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Chapter 1

Gas power cycles

Scilab code Exa 1.1 The pressures

clc

clear

//Input data

V1i=0.5;//Initial Volume before the commencement of
compression in m"3

Pi1=1;//Initial pressure before the commencement of
compression in bar

T1=300;//Initial temperature in K

P2=12; //Final pressure at the end of compression
stroke in bar

Q=220; //Heat added during the constant volume
process in kJ

r=1.4;//Isentropic constant for air

R=0.287;//Characteristic Gas constant in kJ/kg K

Cv=0.718; //Specific heat of mixture in kJ/kg K

// Calculations

r1=(P2/P1)"~(1/r);//Compression ratio

T2=T1*(r1) " (r-1);//Final temperature after the end
of compression stroke in K

V2=(P1*T2%V1)/(P2%T1);//Final volume after the end
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of compression stroke in m"3

m=(P1*10°5*V1)/(R*T1%1000) ; //Mass of air flowing in
kg

T3=(Q/(m*Cv))+T2;// Temperature after constant volume
heat addition in K

P3=(P2xT3)/T2;//Pressure after constant volume heat
addition in K

v3=V2; //Volume at 3

P4=P3x(1/r1)"(r);//Pressure after isentropic
expansion in bar

V4=V1; //Volume after isentropic expansion in m"3

T4=T3*(1/r1) " (r-1);//Temperature at the end of
isentropic expansion in K

//Output

printf (’(a)The pressures at 1 is %3.0fbar\n (b)
Pressure at 2 is %3.0fbar\n (c)Pressure at 3 is
%3.2fbar\n (d)Pressure at 4 is %3.2fbar\n (e)
Temperature at 1 is %3.1fK\n (f)Temperature at 2
is %3.1fK\n (g)Temperature at 3 is %3.0fK\n (h)
Temperature at 4 is %3.0fK\n (i)Volume at 1 is %3
0fm"3\n (j)Volume at 2 is %3.5fm"3\n (k) Volume
at 3 is %3.5fm"3\n (1)Volume at 4 is %3.0fm"3’,P1
,P2,P3,P4,T1,T2,T3,T4,V1,V2,V3,V4)

Scilab code Exa 1.2 Compression ratio

clc

clear

//Input data

r1=6;//Initial compression ratio
r2=7;//Final compression ratio
r=1.4;//Isentropic coefficient of air

// Calculations
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nri=(1-(1/r1) " (r-1))*100; //Otto cycle efficiency
when compression ratio is 6 in percentage

nr2=(1-(1/r2) " (r-1))*100; //Otto cycle efficiency
when compression ratio is 7 in percentage

n=nr2-nrl;//Increase in efficiency in percentage

// Output
printf ("The increase in efficiency due to change in
compression ratio from 6 to 7 is %3.1fpercent’,n)

Scilab code Exa 1.3 Air standard efficiency

clc

clear

//Input data

T1=315; //Temperature at the beginning of isentropic
compression in K

T2=600; // Temperature at the end of isentropic
compression in K

r=1.4;//Isentropic constant of air

// Calculations

r1=(T2/T1) " (1/(r-1));//Compression ratio

n=(1-(1/r1~(r-1)))*100; // Efficiency of Otto cycle in
percent

// Output

printf (’(a)The compression ratio is %3.2f\n (b)
Efficiency of the Otto cycle is %3.1f percent’,ri
,n)

Scilab code Exa 1.4 Air standard efficiency

10
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clc

clear

//Input data

D=0.1; //Diameter of the cylinder in m
L=0.15;//Stroke length in m
Vc=0.295%10"-3; //Clearance volume in m"3
r=1.4;//Isentropic constant of air

//Calculations

Vs=(3.14/4)x(D"2*L); //Swept volume in m"3

r1=(Vc+Vs)/Vc;//Compression ratio

n=(1-(1/r1) " (r-1))*100; //Otto cycle efficiency in
percentage

//Output
printf (’The air standard efficiency of air is %3.2f
percent ’,n)

Scilab code Exa 1.5 Mean effective pressure

clc

clear

//Input data

P1=1;//Initial pressure of air in bar

T1=300;//Initial temperature in K

P2=17; //Pressure at the end of isentropic
compression in bar

P3=40; //Pressure at the end of constant volume heat
addition in bar

Cv=0.717;//Specific heat of mixture in kJ/kg K

M=28.97; //Molecular weight in kg

Ru=8.314; //Universial gas constant in kJ/kg mole K

m=1; //Mass from which heat is extracted in kg

W=363; //Work done in kN m

11
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// Calculations

Rc=Ru/M;//Characteristic gas constant in kJ/kg K

Cp=Rc+Cv;//Specific heat at constant pressure in kJ/
kg K

r=Cp/Cv;//Isentropic gas constant

r1=(P2/P1) "~ (1/r);//Compression ratio

na=(1-(1/r1) " (r-1))*100; //Air standard efficiency in

percentage

T2=T1*(P2/P1) " ((r-1)/r);//Temperature at the end of
isentropic compression process in K

T3=(P3/P2)*T2;// Temperature at the end of constant
volume heat addition in K

Q=m*Cv*(T3-T2);//Heat supplied in kJ/kg

Vi=(m*Rc*xT1%1000) /(P1%10°5);//Initial volume before
compression in m”3

V2=V1/r1l;//Volume at the end of compression stroke
in m"3

Vs=V1-V2;//Stroke volume in m"3

MEP=(W/Vs)/100; //Mean effective pressure in bar

//Output

printf (’(a)Compression ratio is %3.2f\n (b)The air
standard efficiency is %3.1f percent\n (c)Mean
effective pressure is %3.2f bar’,r1,na,MEP)

Scilab code Exa 1.6 Compression ratio

clc

clear

//Input data

V1=0.6;//Initial volume of an engine working on otto
cycle in m™3

P1=1;//Initial pressure in bar

T1=308; //Initial temperature in K

P2=10; //Pressure at the end of compression stroke in

12
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Q=210; //Heat added during constant heat process in
kJ
r=1.4;//Isentropic constant of air

// Calculations

r1=(P2/P1)~(1/r);//Compression ratio

V2=V1/r1;//Clearance volume in m"3

C=(Vv2/(V1-V2))*100; //Percentage clearance in percent

na=(1-(1/r1)"(r-1))*100; //Air standard efficiency in
percent

W=Q*(na/100); //Work done per cycle in klJ

//Output

printf (’(a)Clearance volume as percentage of stroke
volume is %3.2f percent\n (b)Compression ratio is
%3.2f\n (c)Air standard efficiency is %3.1f
percent\n (d)Work done per cycle is %3.2f kJ’,C,
rl,na,W)

Scilab code Exa 1.7 Ideal power

clc

clear

//Input data

r=5.5; //Compression ratio of an engine working on
the otto cycle

Q=250; //Heat supplied during constant volume in kJ

N=500; //Engine operating speed in rpm

ri=1.4;//Isentropic ratio

// Calculations

n=(1-(1/r)"(r1-1))*100; //Otto cycle efficiency in
percent

W=Q*(n/100);//Work done per cycle in kJ

13
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P=Wwx(N/60);//Work done per second i.e., Power
developed in kJ/s or kW

//Output data

printf (’Ideal power developed by the engine is %3.0f

kW’ ,P)

Scilab code Exa 1.8 Mean effective pressure

clc
clear
//Input data

V1=0.53; //Volume of cylinder of an engine working on

Otto cycle in m"3
V2=0.1; //Clearance volume in m"3
Q=210; //Heat supplied during constant volume in klJ
r=1.4;//Isentropic ratio

// Calculations

r1=v1/v2;//Compression ratio

n=(1-(1/r1)"(r-1))*100; //Otto cycle efficiency in
percentage

W=Q*(n/100); //Work done per cycle in kJ

P=W/((V1-V2)%*100);//Mean effective pressure in bar

//Output data
printf (’Mean effective pressure is %3.3f bar’,P)

Scilab code Exa 1.10 Maximum theoretical power
clc
clear

//Input data

14
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T3=1500; //Upper temperature limit of a otto cycle in
K

T1=300; //Lower temperature limit in K

a=0.4;//Rate of flow of air through the cycle in kg/
min

Cv=0.718;//

// Calculations

T2=(T1xT3) "~ (1/2);// Temperature at point 2 in K

T4=T2;//Temperature at point 4 in K

W=Cvx((T3-T2)-(T4-T1));//Work done per cycle in kJ/
kg

P=Wx(a/60);//Maximum power developed by the engine
in kW

// Output
printf (’"Maximum power developed by the engine is %3
.3f kW’ ,P)

Scilab code Exa 1.11 Efficiencies for cut off ratio

clc

clear

//Input data

r=1.4;//Air standard ratio
pl=1.25;//Cut off ratio 1

p2=1.50; //Cut off ratio 2

p3=2.00; //Cut off ratio 3

rc=16; //Compression ratio

//Calculations

n1=(1-((1/rc"(r-1)*(p1-r-1)/(r*(p1-1)))))*100; //
Thermal efficiency of the diesel cycle for cut
off ratio 1.25

n2=(1-((1/rc " (r-1)*(p2-r-1) /(r*(p2-1)))))*100; //

15
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Thermal efficiency of the

off ratio 1.50

diesel cycle for cut

n3=(1-((1/rc " (r-1)*(p3-r-1)/(r*(p3-1)))))*100; //

Thermal efficiency of the diesel

off ratio 2.00

// Output

cycle for cut

printf (’(a)Thermal efficiency when cut off ratio is
1.25 is %3.2f percent\n (b)Thermal efficiency
is %3.0f percent\n (c)

when cut off ratio is 1.50

Thermal efficiency when cut off ratio is

%3.1f percent\n’,nl,n2,n3)

2.00 1is

Scilab code Exa 1.12 Air standard efficiency

clc
clear

r=15; //Compression ratio of a diesel engine
Q=5; //Heat supplied upto 5 percent of the stroke

ri=1.4;//Isentropic ratio

//Calculations

p=1+(Q/100) *(r-1);//Cut off ratio
n=(1-((1/r " (r1-1)*x(p~r1-1)/(rix(p-1)))))*100;//

Efficiency of diesel cycle

// Output

in percent

printf (" Air standard efficiency of the diesel cycle

is %3.2f percent’,n)

Scilab code Exa 1.13 Efficiency

clc

16
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clear

//Input data

r=17; //Compression ratio of a diesel engine
e=13.5; //Expansion ratio
ri=1.4;//Isentropic ratio

// Calculations

p=r/e;//Cut off ratio

n=(1-((1/r " (r1-1)*x(p-r1-1)/(rix(p-1)))))*100; // Air
standard efficiency in percent

// Output
printf (’Air standard efficiency is %3.1f percent’,n)

Scilab code Exa 1.14 Compression ratio

clc

clear

//Input data

T1=300; // Temperature at the beggining of compression
stroke in K

T2=873; //Temperature at the end of compression
stroke in K

T3=2173; // Temperature at the beggining of expansion
stroke in K

T4=1123; // Temperature at the end of expansion stroke
in K

ri=1.4;//Isentropic ratio

//Calculations

r=(T2/T1) " (1/(r1-1));//Compression ratio

rho=T3/T2;//Cut off ratio

n=(1-((1/r1)*((T4-T1)/(T3-T2))))*100; // Efficiency of
diesel cycle in percent

17
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//Output data

printf (’(a)Compression ratio is %3.2f \n (b)Cut off
ratio is %3.2f \n (c)Ideal efficiency of the
diesel cycle is %3.2f percent’,r,rho,n)

Scilab code Exa 1.15 Pressure

clc

clear

//Input data

r=18; //Compression ratio of diesel cycle

Q=2000; //Heat added in kJ/kg

T1=300; //Lowest temperature in the cycle in K

pl=1;//Lowest pressure in the cycle in bar

Cp=1;//Specific heat of air at constant pressure in
kJ/kg K

Cv=0.714; //Specific heat of air at constant volume
in kJ/kg K

//Calculations

r1=Cp/Cv;//Isentropic ratio

vi=((1-Cv)*T1)/(p1x10~5);//Initial volume at point 1
in the graph in m"3/kg

v2=v1/r;//Volume at point 2 in m"3/kg

p2=plx*(v1/v2) " (rl);//Pressure at point 2 in bar

T2=T1*(v1/v2) " (r1-1);//Temperature at point 2 in K

T3=(Q/Cp)+T2;//Temperature at point 3 in K

v3=v2*(T3/T2);//Volume at point 3 in K

vd=v1l;//Since Constant volume heat rejection in m”"3/
kg

T4=T3/(v4/v3) " (r1-1);//Temperature at point 4 in K
for isentropic expansion

p4=p1x(T4/T1);//Pressure at point 4 in bar

// Output

18
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printf (’(a)Pressure at point 1 in the cycle is %3.0f
bar\n (b)Pressure at point 2 & 3 is %3.1f bar\n
(c)Pressure at point is %3.2f bar\n (d)
Temperature at point is %3.0f K\n (e)
Temperature at point is %3.0f K\n (f)
Temperature at point is %3.0f K\n (g)
Temperature at point is %3.0f K’,p1,p2,p4,T1,T2
,T3,T4)

W N

Scilab code Exa 1.16 Thermal efficiency

clc

clear

//Input data

r=16; //Compression ratio for the air standard diesel
cycle

Q1=2200; //Heat added in kJ/kg

T4=1500; // Temperature at the end of isentropic
expansion in K

T1=310; //Lowest temperature in the cycle in K

m=0.3; //Air flow rate in kg/sec

Cv=0.714;//Specific heat at constant volume in kJ/kg
K

// Calculations

Q2=Cvx(T4-T1);//Heat rejected in kJ/kg
n=((Q1-Q2)/Q1)*100; // Efficiency in percent
P=m*(Q1-Q2);//Power developed in kW

//Output
printf (’(a)Thermal efficiency is %3.2f percent\n (b)
Power developed is %3.0f kW’,n,P)

19
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Scilab code Exa 1.17 Air standard efficiency

clc

clear

//Input data

T1=303; //Temperature at the beginning of compression
in K

T2=823; //Temperature at the end of compression in K

T3=3123; // Temperature at the end of heat addition in
K

T4=1723; // Temperature at the end of isentropic
expansion in K

r=1.4;//Isentropic ratio

// Calculations
n=(1-((T4-T1)/(r*(T3-T2))))*100; // Efficiency of the
cycle in percent

// Output
printf (7 Air standard efficiency of the cycle is %3.1
f percent’,n)

