; // in C

13 Sigma = n_d * Miu * e; // in mho/cm

14 disp(Sigma, "The conductivity of specimen in mho/cm

is");
```

Scilab code Exa 2.13 Mobility of electrons in Ge

1 // Exa 2.13 2 clc;

```
3 clear;
4 close;
5 // Given data
6 Rho = 0.3623*10^-3; // in ohm m
7 d = 4.42*10^28; // Ge density in atoms/m<sup>3</sup>
8 Sigma = 1/Rho; // in mho/m
9 n_d = d*10^-6; // in atoms/m<sup>3</sup>
10 e = 1.6*10^-19; // in C
11 Miu = Sigma/(n_d*e); // in m<sup>2</sup>/V.sec
12 disp(Miu,"The electron mobility in m<sup>2</sup>/V-sec is");
```

Scilab code Exa 2.14 Density and mobility of holes

```
1 // Exa 2.14

2 clc;

3 clear;

4 close;

5 // Given data

6 N_A = 6.025*10^26; // in /kg.Mole

7 At = 72.59; // atomic weight

8 d = 5.36*10^3; // in kg/m<sup>3</sup>

9 R = 0.42; // in ohm m

10 B_i = 10^-6; // rate of boron impurity in %

11 e = 1.6*10^-19; // in C

12 n = (N_A/At)*d; // number of Ge atoms

13 h = n/10^8; // holes per unit volume

14 Miu_h = 1/(R*h*e); // in m<sup>2</sup>/V.sec

15 disp(Miu_h, "The Mobility of holes in m<sup>2</sup>/V-sec is");
```

Scilab code Exa 2.15 Current produced

1 // Exa 2.15 2 clc;

```
3 clear;
4 close;
5 // Given data
6 n_i = 2*10^19; // in /m^3
7 Miu_e = 0.36; // in m^2/v.s
8 Miu_h = 0.17; // in m^2/v.s
9 A = 1*10^-4; // in m^2
10 V = 2; // in Volts
11 l = 0.3; // in mm
12 l = 1 * 10^-3; // in m
13 e = 1.6*10^-19; // in C
14 Sigma_i = n_i * e * (Miu_e+Miu_h); // in mho/m
15 I = (Sigma_i * V*A)/l; // in amp
16 disp(I,"The current in amp is");
```

Scilab code Exa 2.16 Resistivity of doped Ge

```
1 // Exa 2.16

2 clc;

3 clear;

4 close;

5 // Given data

6 d = 4.2*10^28; // in atoms/m^3

7 n_d = d/10^6; // in atoms/m^3

8 e = 1.6*10^-19; // in C

9 Miu_e = 0.36; // in m^2/V-sec

10 Sigma_n = n_d *e *Miu_e; // in mho/m

11 Rho_n = 1/Sigma_n; // in ohm m

12 disp(Rho_n, "The resistivity in m is");
```

Scilab code Exa 2.17 Current produced

1 // Exa 2.17

```
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 n_i = 1*10^19; // in /m^3
7 Miu_e = 0.36; // in m<sup>2</sup>/volt.sec
8 Miu_h = 0.17; // in m^2/volt.sec
9 A = 2; // in cm<sup>2</sup>
10 A = A * 10^{-4}; // in m^{2}
11 t = 0.1; // in mm
12 t = t*10<sup>-3</sup>;// in m
13 V = 4; // in volts
14 e = 1.6*10^{-19}; // in C
15 Sigma_i = n_i * e * (Miu_e + Miu_h);// mho/m
16 J = Sigma_i * (V/t); // in Amp/m<sup>2</sup>
17 I = J*A; // in Amp
18 disp(I,"The current in Amp is");
```

Scilab code Exa 2.18 Conductivity of pure Si

```
1 // Exa 2.18

2 clc;

3 clear;

4 close;

5 // Given data

6 Miu_h = 500; // in cm^2/V.s

7 Miu_e = 1500; // in cm^2/V.s

8 n_i = 1.6*10^10; // in /cm^3

9 e = 1.6*10^-19; // in C

10 Sigma_i = n_i * e * (Miu_e+Miu_h); // in mho/cm

11 disp(Sigma_i, "The conductivity of pure silicon in

mho/cm is");
```

Scilab code Exa 2.19 Hall voltage produced

```
1 // Exa 2.19
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 Si_density = 10.5; // in gm/cc
7 N_A = 6.025 * 10^23;
8 At = 108; // atomic weight
9 B = 0.8; // in Tesla
10 \text{ w} = 0.50; // \text{ in cm}
11 w = w * 10^{-2}; // in m
12 t = 0.10; // in mm
13 t = t * 10^{-3}; // in m
14 A = w*t; // in m^2
15 q = 1.6*10^{-19}; // in C
16 I = 2; // in ampere
17 n = (N_A/At) * Si_density ;// in /cc
18 n = n * 10^{6}; // in /m<sup>3</sup>
19 V_H = (B*I*t)/(n*q*A); // in volts
20 disp(V_H,"The hall voltage produced in volts is");
```

 $Scilab \ code \ Exa \ 2.20$ Hall coefficient and mobility of electrons

```
1 // Exa 2.20
2 clc;
3 clear;
4 close;
5 // Given data
6 Sigma = 5.8*10^7;// in mho/m
7 l = 1;// in m
8 d = 1;// in cm
9 d = d * 10^-2;// in m
10 W = 1;// in mm
```

```
11 W = W*10^-3; // in m
12 I = 1; // in Amp
13 B = 1; // in Tesla
14 V_H = 0.074*10^-6; // in Volts
15 A = 10^-2 * 10^-3; // in m^2
16 R_H = (V_H*A)/(B*I*d); // in m^3/c
17 disp(R_H,"Hall coefficient in m^3/c is");
18 Miu = Sigma * R_H; // in m^2/volt.sec
19 disp(Miu,"The mobility of electron in m^2/volt.sec
is");
```

Scilab code Exa 2.21 Ratio of electron to hole concentration

```
1 // Exa 2.21
2 clc;
3 clear;
4 close;
5 // Given data
6 n_i = 1.4*10^18; // in /m^3
7 n_D = 1.4*10^24; // in /m^3
8 n = n_D; // in /m^3
9 p = n_i^2/n; // in /m^3
10 disp(p, "Concentration of holes per m^3 is");
11 R_e = n/p; // Ratio of electron
12 disp(R_e, "Ratio of electron to hole concentration is
        ");
```

Scilab code Exa 2.22 Hall angle

1 // Exa 2.22
2 clc;
3 clear;
4 close;

```
5 // Given data
6 B = 0.48; // in Wb/m<sup>2</sup>
7 R_H = 3.6 * 10<sup>-4</sup>; // in m<sup>3</sup>/c
8 R = 9*10<sup>-3</sup>; // in ohm-m
9 Sigma = 1/R; // in (ohm-m)<sup>-1</sup>
10 Rho = 1/R_H; // in coulomb/m<sup>3</sup>
11 e = 1.6*10<sup>-19</sup>; // in C
12 n = Rho/e; // in /m<sup>3</sup>
13 Miu = Sigma * R_H; // in m<sup>2</sup>/volt-s
14 disp(Miu,"The mobility of electron in m<sup>2</sup>/volt-s is"
);
```

Scilab code Exa 2.23 Current density in speciman

```
1 // Exa 2.23

2 clc;

3 clear;

4 close;

5 // Given data

6 e = 1.6*10^-19; // in C

7 R_H = 0.0145; // in m^3/coulomb

8 Miu_e = 0.36; // m^2/v-s

9 E = 100; // V/m

10 n = 1/(e*R_H); // in /m^3

11 J= n*e*Miu_e*E; // in A/m^2

12 disp(J,"The current density in A/m^2 is");
```

Scilab code Exa 2.24 Relaxation time

1 // Exa 2.24
2 clc;
3 clear;
4 close;

```
5 // Given data
6 = 1.6*10^{-19}; // in C
7 Miu_e = 7.04*10^{-3}; // in m<sup>2</sup>/volt-sec
8 n = 5.8*10<sup>28</sup>;// number of electron/m<sup>3</sup>
9 m = 9.1 \times 10^{-31};
10 E_F = 5.5; // in eV
11 Torque = (Miu_e/e)*m; // in sec
12 disp(Torque," Relaxtion time in sec is");
13 Rho = 1/(n*e*Miu_e); // in ohm cm
14 disp(Rho," Resistivity of conductor in m is");
15 V_F = sqrt((2*E_F*e)/m); // in m/s
16 disp(V_F," Velocity of electron with the fermi energy
       in m/s is");
17
18 // Note: The calculation of Part (ii) is wrong also
      the unit of resistivity of conductor is wrong
```

Scilab code Exa 2.25 Temperature

```
1 // Exa 2.25

2 clc;

3 clear;

4 close;

5 // Given data

6 E= 5.95; // in eV

7 EF= 6.25; // in eV

8 delE= 0.01;

9 // delE= 1-1/(1+exp((E-EF)/KT))

10 K=1.38*10^-23; // Boltzman Constant in J/K

11 T = ((E-EF)/log(1/(1-delE) -1)*1.6*10^-19)/K; // in K

12 disp(T, "The temperature in K is : ")
```

Scilab code Exa 2.26 Thermal equilibrium hole concentration

```
1 // Exa 2.26

2 clc;

3 clear;

4 close;

5 // Given data

6 T1 = 400; // in K

7 T2 = 300; // in K

8 N_V = 1.04*10^19; // in cm^-3

9 N1 = N_V*((T1/T2)^(3/2)); // in cm^-3

10 KT = 0.0259*(T1/T2); // in eV

11 FermiLevel= 0.27; // in eV

12 P_0 = N1*exp( (-FermiLevel)/KT ); // in cm^-3

13 disp(P_0, "The thermal equillibrium hole

concentration in cm^-3 is");
```

Scilab code Exa 2.27 Required doping concentration

```
1 // Exa 2.27
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 T1 = 550; // in K
7 T2 = 300; // in K
8 \text{ N1} = 1.04 * 10^{19};
9 N_V = N1*((T1/T2)^{(3)});
10 N_C = 2.8 \times 10^{19};
11 E_g = -1.12;
12 KT = 0.0259 * (T1/T2);
13 n_i = sqrt(N_C*N_V*exp(E_g/KT)); // in cm^{-3}
14 disp(n_i, "The value of n_i in cm^-3 is : ")
15 //Formula n_o = Nd/2 + sqrt((Nd/2)^2 + n_i^2) and n_o = Nd/2 + sqrt(Nd/2)^2 + n_i^2
      1.05 * N_d;
16 Nd= sqrt(n_i^2/((1.05-1/2)^2-(1/2)^2))
17 disp(Nd,"The value of N_d in cm^-3 is : ")
```

Scilab code Exa 2.28 Quasi Fermi energy levels

```
1 // Exa 2.28
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 \text{ n_o} = 10^{15}; // \text{ in } \text{cm}^{-3}
7 n_i = 10^{10}; // in cm<sup>-3</sup>
8 \text{ p_o} = 10^{5}; // \text{ in } \text{cm}^{-3}
9 del_p = 10^{13}; // in cm<sup>-3</sup>
10 del_n = del_p; // in cm^{-3}
11 KT= 0.0259;// in eV
12 Fermi_level= KT*log(n_o/n_i);// in eV
13 disp(Fermi_level,"Fermi level for thermal
      equillibrium in eV is :")
14 Fermi_level= KT*log((n_o+del_n)/n_i);// in eV
15 disp(Fermi_level," Quasi-Fermi level for electrons in
       non equillibrium in eV is :")
16 Fermi_level= KT*log((p_o+del_p)/n_i); // in eV
17 disp(Fermi_level,"Quasi-Fermi level for holes in non
        equillibrium in eV is :")
```
Chapter 3

Excess Carriers In Semiconductors

Scilab code Exa 3.1 Hole concentration at equilibrium

```
1 // Exa 3.1
2 clc;
3 clear;
4 close;
5 // Given data
6 n_o = 10^17; // in /cm^3
7 n_i = 1.5*10^10; // in /cm^3
8 p_o = ((n_i)^(2))/n_o; // in holes/cm^3
9 disp(p_o, "The hole concentration in holes/cm^3 is ")
;
```

Scilab code Exa 3.3 Position of Fermi level

1 // Exa 3.3
2 clc;
3 clear;

