Scilab Textbook Companion for Basic Mechanical Engineering by G. K. Pathak and D. K. Chavan¹

Created by Mutra Chanakya Reddy M.TECH (INTEGRATED) Mechanical Engineering Sastra University College Teacher A. P. Mohan Raj Cross-Checked by Lavitha Pereira

July 31, 2019

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Basic Mechanical Engineering
Author: G. K. Pathak and D. K. Chavan
Publisher: Rajsons Publications, New Delhi
Edition: 1
Year: 2009
ISBN: 9788189401313

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		
1	fundamental concepts and defenitions	5
2	First Law of Thermodynamics	27
6	Introduction to heat transfer	52

List of Scilab Codes

Exa 1.1	To find the work done	5
Exa 1.2	New volume of the gas	5
Exa 1.3	The work done by the gas	6
Exa 1.4	Final pressure and work done	7
Exa 1.5	The work done	7
Exa 1.6	The work done by the gas	8
Exa 1.8	The net work done	8
Exa 1.9	Readings of pressure	8
Exa 1.10	Readings of pressure	9
Exa 1.11	Absolute pressure	10
Exa 1.12	Absolute pressure	11
Exa 1.13	Absolute pressure	11
Exa 1.14	The gas pressure	12
Exa 1.15	The absolute pressure	12
Exa 1.16	The absolute pressure of the gas	13
Exa 1.17	The absolute pressure of steam	13
Exa 1.18	The absolute pressure of steam	14
Exa 1.19	The absolute pressure of steam	15
Exa 1.20	The absolute pressure of vapour	15
Exa 1.21	The absolute pressure of the gas	16
Exa 1.22	The pressure in bar	17
Exa 1.23	The height of fluid	18
Exa 1.24	The altitude of the plane	19
Exa 1.25	The pressure	19
Exa 1.26	Weight of piston and slab	20
Exa 1.27	The pressure in the gas	21
Exa 1.28	The height of building	21
Exa 1.29	The absolute pressure	22

Exa 1.30	The temperature
Exa 1.31	The temperature
Exa 1.32	The temperature $\ldots \ldots \ldots \ldots \ldots \ldots 24$
Exa 1.33	The temperature $\ldots \ldots \ldots \ldots \ldots \ldots 24$
Exa 1.34	The temperature $\ldots \ldots \ldots \ldots \ldots \ldots 25$
Exa 1.35	The temperature
Exa 2.1	The net work $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 27$
Exa 2.2	The work done
Exa 2.3	Internal energy
Exa 2.4	The change in KE and PE
Exa 2.5	The net rate of work output
$Exa \ 2.6$	The power developed
$Exa \ 2.7$	The work transfer $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 31$
$Exa \ 2.8$	Heat transfer work and IE
Exa 2.9	Work and heat transfer
Exa 2.11	The power capacity
Exa 2.12	The specific intenal energy
Exa 2.13	The power capacity $\ldots \ldots \ldots \ldots \ldots \ldots 35$
Exa 2.14	The power required
Exa 2.15	The power developed $\ldots \ldots \ldots \ldots \ldots 36$
Exa 2.16	The work output $\ldots \ldots \ldots \ldots \ldots 37$
Exa 2.17	The external work output
Exa 2.18	The work done and mass flow rate 39
Exa 2.19	The power output $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 40$
Exa 2.20	The ratio of pipe diameter
Exa 2.21	The nozzle \ldots \ldots \ldots \ldots 41
Exa 2.22	Velocity and Exit area
Exa 2.23	The exit velocity $\ldots \ldots \ldots \ldots \ldots \ldots 43$
Exa 2.24	The shaft power $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 44$
Exa 2.25	The power required $\ldots \ldots \ldots \ldots \ldots \ldots 45$
Exa 2.26	The exit air temperature $\ldots \ldots \ldots \ldots 45$
Exa 2.27	The exit air temperature
Exa 2.28	The rate of heat transfer $\ldots \ldots \ldots \ldots 47$
Exa 2.29	The heat loss or gain $\ldots \ldots \ldots \ldots \ldots 48$
Exa 2.30	Rate of heat transfer and power and velocity 49
Exa 2.31	The heat transfer and exit area $\ldots \ldots \ldots 50$
Exa 6.1	Heat transfer coefficient $\ldots \ldots \ldots \ldots \ldots \ldots 52$
Exa 6.2	Emissive power $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 53$