Scilab code Exa 1.18 Mean effective pressure

clc

clear

//Input data

r=15; //Compression Ratio of a diesel engine

P1=1;//Operating Pressure of a diesel engine in bar

ri=1.4;//Isentropic constant

V1=15; //Volume at the start of compression stroke in
m-3

V3=1.8;//Volume at the end of constant Pressure heat
addition in m"3

V4=V1; //Volume at the end of Isentropic expansion

20
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stroke in m"3

V2=1; //Volume at the end of isentropic compression
stroke in m"3

Vs=V1-V2;//Swept volume in m"3

// Calculations

P2=P1x*(r)"rl;//Pressure at the end of Isentropic
compression of air

P3=P2;//Pressure at the end of constant pressure
heat addition in bar

P4=P3%*(V3/V4)"r1l;//Pressure at the end of Isentropic

expansion stroke in bar

Pm=(V2/Vs)*(P2*x((V3/V2)-1)+(P3%x(V3/V2)-P4*x(V4/V2))/(
r1-1) -(P2-P1x(V1/V2))/(r1-1));//Mean effective
pressure in bar

//Output
printf (’Mean effective pressure of the cycle is %3.2
f bar’,Pm)

Scilab code Exa 1.19 Compression ratio

clc

clear

//Input data

P1=1.5;//Pressure at the 7/8th stroke of compression

in bar

P2=16; //Pressure at the 1/8th stroke of compression
in bar

n=1.4;//Polytropic index

c=8;//Cutoff occurs at 8% of the stroke in
percentage

// Calculations
R1=(P2/P1) "~ (1/n);//Ratio of volumes

21
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R2=(R1-1)/((7/8)-(R1/8));//Ratio of stroke volume to
the clearance volume
r=1+R2;//Compression ratio
rho=1+((c/100)*r); //Cut off ratio
na=(1-((1/r"(n-1))*(((rho"n)-1) /(n*x(rho-1))))) *100;
//Air standard efficiency in percentage

// Output

printf (’(a)Compression ratio of the engine is %3.3f)\
n (b)Air standard efficiency is %3.2f percent’,r,
na)

Scilab code Exa 1.20 Loss in efficiency

clc

clear

//Input data

r=16; //Compression ratio of diesel engine
ri=1.4;//Isentropic ratio

// Calculations

rhol=1+(r-1)*(6/100);//Cutoff ratio at 6% of stroke

rho2=1+(r-1)*(9/100) ; //Cutoff ratio at 9% of stroke

nl=(1-(1/r " (r1-1))*(1/r1)*(rhol1"r1-1)/(rhol1-1))*100;
// Efficiency of the cycle at 6% of the stroke in
percent

n2=(1-(1/r"(r1-1))*(1/r1)*(rho2°r1-1)/(rho2-1)) *100;
// Efficiency of the cycle at 9% of the stroke in
percent

L=n1-n2;//The loss in efficiency in percent

// Output
printf (’The loss in efficiency is %3.2f percent’,L)
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Scilab code Exa 1.21 Compression ratio

clc

clear

//Input data

P1=1.03;//Pressure at the beginning of compression
stroke in bar

T1=303; //Initial temperature in K

P2=40; //Maximum pressure in the cycle in bar

Q=550; //The heat supplied during the cycle in kJ/kg

r=1.4;//Isentropic compression ratio

Cp=1.004;//Specific heat at constant pressure in kJ/
kg K

// Calculations

r1=(P2/P1) "~ (1/r);//Compression ratio

T2=(P2/P1) " ((r-1)/r)*T1;//Temperature at the end of
compression stroke in K

T3=(Q/Cp)+T2;//Temperature at the end of heat
addition in K

rho=T3/T2;//Cut off ratio

n=(1-(1/r1"(r-1))*(1/r)*(rho"r-1) /(rho-1))*100; // Air
standard efficiency in percentage

//Output\n

printf (’(a)Compression ratio is %3.2f \n (b)
Temperature at the end of compression is %3.1f K\
n (c¢)Temperature at the end of comstant pressure
heat addition is %3.0f K \n (d)Air standard
efficiency is %3.2f percent’,r1,T2,T3,n)

Scilab code Exa 1.22 Air standard efficiency
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clc

clear

//Input data

r=12; //Compression ratio of an oil engine, working
on the combustion cycle

ri=1.4;//Isentropic ratio

P1=1;//Pressure at the

P3=35;//Pressure at the end of constant volume heat
addition in bar

// Calculations

rho=1+(1/10)*(r-1);//Cut off ratio at 1/10th of the
stroke

P2=P1*x(r)"rl;//Pressure at the end of isentropic
compression in bar

a=P3/P2;//Pressure ratio

n=(1-(1/r~(r1-1))*(a*xrho"r1-1)/((a-1)+(ri*a*(rho-1))
))*100; //Air standard efficiency in percent

//Output

printf ("The air standard efficiency of an oil engine
working on the combustion cycle is %3.2f percent
7’n)

Scilab code Exa 1.23 Cut off ratio

clc

clear

//Input data

P1=1;//Pressure at the beginning of compression

stroke of an o0il engine working on a air standard

dual cycle in bar

T1=303; //Temperature at the beginning of compression
stroke in K

P3=40; //The maximum pressure reached in bar
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T4=1673; //Maximum temperature reached in K

P4=P3;//Pressure at the start of constant pressure
heat addition in bar

Cp=1.004;//Specific heat at constant pressure in kJ/
kg K

Cv=0.717;//Specific heat at constant volume in kJ/kg
K

r1=10; //Compression ratio

// Calculations

r=Cp/Cv;//Isentropic ratio

T2=T1*r1"(r-1);//Temperature at the end of
compression stroke in K

P2=P1*r1°r;//Pressure at the end of compression
stroke in bar

T3=T2*(P3/P2);//Temperature at the end of constant
volume heat addition in K

rho=T4/T3;//Cut off ratio

//Output

printf (’(a)Temperature at the end of constant volume
heat addition is %3.1f K\n (b)Cut off ratio is
%3.3f7,T3,rho)

Scilab code Exa 1.24 Work done

clc

clear

//Input data

P1=1;//pressure at the beginning of compression
stroke in bar

T1=298; //Temperature at the beginning of compression

stroke in K

P3=38;//Pressure at the end of constant volume heat

addition in bar
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T4=1573; // Temperature at the end of constant volume
heat addition in K

r=9.5; //Compression ratio

Cp=1.004;//Specific heat of air at constant pressure

Cv=0.717;//Specific heat of air at constant volume

// Calculations

r1=Cp/Cv;//Isentropic ratio

T2=Ti1*r"(r1-1);//Temperature at the end of
compression stroke in K

P2=Pixr-rl;//Pressure at the end of compression
stroke in bar

T3=T2%(P3/P2);//Temperature at the end of constant
volume heat addition in K

rho=T4/T3;//Cut off ratio

T6=T4*(rho/r) "(r1-1);//Temperature at the end of
expansion stroke in K

Qs=Cv*(T3-T2)+Cp*(T4-T3);//Heat supplied per kg in
kJ

Qr=Cvx(T5-T1);//Heat rejected per kg in kJ

W=Qs-Qr; //Work done per kg of air in kJ

n=(W/Qs)*100; // Efficiency of the air standard dual
cycle in percent

//Output
printf (’(a)The work done per kg of air is %3.1f kJ\n
(b)Cycle efficiency is %3.2f percent’,W,n)

Scilab code Exa 1.25 Cycle efficiency

clc

clear

//Input data

r=10.5; //Compression ratio
P3=65; //Maximum pressure in bar
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P4=P3;//Pressure at the end of constant volume heat
addition in bar

qs=1650; //Heat supplied in kJ/kg

P1=1;//Pressure at the beginning of compression
stroke in bar

T1=368; //Temperature at the beginning of compression
stroke in K

Cp=1.004;//Specific heat of air at constant pressure
in kJ/kg K

Cv=0.717;//Specific heat of air at constant volume
in kJ/kg K

// Calculations

r1=Cp/Cv;//Compression ratio

P2=P1*r-rl;//Pressure at the end of compression
stroke in bar

T2=T1*r"(r1-1);//Temperature at the end of
compression stroke in K

T3=T2*(P3/P2);//Temperature at the end of constant
volume heat addition in K

qv=Cv*(T3-T2);//Heat supplied at constant volume in
kJ/kg

qp=qs-qv;//Heat supplied at constant pressure in kJ/
kg

T4=(qp/Cp)+T3;// Temperature at the end of constant
volume heat addition in K

rho=T4/T3;//Cut off ratio

T5=T4*(rho/r) " (r1-1);//Temperature at the end of
expansion stroke in K

P5=P4*(rho/r)"rl;//Pressure at the end of expansion
stroke in K

q=Cv*(T5-T1);//Heat rejected in kJ/kg

n=((gqs-q)/qs)*100; // Efficiency of the cycle in
percent

//Output

printf (’(a)Pressure at the end of compression stroke
is %3.1f bar\n (b)Temperature at the end of
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compression stroke is %3.1f K\n (c¢)Temperature at
the end of constant volume heat addition is %3.1
f K\n (d)Temperature at the end of constant
pressure heat addition is %3.2f K\n (e)
Temperature at the end of expansion stroke is %3
.2f K\n (e)Pressure at the end of expansion
stroke is %3.2f bar\n (f)Efficiency of the cycle
is %3.2f percent’,P2,T2,T3,T4,T5,P5,n)

Scilab code Exa 1.26 Air standard efficiency

clc

clear

//Input data

r=8.5; //Compression ratio

e=5.5; //Expansion ratio

P1=1;//Pressure at the beginning of compression
stroke in bar

T1=313; //Temperature at the beginning of compression
stroke in K

n=1.3;//polytropic constant

Cp=1.004;//Specific heat of air at constant pressure
in kJ/kg K

Cv=0.717;//Specific heat of air at constant volume
in kJ/kg K

// Calculations

rho=r/e;//Cut off ratio

T2=T1*r"(n-1);//Temperature at the end of
compression stroke in K

T3=(2*%Cv*T2) /(2xCv-Cp*rho+1);//Temperature at the
end of constant volume heat addition in K

T4=rhoxT3;//Temperature at the end of constant
pressure heat addition in K

a=T3/T2;//Pressure ratio i.e.,P3/P2
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nl1=(1-(1/r"(n-1))*(a*rho"n-1) /((a-1)+(n*a*(rho-1))))
*100; //Air standard efficiency in percent

//Output
printf (’The air standard efficiency is %3.2f percent

,nl)

Scilab code Exa 1.27 Ideal thermal efficiency

clc

clear

//Input data

Pi1=1;//Initial pressure in a compression engine
working on a dual combustion engine in bar

T1=300;//Initial Temperature in K

P2=25; //Pressure at the end of compression stroke in
bar

Q=400; //Heat supplied per kg of air during constant
volume heating in kJ/kg

P5=2.6; //Pressure at the end of isentropic expansion
in bar

Cp=1.005;//Specific heat of air at constant pressure
in kJ/kg K

Cv=0.715;//Specific heat of air at constant volume
in kJ/kg K

// Calculations

r=Cp/Cv;//Isentropic index

r1=(P2/P1)"(1/r);//Compression ratio

T2=T1*(r1) " (r-1);//Temperature at the end of
compression stroke in K

T3=(Q/Cv)+T2;//Temperature at the end of constant
volume heat addition in K

a=T3/T2;//Pressure ratio

P3=a*P2;//Pressure ratio at the end of constant
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volume heat addition in bar

P4=P3;//Pressure at the end of constant pressure
heat addition in bar

x=(P5/P4)~(1/r);//Ratio of volume at the end of
constant pressure heat addition to the volume at
the end of isentropic expansion

rho=x*(r1);//Cut off ratio

n=(1-(1/r1"(r-1))*(a*rho"r-1) /((a-1)+(r*a*x(rho-1))))
*100; //Air standard efficiency in percent of a
dual combustion engine

// Output
printf (’The ideal thermal efficiency is %3.1f
percent ’,n)

Scilab code Exa 1.28 Temperature

clc

clear

//Input data

P1=1;//Initial pressure of an enfine working on a
dual combustion cycle in bar

T1=318;//Initial temperature before compression in K

ri=14; //Compression ratio

r=1.4;//Isentropic index

a=2; //Pressure ratio in the compression process

rho=2; //Cut off ratio

// Calculations

T2=T1*r1"(r-1);//Temperature at the end of
compression stroke in K

T3=T2*a;//Temperature at the end of constant volume
heat addition in K

T4=rhox*T3;//Temperature at the end of constant
pressure heat addition in K
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T5=T4*(rho/r1) " (r-1);//Temperature at the end of
isentropic compression in K

n=(1-((T5-T1)/(r*(T4-T3)+(T3-T2))))*100; // Efficiency
of an engine working on a dual combustion cycle

in percent

// Output
printf (’(a)Temperature at the end of compression

stroke is %3.0f K\n (b)Temperature at the end of

constant volume heat addition is %3.0f K\n (c¢)

Temperature at the end of constant pressure heat
addition is %3.0f K\n (d)Temperature at the end
of isentropic expansion process is %3.0f K\n (e)
Efficiency of the cycle is %3.2f percent’,T2,T3,

T4,T5,n)

Scilab code Exa 1.29 Pressure ratio

clc

clear

//Input data

r=15; //Compression ratio
Vs=0.01;//Stroke volume in m"3
P1=1;//Initial pressure in bar
T1=310;//Initial temperature in K

P3=65; //Pressure in constant pressure heat addition

stroke in bar

Cp=1;//Specific heat of air at constant pressure
kJ/kg K

in

Cv=0.714; //Specific heat of air at constant volume

in kJ/kg K
R=287;//Molar gas constant

// Calculations
r1=Cp/Cv;//Isentropic index
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P2=P1*(r)"rl;//Pressure at the end of compression
stroke in bar

a=P3/P2;//Pressure ratio

rho=1+((5/100) *(r-1))

V2=Vs/(r-1);//Volume at the end of compression
stroke in m"3

V1i=Vs+V2; //Initial volume in m"3

m=P1%10°5%xV1/(R*T1);//Mass of air contained in the
cylinder in kg

T2=T1*r"(r1-1);//Temperature at the end of
compression stroke in K

a=P3/P2;//Pressure ratio

T3=T2%a;//Temperature at the end of constant volume
heat addition in K

T4=T3*rho; //Temperature at the end of constant
pressure heat addition in K

T5=T4/(r/rho) "(r1-1);//Temperature at the end of
isentropic expansion in K

Qs=(Cv*(T3-T2)+Cp*(T4-T3))*m; //Heat supplied in kJ

Qr=m*Cv*(T5-T1);//Heat rejected in kJ

W=Qs-Qr; //Work done per cycle in kJ

n=(W/Qs)*100; // Efficiency of the cycle in percent

Mep=(W/Vs)/100; //Mean effective pressure in bar

//Output

printf (’(1)Pressure ratio is %3.3f\n (2)Cut off
ratio is %3.2f\n (3)Heat supplied per cycle is %3
.0f kJ\n (4)Heat rejected per cycle is %3.2f kJ\n
(5)Work done per cycle is %3.2f kJ\n (6)Thermal
efficiency of the cycle is %3.0f percent\n (7)
Mass of air contained in the cylinder is %3.4f kg
\n (8)Mean effective pressure is %3.2f bar’,a,rho
,Qs,Qr ,W,n,m,Mep)