```
4 close;
5 // Given data
6 n_i = 1.5 * 10 ^10; // in /cm^3 for silicon
7 N_d = 10^17; // in atoms/cm^3
8 n_o = 10^17; // electrons/cm^3
9 KT = 0.0259;
10 // E_r - E_i = KT * log(n_o/n_i)
11 del_E = KT * log(n_o/n_i); // in eV
12 disp("The energy band for this type material is Ei +
    "+string(del_E)+" eV");
```

Scilab code Exa 3.4 Diffusion coefficients of electrons

```
1 // Exa 3.4
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 \text{ K} = 1.38*10^{-23}; // \text{ in } J/K
7 T = 27; // in degree C
8 T = T + 273; // in K
9 = 1.6 \times 10^{-19};
10 Miu = 0.17; // in m^2/v-s
11 Miu1 = 0.025; // in m<sup>2</sup>/v-s
12 D_n = ((K*T)/e)*Miu;// in m^2/s
13 disp(D_n,"The diffusion coefficient of electrons in
       m^2/s is");
14 D_p = ((K*T)/e)*Miu1; // in m^2/s
15 disp(D_p,"The diffusion coefficient of holes in m<sup>2</sup>/
```

```
s is");
```

Scilab code Exa 3.5 Diffusion length

```
1 // Exa 3.5
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 Miu_n = 0.15; // in m^2/v-s
7 K = 1.38 * 10^{-23};
8 T = 300; // in K
9 e = 1.6*10^{-19}; // in C
10 D_n = Miu_n*((K*T)/e); // in m^2/s
11 Torque_n = 10^-7; // in s
12 L_n = sqrt(D_n*Torque_n); // in m
13 disp(L_n,"The diffusion length in m is");
14 del_n = 10^20; // in electrons/m^3
15 J_n = (e*D_n*del_n)/L_n; // in A/m^2
16 disp(J_n,"The diffusion current density in A/m<sup>2</sup> is"
      );
```

Scilab code Exa 3.6 Concentration of holes and electrons

```
1 // Exa 3.6

2 clc;

3 clear;

4 close;

5 // Given data

6 Sigma_n = 0.1; // in (ohm-cm)^-1

7 Miu_n = 1300;

8 q = 1.6*10^-19; // in C

9 n_n = Sigma_n/(Miu_n*q); // in electrons/cm^3

10 disp(n_n*10^6, "Concentration of electrons per m^3 is

        ");

11 n_i = 1.5*10^10;

12 p_n = ((n_i)^2)/n_n; // in holes/cm^3

13 p_n = p_n * 10^6; // in holes/m^3

14 disp(p_n, "Concentration of holes per m^3 is");
```

Scilab code Exa 3.7 Electron transit time

```
1 // Exa 3.7

2 clc;

3 clear;

4 close;

5 // Given data

6 L = 100*10^-6; // in m

7 Miu_e = 0.13; // in m^2/V-s

8 Torque_h = 10^-6; // in s

9 Miu_h = 0.05; // in m^2/v-s

10 V = 12; // in V

11 Torque_n = ((L)^2)/(Miu_e*V); // in s

12 disp(Torque_n,"Electron transit time in sec is");

13 P = (Torque_h/Torque_n)*(1+(Miu_h/Miu_e));

14 disp(P,"Photoconductor gain is");
```

Scilab code Exa 3.8 Resistivity drops

```
1 //Exa 3.8
2 clc;
3 clear;
4 close;
5 // Given data
6 q = 1.6*10^-19; // in C
7 n_i = 2.5*10^13;
8 Miu_n = 3800; // in cm^2/V-s
9 Miu_p = 1800; // in cm^2/V-s
10 Sigma = n_i*(Miu_n + Miu_p)*q; // in (ohm-cm)^-1
11 Rho = 1/Sigma; // in ohm-cm
12 disp(Rho,"The resistivity in ohm-cm is");
```

```
13 N_D =4.4*10^22/10^8 ;// in atoms/cm^3
14 Sigma_n = N_D * Miu_n*q;// in (ohm-cm)^-1
15 Rho1 = 1/Sigma_n;// in ohm cm
16 disp(Rho1,"The resistivity drops in ohm cm is");
```

Scilab code Exa 3.9 Electron concentration

```
1 // Exa 3.9
2 clc;
3 clear;
4 close;
5 // Given data
6 n_i = 10^16; // in /m^3
7 N_D = 10^22; // in /m^3
8 n = N_D; // in /m^3
9 disp(n, "The concentration of electrons per m^3 is");
10 p = ((n_i)^2)/n; // in /m^3
11 disp(p, "The concentration of holes per m^3 is");
```

Scilab code Exa 3.10 Ratio of donor atoms to Si atom

```
1 // Exa 3.10

2 clc;

3 clear;

4 close;

5 // Given data

6 Rho = 9.6*10^-2; // ohm-m

7 Sigma_n = 1/Rho; // in (ohm-m)^-1

8 Miu_n = 1300; // in cm^2/V-s

9 Miu_n = Miu_n * 10^-4; // in m^2/V-s

10 q = 1.6*10^-19; // in C

11 N_D = Sigma_n/(Miu_n*q); // in atoms/m^3

12 d = 5*10^22; // in atoms/cm^3
```

```
13 d = d * 10^6; // in atoms/m<sup>3</sup>
14 R_d = N_D/d; // Ratio
15 disp(R_d, "Ratio of donor atom to silicon atoms per
unit volume is");
```

Scilab code Exa 3.11 Equillibrium electron and hole densities

```
1 // Exa 3.11
2 clc;
3 clear;
4 close;
5 // Given data
6 n_i = 1.5*10^10; // in /cm^3
7 n_n = 2.25*10^15; // in /cm^3
8 p_n = ((n_i)^2)/n_n; // in /cm^3
9 disp(p_n, "The concentration of holes per cm^3 is");
10 disp(n_n, "Donor impurity per cm^3 is");
```

Scilab code Exa 3.12 Carrier concentration

```
1 // Exa 3.12
2 clc;
3 clear;
4 close;
5 // Given data
6 N_A = 2*10^16; // in /cm^3
7 N_D = 10^16; // in /cm^3
8 C = N_A-N_D; // in /cm^3
9 disp(C," Carrier concentration in holes/cm^3 is");
```

Scilab code Exa 3.13 Generation rate due to irradiation

```
1 // Exa 3.13
2 // GIven data
3 clc;
4 clear;
5 close;
6 del_n = 10^15; // in /cm^3
7 Torque_p = 10*10^-6; // in sec
8 R_G = del_n/Torque_p; // in electron hole pairs/sec/
cm^3
9 disp("The rate of generation of minority carrier is
    : "+string(R_G)+" electron hole pairs/sec/cm^3");
```

Scilab code Exa 3.14 Mobility of minority charge carrier

```
1 // Exa 3.14
2 clc;
3 clear;
4 close;
5 // Given data
6 V = 1/20; // in cm/ sec
7 V=V*10^6; // in cm/sec
8 E = 10; // in V/cm
9 Miu = V/E; // in cm^2/V-sec
10 disp(Miu,"The mobility of minority charge carrier in
cm^2/V-sec is");
```

Scilab code Exa 3.15 Hole and electron diffusion current

```
1 // Exa 3.15
2 clc;
3 clear;
```

```
4 close;
5 // Given data
6 q = 1.6 * 10^{-19}; // in C
7 \text{ N}_D = 4.5 * 10^{15}; // \text{ in } /\text{cm}^3
8 \text{ del}_p = 10^21;
9 e=10;// in cm
10 A = 1; // in mm<sup>2</sup>
11 A = A * 10^{-14}; // cm<sup>2</sup>
12 \ 1 = 10; // in \ cm
13 Torque_p = 1; // in microsec
14 Torque_p = Torque_p * 10^-6; // in sec
15 Torque_n = 1; // in microsec
16 Torque_n = Torque_n * 10<sup>-6</sup>; // in
                                            sec
17 n_i = 1.5 * 10<sup>10</sup>; // in /cm<sup>3</sup>
18 D_n = 30; // in cm^2/sec
19 D_p = 12; // in cm^2/sec
20 n_o = N_D; // in /cm^3
21 p_o = (n_i)^2/n_o; // in /cm^3
22 disp(p_o," Hole concentration at thermal equilibrium
      per cm<sup>3</sup> is");
23 l_n = sqrt(D_n * Torque_n);// in cm
24 disp(1_n," Diffusion length of electron in cm is");
25 l_p = sqrt(D_p * Torque_p); // in cm
26 disp(l_p," Diffusion length of holes in cm is");
27 x = 34.6 \times 10^{-4}; // in cm
28 dpBYdx = del_p *e; // in cm<sup>4</sup>
29 disp(dpBYdx," Concentration gradient of holes at
      distance in cm<sup>4</sup> is");
30 e1 = 1.88 * 10<sup>1</sup>;// in cm
31 dnBYdx = del_p * e1;// in cm<sup>4</sup> check this also
       32 disp(dnBYdx," Concentration gradient of electrons in
      per cm<sup>4</sup> is");
33 J_P = -(q) * D_p * dpBYdx; // in A/cm^2
34 disp(J_P,"Current density of holes due to diffusion
      in A/cm^2 is");
35 J_n = q * D_n * dnBYdx; // in A/cm<sup>2</sup>
36 disp(J_n,"Current density of electrons due to
```

```
43
```

Scilab code Exa 3.16 Energy band gap of semiconductor material used

```
1 // Exa 3.16
2 clc;
3 clear;
4 close;
5 // Given data
6 h = 6.626 * 10<sup>-34</sup>;// in J-s
7 q= 1.6*10<sup>-19</sup>;// in C
8 h= h/q;// in eV
9 c = 3*10<sup>8</sup>;
10 lembda = 5490*10<sup>-10</sup>;// in m
11 E = h*c/lembda;// in eV
12 disp(E, "The energy band gap in eV is");
```

Scilab code Exa 3.17 Current density in Si

```
1 // Exa 3.17

2 clc;

3 clear;

4 close;

5 // Gievn data

6 D_n = 35; // in cm^2/sec

7 q = 1.6*10^-19; // in C

8 y2 = 6*10^16; // in /cm^3

9 y1 = 10^17; // in /cm^3

10 x2 = 2*10^-4;

11 x1 = 0;

12 dnBYdx = (y2-y1)/(x2-x1);

13 J_n = q*D_n*dnBYdx; // in A/cm^2 is");
```

Scilab code Exa 3.18 Resistance of the bar

```
1 // Exa 3.18
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 q = 1.6*10<sup>-19</sup>;// in C
7 n_n = 5*10^20; // in /m<sup>3</sup>
8 n_n = n_n * 10^{-6}; // in /cm^{3}
9 Miu_n = 0.13; // in m^2/V-sec
10 Miu_n = Miu_n * 10^4; // in cm^2/V-sec
11 Sigma_n = q*n_n*Miu_n; // in ohm-cm^-1
12 Rho = 1/Sigma_n;
13 A = 100; // in m<sup>2</sup>
14 A = A * 10^{-8}; // in cm<sup>2</sup>
15 \ l = 0.1; // in \ cm
16 R = Rho * (1/A); // in ohm
17 disp(round(R*10^-6),"The resistance of the bar in M
      ohm is");
```

Scilab code Exa 3.19 Depletion width

```
1 // Exa 3.19
2 clc;
3 clear;
4 close;
5 // Given data
6 w = 3; // in m
7 D = w/9; // in m
8 disp(D," Depletion width on P side in m is");
```

Scilab code Exa 3.20 Minority carrier density

```
1 // Exa 3.20
2 clc;
3 clear;
4 close;
5 // Given data
6 n_i = 1.5*10^16; // in /m^3
7 n_n = 5*10^20; // in /m^3
8 p_n = ((n_i)^2)/n_n; // in /m^3
9 disp(p_n, "The minority carrier density per m^3 is");
```

Scilab code Exa 3.21 Collector current density