$Exa \ 6.3$	Temperature and Heat transfer coefficient . 53
Exa 6.4	Heat loss rate and Temperature
Exa 6.5	Rate of heat loss and Temperature 55
Exa 6.6	The heat transfer and conductance $\ldots \ldots 56$
Exa 6.8	The energy received $\ldots \ldots \ldots \ldots \ldots 57$
Exa 6.9	The loss of heat $\ldots \ldots 58$
Exa 6.10	The rate of heat removed 59
Exa 6.11	Heat loss and maximum temperature 59
Exa 6.12	The thickness of brick
Exa 6.13	The rate of heat loss $\ldots \ldots $
Exa 6.14	Heat loss
Exa 6.15	Heat transfer and conductance and resistance 64
Exa 6.16	Reduction in heat loss
Exa 6.17	Leakage and temperature
Exa 6.18	The heat loss $\ldots \ldots $
Exa 6.19	The heat loss and the temperature 67
Exa 6.20	The rate of heat flow

Chapter 1

fundamental concepts and defenitions

Scilab code Exa 1.1 To find the work done

```
1 clc
2 clear
3 //Input data
4 p=700;//pressure of fluid in kN/m<sup>2</sup>
5 v1=0.28;//Initial volume of fluid in m<sup>3</sup>
6 v2=1.68;//Final volume of fluid in m<sup>3</sup>
7
8 //Calculations
9 W=p*(v2-v1);//Work done in kJ
10
11 //Output
12 printf('The Work done W= %3.2f kJ',W)
```

Scilab code Exa 1.2 New volume of the gas

1 clc

```
2 clear
3 //Input data
4 p1=138;//Initial pressure of gas in kN/m<sup>2</sup>
5 p2=690;//Final pressure of gas in kN/m<sup>2</sup>
6 v1=0.112;//Initial volume in m<sup>3</sup>
7
8 //Calculations
9 P=p1/p2;//Pressure ratio
10 v2=v1*(P<sup>(1/1.4)</sup>);//Final volume of gas in m<sup>3</sup>
11
12 //Output
13 printf('The new volume of the gas v2= %3.6f m<sup>3</sup>',v2)
```

Scilab code Exa 1.3 The work done by the gas

```
1 clc
2 clear
3 //Input data
4 p1=2070;//Initial pressure of gas in kN/m<sup>2</sup>
5 p2=207; // Final pressure of gas in kN/m^2
6 v1=0.014;//Initial volume of gas in m<sup>3</sup>
7 n=1.35; //constant
8
9 // Calculations
10 P=p1/p2; // Pressure ratio
11 v2=v1*(P^(1/1.35)); // Final volume of gas in m<sup>3</sup>
12 W=(p1*v1-p2*v2)/(n-1);//Work done in kJ
13
14 //Output
15 printf('(a) Final volume of gas v2 = \%3.5 \text{ fm}^3 \text{ (b)}
      Work done by the gas during the expansion W= %3.2
      f kJ',v2,W)
```

Scilab code Exa 1.4 Final pressure and work done

Scilab code Exa 1.5 The work done

```
1 clc
2 clear
3 //Input data
4 v1=1;//Initial volume in m^3
5 v2=3;//Final volume in m^3
6
7 //Calculations
8 W=10^5*(((v2^3-v1^3)/3)+8*(log(v2/v1)));//Work done
in J
9
10 //Output
11 printf('The work done W= %3.1f J',W)
```