Scilab code Exa 1.30 Thermal efficiency
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clc

clear

//Input data

P1=1;//Initial pressure of air received by gas
turbine plant in bar

T1=310;//Initial tamperature in K

P2=5.5; //Pressure at the end of compression in bar

r=1.4;//isentropic index

//Calculations

rp=P2/P1;//pressure ratio

n=(1-(1/rp) " ((r-1)/r))*100; //Thermal efficiency of
the turbine in percent

//Output data
printf (’Thermal efficiency of the turbine unit is %3
.2f percent’,n)

Scilab code Exa 1.31 Power developed

clc

clear

//Input data

Pi1=1;//Initial pressure of a simple closed cycle gas

turbine plant in bar

T1=298;//Initial temperature in K

P2=5.1;//Pressure of gas after compression in bar

T3=1123; //Temperature at the end of compression in K

P3=P2; //Pressure at the end of constant pressure
stroke

P4=1;//Pressure of hot air after expansion in the
turbine in bar

r=1.4;//Isentropic constant

Cp=1.005;//Specific heat of air in kJ/kg K
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// Calculations

T2=T1*(P2/P1) " ((r-1)/r);//Temperature at the end of
process 1—-2 in K

T4=T3*(P4/P3) "~ ((r-1)/r);//Temperature at the end of
process 3—4 in K

Wt=Cpx*(T3-T4);//Work done by the turbine in kJ/kg

Wc=Cpx*(T2-T1);//Work required by the compressor in
kJ/kg

W=Wt-Wc;//Net work done by the turbine in kJ/kg

P=1*W; //Power developed by the turbine assembly per
kg per second in kW

// Output
printf ("Power developed by the turbine assembly per
kg of air supplied per second is %3.2f kW’ ,P)

Scilab code Exa 1.32 Maximum temperature

clc

clear

//Input data

P1=1;//The pressure of air entering the compressor
of a gas turbine plant operating on Brayton cycle

in bar

T1=293;//Initial temperature in K

r=6.5; //Pressure ratio of the cycle

ri=1.4;//Isentropic ratio

// Calculations

T2=T1*(r) " ((r1-1)/r1);//Temperature at the end of
compression in K

T4=2.3*(T2-T1)/0.708; // Temperature at point 4 in K

T3=T4*(r) " ((r1-1)/r1);//Maximum temperature in K

n=(1-((T4-T1)/(T3-T2)))*100; //Turbine plant
efficiency in percent
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// Output

printf (’(a)The maximum temperature of the cycle is
%3.1f K\n (b)Cycle efficiency is %3.2f percent’,
T3 ,n)

Scilab code Exa 1.33 Air fuel ratio

clc

clear

//Input data

P1=1;//Pressure in an oil gas turbine installation
in bar

T1=298; //Initial Temperature in K

P2=4; //Pressure after compression in bar

CV=42100; // Calorific value of oil in kJ/kg

T3=813; //The temperature reached after compression
in K

m=1.2;//Air flow rate in kg/s

Cp=1.05;//Specific heat of air at constant pressure
in kJ/kg K

r=1.4; //Isentropic ratio

// Calculations

r1=P2/P1;//Pressure ratio

T2=(r1) " ((r-1)/r)*T1;//Temperature at the end of
compression stroke in K

T4=T3/(r1) " ((r-1)/r);//Temperature at the end of
isentropic expansion in K

Wt=m*Cp*(T3-T4);//Work done by the turbine in kJ/s
or kW

We=m*Cp*(T2-T1);//Work to be supplied to the
compressor in kJ/s or kW

Wn=Wt-Wc; //Net work done by the turbine unit in kW

qs=m*Cp*(T3-T2);//Heat supplied by the oil in kJ/s
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M=qs/CV;//Mass of fuel burnt per second in kg/s
a=m/M; //Air fuel ratio

//Output
printf (’(a)The net power output of the installation
is %3.2f kW\n (b)Air fuel ratio is %3.1f’,Wn,a)

Scilab code Exa 1.34 Net power

clc

clear

//Input data

T1=300; //Minimum temperature of the plant containing
a two stage compressor with perfect intercooling
and a single stage turbine in K

T5=1100; //Maximum temperature of the plant in K

P1=1;//Initial Pressure in bar

P5=15; //Final pressure in bar

Cp=1.05;//Specific heat of air in kJ/kg K

r=1.4;//Isentropic ratio

P6=P1;//Pressure at 6 in bar

// Calculations

P3=(P1%P5) " (1/2);//The intermediate pressure for
cooling in bar

P2=P3;//Pressure at point 2 in bar

T2=T1*(P2/P1) " ((r-1)/r);//Temperature at the end of
process 1-2

T3=T1;//Intermediate temperature in K

T4=1.473%T3; //Temperature at point 4 in K

T6=T5/(P5/P6) " ((r-1)/r);//Temperature at point 6 in
k

Wt=Cp*(T5-T6);//Work done by the turbine per kg of
air in kJ/s

Wc=Cp*(T4-T3)+Cp*(T2-T1); //Work done by the
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compressor per kg of air in kJ/s
Wn=Wt-Wc;//Net work done in kJ/s
Pn=Wn; //Net power developed in kW

//Output
printf (’The net power of the plant per kg of air/s
is %3.2f kW’,Pn)

Scilab code Exa 1.35 Maximum power

clc

clear

//Input data

P1=1;//Initial Pressure of a gas turbine power plant
in bar

P2=8; //Final pressure in bar

T1=300;//Initial temperature in K

T5=850; // Temperature of air expanded in the turbine
in K

m=1.8; //Mass of air circulated per second in kg

Cp=1.05;//Specific heat of air at constant pressure
in kJ/kg K

r=1.4; //Ratio of specific heat

// Calculations

P4=(P1xP2)"~(0.5);//Pressure for maximum power output
in bar

P3=P2;//Pressure after the constant pressure process
in bar

T3=T5;//For reheating condition Temperature in K

T2=T1*(P2/P1) " ((r-1)/r);//Temperature at the end of
constant entropy process in K

T4=T3/((P3/P4) " ((r-1)/r));//Temperature after the
process 3—4 in K

T6=T4;// Temperature at the end of process 5—6 in K
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Wt=m*Cp* ((T3-T4)+(T6-T6));//Work done by the turbine
in kJ/s

We=m*Cp*(T2-T1); //Work absorbed by the compressor in
kJ/s

P=Wt-Wc;//Power that can be obtained from gas
turbine installation in kW

//Output
printf (’The maximum power that can be obtained from

turbine installation is %3.0f kW’ ,P)

Scilab code Exa 1.36 Mass of fluid

clc

clear

//Input data

P1=1.5;//Pressure at the inlet of the low pressure
compressor in bar

T1=300; //Temperature at the inlet of the low
pressure compressor in K

P5=9; //Maximum pressure in bar

T5=1000; //Maximum temperature in K

P=400; //Net power developed by the turbine in kW

Cp=1.0;//Specific heat of air at constant pressure
in kJ/kg K

r=1.4; //Ratio of specific heat

// Calculations

P8=P1;//For perfect intercooling and perfect
reheating in bar

P4=P5; //For perfect intercooling and perfect
reheating in bar

P2=(P1xP4)"0.5; //Pressure at the end of Isentropic
compression in LP compressor in bar

P6=P2;//Pressure at the end of process 5—6 in bar
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T2=T1*(P2/P1) " ((r-1)/r);//Temperature at the end of
isentropic compression in K

T3=T1;//For perfect intercooling in K

T4=T2;//For perfect intercooling in K

T6=T5/(P5/P6) " ((r-1)/r);//Temperature at the end of
process 5—6 in K

T7=T5;//Temperature in K

T8=T6; // Temperature in K

Wt=Cp*((T5-T6)+(T7-T8));//Work done by the turbine
in kg/s

Wc=Cpx*((T2-T1)+(T4-T3));//Work absorbed by the
compressor in kJ/s

Wn=Wt-Wc;//Net work output in kJ/s

m=P/Wn; //Mass of fluid flow per second in kg/s

qs=m*Cp*((T5-T4)+(T7-T6));//Heat supplied from the
external source in kJ/s

// Output
printf (’(a)Mass of fluid to be circulated in the
turbine is %3.3f kg/s\n (b)The amount of heat

supplied per second from the external source is

%3.1f kJ/s’,m,qs)

Scilab code Exa 1.37 Mass of air

clc

clear

//Input data

T1=293; //Temperature of a constant pressure open
cycle gas turbine plant in K

T3=1043; //The maximum temperature in K

a=6.5;//The pressure ratio

P=1000; //Power developed by the installation in kW

Cp=1.05;//Specific heat at constant pressure in kJ/
kg K
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r=1.4;//Isentropic ratio

// Calculations
T2=Ti1*a"~((r-1)/r);//Temperature after the isentropic
compression stroke in K
T4=T3/a"((r-1)/r);//Temperature after the isentropic
expansion process in K
Wt=Cp*(T3-T4);//Work done by the turbine per kg of
air per second in kJ
Wc=Cp*(T2-T1);//Work absorbed by the compressor per
kg of air per second in kJ
Wn=Wt-Wc;//Net work output in kJ/s
m=P/Wn; //Mass of fluid circulated per second in kg/s
Q=m*Cp*(T3-T2);//Heat supplied by the heating
chamber in kJ/s

//Output

printf (’(a)Mass of air circulating in the
installation is %3.2f kg/s\n (b)Heat supplied by
the heating chamber is %3.1f kJ/s’,m,Q)

Scilab code Exa 1.38 Overall efficiency

clc

clear

//Input data

a=6;//Pressure ratio of a gas turbine plant

T1=293; //Inlet temperature of air in K

T3=923; //Maximum temperature of the cycle in K

P=2000; //Power developed in the cycle in kW

nc=85; //Efficiency of the compressor in percentage

nt=85; // Efficiency of the turbine in percentage

Cp=1;//Specific heat of gas at constant pressure in
kJ/kg K

Cv=0.714;//Specific heat of gas at constant volume
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// Calculations

r=Cp/Cv;//Ratio of specific heats

T2a=a~((r-1)/r)*T1;// Temperature at 2’ in K

T2=((T2a-T1)/(nc/100))+T1;//Temperature at point 2
in K

T4a=T3/a~((r-1)/r);//Temperature at the point 4’ in
K

T4=T3-((T3-T4a)*(nt/100));//Temperature at the point
4 in K

Wt=Cp*(T3-T4);//Work done by the turbine per kg of
air in kJ

Wc=Cpx*(T2-T1);//Work done by the compressor per kg
of air in kJ

Wn=Wt-Wc;//Net work output of the turbine per kg of
air in kJ

qA=Cp*(T3-T2);//Heat supplied per kg of air in kJ

n=(Wn/qA)*100; //Overall efficiency of the turbine
plant in percentage

m=P/Wn;//Mass of air circulated per second in kg

// Output

printf (’(1)Overall efficiency of the turbine is %3.0
f percentage\n (2)Mass of air circulated by the
turbine is %3.2f kg’ ,n,m)

Scilab code Exa 1.39 Isentropic efficiency

clc

clear

//Input data

T1=293;//Initial temperature of a gas turbine plant
in K

P1=1;//Initial pressure in bar
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P2=4.5; //Pressure after the compression in bar

nc=80;//Isentropic efficiency of a compressor in
percentage

T3=923; //Temperature of the gas whose properties may
be assumed to resemble with those of air in the
combustion chamber in K

deltaP=0.1; //Pressure drop in a combustion chamber
in bar

nt=20; //Thermal efficiency of the plant in
percentage

r=1.4;//Isentropic index

P4=1;//Pressure at point 4 in bar

//Calculations
P3=P2-deltaP;//Pressure at point 3 in bar
T21=T1x(P2/P1) " ((r-1)/r);// Temperature after the
compression process in K
T2=(T21-T1)/(nc/100)+T1;//Temperature at the point 2
in K
T41=T3/(P3/P4) " ((r-1)/r);// Temperature at the end of
expansion process in K
Ac=T2-T1;//Work done by the compressor per kg of air
per specific heat at constant pressure Ac=Wc/Cp
At=T3;//Work done by the turbine per kg of air per
specific heat at constant pressure At=Wt/Cp
An=At-Ac; //Net work done per kg of air
Bs=T3-T2;//Heat supplied per kg of air per specific
heat at constant pressure Bs=qs/Cp;gs=heat
supplied
T4=An-((nt/100)*Bs); // Temperature at point 4 in K
nT=((T3-T4)/(T3-T41))*100; //Isentropic efficiency of
the turbine in percentage

// Output
printf (’The isentropic efficiency of the turbine is

%3.2f percent’,nT)
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Scilab code Exa 1.40 Overall efficiency

clc

clear

//Input data

P1=1;//Pressure of air received by the gas turbine
plant in bar

T1=300;//Initial Temperature in K

P2=5;//Pressure of air after compression in bar

T3=850; // Temperature of air after the compression in
K

nc=80; //Efficiency of the compressor in percent

nt=85; //Efficiency of the turbine in percent

r=1.4;//Isentropic index of gas

P3=P2;//Since 2—-3 is constant pressure process in
bar

P41=1;//Pressure at the point 41 in bar

Cp=1.05;//Specific heat of the gas at constant
pressure in kJ/kg K

// Calculations
T21=T1*(P2/P1) " ((r-1)/r);// Temperature at the point
21 on the curve in K
T2=(T21-T1)/(nc/100)+T1;//Temperature at the point 2
in K
T41=T3/(P3/P41) " ((r-1)/r);//Temperature at the point
41 in K
T4=T3-((nt/100) *(T3-T41));// Temperature of gas at
the point 4 in K
Wt=Cp*(T3-T4);//work done by the turbine in kJ/kg of
air
Wc=Cpx*(T2-T1);//Work done by the compressor in kJ/kg
of air
Wn=Wt-Wc; //Net work done by the plant in kJ
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nt=(Wn/(Cp*x(T3-T2)))*100; //Thermal efficiency of the
plant in percentage

//Output
printf (’Overall efficiency of the plant is %3.2f
percent ’,nt)

Scilab code Exa 1.41 Overall efficiency

clc

clear

//Input data

P1=1;//Initial pressure of a gas turbine plant in
bar

T1=310;//Initial temperature in K

P2=4; //Pressure of air after compressing in a rotary
compressor in bar

P3=P2;//Constant pressure process

P41=P1;//Since 1—41 is a constant pressure process
in bar

T3=900; // Temperature of air at the point 3 in
constant process in K

nc=80; //Efficiency of the compressor in percentage

nt=85; // Efficiency of the turbine in percentage

E=70; //Effectiveness of the plant in percentage

r=1.4;//Isentropic index

Cp=1;//Specific heat of air at constant pressure in

kJ/kg K

//Calculations
T21=T1*(P2/P1) " ((r-1)/r);// Temperature at the point
21 in the temperature versus entropy graph in K
T2=T1+((T21-T1)/(nc/100));//Temperature of air after
the compression process in K
T41=T3/((P3/P41) "~ ((r-1)/r));//Temperature at the
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point 41 after the isentropic expansion process
in K