```
1 // Exa 3.21
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 \text{ y2} = 10^{14}; // \text{ in } /\text{cm}^{3}
7 y1 = 0;
8 \text{ x1} = -0.5; // \text{ in } \text{ m}
9 x1= x1*10^-4; // in cm
10 x2=0;
11 dnBYdx = (y2-y1)/(x2-x1);// in /cm^4
12 q = 1.6*10^{-19}; // in C
13 D_n = 25; // in cm^2/sec
14 J_n = q*D_n*dnBYdx; // in A/cm<sup>2</sup>
15 disp(J_n,"The collector current density in A/cm<sup>2</sup> is
       ");
```

Scilab code Exa 3.22 Band gap

```
1 // Exa 3.22
2 clc;
3 clear;
4 close;
5 // Given data
6 h = 6.64*10^-34; // in J-s
7 q=1.6*10^-19; // in C
8 h= h/q; // in eV
9 c = 3*10^8; // in m/s
10 lembda = 0.87*10^-6; // in m
11 E_g = (h*c)/lembda; // in eV
12 disp(E_g, "The band gap in eV is");
```

Scilab code Exa 3.23 Total energy absorbed by sample

```
1 // Exa 3.23
2 clc;
3 clear;
4 close;
5 // Given data
6 alpha = 5*10^4; // in cm^-1
7 l = 0.46*10^-4; // in cm
8 hv = 2; // in eV
9 I_o = 10^-2; // in W
10 I_t = I_o*exp(-alpha*1); // in W
11 A_p = I_o-I_t; // absorbed power in W or J/s
12 disp(A_p, "Total energy absorbed in J/s is");
13 c = 1.43;
14 A_E = (hv-c)/hv*A_p; // in J/s
15 disp(A_E, "Rate of excess thermal energy in J/s is");
```

Scilab code Exa 3.24 Hole current

```
1 // Exa 3.24
2 clc;
3 clear;
4 close;
5 // Given data
6 format('v',13)
7 Mu_p = 500; // in cm^2/v-s
8 kT = 0.0259;
9 Toh_p = 10^{-10}; // in sec
10 p_o = 10^{17}; // in cm^{-3}
11 q= 1.6*10^{-19}; // in C
12 A=0.5; // in square meter
13 del_p = 5 * 10^16; // in cm^{-3}
14 n_i= 1.5*10^10;// in cm^-3
15 D_p = kT * Mu_p; // in cm/s
16 L_p = sqrt(D_p * Toh_p); // in cm
17 x = 10^{-5}; // in cm
18 p = p_0+del_p* e^(x/L_p); // in cm^{-3}
19 // p= n_i * \%e^{(Eip)}/kT where Eip = E_i - F_p
20 Eip= \log(p/n_i)*kT; // in eV
21 Ecp= 1.1/2-Eip; // value of E_c-E_p in eV
22 Ip= q*A*D_p/L_p*del_p*%e^(x/L_p);// in A
23 disp(Ip,"The hole current in A is : ")
24 Qp= q*A*del_p*L_p; // in C
25 disp(Qp,"The value of Qp in C is : ")
26
27 // Note: There is a calculation error to evaluate
      the value of hole current hence the value of hole
```

current in the book is wrong

Chapter 4

Junctions and Interfaces

Scilab code Exa 4.2 Junction width

1 // Exa 4.2 2 clc; 3 clear; 4 close; 5 // Given data $6 \text{ N}_D = 10^{17} * 10^{6}; // \text{ in atoms/m}^3$ 7 N_A = $0.5*10^{1}6*10^{6}$; // in atoms/m³ 8 Epsilon_r = 10;9 Epsilon_o = 8.85*10^-12; 10 Epsilon = Epsilon_r*Epsilon_o;// in F/m 11 e = 1.602×10^{-19} ; // in C 12 V = 0; 13 $V_B = 0.7$; // in V 14 W = sqrt(((2*Epsilon*V_B)/e)*(1/N_A+1/N_D));// in m 15 disp(W,"The junction width in meter when no external voltage is applied is"); 16 $V_o = V_B; // in V$ 17 V1 = -10; // in V $18 V_B1 = V_o - V1; // in V$ 19 W = $sqrt(((2*Epsilon*V_B1)/e)*(1/N_A+1/N_D));//in$ \mathbf{m}

20 disp(W,"Junction width in meter with an external voltage of -10V is");

Scilab code Exa 4.4 Diode voltage

```
1 // Exa 4.4

2 clc;

3 clear;

4 close;

5 // Given data

6 V = 5; // in V

7 V_Gamma = 0.6; // in V

8 r_F = 12; // in ohm

9 R = 1; // in k ohm

10 R = R * 10^3; // in ohm

11 I_F = (V-V_Gamma)/(R+r_F); // in A

12 disp(I_F*10^3, "The forward diode current in mA is");

13 V_F = V_Gamma + (I_F*r_F); // in V

14 disp(V_F, "The diode voltage in V is");
```

Scilab code Exa 4.5 Contact difference of potential

```
1 // Exa 4.5
2 clc;
3 clear;
4 close;
5 // Given data
6 n = 4.4*10^22; // total number of Ge atoms/cm^3
7 n_a = 1*10^8; // number of impurity atoms
8 N_A = n/n_a; // in atoms/cm^3
9 N_A = N_A * 10^6; // in atoms/m^3
10 n_i = 2.5*10^13; // in atoms/cm^3
```

```
11 n_i = n_i * 10^6; // in atoms/m<sup>3</sup>
12 \text{ N_D} = 10^3 * \text{ N_A}; // \text{ in atoms/m}^3
13 V_T = 26*10^{-3}; // in A
14 V_J = V_T * \log((N_A * N_D) / ((n_i)^2)); // in V
15 disp(V_J,"The contact difference of potential in V
      is");
16 disp("For a silicon P-N junction")
17 n = 5*10^{22};
18 N_A = n/n_a; // in atoms/cm<sup>3</sup>
19 N_A = N_A * 10^6; // in a toms/m^3
20 N_D = 10^3 * N_A; // in a toms/m^3
21 n_i = 1.5*10^10; // in /cm^3
22 V_J = V_T * \log(N_A * N_D/n_i^2); // in V
23 disp(V_J,"The contact difference of potential in V
      is");
24
25 // Note: There is a calculation error to find the
      value of V_J in the book, so the answer in the
      book is wrong.
```

Scilab code Exa 4.6 Height of the potential energy barrier

```
1 // Exa 4.6

2 clc;

3 clear;

4 close;

5 // Given data

6 Rho_p = 2; // in ohm-cm

7 Rho_n = 1; // in ohm cm

8 q = 1.6*10^-19; // in C

9 n_i = 2.5*10^13; // atoms per cm^3

10 Miu_p = 1800;

11 Miu_n = 3800;

12 N_A = 1/(Rho_p*q*Miu_p); // in /cm^3

13 N_D = 1/(Rho_n*q*Miu_n); // in /cm^3
```

Scilab code Exa 4.7 Voltage

```
1 / Exa 4.7
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 \text{ Eta} = 1;
7 V_T = 26; // in mV
8 V_T = V_T * 10^{-3}; // in V
9 // I = I_0 * (\%e^{(V/(Eta*V_T))} - 1) and I = -(0.9) *
       I_o;
10 V = \log(1-0.9) * V_T; // in V
11 disp(V,"The voltage in volts is : ")
12 // Part (ii)
13 V1=0.05; // in V
14 V2= -0.05; // in V
15 ratio= (%e^(V1/(Eta*V_T))-1)/(%e^(V2/(Eta*V_T))-1)
16 disp(ratio,"The ratio of the current for a forward
      bias to reverse bias is : ")
```

```
17 // Part (iii)
18 Io= 10; // in A
19 Io=Io*10^-3; // in mA
20 //For
21 V=0.1; // in V
22 I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA
23 disp(I,"For v=0.1 V , the value of I in mA is : ")
24 //For
25 V=0.2; // in V
26 I = Io * (%e^(V/(Eta*V_T)) - 1); // in mA
27 disp(I,"For v=0.2 V, the value of I in mA is : ")
28 //For
29 V=0.3; // in V
30 I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA
31 disp(I*10^-3,"For v=0.3 V , the value of I in A is :
      ")
32 disp("From three value of I, for small rise in
      forward voltage, the diode current increase
      rapidly")
```

Scilab code Exa 4.8 Anticipated factor

Scilab code Exa 4.9 Leakage resistance

1 //Exa 4.9 2 clc; 3 clear; 4 close; 5 // Given data 6 I=5;// in A 7 V=10; // in V8 T1= 0.11; // in C^{-1} 9 T2= 0.07; // in C ^−1 (i) $10 // I_{-}R=I$ 11 // $dI_by_dT = dIo_by_dT$ (ii) $12 // 1/Io * dIo_by_dT = T1$ and $1/I * dI_by_dT = T2$, So 13 Io= T2*I/T1;// in A 14 I_R= I-Io;// in A 15 R= V/I_R;// in M16 disp(R,"The leakage resistance in M is : ")

Scilab code Exa 4.10 Dynamic resistance

```
1 //Exa 4.10
2 clc;
3 clear;
4 close;
5 // Given data
6 Eta = 1;
```

```
7 T = 125; // in C
8 T = T + 273; // in K
9 V_T = 8.62 * 10^-5 * 398; // in V
10 I_o = 30; // in A
11 I_o= I_o*10^-6; // in A
12 v = 0.2; // in V
13 r_f = (Eta * V_T)/(I_o * %e^(v/(Eta* V_T))); // in
ohm
14 disp(r_f, "The dynamic resistance in the forward
direction in ohm is ");
15 r_r = (Eta * V_T)/(I_o * %e^(-v/(Eta* V_T))); // in
ohm
16 disp(r_r*10^-3, "The dynamic resistance in the
reverse direction in kohm is");
```

Scilab code Exa 4.11 Barrier capacitance of a Ge pn junction

```
1 // Exa 4.11
2 clc;
3 clear;
4 close;
5 // Given data
6 epsilon = 16/(36 * %pi * 10^11);// in F/cm
7 A = 1 * 10^-2;
8 W = 2 * 10^-4;
9 C_T = (epsilon * A)/W;// in F
10 disp(C_T*10^12, "The barrier capacitance in pF is");
```

Scilab code Exa 4.12 Width of the depletion layer

```
1 //Exa 4.12
2 clc;
3 clear;
```

```
4 close:
5 //Given data
6 \ A = 1; // in mm^2
7 A = A * 10^{-6}; // in m<sup>2</sup>
8 \text{ N}_A = 3 * 10^20; // \text{ in atoms/m}^3
9 q = 1.6 \times 10^{-19}; // in C
10 V_o = 0.2; // in V
11 epsilon_r=16;
12 epsilon_o= 8.854*10^-12;// in F/m
13 epsilon=epsilon_r*epsilon_o;
14 // Part (a)
15 V=-10; // in V
16 // V_0 - V = 1/2*((q * N_A)/epsilon) * W^2
17 W = sqrt(((V_0 - V) * 2 * epsilon)/(q * N_A)); // m
18 C_T1 = (epsilon * A)/W;// in F
19 disp(W*10^6,"The width of the depletion layer for
     an applied reverse voltage of 10V in m is ");
20 // Part (b)
21 V = -0.1; // in V
22 W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m
23 C_T2 = (epsilon * A)/W;// in F
24 disp(W*10^6,"The width of the depletion layer for
     an applied reverse voltage of 0.1V in m is ");
25 // Part (c)
26 V=0.1; // in V
27 W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m
28 disp(W*10<sup>6</sup>,"The width of the depletion layer for
     an applied for a forward bias of 0.1V in m is "
     );
29 // Part (d)
30 disp(C_T1*10^12," The space charge capacitance for an
       applied reverse voltage of 10V in pF is");
31 disp(C_T2*10^12,"The space charge capacitance for an
       applied reverse voltage of 0.1V in pF is");
```

Scilab code Exa 4.13 Current in the junction

```
1 // Exa 4.13

2 clc;

3 clear;

4 close;

5 // Given data

6 I_o = 1.8 * 10^-9; // A

7 v = 0.6; // in V

8 Eta = 2;

9 V_T = 26; // in mV

10 V_T=V_T*10^-3; // in V

11 I = I_o *(%e^(v/(Eta * V_T))); // in A

12 disp(I*10^3, "The current in the junction in mA is");
```

Scilab code Exa 4.14 Forward biasing voltage