T4=T3-((T3-T41)*(nt/100));//Temperature at the point
4 in K

Wt=Cp*(T3-T4);//Work done by the turbine in kJ

Wc=Cpx*(T2-T1);//Work done by the compressor in klJ

Wn=Wt-Wc;//Net work done in klJ

qs=Cp*(T3-T2);//Heat supplied in kJ

qa=Cp*(T4-T2);//Heat available in the exhaust gases
in kJ

H=qa*(E/100);//Actual heat recovered from the
exhaust gases in the heat exchanger in kJ

Hs=qs-(H);//Heat supplied by the combustion chamber
in kJ

nt=(Wn/Hs) *100; //Thermal efficiency of the gas
turbine plant with heat exchanger in percent

// Output
printf (’The overall efficiency of the plant is %3.1f
percent ’,nt)
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Chapter 7

Performance of IC engines

Scilab code Exa 7.1 Brake torqu

clc
clear
//Input data

e

N=1500; //Engine speed in rpm

p=110; //Load on brakes in

kg

L=900; //Length of brake arm in mm
g=9.81;//Gravitational force in N/m"2
pi=3.14; //Mathematical constant

// Calculations

T=((p*g)*(L/1000));//Braking torque in Nm
P=((T/1000) *((2%3.14%N)/60));//Power available at
the brakes of the engine in kW

//Output

printf (’(a) Brake torque is %3.1f Nm \n (b)Power

available at the brakes
", T,P)

of the engine

is %3.2f kW
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Scilab code Exa 7.2 Power available at brakes

clc

clear

//Input data

N=700; //Engine speed in rpm

D=0.6; //Diameter of brake drum in m
d=0.05; //Diameter of rope in m

W=35; //Dead load on the brake drum in kg
S=4.5;//Spring balance reading in kg
g=9.81;//Gravitational constant in N/m"2
pi=3.14; //Mathematical constant

//Calculations
P=(((W-S)*g*xpi*(D+d))/1000) *x(N/60);//Power in kW

//Output
printf (’ The power available at the brakes is %3.3f
kW’ ,P)

Scilab code Exa 7.3 Brake thermal efficiency

clc

clear

//Input data

W=950; //Load on hydraulic dynamometer in N
C=7500; //Dynamometer constant

£=10.5; //Fuel used per hour in kg
h=50000; // Calorific value of fuel in kJ/kg
N=400; //Engine speed in rpm

// Calculations

P=(W*N)/C;//Power available at the brakes in kW

H=Px60; //Heat equivalent of power at brakes in kJ/
min
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Hf=(f*h) /60; //Heat supplied by fuel per minute in klJ
/min

n=(H/Hf)*100; //Brake thermal efficiency in
percentage

// Output
printf (7 Brake thermal efficiency of the engine is
%3.2f percent’,n)

Scilab code Exa 7.4 Specific fuel consumption

clc

clear

//Input data

n1=50.5; //Air standard efficiency in percentage
n2=50; //Brake thermal efficiency in percentage
N=3000; //Engine speed in rpm

H=10500; //Heating value of fuel in kcal/kg
T=7.2;//Torque developed in kgfsm

B=6.3;//Bore diameter in cm

S=0.095; //stroke in m

// Calculations

nbt=(n1/100)*(n2/100) ; //Brake thermal efficiency in
percentage

B1=(2%(22/7) *N*T) /4500; //Brake horse power in kW

B2=B1/4; //Brake horse power per cylinder in kW

Bsf=(4500%60) /(H*427*nbt); //Brake specific fuel
consumption in kg/BHP hr

bmep=(B2%4500) /(S*(3.14*B~2/4)*(N/2));//Brake mean
effective pressure in kgf/cm”2

//Output
printf (’(a)Specific fuel consumption is %3.3f kg/BHP
hr\n (b)Brake mean effective pressure is %3.3f
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kgf/cm”2’ ,Bsf , bmep)

Scilab code Exa 7.5 Mechanical efficiency

clc

clear

//Input data

W=30; //The net dynamometer load in kg
R=0.5;//Radius in m

N=2400; //Speed in rpm

FHP=6.5; //Engine power in hp

//Calculations

BHP=(2%3.14*%R*N*W) /4500; //Brake horse power in kW

IHP=BHP+FHP; //Indicated horse power in kW

nm=(BHP/IHP)*100; //Mechanical efficiency in
percentage

//Output
printf (’Mechanical efficiency of the engine is %3.2f
percent ’,nm)

Scilab code Exa 7.6 IHP

clc

clear

//Input data

d=25; //Diameter of cylinder in cm
1=0.4;//Stroke of piston in m

N=200; //Speed in rpm

m=10; // Misfires per minute

M=6.2; //Mean effective pressure in kgf/cm”2
nm=0.8; //Mechanical efficiency in percent
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// Calculations

np=(N/2) -m; //Number of power strokes per minute
A=(3.14%d"2)/4;//Area of the cylinder
I=(M*1xA*np) /4500; //Indicated horse power in kW
B=I*nm; //Brake horse power in kW
F=I-B;//Friction horse power in kW

//Output

printf (’(a)The indicated horse power is %3.2f kW \n
(b)The brake horse power is %3.2f kW \n (c¢)
Friction horse power is %3.2f kW’ ,I,B,F)

Scilab code Exa 7.7 Average piston speed

clc

clear

//Input data

I=5;//Indicated power developed by single cylinder
of 2 stroke petrol engine

M=6.5; //Mean effective pressure in bar

d=0.1; //Diameter of piston in m

// Calculations

A=(3.14xd"2)/4;//Area of the cylinder

LN=(I*1000%60) /(M*10"5%A);//Product of length of
stroke and engine speed

S=2*LN; //Average piston speed in m/s

//Output
printf ('The average piston speed is %3.2f m/s’,S)

Scilab code Exa 7.8 Dimensions of cylinder
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clc
clear
//Input data

P=60; //Power developed by oil
M=6.5; //Mean effective
N=85; //Number of explosions per minute

r=1.75; //Ratio of stroke to bore diameter

nm=0.8; //Mechanical efficiency

// Calculatio

I=P/nm; //Indicated horse power

ns

engine in kW

pressure in kgf/cm”2

d=((I*100%4%4500) /(M*r*3.14%N))~(1/3);//Bore

diameter

in cm

l=r*d;//Stroke length in cm

// Output

printf (’(a)Diameter of the bore is %3.2f c¢cm \n (b)
Stroke length of the piston

is %3.2f cm’,d,1)

Scilab code Exa 7.9 Bore and stroke of piston

clc
clear
//Input data

I=45; //Power developed by two cylinder internal
combustion engine operating on two stroke

principle

N=1100; //Speed in rpm

M=6; //Mean effective

pressure in kgf/cm”2

r=1.3;//Ratio of stroke to the bore
nc=2; //Number of cylinders

// Calculatio

ns

d=((I*4500%4) /(M*(r/100) *3.14%N*nc)) "~ (1/3);//

Diameter

of the bore

in cm
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1=1.3%d;//Stroke length in cm

// Output

printf (’(a)The bore diameter of the cylinder is %3.2
f em\n (b)Stroke length of the piston is %3.2f cm
,d, 1)

Scilab code Exa 7.10 Volumetric efficiency

clc

clear

//Input data

d=6; //Diameter of the bore in cm

1=9;//Length of the stroke in cm

m=0.00025; //Mass of charge admitted in each suction
stroke

R=29.27;//Gas constant Kgfm/kg K

p=1;//Normal pressure in kgf/cm"2

T=273;//Temperature in K

// Calculations

V=(m*R*T)*10°6/(p*x10~4);//Volume of charge admitted
in each cycle in m"3

Vs=(3.14*d"2%1)/4; //Swept volume of the cylinder

nv=(V/Vs)*100; //Volumetric efficiency in percentage

// Output
printf (’The volumetric efficiency is %3.1f percent’
nv)

-

Scilab code Exa 7.11 Volumetric efficiency

clc
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clear

//Input data

d=0.12; //Diameter of the bore in m

1=0.13; //Length of stroke in m

N=2500; //Speed of the engine in rpm

d1=0.06; //Diameter of the orifice in m

Cd=0.70; //Discharge coefficient of orifice

hw=33; //Heat causing air flow through orifice in cm
of water

p=760; //Barometric reading in mm of Hg

T1=298; //Ambient temperature in degree K

p1=1.013;//Pressure of air at the end of suction in
bar

T2=22; //Temperature of air at the end of suction in
degree C

R=0.287;//Universal gas constant

n=6; //Number of cylinders in the engine

n1=1250; //Number of strokes per minute for a four
stroke engine operating at 2500 rpm

// Calculations

V=(3.14%d"2%1)/4; //Swept volume of piston in m"3

Ao=(3.14%d1°2) /4; //Area of the orifice in m"2

rho=p1*10°5/((R*T1)*1000) ; //Density of air at 1.013
bar and 22 degrees C

Va=840*Cd*Ao*(hw/rho) " (1/2);//Volume of air passing
through the orifice in m"3/min

V1=8.734/n;//Actual volume of air per cylinder in m
"3/ min

As=V1/n1;//Air supplied per cycle per cylinder in m
"3

nv=(As/V)*100; //Volumetric efficiency of the engine
in percentage

//Output
printf ("The volumetric efficiency of the engine is
%3.21f percent’,nv)
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Scilab code Exa 7.12 Air standard efficiency

clc

clear

//Input data

d=0.15; //Diameter of the piston in m

1=0.19; //Length of the stroke in m

V=0.00091; //Clearance volume in m"3

N=250; //Speed of the engine in rpm

M=6.5; //Indicated mean effective pressure in bar
c=6.3;//Gas consumption in m"3/hr
H=16000; // Calorific value of the has in kJ/m"3
ri=1.4;//Polytropic index

// Calculations

Vs=(3.14*d"2%1)/4; //Swept volume in m"3

Vt=Vs+V;//Total cylinder volume in m"3

r=Vt/V;//Compression ratio

na=(1-(1/r~(r1-1)))*100; //Air standard efficiency in

percent

A=(3.14%d"2)/4; //Area of the bore in m

I=(M*10"5*1%A*N)/(1000%60);//Indicated power in kW

Hs=(c*H) /(60%60);//Heat supplied per second

nt=(I/Hs)*100; //Indicated thermal efficiency in
percent

//Output

printf (’(a)The air standard efficiency is %3.1f
percent\n (b)Indicated power is %3.3f kW\n (c¢)
Indicated thermal efficiency is %3.1f percent’,6 na
,I,nt)
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Scilab code Exa 7.13 Diameter of venturi

clc

clear

//Input data

ma=6; //Air supplied per minute by a single jet
carburetor in kg/min

mf=0.44; //Mass flow rate of petrol in kg/min

s=0.74;//Specific gravity of petrol in kg/m"3

pl=1;//Initial pressure of air in bar

T1=300;//Initial temperature of air in K

Ci=1.35;//Isentropic coefficient of air

V=90; //Speed of air in the venturi in m/s

Vc=0.85;//Velocity coefficient of the venturi in m/s

Cf=0.66;//Coefficient of discharge for the jet

Cp=1005; // Coefficient of pressure in J/kg K

n=1.35;//Isentropic coefficient of air

R=0.281;//Real gas constant in Nm/kg K

rhof=740; //Density of fuel in mm of Hg

// Calculations

p2=(1-((V/Vc) " (2) /(2xT1*Cp))) " ((n)/(n-1));//Pressure
at the venturi in bar

Vi=((R*T1)/(p1*10°5))*1000; //Initial volume in m"3/
kg

V2=V1x((p1/p2)~(0.741));//Final volume in m"3/kg

A2=((max*V2)/(V*60))*10~4; //Throat area of venturi in
cm” 2

d=((A2%4) /3.14)~(0.5);//Diameter of venturi in cm

deltaPa=1-p2;//Pressure drop causing air flow in bar

deltaPf=0.8+deltaPa;//Pressure drop causing fuel
flow in bar

Af=(mf/60) *(1074) /((Cf)*(2*rhof*deltaPf*10"5) ~(1/2))
;//Area through which fuel flows in cm”2

df=((Af*(4/3.14))°(1/2))*10; //Diameter of fuel jet
In mm

printf (’(a)The diameter of the venturi of the
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venturi if the air speed is 90 m/s is %3.2f cm\n
(b)The diameter of the jet if the pressure drop
at the jet is 0.8 times the pressure drop at the
venturi is %3.4f mm’,d,df)

Scilab code Exa 7.14 Fuel supplied

clc

clear

//Input data

r=14; //The compression ratio of a diesel engine
Vc=1;//Clearance volume in m"3

c=0.08; //Fuel supply cut off point

nr=0.55; //Relative efficiency
H=10000; // Calorific value of fuel in kcal/kg
ri=1.4;//Ratio of specific heat of air

Vs=13; //Stroke volume in m"3

// Calculations

rho=Vc+(c*Vs);//Cut off ratio

na=1-(1*(rho"r1-1) /((r~(r1-1)*r1)*(rho-1)));//Air
standard efficiency of diesel cycle in percent

In=(na*nr);//Indicated thermal efficiency in percent

H1=(4500%60) /(In*427);//Heat in fuel supplied/1HP hr

W=H1/10"4; //Weight of fuel required /1HP hr

// Output
printf (’The weight of fuel required per 1HP hr is %3
Af kg, W)

Scilab code Exa 7.15 Fuel to be injected

clc
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clear

//Input data

P=120; //Power developed by a six cykinder four
stroke diesel engine

N=2400; //Speed in rpm

£=0.2;//Brake specific fuel consumption in kg/kWh

s=0.85;//Specific gravity of fuel

//Calculations

F=f*P; //Fuel consumed per hour in kg

F1=F/6; //Fuel consumed per cylinder in kg/h

n=(N*60) /2; //Number of cycles per hour

F2=(F1/n)*10°3; //Fuel consumption per cycle in gm

V=F2/s;//Volume of fuel to be injected per cycle in
cc

//Output
printf ("The quantity kof fuel to be injected per
cycle per cylinder is %3.4f cc’,V)

Scilab code Exa 7.16 Diameter of orifice

clc

clear

//Input data

P=20; //Power developed by a four stroke diesel
engine per cylinder in kW

N=2000; //Operating speed of the diesel engine in rpm

s=0.25; //Specific fuel consumption in kh/kW

p1=180; //Pressure of fuel injected in bar

d=25; //Distance travelled by crank in degrees

p2=38; //Pressure in the combustion chamber in bar

Cd=0.85;//Coefficient of velocity

A=30;//API in degrees
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// Calculations