```
1 // Exa 4.14

2 clc;

3 clear;

4 close;

5 // Given data

6 I_o = 2.4 * 10^-14;

7 I = 1.5; // in mA

8 I=I*10^-3; // in A

9 Eta = 1;

10 V_T = 26; // in mV

11 V_T = V_T*10^-3; // in V

12 v =log((I + I_o)/I_o) * V_T; // in V

13 disp(v, "The forward biasing voltage across the

    junction in V is");
```

Scilab code Exa 4.15 Theoretical diode current

```
1 // Exa 4.15
2 clc;
3 clear;
4 close;
5 // Given data
6 I_o = 10; // in nA
7 // I = I_o * ((e^(v/(Eta * V_T))) - 1)
8 // e^(v/(Eta * V_T) << 1, so neglecting it
9 I = I_o * (-1); // in nA
10 disp(I,"The Diode current in nA is ");
```

Scilab code Exa 4.16 Diode dynamic resistance

```
1 // Exa 4.16
2 clc;
3 clear;
4 close;
5 // Given data
6 R = 4.5; // in ohm
7 I = 44.4; // in mA
8 I=I*10^-3;// in A
9 V = R * I; // in V
10 Eta = 1;
11 V_T = 26; //in mV
12 V_T=V_T*10^{-3}; // in V
13 I_o = I/((%e^(V/(Eta * V_T))) -1);// in A
14 // At
15 V = 0.1; // in V
16 r_f = (Eta * V_T)/(I_o * ((%e^(V/(Eta * V_T)))-1));
     // in ohm
17 disp(r_f, "The diode dynamic resistance in
                                                  is");
```

Scilab code Exa 4.17 DC load line and operating point

```
1 // Exa 4.17
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 V_D = 10; // in V
7 // V_{S} = i * R_{L} + V_{D}
8 V_S = V_D; // in V (i * R_L = 0)
9 disp(V_S, "when diode is OFF, the voltage in volts is
      : ");
10 R_L = 250; // in ohm
11 I = V_S/R_L; // in A
12 disp(I*10^3, "when diode is ON, the current in mA is"
      );
13 V_D= 0:0.1:10; // in V
14 I= (V_S-V_D)/R_L*1000; // in mA
15 plot(V_D,I)
16 xlabel("V_D in volts");
17 ylabel("Current in mA")
18 title("DC load line");
19 disp("DC load line shown in figure")
```

Scilab code Exa 4.18 AC resistance of a Ge diode

```
1 // Exa 4.18
2 clc;
3 clear;
4 close;
5 // Given data
6 V = 0.25; // in V
7 I_o = 1.2; // in A
8 I_o = I_o * 10^-6; // in A
9 V_T = 26; // in mV
10 V_T = V_T * 10^-3; // in V
11 Eta = 1;
```

- 12 r = (Eta * V_T)/(I_o * (%e^(V/(Eta * V_T))));// in ohm
- 13 disp(r,"The ac resistance of the diode in ohm is");

Scilab code Exa 4.19 Width of the depletion layer

```
1 // Exa 4.19
2 clc;
3 clear;
4 close;
5 // Given data
6 q = 1.6 * 10^{-19}; // in C
7 \text{ N}_A = 3 * 10^20; // \text{ in } /\text{m}^3
8 A = 1; // in m^2
9 A = A * 10^{-6}; // in m<sup>2</sup>
10 V = -10; // in V
11 V_J = 0.25; // in V
12 V_B = V_J - V; // in V
13 epsilon_o = 8.854; // in pF/m
14 epsilon_o = epsilon_o * 10^{-12}; // in F/m
15 epsilon_r = 16;
16 epsilon = epsilon_o * epsilon_r;
17 W = sqrt((V_B * 2 * epsilon)/(q * N_A)); // in m
18 disp(W*10^6," The width of depletion layer in m
                                                         is"
      );
19 C_T = (epsilon * A)/W;// in pF
20 disp(C_T*10^12," the space charge capacitance in pF
      is");
```

Scilab code Exa 4.20 Diameter

1 // Exa 4.20 2 clc;

```
3 clear;
4 close;
5 // Given data
6 C_T = 100; // in pF
7 C_T=C_T*10^{-12}; // in F
8 epsilon_r = 12;
9 epsilon_o = 8.854 * 10^-12; // in F/m
10 epsilon = epsilon_r * epsilon_o;
11 Rho_p = 5; // in ohm-cm
12 Rho_p = Rho_p * 10^{-2}; // in ohm-m
13 V_j = 0.5; // in V
14 V = -4.5; // in V
15 Mu_p = 500; // in cm<sup>2</sup>
16 Mu_p = Mu_p * 10^{-4}; // in m<sup>2</sup>
17 Sigma_p = 1/Rho_p; // in per ohm-m
18 qN_A = Sigma_p/ Mu_p;
19 V_B = V_j - V;
20 W = sqrt((V_B * 2 * epsilon)/qN_A); // in m
21 //C_T = (epsilon * A)/W;
22 A = (C_T * W)/ epsilon;// in m
23 D = sqrt(A * (4/\%pi)); // in m
24 D = D * 10^3; // in mm
25 disp(D,"The diameter in mm is");
```

Scilab code Exa 4.21 Temperature of junction

```
1 // Exa 4.21
2 clc;
3 clear;
4 close;
5 // Given data
6 q = 1.6 * 10<sup>-19</sup>;// in C
7 Mu_p = 500;// in cm<sup>2</sup>/V-sec
8 Rho_p = 3.5;// in ohm-cm
9 Mu_n = 1500;// in cm<sup>2</sup>/V-sec
```

```
10 Rho_n = 10; // in ohm-cm
11 N_A = 1/(Rho_p * Mu_p * q); // in /cm^3
12 N_D = 1/(Rho_n * Mu_n * q); // in /cm^3
13 V_J = 0.56; // in V
14 n_i = 1.5 * 10^10; // in /cm^3
15 V_T = V_J/log((N_A * N_D)/(n_i)^2); // in V
16 // V_T = T/11600
17 T = V_T * 11600; // in K
18 T = T - 273; // in C
19 disp(T,"The Temperature of junction in C is");
```

Scilab code Exa 4.22 Reverse saturation current

1 // Exa 4.22 2 clc;3 clear; 4 close; 5 // Given data 6 R = 5; // in ohm7 I = 50; // in mA 8 I=I*10^-3;// in A 9 V = R * I; // in V 10 Eta = 1; 11 $V_T = 26; // \text{ in mV}$ 12 $V_T = V_T * 10^{-3}; // in V$ 13 I_o = I/((%e^(V/(Eta * V_T))) - 1);// in A 14 disp(I_0*10^6, "Reverse saturation current in A is"); 15 v1 = 0.2; // in V 16 r = (Eta * V_T)/(I_o * (%e^(v1/(Eta * V_T))));// in ohm 17 disp(r,"Dynamic resistance of the diode in is");

Chapter 6

Microwave Diodes

Scilab code Exa 6.1 Tuning range of circuit

```
1 // Exa 6.1
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 C1_min= 5;// in pF
7 C1_max= 50;// in pF
8 C2_min= 5;// in pF
9 C2_max= 50;// in pF
10 C1_min=C1_min*10^-12; // in F
11 C2_min=C2_min*10^-12;// in F
12 C1_max=C1_max*10^-12; // in F
13 C2_max=C2_max*10^-12; // in F
14 L = 10; // in mH
15 L = L * 10^{-3}; // in H
16 C_T_min = (C1_min*C2_min)/(C2_min+C2_min);// in F
17 f_o_max = 1/( 2*%pi*(sqrt(L*C_T_min)) );//in Hz
18 f_o_max = f_o_max * 10^-6; // in MHz
19 C_T_max = (C1_max*C2_max)/(C2_max+C2_max);// in F
20 f_o_min = 1/( 2*%pi*(sqrt(L*C_T_max)) );//in Hz
21 f_o_min = f_o_min * 10^-3; // in kHz
```

22 disp("The tuning range for circuit will be : "+
 string(round(f_o_min))+" kHz to "+string(round(
 f_o_max))+" MHz")

Chapter 7

Optoelectonic Devices

Scilab code Exa 7.1 Component value

```
1 // Exa 7.1
2 clc;
3 clear;
4 close;
5 // Given data
6 Vout = 5; // in V
7 V = 1.5; //ON state voltage drop across LED in V
8 I = 5; // in mA
9 I = I*10^-3; // in A
10 R = (Vout-V)/I; // in ohm
11 disp(R, "Resistance in ohm is");
```

Scilab code Exa 7.2 Open circuit voltage

1 // Exa 7.2
2 clc;
3 clear;
4 close;

```
5 // Given data
6 \text{ N}_A = 7.5*10^{24}; // \text{ in atoms/m}^3
7 N_D = 1.5*10^22; // in atoms/m<sup>3</sup>
8 D_e = 25*10^{-4}; // in m<sup>2</sup>/s
9 D_n = 1*10^{-3}; // in m^2/s
10 V_T = 26*10^{-3}; // in V
11 Torque_eo = 500*10^-9; // in sec
12 Torque_ho = 100*10^-9; // in sec
13 e = 1.6*10^{-19}; // in C
14 n_i = 1.5*10^16; // in /m<sup>3</sup>
15 I_lambda = 12.5; // in mA/cm^2
16 I_lambda= I_lambda*10^-3; // in A/cm<sup>2</sup>
17 L_e = sqrt(D_e*Torque_eo); // in m
18 L_n = sqrt(D_n*Torque_ho); // in m
19 J_s = e*((n_i)^2)*(((D_e)/(L_e*N_A)) + ((D_n)/(L_n*A)))
      N_D)) );// in A/m<sup>2</sup>
20 J_s= J_s*10^-4; // in A/cm<sup>2</sup>
21 V_OC = V_T*(log(1+(I_lambda/J_s))); // in V
22 disp(V_OC, "Open circuit voltage in volts is");
```

Scilab code Exa 7.3 Photocurrent density

```
1 // Exa 7.3

2 clc;

3 clear;

4 close;

5 // Given data

6 Phi_o = 1*10^21; // in m^-2s^-1

7 alpha =1*10^5; // in m^-1

8 e= 1.6*10^-19; // in C

9 G_L1 = alpha*Phi_o; // in m^-3s^-1

10 W = 26; // in m

11 W = W * 10^-6; // in m

12 G_L2 = alpha*Phi_o*(%e^((-alpha)*W)); // in m^-3s^-1

13 J_L = e*Phi_o*(1-%e^(-(alpha)*W)); // in A/m^2
```

14 J_L = J_L * 10^3*10^-4; // in mA/cm^2 15 disp(J_L,"Photo current density in mA/cm^2 is ");

Chapter 8

Metal Semiconductor Field Effect Transistor

Scilab code Exa 8.1 Drain current

```
1 // Exa 8.1
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 \text{ I_DSS} = 15; // \text{ in mA}
7 V_GS_off = -5; // in V
8 V_GS = 0; // in V
9 I_D = I_DSS*((1-(V_GS/V_GS_off))^2); // in mA
10 disp(I_D, "When V_GS=0, the drain current in mA is");
11 V_GS = -1; // in V
12 I_D = I_DSS*((1-(V_GS/V_GS_off))^2); // in mA
13 disp(I_D,"When V_GS=-1V, the drain current in mA is"
      );
14 V_GS = -4; // in V
15 I_D = I_DSS*((1-(V_GS/V_GS_off))^2); // in mA
16 disp(I_D,"When V_GS=-4 V, the drain current in mA is
      ");
```

Scilab code Exa 8.2 Transconductance curve