T=d/(360*(N/60));//Duration of fuel injection in s

SG=(141.5/(131.5+A))*10°3; //Specific gravity of fuel

V=Cd*(2x(pl-p2)*1075/8G) ~(1/2);//Velocity of fuel
injection in m/s

VE=(s/60)*P/((N/2)*8G);//Volume of fuel injected per
cycle in m"3/cycle

Na=Vf/(V*T);//Nozzle orifice area in m"2

d=(((4*Na)/3.14) " (1/2))*10°3; //Diameter of the
orifice of the fuel injector in mm

// Output
printf (’The diameter of the orifice is %3.4f mm’,d)

Scilab code Exa 7.17 Total orifice area

clc

clear

//Input data

P=200; //Power developed by a six cylinder diesel
engine in kW

N=2000; //Operating speed of the engine in rpm

bs=0.2; //The brake specific fuel consumption in kg/
kWh

p1=35;//The pressure of air in the cylinder at the
beginning of injection in bar

p2=55; //Maximum cylinder pressure in bar

p3=180; //Initial injection pressure in bar

p4=520; //Maximum pressure at the injector in bar

Cd=0.75;// Coefficient of discharge

S=850;//Specific gravity of fuel

p5=1; //Atmospheric pressure in bar

a=16; //The crank angle over which injection takes
place in degrees
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// Calculations

Po=P/6; //Power output per cylinder in kW

F=(Poxbs)/60; //Fuel consumed per cylinder in kg/min

Fi=F/(N/2);//Fuel injected per cycle in kg

T=a/(360%(N/60));//Duration of injection in s

deltaP1=p3-pl;//Pressure difference at the beginning
of injection in bar

deltaP2=p4-p2;//Pressure difference at the end of
injection in bar

avP=(deltaPl1+deltaP2)/2;//Average pressure
difference in bar

V=Cdx*(2*(avP*10°5)/8) " (1/2);//Velocity of injection
of fuel jet in m/s

Vo=Fi/S;//Volume of fuel injected per cycle in m"3/
cycle

A=(Vo/(VxT))*10"6; //Area of fuel orifices in mm"2

// Output
printf ("The total orifice area required per injector
if the injection takes place over 16 degree
crank angle is %3.4f mm™2’,A)

Scilab code Exa 7.18 Indicated power

clc

clear

//Input data

A=450; //Area of indicator diagram in mm"2
1=60; //Length of indicator diagram in mm
s=1.1;//Spring number in bar/mm

d=0.1; //Diameter of piston in m

L=0.13; //Length of stroke in m

N=400; //Operating speed of the engine in rpm

// Calculations
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Av=A/1;//Average height of indicator diagram in mm

pm=Avxs;//Mean effective pressure in bar

np=N/2; //Number of power strokes per minute for a
four stroke diesel engine

Ar=(3.14%d"2)/4;//Area of the piston in m"2

I=(pm*10°5*L*xAr*np) /(1000%60) ; //Indicated power in
kW

//Output
printf (’(a)The indicated mean effective pressure is
%3.2f bar\n (b)Indicated power is %3.2f kW’ ,pm,I)

Scilab code Exa 7.19 BHP

clc

clear

//Input data

d=25; //Diameter of the bore in cm
1=0.4;//Stroke length in m

N=300; //Operating speed of the engine in rpm
n=120; //Number of explosions per minute
pm=6.7; //Mean effective pressure in kgf/cm”2
Tnet=90; //Net brake load in kg

R=0.75; //Radius of brake drum in m

£=0.22; //Fuel supplied per minute in m"3
C=4500; // Calorific value of fuel in kcal/m"3

// Calculations

BHP=(2%3.14*R*N*Tnet) /4500; //Brake horse power in kW

A=(3.14%d"2)/4;//Area of the cylinder in cm”2

IHP=(pm*1*Axn) /4500; //Indicated horse power in kW

H=f*C; //Heat supplied by fuel per minute in kcal

nt1=((IHP*C)/(990%427))*100; //Thermal efficiency on
IHP basis in percent

nt2=((BHP*C) /(990%427))*100; //Thermal efficiency on
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// Output

printf (’(a)The brake horse power is %3.2f kW\n (b)
Indicated horse power is %3.3f kW\n (c¢)Thermal
efficiency on IHP basis is %3.2f percent\n (d)
Thermal efficiency on BHP basis is %3.2f percent’
,BHP , IHP ,nt1,nt2)

Scilab code Exa 7.20 IHP

clc

clear

//Input data

D=0.6; //Brake wheel diameter of a constant speed
compression ignition engine operating on four
stroke cycle in m

t=0.01; // Thickness of brake band in m

N=500; //Operating speed of the engine in rpm

W=20; //Load on brake band in kgf

S=3;//Spring balance reading in kgf

1=6.25; //Length of indicator diagram in cm

A=4.35; //Area of indicator diagram in cm”2

Sn=11; //Spring number in kgf/cm”2/cm

d=10; //Diameter of the bore in cm

L=0.13; //Length of the stroke in m

F=0.23;//Specific fuel consumption in kg/BHP hr

CV=10000; //Heating value of fuel in kcal/kg

//Calculations

BHP=(3.14*(D+t)*N*(W-S)) /4500; //Brake horse power in
kW

MEP=(Ax*Sn)/1;//Mean effective pressure in kgf/cm”2

Ar=(3.14%d"2)/4;//Area of the cylinder in cm”2

np=N/2; //Number of explosions per minute
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IHP=(MEP*L*Ar*np) /4500; //Indicated horse power in kW

nm=(BHP/IHP)*100; //Mechanical efficiency in
percentage

Wf=F*BHP; //Fuel consumption per hr in kg/hr

nt=((IHP*4500%60) /(WE*CV*427))*100; //Indicated
thermal efficiency in percentage

nb=((BHP*4500%60) /(WEf*CV#*427))*100; //Brake thermal
efficiency in kW

//Output
printf (’(a)The brake horse power is %3.2f kW\n (b)
Indicated horse power is %3.3f kW\n (c)Mechanical
efficiency is %3.1f percent\n (d)Indicated
thermal efficiency is %3.0f percent\n (e)Brake
thermal efficiency is %3.1f percent’,BHP,IHP,nm,
nt,nb)

Scilab code Exa 7.21 Indicated thermal efficiency

clc

clear

//Input data

N=1200; //Operating speed of a four cylinder engine
in rpm

BHP=25.3; //The brake horse power when all 4
cylinders are operating in kW

T=10.5; //The average torque when one cylinder was
cut out in mkgf

CV=10000; // Calorific value of the fuel used in kcal/
kg

f=0.25; //The amount of petrol used in engine per BHP
hour

3=427;//

// Calculations
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BHP1=(2%3.14*N%T) /4500; //BHP for 3 cylinders when 1
cylinder is cut out in kW

IHP=BHP-BHP1; //IHP of one cylinder in kW

IHPt=IHP*4; //Total THP of the engine with 4
cylinders

WEf=(f*BHP) /60; //Fuel used per minute in kg

ni=((IHPt*4500) /(Wf*xCVxJ))*100; //Indicated thermal
efficiency in percent

nm=(BHP/IHPt)*100; //Mechanical efficiency in percent

nb=(IHPt*nm) /100; //Brake thermal efficiency in
percent

// Output
printf (’The indicated thermal efficiency is %3.1f
percent ’,ni)

Scilab code Exa 7.22 IHP

clc

clear

//Input data

B=32; //Brake horse power in kW with all cylinders
working

B1=21.6; //BHP with number 1 cylinder cut out in kW

B2=22.3; //BHP with number 2 cylinder cut out in kW

B3=22.5; //BHP with number 3 cylinder cut out in kW

B4=23; //BHP with number 4 cylinder cut out in kW

// Calculations

I1=B-B1;//Indicated horse power of number 1 cylinder
in kW

I12=B-B2; //IHP of number 2 cylinder in kW

I13=B-B3; //IHP of number 3 cylinder in kW

I14=B-B4; //IHP of number 4 cylinder in kW

I=I1+I2+I3+I4;//Total IHP of the engine in kW
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nm=(B/I)*100; //Mechanical efficiency in percent

// Output
printf (’(a)The IHP of the engine is %3.1f kW\n (b)
Mechanical efficiency is %3.1f percent’,I,nm)

Scilab code Exa 7.23 Compression ratio

clc

clear

//Input data

r=15; //The air fuel ratio by weight

CV=45000; // Calorific value of fuel in kJ/kg

nm=85; //Mechanical efficiency of 4 stroke 4 cylinder

engine in percent

na=53; //Air standard efficiency of the engine in
percent

nr=65; //Relative efficiency of the engine in percent

nv=80; //Volumetric efficiency of the engine in
percent

r1=1.3;//Stroke to bore ratio

pl=1;//Suction pressure in bar

T=303;//Suction temperature in K

S=3000; //The operating speed of the engine in rpm

P=75; //Power at brakes in kW

r2=1.4; //Ratio of specific heats for air

R1=0.287;//Characteristic gas constant for air fuel
mixture in kJ/kg K

//Calculations

R=(1/(1-(na/100))) "~ (1/(r2-1));//Compression ratio of
the engine

nti=((na/100) *(nr/100))*100; //The indicated thermal
efficiency in percent

Pi=P/(nm/100);//Indicated power in kW
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F=Pi/((nti*CV)/100);//Fuel per second injected in kg
/sec

B=F/P;//Brake specific fuel consumption in kg/kWsec

A=1+r; //Mass of fuel mixture entering the engine foe

every one kg of fuel in kg

m=AxF; //Mass of air fuel mixture per second in kg

V=(m*R1*T)/(p1*10°5/1000) ; //Volume of air fuel
mixture supplied to the engine per sec

Vs=V/(nv/100);//Swept volume per second in m"3/sec

d=((Vs*2%60%4) /(S*3.14*r1%4)) "~ (1/3)*1000; //Diameter
of the bore in mm

L=ri1x*d;//Stroke length in mm

//Output

printf (’(a)Compression ratio is %3.1f \n (b)
Indicated thermal efficiency is %3.1f percent\n (
c)Brake specific fuel consumption is %3.7f kg/kW
sec\n (d)Bore diameter of the engine is %3.1f mm\
n (e)Stroke length of the engine is %3.1f mm’,R,
nti,B,d,L)

Scilab code Exa 7.24 Heat balance

clc

clear

//Input data

d=0.3;//Diameter of the bore in m

L=0.45; //Stroke length in m

N=220; //Operating speed of the engine in rpm
T=3600; //Duration of trial in sec
F=7;//Fuel consumption in kg per minute
CV=45000; // Calorific value of fuel in kJ/kg
A=320; //Area of indicator diagram in mm"2
1=60; //Length of indicator diagram in mm
S=1.1;//Spring index in bar/mm
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W=130; //Net load on brakes in kg
D=1.65; //Diameter of brake drum in m
W1=500; // Total weight of jacket cooling water in kg

t=40; // Temperature rise of jacket cooling water in
degrees celsius

t1=300; //Temperature of exhaust gases in degrees
celsius

ma=300; //Air consumption in kg

sg=1.004; //Specific heat of exhaust gas in kJ/kgK

sw=4.185; //Specific heat of water in kJ/kgK

t2=25; //Room temperature in degrees celsius

g=9.81; //gravity

//Calculations

P=(W*xg*3.14*D*N) /(1000%60) ; //Power available at
brakes in kW

pm=(A*S)/1; //Mean effective pressure in bar

I=(pm*10~"5*%L*((3.14%d"2) /4)*N)/(1000%2%60);//
Indicated power developed in kW

nm=(P/I)*100; //Mechanical efficiency in percent

nt=(P/((F/T)*CV))*100; //Brake thermal efficiency
percent

ni=(I/((F/T)*CV))*100; //Indicated thermal efficiency

in percent

Hs=F*CV; //Heat supplied on one hour basis

Hp=PxT;//Heat equivalent of brake power in kJ

Hf=I-P;//Heat lost in friction in kJ

Hc=Wixt*sw; //Heat carried away by cooling water in
kJ

He=(ma+F)*(t1-t2)*sg;//Heat carried away by exhaust
gas in kJ

Hu=Hs - (He+Hf+Hc+He) ; //Heat unaccounted in kJ

nb=(He/Hs) *100; //Heat equivalent of power at brakes
in percent

nf=(Hf /Hs) *100; //Heat lost in friction in percent

nw=(Hc/Hs) *100; //Heat removed by jacket water in
percent

ne=(He/Hs) *x100; //Heat

in

carried away by exhaust gases
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nu=(Hu/Hs) *100; //Heat unaccounted in percent

//Output

printf (’(a)Power available at brakes is %3.2f kW\n (
b)Indicated power developed is %3.2f kW\n (c)
Mechanical efficiency is %3.2f percent\n (d)Brake
Thermal efficiency is %3.2f percent\n (e)
Indicated thermal efficiency is %3.2f percent’,P,
I,nm,nt,ni)

Scilab code Exa 7.25 BHP

clc

clear

//Input data

d=25; //The bore diameter of a single cylinder 4
stroke engine in cm

1=0.38;//Stroke length in m

t=3600; //Duration of test in sec

r=19710; // Total number of revolutions

F=6.25; //Fuel o0il used in kg

A=5.7;//Area of indicator diagram in cm”2

L=7.6;//Length of indicator diagram in cm
S=8.35;//Spring number in kgf/cm"3
P=63.5; //Net load on brake drum in kg
R=1.2;//Radius of brake drum in m

Ww=5.7;//Rate of coolant flow in kg/min

deltaT=44; //Temperature rise of coolant in degrees
celsius

T1=15.5; //Atmospheric temperature in degrees celsius

As=30; //Air supplied per kg of fuel

CV=10600; // Calorific value of fuel in kcal/kg

Te=390; //Exhaust gas temperature in degrees celsius

sm=0.25; //Mean specific heat of exhaust gas
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// Calculations

Hs=(F*CV)/60; //Heat supplied by fuel per minute in

kcal

pm=(A*S)/L;//Mean effective pressure in kgf/cm”2
I=(pm*1*(3.14*xd"2)xr)/(4*60%2x4500) ; //Indicated

horse power in kW

B=(P*R*2%3.14%*r) /(4500%60) ; //Brake horse power in kW

Hei=(I%4500) /427;//Heat equivalent of IHP/min in

kcal

Heb=(B*4500) /427; //Heat equivalent of BHP/min in

kcal

Hf=Hei-Heb;//Heat in friction per minute in kcal

Hc=WwxdeltaT;//Heat carried away by coolant in kcal

We=(F+(Asx*F))/60; //Weight of exhaust gases per

minute

He=Wex(Te-T1)*sm; //Heat carried away by exhaust

gases in kcal

//Output

printf (’(a)Indicated horse power is %3.2f kcal\n (b)

Brake horse power developed is %3.2f kcal\n (c¢)