```
1 // Exa 8.2
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 V_GS_off = -20; // in V
7 \text{ I_DSS} = 12; // \text{ in mA}
8 V_GS = 0; // in V
9 // For
10 V_GS = -20;
11 I_D = I_DSS*((1-(V_GS/V_GS_off))^2); // in mA
12 disp(I_D,"When V_GS = -20 V, the drain current in mA
       is");
13 // For
14 V_GS = -15;
15 I_D = I_DSS*((1-(V_GS/V_GS_off))^2); // in mA
16 disp(I_D,"When V_GS = -15 V, the drain current in mA
       is");
17 // For
18 V_GS = -10;
19 I_D = I_DSS*((1-(V_GS/V_GS_off))^2); // in mA
20 disp(I_D,"When V_GS = -10 V, the drain current in mA
       is");
21 // For
22 V_GS = -5;
23 I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA
24 disp(I_D,"When V_GS = -5 V, the drain current in mA
      is");
25 // For
26 V_GS = 0;
27 I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA
28 disp(I_D,"When V_GS = 0 V, the drain current in mA
```

```
is");
29 V_GS= 0:-0.1:-20
30 I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA
31 plot(V_GS,I_D);
32 xlabel("Gate to source voltage in V")
33 ylabel("Drain current in mA")
34 title("The transconductance curve")
35 disp("The transconductance curve shown in figure")
```

Scilab code Exa 8.3 Maximum and minimum transconductance

```
1 // Exa 8.3
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 // For maximum transconductance curve
7 disp("For Maximum Transconductance curve")
8 V_GS_off = -2; // in V
9 I_DSS = 8; // in mA
10 V_GS = 0; // in V
11 // For
12 V_GS = -2;
13 I_D = I_DSS*((1-(V_GS/V_GS_off))^2); // in mA
14 disp(I_D,"When V_GS = -2 V, the drain current in mA
      is");
15 // For
16 V_GS = -1.5;
17 I_D = I_DSS*((1-(V_GS/V_GS_off))^2); // in mA
18 disp(I_D,"When V_GS = -1.5 V, the drain current in
     mA is");
19 // For
20 V_GS = -1;
21 I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA
22 disp(I_D,"When V_{GS} = -1 V, the drain current in mA
```
```
is");
23 // For
24 \quad V_GS = -0.5;
25 I_D = I_DSS*((1-(V_GS/V_GS_off))^2); // in mA
26 disp(I_D,"When V_{GS} = -0.5 V, the drain current in
     mA is");
27 // For
28 V_GS = 0;
29 I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA
30 disp(I_D,"When V_GS = 0 V, the drain current in mA
      is");
31
32 // For maximum transconductance curve
33 disp("For Maximum Transconductance curve")
34 V_GS_off = -6; // in V
35 \text{ I_DSS} = 20; // \text{ in mA}
36 \ V_GS = 0; // in V
37 // For
38 V_GS = -6;
39 I_D = I_DSS*((1-(V_GS/V_GS_off))^2); // in mA
40 disp(I_D,"When V_{-}GS = -6 V, the drain current in mA
      is");
41 // For
42 V_GS = -4;
43 I_D = I_DSS*((1-(V_GS/V_GS_off))^2); // in mA
44 disp(I_D,"When V_GS = -4 V, the drain current in mA
      is");
45 // For
46 V_GS = -2;
47 I_D = I_DSS*((1-(V_GS/V_GS_off))^2); // in mA
48 disp(I_D,"When V_{GS} = -2 V, the drain current in mA
      is");
49 // For
50 V_GS = 0;
51 I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA
52 disp(I_D,"When V_{-}GS = 0 V, the drain current in mA
      is");
53 // For maximum transconductance curve
```

```
54 V_GS_off=-6;// in V
55 I_DSS= 20; // in mA
56 V_GS = 0:-0.1:-6; // in volt
57 I_D = I_DSS*((1-(V_GS/V_GS_off))^2);// in mA
58 // For minimum transconductance curve
59 plot(V_GS,I_D);
60 V_GS_off=-2; // in V
61 I_DSS= 8; // in mA
62 V_GS = 0: -0.1: -2; // in volt
63 I_D = I_DSS*((1-(V_GS/V_GS_off))^2); // in mA
64 plot(V_GS,I_D);
65 xlabel("Gate to source voltage in V")
66 ylabel("Drain current in mA")
67 title("The minimum and maximum transconductance
     curve")
68 disp("The minimum and maximum transconductance curve
      shown in figure")
69
70 // Note: For maximum transconductance curve the
      value of drain current at V_GS = -2 is wrong.
```

Scilab code Exa 8.4 Drain current

```
1 // Exa 8.4

2 clc;

3 clear;

4 close;

5 // Given data

6 I_DSS = 20; // in mA

7 V_P = -8; // in V

8 g_mo = 5000; // in s

9 V_GS = -4; // in V

10 I_D = I_DSS*((1-(V_GS/V_P))^2); // in mA

11 disp(I_D, "The value of drain current in mA is");

12 g_m = g_mo*(1-(V_GS/V_P)); // in s
```

Scilab code Exa 8.5 Drain current

```
1 // Exa 8.5
2 clc;
3 clear;
4 close;
5 // Given data
6 I_D1 = 10; // in mA
7 V_GS = -12; // in V
8 V_GSth = -3; // in V
9 K = I_D1/( (V_GS-V_GSth)^2 ); // in mA/V
10 V_GS= -6; // in V
11 I_D = K*((V_GS-V_GSth)^2); // in mA
12 disp(I_D, "The value of I_D in mA is");
```

Scilab code Exa 8.7 Minimum value of VDS

```
1 // Exa 8.7

2 clc;

3 clear;

4 close;

5 // Given data

6 V_GS = -2; // in V

7 V_P = -5; // in V

8 V_DS = V_GS-V_P; // in V

9 I_DSS = 8; // in mA

10 disp(V_DS, "The minimum value of V_DS in V is");

11 I_D = I_DSS*((1-(V_GS/V_P))^2); // in mA

12 disp(I_D, "The drain current in mA is");
```

Scilab code Exa 8.8 Value of Vgs and gm

```
1 // Exa 8.8

2 clc;

3 clear;

4 close;

5 // Given data

6 V_P = -2; // in V

7 I_DSS = 1.65; // in mA

8 I_D = 0.8; // in mA

9 V_DD = 24; // in V

10 V_GS = V_P*(1- sqrt(I_D/I_DSS)); // in V

11 disp(V_GS, "The value of V_GS in V is");

12 g_mo = -(2*I_DSS)/V_P; // in mS

13 g_m = g_mo*(1-(V_GS/V_P)); // in mS

14 disp(g_m, "The value of g_m in mS is");
```

Scilab code Exa 8.9 Gate source voltage

```
1 // Exa 8.9
2 clc;
3 clear;
4 close;
5 // Given data
6 V_P = 5; // in V
7 I_DSS = -40; // in mA
8 I_D = -15; // in mA
9 V_GS = V_P*(sqrt(I_D/I_DSS)-1); // in V
10 disp(abs(V_GS), "The gate source voltage in V is");
```

Scilab code Exa 8.10 Value of transconductance

```
1 // Exa 8.10
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 \text{ I_D1} = 1.9; // \text{ in mA}
7 \text{ I_D2} = 1; // \text{ in mA}
8 del_I_D = I_D1-I_D2; // in mA
9 V_GS2 = -3.3; // in V
10 V_GS1 = -3; // in V
11 del_V_GS = V_GS1-V_GS2; // in V
12 g_m = del_I_D/del_V_GS; // in mA/V
13 \text{ g_m} = \text{g_m} * 10^3; // \text{ in } \text{ mhos}
14 disp(g_m,"The value of transconductance in
                                                             mhos
       is");
```

Scilab code Exa 8.11 AC drain resistance

```
1 // Exa 8.11

2 clc;

3 clear;

4 close;

5 // Given data

6 V_DS1 = 14;// in V

7 V_DS2 = 5;// in V

8 del_V_DS = V_DS1-V_DS2;// in V

9 I_D1 = 3.3;// in mA

10 I_D2 = 3;// in mA

11 del_I_D = I_D1-I_D2;// in mA

12 r_d = del_V_DS/del_I_D;// in k ohms

13 disp(r_d, "The drain resistance in k ohms is");

14 V_GS1 = 0.4;// in V

15 V_GS2 = 0.1;// in V
```

```
16 del_V_GS = V_GS1-V_GS2; // in V
17 I_D1 = 3.3; // in mA
18 I_D2 = 0.71; // in mA
19 del_I_D = I_D1-I_D2; // in mA
20 g_m = del_I_D/del_V_GS; // in mA/V
21 g_m = g_m * 10^3; // in mhos
22 disp(g_m, "The transconductance in mhos is");
23 Miu =r_d*10^3*g_m*10^-6;
24 disp(Miu, "Amplification factor is");
```

Scilab code Exa 8.12 Pinch off voltage

```
1 // Exa 8.12
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 q = 1.6*10^{-19}; // in C
7 N_D = 10^{15*10^{6}}; // electrons/m<sup>3</sup>
8 = 3*10^{-4}; // in cm
9 a=a*10^-2; // in m
10 Epsilon_o = (36 * %pi * 10^9)^-1;
11 Epsilon = 12*Epsilon_o;
12 V_P = (q*N_D*((a)^2))/(2*Epsilon);// in V
13 disp(V_P,"Pinch off voltage in V is");
14 V_GS = 1; // in V
15 V_P = 2; // in V
16 // Formula V_GS= V_P*(1-b/a)^2
17 b = a*(1-sqrt(V_GS/V_P)); // in m
18 b = b * 10^{6}; // in m
19 disp(b,"The channel half width in m is");
20
21 // Note: In the book, the unit of channel half width
       is wrong.
```

Scilab code Exa 8.13 Value of VGS

```
1 // Exa 8.13

2 clc;

3 clear;

4 close;

5 // Given data

6 I_DSS = 8; // in mA

7 V_P = -4; // in V

8 a = 3*10^-4; // in cm

9 N_D = 10^15; // in electrons/cm^3

10 I_D = 3; // in mA

11 V_GS = V_P*( 1-sqrt(I_D/I_DSS) ); // in V

12 disp(V_GS, "The value of V_GS in V is");

13 V_DS_sat = V_GS-V_P; // in V

14 disp(V_DS_sat, "The value of V_DS_sat in V is");
```

Scilab code Exa 8.14 Drain current

```
1 // Exa 8.14
2 clc;
3 clear;
4 close;
5 // Given data
6 V_P = -4; // in V
7 I_DSS = 9; // in mA
8 V_GS = -2; // in V
9 I_D = I_DSS*(( 1-(V_GS/V_P) )^2); // in mA
10 disp(I_D, "The drain current in mA is");
```

Scilab code Exa 8.15 Value of transconductance

```
1 // Exa 8.15
2 clc;
3 clear;
4 close;
5 // Given data
6 I_DSS = 12; // in mA
7 V_P = -6; // in V
8 V_GS = -1; // in V
9 g_mo = (-2*I_DSS)/V_P; // in mA/V
10 g_m = g_mo*(1-(V_GS/V_P)); // in mS
11 disp(g_m, "The value of transconductance in mS is");
```

Scilab code Exa 8.16 Value of transconductance

```
1 // Exa 8.16

2 clc;

3 clear;

4 close;

5 // Given data

6 I_DSS = 10; // in mA

7 V_P = -5; // in V

8 V_GS = -2.5; // in V

9 g_m = ((-2*I_DSS)/V_P)*(1-(V_GS/V_P)); // in mS ....

correction

10 disp(g_m, "The transconductance in mS is");

11 I_D = I_DSS * ((1-(V_GS/V_P))^2); // in mA

12 disp(I_D, "The drain current in mA is");
```

Chapter 9

MOS Transistors

Scilab code Exa 9.1 Value of current

```
1 // Exa 9.1
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 V_TN = 0.7; // in V
7 W = 45*10^{-4}; // in cm
8 L = 4; // in m
9 L = L * 10^{-4}; // in cm
10 t_ox = 450; // in
11 t_ox = t_ox * 10^{-8}; // in cm
12 V_GS = 1.4; // in V
13 Miu_n = 700; // in cm^2/V-s
14 Epsilon_ox = (8.85*10<sup>-14</sup>)*(3.9);// in F/cm
15 k_n = (W*Miu_n*Epsilon_ox)/(2*L*t_ox); // A/V^2
16 disp(k_n*10^3, "The value of k_n in mA/V^2 is : ")
17 I_D = k_n * ((V_GS-V_TN)^2); // in A
18 disp(I_D*10^3, "The current in mA is ");
19
20 // Note: There is a calculation error to find the
      value of k<sub>-</sub>n, So the answer in the book is wrong
```

Scilab code Exa 9.2 IDQ and VDSQ

```
1 // Exa 9.2
2 clc;
3 clear;
4 close;
5 // Given data
6 \quad I_Don = 6; // in mA
7 I_Don= I_Don*10^-3; // in A
8 V_GSon = 8; // in V
9 V_GSth = 3; // in V
10 V_DD = 12; // in V
11 R_D= 2*10^3;// in
12 k= I_Don/(V_GSon-V_GSth)^2; // in A/V^2
13 // I_D = k * [V_G S - V_G S th]^2 but V_G S = V_D D - I_D * R_D, So
14 // I_D = k * (V_D D - I_D * R_D - V_G Sth)^2 or
15 // I_D^2 * R_D^2 + I_D^* (2 * R_D * V_G Sth - 2 * R_D * V_D D - 1/k) + (
      V_DD-V_GSth)^2
16 A= R_D^2; // assumed
17 B= 2*R_D*V_GSth - 2*R_D*V_DD - 1/k; // assumed
18 C= (V_DD - V_GSth)^2; // assumed
19 root= [A B C]
20 root= roots(root);// in A
21 I_DQ= root(2); // in A
22 disp(I_DQ*10^3, "The value of I_DQ in mA is : ")
23 V_DSQ= V_DD-I_DQ*R_D; // in V
24 disp(V_DSQ,"The value of V_DSQ in volts is : ")
```

Scilab code Exa 9.3 Biasing circuit

1 // Exa 9.3

```
2 clc;
3 clear;
4 close;
5 // Given data
6 V_GS = 6; // in V
7 I_D = 4; // in mA
8 V_GSth = 2; // in V
9 V_DS = V_GS; // in V
10 V_DD = 2*V_DS; // in V
11 disp(V_DD, "The value of V_DD in V is")
12 R_D = (V_DD-V_DS)/I_D; // in k ohm
13 disp(R_D, "The value of R_D in k ohm is ");
14 disp("The very high value for the gate to drain
resistance is : 10 M ")
```

Scilab code Exa 9.4 IDQ VGSQ and VDS

```
1 // Exa 9.4
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 \quad I_Don = 3*10^{-3};
7 V_GSon = 10; // in V
8 V_GSth= 5;// in V
9 R2= 18*10^{6}; // in
10 R1= 22*10^{6}; // in
11 R_S=820; // in
12 R_D=3*10^3; // in
13 V_DD= 40; // in V
14 V_G= V_DD*R2/(R1+R2); // in V
15 k= I_Don/(V_GSon-V_GSth)^2; // in A/V^2
16 // V_G= V_GS+V_RS= V_GS+I_D *R_S or V_GS= V_G-I_D *R_S
17 // I_D = k * [V_GS - V_GSth]^2 or
18 // I_D = k * (V_G - I_D * R_D - V_G Sth)^2 or
```

Scilab code Exa 9.5 IDSQ VGSQ and VDSQ

```
1 // Exa 9.5
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 I_D = (0.3 * (V_G S - V_P)^2) (y = v_P)^2
7 V_DD= 30;// in V
8 V_P = 4; // in V
9 R_GS = 1.2*10^{6}; // in
10 R_G = 1.2*10^{6}; // in
11 Req= R_GS/(R_GS+R_G); // in
12 R_D= 15; // in
13 // V_DS= V_DD-I_D \astR_D (applying KVL to drain circuit
14 // V_GS= Req*V_DS= (V_DD-I_D*R_D)*Req
15 // from given expression
16 //I_D^2 * (R_D * Req)^2 - I_D * (2 * R_D * Req * (V_DD * Req - V_P))
      +1/0.3 + (V_DD * Req - V_P)^2)
```

```
17 A= (R_D*Req)^2; // assumed
18 B= -(2*R_D*Req*(V_DD*Req-V_P)+1/0.3); // assumed
19 C= (V_DD*Req-V_P)^2; // assumed
20 I_D= [A B C]
21 I_D= roots(I_D); // in mA
22 I_D= I_D(2); // in mA
23 I_DSQ= I_D; // in mA
24 disp(I_DSQ, "The value of I_DSQ in mA is : ")
25 V_GS= (V_DD-I_D*R_D); // in V
26 disp(V_GS, "The value of V_GS in volts is : ")
27 V_DS= Req*V_GS; // in V
28 disp(V_DS, "The value of V_DS in volts is : ")
```

Scilab code Exa 9.6 Value of ID and VDS

```
1 // Exa 9.6
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ k} = 0.1; // \text{ in } \text{mA/V}^2
7 V_T = 1; // in V
8 R1 = 33; //in k ohm
9 R2 = 21; // in k ohm
10 V_DD = 6; // in V
11 R_D = 18; // in k ohm
12 V_G = (R2/(R2+R1))*V_DD; // in V
13 V_S = 0; // in V
14 V_GS = V_G - V_S; // in V
15 I_D = k*((V_GS-V_T)^2); // in mA
16 disp(I_D,"The value of I_D in mA is");
17 V_{DS} = V_{DD} - (I_{D*R_D}); // in V
18 disp(V_DS, "The value of V_DS in V is");
19 V_DSsat = V_GS-V_T; // in V
20 disp(V_DSsat,"The value of V_DS(sat) in V is");
```

```
21 if V_DS>V_DSsat then
22     disp("MOSFET is in saturation region")
23 end
```

Scilab code Exa 9.7 DC load line and operating point

```
1 // Exa 9.7
2 clc;
3 clear;
4 close;
5 // Given data
6 V_DD = 6; // in V
7 R_D= 18; // in kohm
8 // for maximum value of I_D
9 V_DS = 0; // in V
10 I_Dmax= (V_DD-V_DS)/R_D; // in mA
11 // for maximum value of V_DS
12 I_D=0; // in mA
13 V_DSmax=V_DD-I_D*R_D; // in V
14 V_DS= 0:0.1:V_DSmax; // in V
15 I_D = (V_DD - V_DS)/R_D; // in mA
16 plot(V_DS,I_D)
17 xlabel("V_DS in volts")
18 ylabel("I_D in mA")
19 title("DC load line")
20 disp("DC load line shown in figure");
21 disp("Q-points are : 2.8V,0.178 mA")
```

Scilab code Exa 9.8 Region of MOSFET

1 // Exa 9.8
2 clc;
3 clear;

```
4 close;
5 // Given data
6 R2 = 18; // in k ohm
7 R1 = 33; // in k ohm
8 V_DD = 6; // in V
9 V_G = (R2/(R1+R2)) * V_DD; // in V
10 V_S = V_DD; // in V
11 V_SG = V_S - V_G; // in V
12 disp(V_SG, "The value of V_SG in V is");
13 k = 0.1;
14 V_T = -1; // in V
15 I_D = k*((V_SG+V_T)^2); // \text{ in mA}
16 disp(I_D,"The value of I_D in mA is");
17 R_D = 3; // in k ohm
18 V_SD = V_DD - (I_D*R_D); // in V
19 disp(V_SD, "The value of V_SD in V is");
20 V_SDsat = V_SG+V_T; // in V
21 disp(V_SDsat, "The value of V_SD(sat) in V is");
22 if V_SD>V_SDsat then
       disp("The p MOSFET is indeed biased in the
23
          saturation region")
```

```
24 \quad {\tt end}
```

Scilab code Exa 9.9 IDQ and VDSQ

```
1 // Exa 9.9
2 clc;
3 clear;
4 close;
5 // Given data
6 V_G= 1.5; // in V
7 V_P= -3; // in V
8 R_S= 750; // in
9 R_D= 1800; // in
10 I_DSS= 6*10^-3; // in A
```

```
11 V_DD= 18;// in V
12 // V_GS = V_G - I_D * R_S
13 // I_D = I_DSS*(1-V_GS/V_P)^2 or I_DSS*(1-(V_G-I_D*V_P)^2)^2
      R_{S})/V_{P}^{2}
14 //I_D^2 * R_S^2 + I_D * (2 * R_S * (V_P - V_G) - V_P^2 / I_DSS) + (V_P
      -V_G)^2
15 A= R_S^2
16 B = (2 * R_S * (V_P - V_G) - V_P^2 / I_DSS)
17 C = (V_P - V_G)^2
18 I_D= [A B C]
19 I_D= roots(I_D); // in A
20 I_D = I_D(2); // in A
21 I_DQ = I_D; // in A
22 V_DS = V_DD - I_D * (R_D + R_S); // in V
23 V_DSQ = V_DS; // in V
24 disp(I_DQ*10^3,"The value of I_DQ in mA is : ")
25 disp(V_DSQ,"The value of V_DSQ in volts is : ")
```

Scilab code Exa 9.10 Value of Rs

```
1 // Exa 9.10

2 clc;

3 clear;

4 close;

5 // Given data

6 V_GS = 4; // in V

7 V_P = 2; // in V

8 R2 = 10; // in k ohm

9 R1 = 30; // in k ohm

10 R_D= 2.5; // in kohm

11 I_D= 15; // in mA

12 I_D= I_D*10^-3; // in A

13 V_DD = 25; // in V

14 V_G = (V_DD/R_D)*V_DD/(R1+R2); // in V

15 R_S = (V_G-V_GS)/I_D; // in ohm
```

Scilab code Exa 9.11 ID and VDS

```
1 // Exa 9.11
2 clc;
3 clear;
4 close;
5 // Given data
6 k= 0.1; // in mA/V^2
7 V_T = 1; // in V
8 R2= 87*10^3; // in
9 R1= 110*10^3; // in
10 R_S=2; // in k
11 R_D=2; // in k
12 / R_D = 3 * 10^3; / in
13 V_DD= 6; // in V
14 V_SS = 6; // in V
15 V_G= (V_DD+V_SS)*R2/(R1+R2);// in V
16 // V_{-}S = I_{-}D * R_{-}S - V_{-}SS
17 // V_GS= V_G-V_S= V_G+V_SS - (I_D * R_S)
18 // I_D = k * [V_G S - V_T]^2 = k * [(V_G + V_S S - V_T) - (I_D * R_S)]
      ]^2
19 //(I_D*R_S)^2 - I_D*(2*R_S*(V_G+V_SS-V_T)+1/k)
                                                      +(
      V_G+V_SS-V_T)^2
20 A= R_S^2; // assumed
21 B= -(2*R_S*(V_G+V_SS-V_T)+1/k); // assumed
22 C= (V_G+V_SS-V_T)^2; // assumed
23 I_D= [A B C]
24 I_D= roots(I_D); // in mA
25 I_D= I_D(2); // in mA
26 disp(I_D,"The value of I_D in mA is : ")
27 // Applying KVL to drain source loop, V_DD+V_SS= I_D
      *R_D+V_DS+I_D*R_S
28 V_DS=V_DD+V_SS-I_D*R_D-I_D*R_S; // in V
```

Scilab code Exa 9.12 NMOS CS circuit

```
1 // Exa 9.12
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ k} = 0.16; // \text{ in } \text{mA/V}^2
7 V_T = 2; // in V
8 I_D = 0.5; // in mA
9 V_DD = 6; // in V
10 V_SS = -6; // in V
11 V_{GS} = V_T + (sqrt(I_D/k)); // in V
12 R_S = 2; // in k ohm
13 V_S = (I_D * R_S) - V_DD; // in V
14 V_G = V_{GS} + V_{S}; // in V
15 I = 0.1*I_D;// in mA
16 R2 = (V_G+V_DD)/I; // in k ohm
17 disp(R2,"The value of R2 in k ohm is");
18 R1 = (V_DD - V_G)/I; // in k ohm
19 disp(R1,"The value of R1 in k ohm is");
20 R_D = 10; // in k ohm
21 V_{DS} = (V_{DD} - V_{SS}) - (I_{D} * (R_{S} + R_{D})); // in V
22 disp(V_DS, "The value of V_DS in V is");
23 V_DSsat = V_GS-V_T; // in V
24 disp(V_DSsat,"The value of V_DS(sat) in V is");
25 if V_DS>V_DSsat then
       disp("The MOSFET is in saturation region")
26
27 \text{ end}
28
29 // Note: The value of R1 is in k ohm but in the book
       it is wrong.
```

Scilab code Exa 9.13 Value of IDQ and VDS