Heat equivalent of friction is %3.1f kcal’,I,B,Hf

)

Scilab code Exa 7.26 Percentage of heat carried away by exhaust gas

clc
clear

//Input

F=10; //Quantity of fuel supplied during the trial

a diesel engine in kg/hr

CVv=42500; // Calorific value of fuel in kJ/kg

r=20; //Air fuel ratio
T=20; //Ambient temperature in degrees
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mw=585; //Water circulated through the gas
calorimeter in litres/hr
T1=35; //Temperature rise of water through the
calorimeter in degrees celsius
T2=95; // Temperature of gases at exit from the
calorimeter in degrees celsius

se=1.05;//Specific heat of exhaust gases in kJ/kgK

sw=4.186; //Specific heat of water in kJ/kgK

// Calculations

M=(F/60) *(r+1);//Mass of exhaust gases formed per

minute

H=((mw/60) *swxT1)+(Mxse*x(T2-T)); //Heat carried away
by the exhaust gases per minute in kJ/min

Hs=(F/60)*CV; //Heat supplied by fuel per minute in

kJ /min

nh=(H/Hs)*100; //Percentage of heat carried away by

the exhaust gas

//Output

printf (" Percentage of heat

gas is %3.2f percent’,nh)

carried away by exhaust

Scilab code Exa 7.27 Percentage of heat carried away by exhaust gases

clc
clear
//Input data

F=11; //Fuel used per hour observed during the trial
four stroke diesel engine

of a single cylinder
kg
mc=85; //Carbon present

in the fuel

in percent

mh=14; //Hydrogen present in the fuel in percent
mn=1; //Non combustibles present in the fuel in

percent
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CV=50000; // Calorific value of fuel in kJ/kg

Vc=8.5;//Percentage of carbon dioxide present in
exhaust gas by Volumetric analysis

Vo=10; //Oxygen present in exhaust gases in percent

Vn=81.5; //Nitrogen present in exhaust gases in
percent

Te=400; // Temperature of exhaust gases in degrees
celsius

se=1.05;//Specific heat of exhaust gas in kJ/kg

Pp=0.030; //Partial pressure of steam in the exhaust
in bar

Ta=20; //Ambient temperature in degrees celsius

hs=2545.6; //Enthalpy of saturated steam in kJ/kg

Tsa=24.1;//Saturation temperature from graph in
degrees celcius

Cp=2.1;//Specific heat in kJ/kg K

hst=3335; //Enthalpy of super heated steam in klJ/kg

// Calculations

Ma=(Vn*mc) /(33*Vc);//Mass of air supplied per kg of
fuel in kg

Me=Ma+1; //Mass of exhaust gases formed per kg of
fuel in kg

me=(Me*F) /60; //Mass of exhaust gases formed per
minute in kg

ms=F*(mh/100) ; //Mass of steam formed per kg of fuel
in kg

ms1=(ms*F)/60; //Mass of steam formed per minute in
kg

mde=me-msl;//Mass of dry exhaust gases formed per
minute in kg

H=mde*sex(Te-Ta);//Heat carried away by the dry
exhaust gases per minute in kJ/min

Es=hs+(Cp*(Te-Tsa));//Enthalpy of superheated steam
in kJ/kg

He=ms1x*hst;//Heat carried away by steam in the
exhaust gases in kJ/min

Hl=H+He;//Total heat lost through dry exhaust gases
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Hf=(F/60)*CV;//Heat supplied by fuel per minute in

kJ/min

nh=(H1/Hf)*100; //Percentage of heat carried away by
exhaust gases

// Output

printf (' Percentage of heat carried away by exhaust

gases is %3.1f percent’,nh)

Scilab code Exa 7.28 Increase in brake power of engine due t

clc
clear
//Input data

o0 supercharging

C=0.0033; //The capacity of a four stroke engine of
ignition type
I=13;//Average indicated power developed in kW/m"3
N=3500; //Operating speed of the engine

nv=80; //Volumetric efficiency in percentage
pl1=1.013;//Initial

compression

T1=298;//Initial

pressure in bar

temperature in K

r=1.75; //Pressure ratio of the engine
ni=75; //The isentropic efficiency
nm=80; //mechanical efficiency in percentage
ri=1.4;//Polytropic index

// Calculations

in percentage

Vs=(N/2)*C; //Swept volume in m"3/min

Vi=Vs*(nv/100); //Unsupercharged engine inducted
volume in m”3/min

Pb=pilx*r;//Blower delivery pressure in bar

T2s=((r) " ((r1-1)/r1))*T1;//Final temperature in K

T2=((T2s-T1)/(ni/100))+T1;//Blower delivery

temperature

in K
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Ve=((Pb*Vs)*T1)/(T2*xpl);//Equivalent volume at 1.013
bar and 298K in m”3/min

Vin=Ve-Vi; //Increase in inducted volume of air in m
"3/ min

Pin=Vin*I;//Increase in indicated power due to extra
air inducted in kW

Pinp=((Pb-pl1)*Vs*100) /60; //Increase in indicated
power due to increase in induction pressure in kW

Pt=Pin+Pinp;//Total increase in indicated power in
kW

nb=Pt*(nm/100);//Total increase in brake power
efficiency in kW

ma=(Pb*Vs*100) /(60%0.287*T2);//Mass of air delivered
by the blower in kg/s

Wb=ma*1.005*%(T2-T1);//Work input to air by blower in
kW

Pb1=Wb/(nv/100);//Power required to drive the blower
in kW

Pb2=nb-Pbl;//Net increase in brake power in kW

//Output
printf (’The net increase in brake power is %3.2f kW’
,Pb2)
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Chapter 8

Steam Nozzles and Turbines

Scilab code Exa 8.1 Final velocity of steam

clc

clear

//Input data

P1=12; //Pressure of Dry saturated steam entering a
steam mnozzle in bar

P2=1.5; //Discharge pressure of Dry saturated steam
in bar

f=0.95; //Dryness fraction of the discharged steam

1=12; //Heat drop lost in friction in percentage

hg1=2784.8;//Specific enthalpy of steam at 12 bar
from steam tables in kJ/kg

hg2=2582.3; //Specific enthalpy of 0.95 dry steam at
1.5 bar from steam tables in kJ/kg

// Calculations

hd=hgl-hg2;//Heat drop in kJ/kg

V1=44.72*%(hd) ~(0.5);//Velocity of steam at discharge
from the nozzle in m/s

n=1-(1/100);//Nozzle coefficient when 12 percent
heat drop is lost in friction

V2=44.72*(n*hd) ~(0.5);// Velocity of steam in m/s
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percentV=((V1-V2)/V1)*100; //Percentage reduction in
velocity

//Output

printf (’(a)Final velocity of steam is %3.1f m/s\n (b
)Percentage reduction in velocity is %3.2f
percent ’,V1,percentV)

Scilab code Exa 8.2 Mass of steam discharged

clc

clear

//Input data

P1=12; //Initial pressure of dry saturated steam
expanded in a nozzle in bar

P2=0.95; //Final pressure of dry saturated steam
expanded in a nozzle in bar

£=10;//Frictional loss in the nozzle of the total
heat drop in percentage

d=12; //Exit diameter of the nozzle in mm

hd=437.1; //Heat drop in kJ/kg from steam tables

q=0.859; //Dryness fraction of steam at discharge
pressure

vg=1.777;//Specific volume of dry saturated steam at

0.95 bar

// Calculations

n=1-(£/100);//Nozzle coefficient from moiller chart

V2=44.72*(n*hd) " (0.5);// Velocity of steam at nozzle
exit in m/s

A=(3.14/4)%(0.012) " (2);//Area of the nozzle at the
exit in mm"2

m=((A*V2)/(q*vg))*3600; //Mass of steam discharged
through the nozzle per hour in kg/hour
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// Output

printf ("The mass of steam discharged ,when the exit
diameter of the nozzle is 12mm is %3.1f kg/hour’,
m)

Scilab code Exa 8.3 Throat area

clc

clear

//Input data

P1=12; //Inlet pressure of steam nozzle in bar

T1=250; //Inlet temperature of steam nozzle in
degrees celcius

P2=2;//Final pressure of the steam nozzle in bar

n=1.3;//Polytropic constant for superheated steam

St=6.831; //For isentropic expansion, entropy remains
constant in kJ/kg

h1=2935.4//Enthalpy of steam at Pl from steam table
in kJ/kg

ht=2860; //Enthalpy of steam at pt in kJ/kg

vt=0.325;//Specific volume of steam at the throat
conditions in m"3/kg

m=0.2; //Mass of steam discharged through the nozzle
in kg/hour

q=0.947; //The dryness fraction of steam at exit from
steam tables

hg=2589.6; //Enthalpy of steam at exit in kJ/kg

vs=0.8854; //Specific volume of saturated steam in m

"3/kg

// Calculations
pt=(P2/(n+1)) " (n/(n-1))*P1;//Critical pressure ratio
i.e.,Throat pressure in bar
Vt=(2%1000%(h1-ht)) " (0.5);// Velocity of steam at
throat in m/s
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At=((mxvt)/Vt)*10"4; //Area of the throat in cm”2
from continuity equation

ve=q*vs;//Specific volume of steam at exit in m"3/kg

Ve=(2%1000%(h1-hg)) " (0.5);//Velocity of steam at
nozzle exit in m/s

Ae=((mxve)/Ve)*107"4; //Exit area in cm"2

// Output
printf (’(a)Throat area of steam nozzle is %3.3f cm
“2\n (b)Exit area of steam nozzle is %3.3f cm"2\n
(¢)Exit velocity of the nozzle is %3.1f m/s’, At,
Ae,Ve)

Scilab code Exa 8.4 Final exit velocity of steam

clc

clear

//Input data

P1=10; //Pressure of steam in bar

£=0.9;//Dryness fraction of steam

At=350; //Throat area in mm"2

Pb=1.4; //Back pressure in bar

h1=2574.8; //Enthalpy of steam at nozzle inlet from
steam tables in kJ/kg

ft=0.87; //Dryness fraction of steam at throat
pressure

fe=0.81;//Dryness fraction of steam at exit pressure

ht=2481; //Enthalpy of steam at throat pressure at ft

in kJ/kg
vt=0.285;//Specific volume of steam at throat in m
"3/kg

he=2266.2; //Enthalpy of steam at exit conditions in
kJ/kg

ve=1.001; //Specific volume of steam at exit
conditions in m"3/kg
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// Calculations

Pt=0.582%P1; //Steam pressure at the throat in bar

hd=hi-ht;//Enthalpy drop upto the throat in kJ/kg

Vt=44.7%(hd) " (0.5);//Velocity of steam at the throat
in m/s

hde=hl-he;//Enthalpy drop from nozzle entrance to
exit in kJ/kg

Ve=44.7*(hde) " (0.5);//Velocity of steam at nozzle
exit in m/s

Ae=(At*Vt*ve)/(Vexvt); //Exit area of nozzle from the
mass rate of flow equation in mm"2

//Output

printf (’(a)Final exit velocity of steam is %3.1f m/s
\n (b)Cross sectional area of the nozzle at exit
for maximum discharge is %3.0f mm"2’,Ve, Ae)

Scilab code Exa 8.5 Velocity of steam at the throat

clc

clear

//Input data

P1=7;//Inlet pressure of a convergent divergent
steam nozzle in bar

T1=275;//Inlet temperature of the nozzle in degrees
celcius

P2=1; //Discharge pressure of steam in bar

1=60; //Length of diverging portion of the nozzle in
mm

dt=6; //Diameter of the throat in mm

f1=10; //Percent of total available enthalpy drop
lost in friction in the diverging portion in
percentage

h1=3006.9; //Enthalpy of steam at 7bar pressure and
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275 degrees celcius in kJ/kg

ht=2865.9; //Enthalpy at the throat from Moiller
chart in kJ/kg

he=2616.7; //Enthalpy at the exit from moiller chart
in kJ/kg

vt=0.555;//Specific volume of steam at throat in m
"3/kg

Tt=202.8; //Temperature of steam at throat in degrees
celcius from moiller chart

ve=1.65; //Volume of steam at exit in m"3/kg

// Calculations

Pt=0.546*P1;//The throat pressure for maximum
discharge in bar

hd=hi-ht;//Enthalpy drop upto throat in kJ/kg

Vt=44.7%(hd) ~(0.5);//Velocity of steam at throat in
m/ s

hid=hl-he;//Total isentropic drop from 7 bar,275
degrees celcius to 1 bar in kJ/kg

hda=(1-(£1/100))*(hid);//Actual heat drop in kJ/kg

Ve=44.7*(hda) " (0.5);//Velocity at exit in m/s

At=(3.14/4)%(6/1000) “(2);//Throat area of the nozzle

in m"2

m=(At*Vt)/vt;//Mass flow rate at nozzle throat in kg
/s

Ae=((m*xve)/Ve)*10~4; //Exit area of the nozzle in cm
"2

de=(((Aex4)/3.14) " (0.5))*10; //Diameter of the nozzle
at exit in mm

alpha=atand ((de-dt)/(2%60));//Half of the cone angle
of the mnozzle in degrees

alphal=2*alpha;//Cone angle of the nozzle in degrees

// Output

printf (’(a) Velocity of steam at throat is %3.0f m/s)\
n (b)Temperature of steam at the throat is %3.1f
degrees celcius\n (c¢)Cone angle of the divergent
portion is %3.3f degrees’,Vt,Tt,alphal)
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Chapter 9

Air compressors

Scilab code Exa 9.1 Isothermal compression

clc

clear

//Input data

m=1; //Mass of air that has to be compressed in kg

P1=1;//Initial pressure of a single stage
reciprocating air compressor in bar

P2=6; //Final pressure in bar

T1=303;//Initial temperature of air in K

n=1.2;//Polytropic index of air

R=287; //Gas constant for air in J/kg K

r=1.4;//Isentropic index

//Calculations

Wi=(m*R*T1*log(P2/P1))/1000; //Work required for
compression in kJ/kg in Isothermal compression
process

W2=((n/(n-1))*m*R*T1*((P2/P1) "~ ((n-1)/n)-1))/1000; //
Work required for compression in a polytropic
compression process in kJ/kg

W3=((r/(r-1))*m*xR*T1*((P2/P1) ~((r-1)/r)-1))/1000; //
Work required for compression in a Isentropic
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compression process in kJ/kg

// Output

printf (’(a)Work required in a isothermal compression
is %3.3f kJ/kg \n(b)Work required in a
polytropic compression is %3.3f kJ/kg \n(c)Work
required in a isentropic compression is %3.3f kJ/
kg’ ,Wi,W2,W3)