```
1 // Exa 9.13
2 clc;
3 clear;
4 close;
5 // Given data
6 V_DD = 6; // in V
7 V_D = 3;// in V
8 R_D = 10; // in k ohm
9 I_DQ = (V_DD - V_D)/R_D; // in mA
10 disp(I_DQ,"The value of I_DQ in mA is");
11 V_T = 0.8; // in V
12 k = 0.12; // in mA/V^2
13 V_GS = sqrt(I_DQ/k) + V_T; // in V
14 V_S = -V_GS; // in V
15 V_DS = V_D - V_S; // in V
16 disp(V_DS, "The value of V_DS in V is");
```

Scilab code Exa 9.14 Region of MOSFET

```
1 // Exa 9.14
2 clc;
3 clear;
4 close;
5 // Given data
6 I_D = 0.3; // in mA
7 k = 0.12; // in mA/V<sup>2</sup>
8 V_T = 1; // in V
9 V_GS = V_T + (sqrt(I_D/k)); // in V
10 V_S = -V_GS; // in V
11 V_DD = 6; // in V
```

```
12 V_D = 3; // in V

13 I_DQ = 0.3; // in mA

14 R_D = (V_DD-V_D)/I_DQ; // in k ohm

15 disp(R_D, "The value of R_D in k ohm is");

16 V_DS = V_D - V_S; // in V

17 disp(V_DS, "The value of V_DS in V is");

18 V_DSsat = V_GS - V_T; // in V

19 disp(V_DSsat, "The value of V_DS(sat) in V is");

20 if V_DS>V_DSsat then

21 disp("The MOSFET is in saturation region")

22 end
```

Scilab code Exa 9.15 VGS VDS and ID

```
1 // Exa 9.15
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 k = 0.05; // in mA/V^2
7 V_T= 1; // in V
8 V_DD = 6; // in V
9 R_S= 9.1; //in k
10 //V_GS = V_DD - I_D * R_S
11 //I_D = k * (V_D D - I_D * R_S)^2
12 //I_D^2 * R_S^2 - I_D^* (2 * V_D^2 + R_S^2 + 1/k) + V_D^2
13 A= R_S^2; // assumed
14 B = -(2*V_DD*R_S+1/k); // assumed
15 C= V_DD^2; // assumed
16 \ I_D = [A \ B \ C];
17 I_D= roots(I_D); // in mA
18 I_D= I_D(2); // in mA
19 V_GS = V_DD - I_D * R_S; // in V
20 V_DS = V_GS; // in V
21 disp(I_D,"The value of I_D in mA is : ")
```

22 disp(V_GS, "The value of V_GS in volts is : ")
23 disp(V_DS, "The value of V_DS in volts is : ")

```
Scilab code Exa 9.16 All dc voltages
```

```
1 // Exa 9.16
2 clc;
3 clear;
4 close;
5 // Given data
6 k1= 0.01; // in mA/V^2
7 k2= 0.05; // in mA/V^2
8 V_DD= 5;// in V
9 V_T1=1; // in V
10 V_T2=1; // in V
11 // Analysis for Vi=5V
12 Vi= 5;// in V
13 //I_D1 = k1 * (V_GS1 - V_T1)^2 and I_D2 = k2 * (2 * (V_GS2 - V_T1))^2
      V_T2) *V_DS2-V_DS2^2)
14 // But V_GS2= Vi, V_DS2= Vo, V_GS1= V_DS1= V_DD-Vo
15
  //Vo^2*(k1+k2)-Vo*[2*k1*(V_DD-V_T1)+2*k2*(Vi-V_T2)]+
     k1 * (V_DD - V_T1)^2
16 A = (k1+k2);
17 B = -[2*k1*(V_DD-V_T1)+2*k2*(Vi-V_T2)];
18 C=k1*(V_DD-V_T1)^2;
19 Vo= [A B C]
20 Vo= roots(Vo);// in V
21 Vo= Vo(2); // in V
22 V_GS2= Vi;// in V
23 V_DS2= Vo;// in V
24 V_GS1= V_DD-Vo; // in V
25 I_D1= k1*(V_GS1-V_T1)^2; // in mA
26 I_D2= I_D1; // in mA
27 disp("Part (i) For Vi = 5 V")
28 disp(Vo,"The output voltage in volts is : ")
```

Scilab code Exa 9.17 Value of ID and VDS

```
1 // Exa 9.17
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ k} = 0.12; // \text{ in } \text{mA/V}^2
7 V_T = -2.5; // in V
8 V_GS = 0;
9 I_D = k*((V_GS-V_T)^2); // \text{ in mA}
10 disp(I_D,"The value of I_D in mA is");
11 V_DD = 6; // in V
12 R_S = 4.7; // in k ohm
13 V_DS = V_DD -(I_D*R_S); // in V
14 disp(V_DS, "The value of V_DS in V is ");
15 V_S = 0; // in V
16 V_DSsat = V_S - V_T; // in V
17 disp(V_DSsat,"The value of V_DS(sat) in V is");
```

Scilab code Exa 9.18 Various voltage and current

```
1 // Exa 9.18
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ k4} = 0.125; // \text{ in } \text{mA/V}^2
7 k3 = k4; // in mA/V^2
8 \text{ k2} = \text{ k4}; // \text{ in } \text{mA/V}^2
9 k1 = 0.25; // in mA/V^2
10 V_T1 = 0.8; // in V
11 V_T2 = V_T1; // in V
12 V_T3 = V_T1; // in V
13 V_T4 = V_T1;// in V
14 V_SS = -5; // in V
15 V_DD = 5; // in V
16 R_D = 10; // in k ohm
17 V_GS3 = ((sqrt(k4/k3) * (-V_SS - V_T4))+V_T3)/(1+
      sqrt(k4/k3));// in V
18 I_Q = k_2 * ((V_GS3 - V_T2)^2); // in mA
19 I_D1 = I_Q; // in mA
20 V_GS1 = V_T1 + (sqrt(I_D1/k1)); // in V
21 disp(V_GS1,"The value of V_GS1 in V is");
22 V_DS2 = (-V_SS - V_GS1); // in V
23 disp(V_DS2, "The value of V_DS2 in V is");
24 V_DS1 = V_DD - (I_Q*R_D) - (V_SS + V_DS2); // in V
25 disp(V_DS1,"The value of V_DS1 in V is");
```

Scilab code Exa 9.19 Q point values

```
1 // Exa 9.19
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 R2 = 20; // in
                  k ohm
7 R1 = 30; // in k ohm
8 R_D = 20; // in k ohm
9 R_D = R_D * 10^3; // in ohm
10 V_DD = 5; // in V
11 V_G = (R2/(R1+R2)) * V_DD; // in V
12 V_S = 0; // in V
13 V_GS = V_G; // in V
14 k = 100*10^{-6}; // in A/V<sup>2</sup>
15 V_T = 1; // in V
16 I_DQ = k*((V_GS-V_T)^2); // in A
17 disp(I_DQ * 10<sup>6</sup>, "The value of I_DQ in A is");
18 / R_D = R_D * 140^3; / in ohm
19 V_DSQ = V_DD - (I_DQ*R_D); // in V
20 disp(V_DSQ,"The value of V_DSQ in V is");
```

Scilab code Exa 9.20 IDQ VGSQ and VD

```
1 // Exa 9.20
2 clc;
3 clear;
4 close;
5 // Given data
6 V_P= -8;// in V
7 R_S= 2.4;// in k
```

```
8 //R_D = 1800; // in
9 I_DSS= 8; // in mA
10 V_DD= 20;// in V
11 R_D= 6.2; // in k
12 // V_GS = -I_D * R_S
13 // I_D = I_D SS * (1 - V_G S / V_P)^2 or I_D SS * (1 - (-I_D * R_S) / V_P)^2
      V_P)^2
14 //I_D^2 * R_S^2 + I_D * (2 * R_S * (V_P - V_G) - V_P^2 / I_DSS) + (V_P
      )^{2}
15 A= R_S^2
16 B = (2 * R_S * (V_P) - V_P^2 / I_DSS)
17 C = (V_P)^2
18 I_D= [A B C]
19 I_D = roots(I_D); // in mA
20 I_D= I_D(2); // in mA
21 I_DQ = I_D; // in mA
22 disp(I_DQ,"The value of I_DQ in mA is : ")
23 V_GSQ = -I_D*R_S;
24 disp(V_GSQ, "The value of V_GSQ in volts ")
25 V_D= V_DD-I_D*R_D; // in V
26 disp(V_D,"The value of V_D in volts is : ")
```

Scilab code Exa 9.21 ID VD VS and VG

```
1 // Exa 9.21
2 clc;
3 clear;
4 close;
5 // Given data
6 k= 75*10^-3; //in mA/V^2
7 Vth= -0.8; // in V
8 R2 = 100; // in k ohm
9 R1 = 100; // in k ohm
10 R_S= 6; // in k
11 R_D= 3; // in k
```

```
12 V_SS = 10; // in V
13 V_G = (R2/(R1+R2))*V_SS; // in V
14 I_D= poly(0, 'I_D');
15 V_S= V_SS-I_D*R_S; // in V
16 V_GS= V_G-V_S; // in V
17 I_D= I_D-k*(V_GS-Vth)^2;
18 I_D= roots(I_D); // in mA
19 I_D= I_D(2); // in mA
20 V_DS= -V_SS+I_D*(R_D+R_S); // in V
21 V_D= I_D*R_D; // in V
22 V_S= I_D*R_S; // in V
23 disp(I_D, "The value of I_D in mA is : ")
24 disp(V_DS, "The value of V_DS in volts is : ")
25 disp(V_D, "The value of V_S in volts is : ")
```

Scilab code Exa 9.22 Value of RD

```
1 // Exa 9.22

2 clc;

3 clear;

4 close;

5 // Given data

6 V_T = 1; // in V

7 k = 160*10^-6; // in A/V^2

8 I_DQ = 160*10^-6; // in A

9 V_GS = V_T + sqrt(I_DQ/k); // in V

10 V_DD = 5; // in V

11 V_DSQ = 3; // in V

12 R_D = (V_DD - V_DSQ)/(I_DQ); // in ohm

13 R_D = R_D * 10^-3; // in k ohm

14 disp(R_D, "The value of R_D in k ohm is");
```

Scilab code Exa 9.23 Coordinates of operating point

```
1 // Exa 9.23
2 clc;
3 clear;
4 close;
5 // Given data
6 V_DD = 12; // in V
7 V_T= 2; // in V
8 kn= 0.5; // in mA/V^2
9 R1 = 2.2; // in M ohm
10 R2 = 1.8; // in M ohm
11 R_S= 1.5;// in k
12 R_D= 3.9; // in k
13 V_G = (R2/(R1+R2))*V_DD; // in V
14 I_D= poly(0, 'I_D')
15 V_GS = V_G - I_D * R_S; // V
16 I_D= I_D-kn*(V_GS-V_T)^2; // in mA
17 I_D= roots(I_D); // in mA
18 I_D= I_D(2);// in mA
19 I_DQ = I_D; // in mA
20 V_DSQ= V_DD-I_D*(R_D+R_S); // in V
21 disp(I_DQ,"The value of I_DQ in mA is : ")
22 disp(V_DSQ,"The value of V_DSQ in volts is : ")
23 V_GS = V_G - I_D * R_S; // V
24 V_DSsat= V_GS-V_T; // in V
25 disp("The value of V_DS ( "+string(V_DSQ)+" V ) is
      greater than the value of ")
26 disp("V_DSsat ( "+string(V_DSsat)+" V ), So the
     MOSFET is in saturation region")
```

Scilab code Exa 9.24 IDSQ VGSQ and VDSQ

1 // Exa 9.24 2 clc;