Scilab code Exa 9.2 Size of the cylinder

clc

clear

//Input data

Pi=60000; //Indicated power of a double acting air
compressor in W

P1=1;//Initial pressure in bar

T1=293; //Initial temperature in K

n=1.2;//Polytropic index of the process

P2=8; //Final pressure in bar

N=120; //Speed at which the cylinder operates in rpm

S=150; //Average piston speed in m/min

// Calculations

L=S/(2xN); //Length of the stroke in m

X=(3.14%L)/4; //X=V/D"2 i.e.,Volume of air before
compression /square of the diameter in m

Y=((n/(n-1))*P1*107"5xX*(((P2/P1) " ((n-1)/n))-1));//Y=
W/D"2 Work done by the compressor per cycle in N/
m

Nw=2x*N; //Number of working strokes per minute since
it is a double acting cylinder

D=(((Pix*60)/(Y*Nw))~(0.5))*1000; //Diameter of the
cylinder in mm
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// Output
printf (’(a)Length of the cylinder is %3.3f m \n (b)
Diameter of the cylinder is %3.0f mm’,L,D)

Scilab code Exa 9.3 Indicated power

clc

clear

//Input data

D=0.15; //Diameter of a cylinder of a single acting
reciprocating air compressor in m

L=0.2; //Length of the stroke in m

P1=1; //The pressure at which compressor sucks air in
bar

P2=10; //Final pressure in bar

T1=298; //Initial Temperature in K

N=150; //Operating speed of the compressor in rpm

n=1.3;//Polytropic index of the process

// Calculations

V1=((3.14xD"2%L)/4);//Volume of air before
compression in m"3

W=((n/(n-1))*P1%10°5xV1i*((P2/P1) " ((n-1)/n)-1));//
Work done by the compressor for a polytropic
compression of air in Nm

Pi=((WxN)/60) /1000; //Indicated power of the
compressor in kW

// Output
printf (’The indicated power of the compressor is %3
.3f kW’ ,Pi)

Scilab code Exa 9.4 Mass of air delivered per minute
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clc

clear

//Input data

D=0.25; //Diameter of the cylinder of a single acting
air compressor in m

L=0.4;//Length of the stroke in m

Pi1=1;//Initial Pressure of the compressor in bar

T1=303;//Initial temperature of the compressor in K

P2=6; //Pressure during running in bar

N=250; //Operating speed of the compressor in rpm

R=287;//Gas constant in J/kg K

// Calculations

V1=(3.14*D"2%L) /4; //Volume of air before compression
in m"3

m=(P1%10°5%xV1)/(R*T1);//Mass of air delivered by the
compressor per stroke in kg/stroke

Nw=N; //Since single acting cylinder number of

working stroke is equal to Operating speed of the

compressor in rpm

ma=m*Nw; //Mass of air delivered per minute in kg/min

// Output
printf (’Mass of air delivered per minute is %3.2f kg
/min’ ,ma)

Scilab code Exa 9.5 Temperature

clc

clear

//Input data

P1=1;//Initial pressure of a single acting
compressor in bar

P2=12; //Final pressure in bar

N=500; //Operating speed of the compressor in rpm

83



© 00

10

12
13
14

N I R

© 00 = & Ot

10
11

12

13

14

15
16

T1=308;//Inlet air temperature in K
n=1.3;//Polytropic index

//Calculations
T2=T1*(P2/P1) " ((n-1)/n);//Temperature of air
delivered by the compressor in K

// Output
printf ('’ Temperature of air delivered by the
compressor is %3.2f K’,T2)

Scilab code Exa 9.6 Isentropic compression

clc

clear

//Input data

P1=1;//Pressure at which air is sucked by a
compressor in bar

T1=293; //Initial temperature in K

P2=9; //Delivery pressure after compression in bar

r=1.41;//Isentropic index

n=1.3;//Polytropic index

// Calculations

T21=T1*((P2/P1) " ((r-1)/r));//Temperature at the end
of isentropic compression process in K

T22=T1*((P2/P1) " ((n-1)/n));//Temperature at the end
of isentropic compression process in K

T23=T1;//Temperature at the end of isotropic
compression process in K (Temperature remains
constant)

//Output
printf (’(a)Temperature at the end of isentropic
compression is %3.2f K\n (b)Temperature at the
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end of polytropic compression is %3.2f K\n (c¢)
Temperature at the end of isotropic compression
is %3.0f K’,T21,T22,T23)

Scilab code Exa 9.7 Work done by air during suction

clc

clear

//Input data

V1=0.07; //Displacement of the piston of a single
stage single cylinder air compressor in m"3

P1=1;//Initial pressure in bar

T1=308; //Initial temperature of air in K

P2=8.5; //Pressure after the compression process in
bar

r=1.4; //Isentropic compression

// Calculations

V2=V1x((P1/P2)"(1/1.4));//Final volume of the
cylinder in m"3

W1=P1%10°5%V1; //Work done by air during suction in
Nm (or) J

W2=(P1%10"56*V1*(1-(P2/P1) " ((r-1)/r)))/(r-1);//Work
done by air during compression in Nm or J

Wal1=P2*10°5*V2; //Work done on air during delivery in
Nm or J

Wa2=((-W2)+Wal-W1)/1000; //Net work done on air
during the cycle in kJ

//Output

printf (’(a)Work done by air during suction is %3.0f
J\n (b)Work done on air during compression is %3
.0f J\n (c)Work done on air during delivery is %3
.0f J\n (d)Net work done on air during the cycle
is %3.3f kJ’,W1,W2,Wal,Wa2)
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Scilab code Exa 9.8 Work done on air during delivery

clc

clear

//Input data

V1=0.05; //displacement of a piston of a single
cylinder single stage reciprocating compressor in
m"3

P1=1;//pressure of air sucked in the compressor in
bar

T1=300;//Initial Temperature of air in K

P2=7; //Pressure after the compression process in bar

// Calculations

V2=(P1%V1)/P2;//Volume after the compression in m"3

W1=P1%10°5%V1;//Work done by air during suction in
Nm

W2=P1%10"5*V1i*xlog(V2/V1);//Work done on sir during
isothermal compression in Nm

H=-W2; //Heat transferred to the cylinder walls in Nm
or J

W3=P1*10°5%V1; //Work done on air during delivery in
Nm

Wn=W1+(-W2)-W3;//Net work done during the cycke in N
m

//Output

printf (’(a)Work done by air during suction is %3.0f
Nm\n (b)Work done on air during Isothermal
compression is %3.0f Nm\n (c)Heat transferred
during this process is %3.0f J\n (d)Work done on
air during delivery is %3.0f Nm\n (e)Net work
done during the cycle is %3.0f Nm’,W1,W2,H,W3,Wn)
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Scilab code Exa 9.9 Power required

clc
clear
//Input data

m=2; //Mass of air delivered per second in kg

Pi1=1;//Initial pressure of a single
in bar

T1=293;//Initial temperature in K

P2=7;//Final pressure in bar

n=1.4; //Polytropic index

R=287;//Gas constant in J/kg K

// Calculations

stage compressor

W=((n/(n-1))*m*xR*T1*(((P2/P1) " ((n-1)/n))-1))

/(60%x1000) ; //Work done by compressor in kW

// Output

printf ("Power required to compress and deliver 2kg

of air per minute is %3.3f kW’ ,W

)

Scilab code Exa 9.10 Work done by compressor

clc

clear

//Input data

D=0.15; //Diameter of the bore of a
single acting reciprocating air

L=0.225;//Stroke length in m

P1=1;//Pressure of air received in

T1=308; //Temperature of initial air

P2=6.5;//Delivery pressure in bar
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n=1.3;//Polytropic index

// Calculations

Vs=(3.14*D"2%xL)/4; //Stroke volume of the compressor
in m"3

Vc=0.05%Vs; //Clearance volume in m"3

Vi=Vs+Vc;//Initial volume of air in m"3

V4=Vc*x(P2/P1)~(1/n);//The air in the clearance
volume expands during suction stroke in m"3

V=V1-V4;//Effective swept volume in m"3

W=((n/(n-1))*P1*10°5x(V1-V4)*(((P2/P1) " ((n-1)/n)) -1)
); //Work done by the compressor per cycle in Nm

//Output
printf ("Work done by the compressor per cycle is %3
1f Nm’,wW)

Scilab code Exa 9.11 Volume of free air

clc

clear

//Input data

D=0.1; //Diameter of the bore of a single acting
compressor in m

L=0.1;//Length of the stroke in m

N=400; //Operating speed of the compressor in in rpm

Vc=0.00008; //Clearance volume in m"3

n=1.2;//Polytropic index

T1=303; //Initial temperature in K

Tf=293; //Final temperature in K

P1=0.95;//Initial pressure in bar

P2=8; //Final pressure in bar

Pf=1.013; //Free air pressure in bar

// Calculations
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Vs=(3.14*D"2xL) /4; //Stroke volume of the compressors
in m"3

Vi=Vc+Vs;//Initial volume of air is equal to
cylinder volume in m"3

V4=Vc*x(P2/P1)~(1/n);//Air in the clearance volume
expands during suction stroke to V4

Ve=V1-V4; //Effective swept volume in m"3

VE=(P1*(V1-V4)*Tf) /(T1xPf);//Free air delivered per
cycle can be obtained in m"3

A=VixN;//Free air delivered per minute in m"3/min

// Output

printf (’(a)Free air delivered per cycle is %3.6f m
"3\n (b)Free air delivered per minute is %3.4f m
"3/min’,VEf,A)

Scilab code Exa 9.12 Power of the compressor

clc

clear

//Input data

P1=1;//Pressure of air drawn by a two stage single
acting reciprocating air compressor in bar

T1=293; //Initial temperature in K

P3=60; //Final pressure after the compression in bar

P2=10; //Pressure after compression in the LP
cylinder in bar

T2=303; //Temperature after cooling in K

D=0.16; //Diameter of a cylinder in m

L=0.2;//Stroke length of the cylinder in m

n=1.3;//Polytropic index

N=300; //Operating speed of the compressor in rpm

R=287; //Gas constant in J/kg K

// Calculations
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V1=(3.14*D"2%L)/4; //Volume of the LP cylinder in m"3
V2=(P1*V1*T2)/(T1%P2);//Volume of the HP cylinder in
m"3
W=(n/(n-1))*(P1%x10"5*V1*x(((P2/P1) " ((n-1)/n))-1)+(P2
*1075%V2x (((P3/P2) " ((n-1)/n))-1)));//Work done by
the compressor per working cycle in N m
P=(W*N)/(60%x1000) ; //Power of the compressor in kW

//Output
printf ("Power of the compressor when it runs at 300
rpm is %3.3f kW’ ,P)

Scilab code Exa 9.13 Percentage saving in work

clc

clear

//Input data

Pi1=1;//Initial pressure in bar
P3=9;//Final pressure in bar
n=1.3; //Compression index

// Calculations

Wi=(n/(n-1))*(P1%10°5*x(((P3/P1) " ((n-1)/n))-1));//
Work done in compression in a single stage per
unit volume per kg of air in N m

P2=(P1xP3)~(0.5);//Intercooler pressure for perfect
intercooling in bar

W2=2%(n/(n-1))*(P1*10°5*%(((P2/P1) " ((n-1)/n))-1));//
Work done in compression in a two stage
compressor per unit volume per kg of air in N m

Wc=W1-W2;//Saving in work of compression in N m

nw=((W1-W2)/W1)*100; // Percentage saving in work of
compression in percentage

// Output
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printf (" Percentage saving in the work of compression
of air in two stages instead of single stage is
%3.2f percent’,nw)

Scilab code Exa 9.14 Work required

clc

clear

//Input data

m=1; //Mass of air to be compressed in kg

P1=1;//Pressure of air before compression in bar

T1=303;//Initial temperature in K

P3=25; //Final pressure of air after compression in
bar

n=1.3;//Polytropic index

R=287;//Gas constant in J/kg K

//Calculations
P2=(P1xP3) "~ (0.5);//Intermediate pressure in the case
of perfect intercooling in bar
W=2%(n/(n-1))*(m*R*T1*(((P2/P1) " ((n-1)/n))-1));//
Work done in compression in a two stage
compressor per unit volume per kg of air in N m

//Output data
printf ('Minimum work required to compress lkg of air
for given conditions is %3.0f N m’,W)

Scilab code Exa 9.15 Power required to drive compressor
clc
clear

//Input data
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V1=3; //Volume of air sucked in by a two stage
compressor in m’"3

P1=1.04;//Initial pressure in bar

T1=298;//Initial temperature in K

P2=9; //Delivery pressure in bar

n=1.25;//Polytropic index

// Calculations

P2=(P1xP2)"~(0.5);//Intermediate pressure for perfect
intercooling and for minimum work of compression
in bar

W=2%(n/(n-1))*(P1%x10°5xV1*x(((P2/P1) " ((n-1)/n))-1));
//Work done in compression in a two stage
compressor per unit volume per kg of air in Nm

P=W/(60%1000); //Power required to drive the
compressor in kW

// Output
printf ('The minimum power required to drive the
compressor is %3.3f kW’ ,P)

Scilab code Exa 9.16 Mass of water

clc

clear

//Input data

P1=1;//Initial pressure of a two stage air
compressor in bar

P3=36;//Final pressure in bar

T1=298;//Initial temperature in K

n=1.35;//Polytropic index

T3=298; //Temperature after intercooling in K

Tc=20; //Permissible temperature rise of the cooling
water in K

R=287;//Gas constant in J/kg K
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Cp=1;//Specific heat of air in kJ/kg K
Cw=4.2;//Specific heat of water in kJ/kg K
ma=1; //Mass of air in the compressor in kg

//Calculations

P2=(P1xP3)~(0.5);//Intercooler pressure for complete
intercooling and for minimum work of compression
in bar

T2=T1*(P2/P1) " ((n-1)/n);//Temperature after the
compression process in K

mw=(ma*Cp*(T2-T3))/(Cux(Tc));//Mass of water to
circulate in the intercooler per kg of air in kg

//Output
printf ("Mass of water to circulate in the
intercooler for abstracting heat is %3.3f kg’,mw)

Scilab code Exa 9.17 Volume ratio of LP to HP cylinders

clc

clear

//Input data

V1=0.2; //Volume of air flow per second in a two
stage single acting reciprocating compressor in m
"3

P1=0.1; //Intake pressure of air in MPa

T1=293;//Initial temperature in K

P3=0.8;//Final pressure after the air is compressed
in MPa

N=600; //Operating speed of the compressor in rpm

// Calculations

P2=(P1%*P3)"~(0.5);//Intercooler pressure for perfect
intercooling and for minimum work of compression
in bar
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V1=(V1*60) /600; //Volume of the LP cylinder in m"3

Vh=(P1%V1)/P2;//Volume of the high pressure cylinder
in m”3

R=V1/Vh;//Ratio of cylinder volumes

// Output
printf (’The volume ratio of LP to HP cylinders is %3
217 ,R)

Scilab code Exa 9.18 Ratio of cylinder diameters

clc

clear

//Input data

P1=1;//Initial pressure of air entering a two stage
air compressor with complete intercooling in bar