```
3 clear;
4 close;
5 // Given data
6 kn = 0.5; // in mA/V^2
7 V_T= 1; // in V
8 R2 = 40; // in k ohm
9 R1 = 60; // in k ohm
10 R_S = 1; // in k ohm
11 R_D = 2; // in k ohm
12 V_DD = 5; // in V
13 V_SS = -5; // in V
14 V_R2 = (R2/(R2+R1))*(V_DD-V_SS); // in V
15 V_G = V_R2 - V_DD; // in V
16 I_D= poly(0, 'I_D');
17 V_S = I_D * R_S + V_SS; // in V
18 V_GS = V_G - V_S; // in V
19 I_D=I_D-kn*(V_GS-V_T)^2; // in mA
20 I_D= roots(I_D); // in mA
21 I_D= I_D(2); // in mA
22 I_DQ = I_D; // in mA
23 V_S = I_D * R_S + V_SS; // in V
24 V_GS = V_G - V_S; // in V
25 V_DSQ = V_DD - V_SS - I_D * (R_D + R_S); // in V
26 disp(I_DQ,"The value of I_DQ in mA is : ")
27 disp(V_GS," The value of V_GS in volts is : ")
28 disp(V_DSQ, "The value of V_DSQ in volts is : ")
```

Scilab code Exa 9.25 ID VDS VGS and Av

```
1 // Exa 9.25
2 clc;
3 clear;
4 close;
5 // Given data
6 R_S1 = 100*10^-3; // in k ohm
```

```
7 R_S2 = 100*10^{-3}; // in k ohm
8 R_S = R_{S1}+R_{S2}; // in k ohm
9 R_D= 1.8; // in k ohm
10 I_DSS= 12;// in mA
11 Vp= -3.5; // in V
12 V_DD= 22; // in V
13 rd= 25;// in k ohm
14 R_L= 47; // in k ohm
15 I_D= poly(0, 'I_D');
16 V_GS = -I_D * R_S; // in V
17 I_D= I_D-I_DSS*(1-V_GS/Vp)^2; // in mA
18 I_D= roots(I_D);// in mA
19 I_D= I_D(2); // in mA
20 disp(I_D,"The value of I_D in mA is : ")
21 V_GS = -I_D * R_S; // in V
22 disp(V_GS,"The value of V_GS in volts is : ")
23 V_DS = V_DD - I_D * (R_D + R_S); // in V
24 disp(V_DS,"The value of V_DS in volts is : ")
25 gmo= -2*I_DSS/Vp; // in mS
26 gm = gmo * (1 - V_GS / V_P); // in mS
27 miu= gm*rd;
28 Av = -\min * R_D * R_L/(R_D + R_L)/(rd + R_D * R_L/(R_D + R_L) + (1 + R_D * R_L))
      miu)*R_S1);
29 disp(Av,"The value of Av is : ")
```

Scilab code Exa 9.26 VGS ID and VDS

```
1 // Exa 9.26
2 clc;
3 clear;
4 close;
5 // Given data
6 V_T = 1;// in V
7 k = 0.5;// in mA/V<sup>2</sup>
8 R2 = 40;// in k ohm
```

```
9 R1 = 60; // in k ohm
10 R_S= 1; // in k ohm
11 R_D= 2; // in k ohm
12 V_DD = 5; // in V
13 V_G = (R2/(R2+R1))*V_DD; // in V
14 I_D= poly(0, 'I_D');
15 V_GS= V_G-I_D*R_S; // in V
16 I_D= I_D-k*(V_GS-V_T)^2;
17 I_D= roots(I_D); // in mA
18 I_D= I_D(2); // in mA
19 V_GS= V_G-I_D*R_S; // in V
20 V_DS= V_DD-I_D*(R_D+R_S); // in V
21 disp(I_D, "The value of I_D in mA is : ")
22 disp(V_GS, "The value of V_GS in volts is : ")
```

Scilab code Exa 9.27 Drain current and source to drain voltage

```
1 // Exa 9.27
2 clc;
3 clear;
4 close;
5 // Given data
6 R_D = 7.5; // in k ohm
7 V_T = -0.8; // in V
8 k = 0.2; // in mA/V^2
9 R2 = 50; // in ohm
10 R1 = 50; // in ohm
11 V_DD = 5; // in V
12 V_S = 5; // in V
13 V_G = (R2/(R2+R1))*V_DD; // in V
14 V_GS = V_G - V_S; // in V
15 I_D = k*((V_GS-V_T)^2); // \text{ in mA}
16 disp(I_D, "Drain current in mA is");
17 V_SD = V_DD - (I_D*R_D); // in V
```

Scilab code Exa 9.28 IDQ VGSQ VD and VS

```
1 // Exa 9.28
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 I_Don = 5*10^{-3}; // in A
7 V_GSon = 6; // in V
8 V_GSth = 3; // in V
9 k = I_Don/(V_GSon-V_GSth)^2; // in A/V^2
10 R2 = 6.8; // in M ohm
11 R1 = 10; // in M ohm
12 R_S= 750; // in ohm
13 R_D= 2.2*10^3; // in ohm
14 V_DD = 24; // in V
15 R_S = 750; // in ohm
16 V_G= R2*V_DD/(R1+R2); // in V
17 I_D= poly(0, 'I_D');
18 V_GS= V_G-I_D*R_S; // in V
19 I_D= I_D-k*(V_GS-V_GSth)^2;
20 I_D= roots(I_D); // in A
21 I_D= I_D(2); // in A
22 I_DQ = I_D; // in A
23 V_GS= V_G-I_D*R_S; // in V
24 V_GSQ = V_GS; // in V
25 V_DSQ = V_DD - I_DQ * (R_D + R_S); // in V
26 disp(I_D*10^3, "The value of I_D in mA is : ")
27 disp(V_GSQ,"The value of V_GSQ in volts is : ")
28 disp(V_DSQ,"The value of V_DSQ in volts is : ")
```

Scilab code Exa 9.29 VDD RD and VGS

```
1 // Exa 9.29
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 I_Don = 4*10^{-3}; // in A
7 V_GSon = 6; // in V
8 V_GSth = 3; // in V
9 V_DS = 6; // in V
10 I_D= I_Don; // in A
11 k = I_Don/((V_GSon-V_GSth)^2);// in A/V^2
12 V_GS = poly(0, 'V_GS')
13 V_GS = I_D - k * (V_GS - V_GSth)^2;
14 V_GS= roots(V_GS); // in V
15 V_GS = V_GS(1); // in V
16 V_DD= 2*V_DS; // in V
17 // V_{GS} = V_{DD} - I_{D} * R_{D}
18 R_D = (V_DD - V_GS) / I_D; // in ohm
19 disp(V_GS, "The value of V_GS in volts is : ")
20 disp(V_DD,"The value of V_DD in volts is : ")
21 disp(R_D*10^-3, "The value of R_D in k is : ")
```

Scilab code Exa 9.30 ID VDS VG VS

```
1 // Exa 9.30
2 clc;
3 clear;
4 close;
5 // Given data
6 I_DD= 20; // in mA
7 R2 = 10; // in k ohm
8 R1 = 30; // in k ohm
9 R_S= 1.2; // in k ohm
```

```
10 R_D= 500*10^{-3}; // in k ohm
11 V_DD = 12; // in V
12 Vp = -6; // in V
13 V_G = (R2/(R2+R1))*V_DD; // in V
14 I_D= poly(0, 'I_D')
15 V_GS = V_G - I_D * R_S; // in V
16 I_D=I_D-I_DD*(1-V_GS/Vp)^2;
17 I_D = roots(I_D); // in mA
18 I_D= I_D(2); // in mA
19 V_DS = V_DD - I_D * (R_D + R_S); // in V
20 V_D= V_DD-I_D*R_D; // in V
21 V_S = V_D - V_DS; // in V
22 disp(I_D,"The value of I_D in mA is : ")
23 disp(V_DS,"The value of V_DS in volts is : ")
24 disp(V_D,"The value of V_D in volts is : ")
25 disp(V_S, "The value of V_S in volts is : ")
```

Scilab code Exa 9.31 Voltage at all nodes and currents through all branches

```
1 // Exa 9.31
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 V_DD = 5; // in V
7 V_T= 1; // in V
8 k= 1; // in mA/V^2
9 R1 = 1; // in M ohm
10 R2 = 1; // in M ohm
11 R_S = 2; // in k ohm
12 R_D = 2; // in k ohm
13 I1 = V_DD/(R1+R2); // in A
14 disp(I1,"The value of I1 in A is : ")
15 V_A = (R2/(R2+R1)) * V_DD; // in V
16 disp(V_A, "The value of V_A and V_G in volts is : ")
```

```
17 I_D = poly(0, 'I_D');
18 V_C= I_D*R_S; // in V
19 V_GS = V_A - V_C; // in V
20 I_D= I_D-k*(V_GS-V_T)^2;
21 I_D= roots(I_D); // in mA
22 I_D= I_D(2); // in mA
23 disp(I_D,"The value of I_D in mA is : ")
24 V_B= V_DD-I_D*R_D; // in V
25 V_C= I_D*R_S; // in V
26 V_DS = V_B - V_C; // in V
27 disp(V_B, "The value of V_B in volts is : ")
28 disp(V_C, "The value of V_C in volts is : ")
29 disp(V_DS, "The value of V_DS in volts is : ")
30
31 // Note: In the book, the calculated values are
      wrong, this is why the answer in the book is
      wrong.
```

Scilab code Exa 9.32 Value of Av Ri and Ro

```
1 // Exa 9.32
2 clc;
3 clear;
4 close;
5 // Given data
6 I_DSS = 12; // in mA
7 I_DSS= I_DSS*10^-3; // in A
8 V_P = -3; // in V
9 r_d = 45; // in k ohm
10 r_d= r_d*10^3; // in ohm
11 g_m = I_DSS/abs(V_P); // in S
12 // Part (i)
13 R1 = 91; // in M ohm
14 R1=R1*10^6; //in ohm
15 R2 = 10; // in M ohm
```

```
16 R2= R2*10^6; // in ohm

17 Ri= R1*R2/(R1+R2); // in ohm

18 disp(Ri*10^-6, "The value of Ri in Mohm is : ")

19 // Part (ii)

20 R_S = 1.1; // in k ohm

21 R_S = R_S * 10^3; // in ohm

22 R_o= (R_S*1/g_m)/(R_S+1/g_m); // in ohm

23 disp(R_o, "The value of R_C in ohm is : ")

24 // Part (iii)

25 R_desh_o= R_o*r_d/(R_o+r_d); // in ohm

26 disp(R_desh_o, "The value of R_desh_o in ohm is : ");

27 // Part (iv)

28 Av= g_m*(R_S*r_d/(R_S+r_d))/(1+g_m*(R_S*r_d/(R_S+r_d)));

29 disp(Av, "The value of Av is : ")
```

Scilab code Exa 9.34 Current flow through M1 MOSFET

Scilab code Exa 9.35 Value of R and VD

```
1 // Exa 9.35
2 \text{ clc};
3 clear;
4 close;
5 // Given data
6 V_DD = 10; // in V
7 I_D= 0.4*10^3;// in A
8 \text{ W} = 100; // \text{ in } \text{m}
9 L= 10;// in m
10 uACox= 20; // in A/V^2
11 Vt= 2;// in V
12 R = poly(0, 'R')
13 V_GS = V_DD - I_D * R; // in V
14 R= I_D - 1/2 * uACox * W/L * (V_GS - Vt)^2;
15 R= roots(R); // in Mohm
16 R = R(2); // in Mohm
17 disp(R*10<sup>3</sup>, "The value of R in k is : ")
18 V_D= V_DD-I_D*R; // in V
19 disp(V_D,"The value of V_D in volts is : ")
```

Scilab code Exa 9.36 ID and VDS

```
1 // Exa 9.36
2 clc;
3 clear;
4 close;
5 // Given data
6 V_GSth= 2; // in V
7 k= 2*10^-4; // in A/V^2
8 V_DD= 12; // in V
9 R_D= 5*10^3; // in ohm
10 I_D= poly(0, 'I_D');
11 V_DS= V_DD-I_D*R_D; // in V
12 I_D= I_D-k*(V_DS-V_GSth)^2;
13 I_D= roots(I_D); // in A
```
14 I_D= I_D(2);// in A 15 V_DS= V_DD-I_D*R_D;// in V 16 disp(I_D*10^3, "The value of I_D in mA is : ") 17 disp(V_DS, "The value of V_DS in volts is : ")