P3=25; //Delivery pressure of air toe the mains in
bar

T1=303; //Initial temperature in K

n=1.35;//Compression index

// Calculations

P2=(P1xP3)"~(0.5);//Inter cooler pressure for perfect
intercooling in bar

R=(P2/P1)°(0.5);//Ratio of cylindrical diameters

// Output

printf ("The ratio of cylinder diameters for the
efficiency of compression to be maximum is %3.3f’
»R)

Scilab code Exa 9.19 Number of stages
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clc

clear

//Input data

P1=1;//Initial pressure of a multistage compression
in bar

Pn1=120; //Final pressure in bar

r=4;//Permissible pressure ratios per stage

//Calculations

n=log(Pnl1/P1)/log(xr)

ni=4;//As n=3.45 say 4 stages

P5=Pnl;//Since number of stages is 4

P4=P5/(Pn1/P1)"(1/nl1);//Pressure after the stage 3
in bar

P3=P4/(Pn1/P1)"(1/n1);//Pressure after the stage 2
in bar

P2=P3/(Pn1/P1) " (1/n1);//Pressure after the stage 1
in bar

//Output

printf (’(a)Number of stages are %3.0f\n (b)
Intermediate pressures are, P2 = %3.2f bar, P3 =
%3.2f bar, P4 = %3.2f bar’,nl1,P2,P3,P4)

Scilab code Exa 9.20 Intermediate pressures

clc

clear

//Input data

P1=1;//Initial pressure of a 3 stage compressor in
bar

P4=40; //Final pressure in bar

T1=293;//Initial temperature in K

n=1.3; //Polytropic index

Vi=15; //Air delivered per minute in m”3/min
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// Calculations

W=((3*n)/(n-1))*P1*10756*xV1*(((P4/P1)~((n-1)/(3*n)))
-1);//Work done by the compressor in kJ/min

P=W/(60%1000) ; //Power required to deliver 15 m"3/min
air in kW

P2=P1%x(P4/P1)~(1/3);//Intermediate pressure after
stage 1 in bar

P3=P2x(P4/P1)"~(1/3);//Intermediate pressure after
stage 2 in bar

//Output

printf (’(a)Power required to deliver 15 m"3/min air
at suction condition is %3.1f kW\n (b)
Intermediate pressures are P2 = %3.3f bar P3 = %3
.3f bar’,P,P2,P3)

Scilab code Exa 9.21 Heat rejected

clc

clear

//Input data

P1=1;//Atmospheric pressure in bar

P4=60; //Delivery pressure in bar

T1=303;//Initial temperature in K

n=1.3;//Index of compression

Cp=1.005;//Specific heat of air at constant pressure
in kJ/kg K

S=3; //Number of stages

//Calculations

P2=P1%x(P4/P1) "~ (1/3);//Intermediate pressure in bar

T2=T1*(P2/P1) " ((n-1)/n);//Temperature of air
entering the intercoolers in K

H=Cp*(T2-T1);//Heat rejected in each intercooler in
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// Output
printf ("Amount of heat rejected in each intercooler
is %3.0f kJ’,H)

Scilab code Exa 9.22 Ratio of cylinder volumes

clc

clear

//Input data

P1=1; //Pressure at the end of suction stroke in LP
cylinder of a 3 stage single acting reciprocating
compressor in bar

T1=293; //Temperature at the end of suction stroke in
LP cylinder in K

V=9; //Free air delivered by the compressor in m"3

P4=65; //Pressure delivered by the compressor in bar

n=1.25;//Polytropic index

//Calculations

P2=P1%x(P4/P1)"~(1/3);//Intermediate pressure after
stage 1 in bar

P3=P2*(P4/P1)"~(1/3);//Intermediate pressure after
stage 2 in bar

V3=1; //The volume of cylinder for the third stage in
m"3

V2=V3*(P3/P2);//Volume of the cylinder for second
stage in m"3

Vi=(P2/P1)*V2; //Volume of the cylinder for first
stage in m"3

W=(((3*n)/(n-1))*P1*x10"5xV*(((P4/P1) " ((n-1)/(3*n)))
-1))/1000; //Work done by the compressor in kJ/min

Pi=W/60; //Indicated power in kW
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19 //Output

20 printf(’(a)L.P. and I.P.compressor delivery pressure
is P2 = %3.3f bar P3 = %3.2f bar\n (b)Ratio of
cylinder volumes is V1:V2:V3 = %3.2f:%3.31:%3.0f\
n (c)Total indicated power is %3.2f kW’ ,P2,P3,V1,
V2,V3,Pi)
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Chapter 10

Refrigeration and air
conditioning

Scilab code Exa 10.1 Power rating

clc

clear

//Input data

T1=273; //The temperature of ice in K

T2=298; // Temperature of water at room in K

COP=2.1; //Cop of the plant

ne=90; //Overall electrochemical efficiency in
percentage

w=15; //Weight of ice produced per day in tonnes

cw=4.187; //Specific heat of water in kJ/kg degrees
celcius

Li=335;//Latent heat of ice in kJ/kg

mi=1; //Mass of ice produced at 0 degrees celcius

// Calculations
m=(w*1000) /(24%60) ; //Mass of ice produced in kg/min
h=(mi*cw*(T2-T1))+Li; //Heat extracted from 1lkg of
water at 25 degrees celcius to produce 1lkg of ice
at 0 degrees celcius in kJ/kg
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Q=mx*h;//Total heat extracted in klJ
W=Q/C0OP; //Work done by the compressor in kJ/kg
P=W/(60*(ne/100));//Power of compressor in kW

//Output
printf ("Power rating of the compressor—motor unit if
the cop of the plant is 2.1 is %3.1f kW’ ,P)

Scilab code Exa 10.2 Refrigeration capacity

clc

clear

//Input data

m=400; //Mass of fruits supplied to a cold storage in
kg

T1=293; //Temperature at which fruits are stored in K

T2=268; // Temperature of cold storage in K

t=8;//The time untill which fruits are cooled in
hours

hfg=105; //Latent heat of freezing in kJ/kg

Cf=1.25;//Specific heat of fruit

TR=210; //One tonne refrigeration in kJ/min

// Calculations

Ql=m*Cf*(T1-T2);//Sensible heat in kJ

Q2=m*hfg;//Latent heat of freezing in klJ

Q=Q1+Q2; //Heat removed from fruits in 8 hrs

Th=(Q1+Q2) /(t*60);//Total heat removed in one minute
in kJ/kg

Rc=Th/TR;//Refrigerating capacity of the plant in TR

// Output
printf ("The refrigeration capacity of the plant is
%3.3f TR’,Rc)
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Scilab code Exa 10.3 COP of a heat pump

clc

clear

//Input data

T1=300; //The maximum temperature at which carnot
cycle operates in K

T2=250; //The minimum temperature at which carnot
cycle operates in K

// Calculations

COPr=T2/(T1-T2);//COP of the refrigerating machine

COPh=T1/(T1-T2)//COP of heat pump

n=((T1-T2)/T1)*100; //COP or efficiency of the heat
engine in percentage

//Output data

printf (’(a)COP of the machine when it is operated as

a refrigerating machine is %3.2f\n (b)COP when

it is operated as heat pump is %3.2f\n (c)COP or

efficiency of the Heat engine is %3.2f percent’,
COPr ,COPh,n)

Scilab code Exa 10.4 Time taken to achieve cooling

clc

clear

//Input data

m=20000; //The storage capacity of fish in a storage
plant in kg

T1=298; //Supplied temperature of fish in K
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T2=263; // Temperature of cold storage in which fish
are stored in K

T3=268; //Freezing point of fish in K

Caf=2.95;//Specific heat of fish above freezing
point in kJ/kg K

Cbf=1.25;//Specific heat of below freezing point in
kJ/kg K

W=75; //Work required by the plant in kW

TR=210; //One tonne refrigeration in kJ/min

hfg=230; //Latent heat of fish in kJ/kg

// Calculations

COPr=T2/(T1-T2);//COP of reversed carnot cycle

COPa=0.3*C0OPr;//Given that actual COP is 0.3 times
of reversed COP

Hr=(COPaxW)*60; //Heat removed by the plant in kJ/min

C=Hr/TR;//Capacity of the plant in TR

Ql=m*Caf*(T1-T3);//Heat removed from the fish above
freezing point in kJ

Q2=m*Cbf*(T3-T2);//Heat removed from fish below
freezing point in kJ

Q3=m*hfg;//Total latent heat of the fish in kJ

Q=Q1+Q2+Q3;//Total heat removed by the plant in klJ

T=(Q/Hr)/60; //Time taken to achieve cooling in hrs

//Output data
printf (’(a)Capacity of the plant is %3.2f TR\n (b)
Time taken to achieve cooling is %3.2f hours’,C,T

)

Scilab code Exa 10.5 Theoretical COP

clc
clear
//Input data
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T2=298; //Maximum temperature at which CO2 machine
works in K

T1=268; //Minimum temperature at which CO2 machine
works in K

sf1=-0.042; //Liquid entropy at 268 K in kJ/kg K

hfgl1=245.3; //Latent heat of gas at 268 K in kJ/kg

sf2=0.251; //Liquid entropy in kJ/kg K

hfg2=121.4; //Latent heat of gas at 298 K in kJ/kg

hf1=-7.54; //Liquid enthalpy at 268 K in kJ/kg

hf2=81.3; //Liquid enthalpy at 298 K in kJ/kg

hf3=81.3; //Enthalpy at point 3 in graph in kJ/kg

// Calculations

s2=sf2+(hfg2/T2);//Entropy at point 2 from the graph
in kJ/kg K

x1=(s2-sf1)/(hfgl1/T1);//Dryness fraction at point 1

hi=hf1+(x1*hfgl);//Enthalpy at point 1 in kJ/kg

h2=hf2+hfg2; //Enthalpy at point 2 in kJ/kg

COP=(h1-hf3)/(h2-h1);//Coefficient of performance
for a CO2 machine working at given temperatures

//Output data
printf ("’ Theoretical COP for a CO2 machine working at
given temperatures is %3.2f’,COP)

Scilab code Exa 10.6 Capacity of refrigerator

clc

clear

//Input data

T2=298; //Maximum temperature at which ammonia
refrigerating system works in K

T1=263; //Minimum temperature at which ammonia
refrigerating system works in K

nf=5; //Fluid flow rate in kg/min
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sf1=0.5443; //Liquid entropy at 298 K in kJ/kg K

sf2=1.1242; //Liquid entropy at 263 K in kJ/kg K

hfg1=1297.68; //Latent heat at 298 K in kJ/kg

hfg2=1166.94; //Latent heat at 263 K in kJ/kg

hf1=135.37; //Liquid enthalpy at point 1 in graph in
kJ/kg

hf2=298.9; //Liquid enthalpy at point 2 in graph in
kJ kg

TR=210; //One tonne refrigeration in TR

// Calculations

s2=sf2+(hfg2/T2);//Entropy at point 2 in kJ/kg

x1=(s2-sf1)/(hfgl/T1);//Dryness fraction at point 1

hi=hf1+(x1*hfgl);//Enthalpy at point 1 in kJ/kg

h=h1-hf2;//Heat extracted of refrigerating effect
produced per kg of refrigerant in klJ/kg

ht=mf*h;//Total heat extracted at a fluid flow rate
of 5 kg/min in kJ/min

C=ht/TR;//Capacity of refrigerating in TR

//Output
printf (’The capacity of refrigerator is %3.0f TR’,C)

Scilab code Exa 10.7 Theoretical COP

clc

clear

//Input data

T1=263; //Minimum temperature at which ammonia
refrigerating machine works in K

T2=303; //Maximum temperature at which ammonia
refrigerating machine works in K

x1=0.6;//Dryness fraction of ammonia during suction
stroke

sf1=0.5443; //Liquid entropy at 263 K in kJ/kg K
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hfg1=1297.68; //Latent heat at 263 K in kJ/kg
sf2=1.2037; //Liquid entropy at 303 K in kJ/kg K
hfg2=1145.8; //Latent heat at 303 K in kJ/kg
hf1=135.37; //Liquid enthalpy at 263 K in kJ/kg
hf2=323.08; //Liquid enthalpy at 303 K in kJ/kg

// Calculations

s1=sf1+((x1*xhfgl)/T1);//Entropy at point 1 in kJ/kg
K

x2=(s1-sf2)/(hfg2/T2);//Entropy at point 2 in kJ/kg
K

hi=hfi1+(x1*hfgl);//Enthalpy at point 1 in kJ/kg

h2=hf2+(x2*hfg2);//Enthalpy at point 2 in kJ/kg

COP=(h1-hf2)/(h2-h1);// Theoretical COP of ammonia
refrigerating machine

//Output

printf ("The theoretical COP of a ammonia
refrigerating machine working between given
temperatures is %3.2f’,COP)

Scilab code Exa 10.8 Ice produced

clc

clear

//Input data

T1=263; //Minimum temperature at which Vapour
compression refrigerator using methyl chloride
operates in K

T2=318; //Maximum temperature at which Vapour
compression refrigerator using methyl chloride
operates in K

sf1=0.183; //Entropy of the liquid in kJ/kg K

hfg1=460.7; //Enthalpy of the liquid in kJ/kg

s£2=0.485; //Entropy of the liquid in kJ/kg K
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hfg2=483.6; //Enthalpy of the liquid in kJ/kg

x2=0.95; //Dryness fraction at point 2

hf3=133.0; //Enthalpy of the liquid in kJ/kg

W=3600; //Work to be spent corresponding to 1kW/hour

Cw=4.187; //Specific heat of water in kJ/kg degrees
celcius

mi=1;//Mass of ice produced at 0 degrees celcius

Li=335; //Latent heat of ice in kJ/kg

hf1=45.4; //Enthalpy of liquid at 263 K in kJ/kg

hf2=133; //Enthalpy of liquid at 318 K in kJ/kg

// Calculations

s2=sf2+((x2*(hfg2-hf2))/T2);//Enthalpy at point 2 in
kJ/kg

x1=(s2-sf1)/((hfgl-hf1)/T1);//Dryness fraction at
point 1

hi=hf1+(x1*hfgl);//Enthalpy at point 1 in kJ/kg

h2=hf2+(x2*hfg2);//Enthalpy at point 2 in kJ/kg

COP=(h1-hf3)/(h2-h1);// Theoretical COP

COPa=0.6%C0OP;//Actual COP which is 60 percent of
theoretical COP

H=W*COPa; //Heat extracted or refrigeration effect
produced per kKW hour in kJ

Hw=(mi*Cw*10)+Li; //Heat extracted from water at 10
degrees celcius for the formation of 1 kg of ice
at 0 degrees celcius

I=H/Hw; //Amount of ice produced in kg/kW hr

// Output
printf ('The amount of ice produced is %3.2f kg/kW hr
Y s I)
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