Scilab code Exa 1.6 The work done by the gas

Scilab code Exa 1.8 The net work done

```
1 clc

2 clear

3 //Input data

4 v1=1.5;//Initial volume in m^3

5 v2=2;//Final volume in m^3

6 w1=2;//Work receiving in Nm

7 p=6;//constsnt pressure of gas in N/m^2

8

9 //Calculations

10 w2=p*(v2-v1);//Work done in Nm

11 W=w2-w1;//Net work done by the system in Nm

12

13 //Output

14 printf('Net work done by the system W= %3.1f Nm',W)
```

Scilab code Exa 1.9 Readings of pressure

```
1 clc
2 clear
3 //Input data
4 d=13596; // Density of Hg in kg/m^3
5 g=9.806; // gravity in m/sec<sup>2</sup>
6 z=760; //Barometer pressure in mm of Hg
7 Pv=40; //Vaccum pressure in cm
8 dw=1000; // Density of water in kg/m^3
9 Zw=1.5;//Level of water in m
10
11 // Calculations
12 p=(d*g*z)/10^{6}; //Pressure in kPa
13 p1=(80/76)*p;//Pressure in kPa
14 Pa=p-Pv;//Absolute pressure in kPa
15 p2=(36/76)*p; //Pressure in kPa
16 p3=(dw*g*Zw)/1000;//pressure in kPa
17 p4=(5.2*10<sup>5</sup>)/1000;//pressure in kPa
18
19 //Output
20 printf('(a) Pressure of 80cm of Hg = \%3.3 f kPa \n (b)
      Pressure of 40cm of Hg vaccum = \%3.3 f kPa \n (c)
      Pressure due to 1.5m of water coloumn = \%3.2f kPa
       \ln (d) Pressure in kPa for 5.2 bar = \%3.2 f kPa', p1
      ,p2,p3,p4)
```

Scilab code Exa 1.10 Readings of pressure

```
1 clc
2 clear
3 //Input data
4 z=750;//Barometric pressure in mm of Hg
5 g=9.81;//Gravity in m/sec^2
6 Pa=101.325;//one atm pressure in kN/m<sup>2</sup>
7 Pg=3.3;//Pressure in atm
8 Pf=3.2;//Pressure in m of water
```

```
9 d=13596; // Density of Hg in kg/m<sup>3</sup>
10
11 // calculations
12 Pp=(d*g*z)/10<sup>6</sup>; // Pressure in kPa
13 p1=(d*g*0.55)/1000; // Pressure in kPa
14 p2=Pp+(Pg*101.325); // Pressure in kPa
15 p3=Pp+((Pf*g*100))/1000; // Pressure in kPa
16 p4=4.6*100; // Pressure in kPa
17
18 // Output
19 printf('(a) Pressure of 55cm of Hg (Abs) = %3.2 f kPa
17 (b) Pressure at 3.3 atm (Gauge)= %3.3 f kPa \n (
c) Pressure of 3.2m of water (Gauge)= %3.2 f kPa \n
(d) Pressure of 4.6 bar (Abs)= %3.2 f kPa', p1, p2, p3
, p4)
```

Scilab code Exa 1.11 Absolute pressure

```
1 clc
2 clear
3 //Input data
4 Zw=50; // Manometer reading of water in cm
5 Zo=763; // Atmospheric pressure in mm of Hg
6 d=13.6*10^3; // Density of Hg in kg/m<sup>3</sup>
7 dw=1000; // Density of water in kg/m^3
8 g=9.81; // Gravity in m/sec<sup>2</sup>
9
10 // Calculations
11 Pa=(d*g*Zo)/10<sup>6</sup>;//Atmospheric pressure in kPa
12 Pg=(dw*g*Zw)/10<sup>5</sup>;//Gauge pressure in kPa
13 Pab=Pa+Pg;//Absolute pressure in kPa
14
15 //Output
16 printf('Absolute pressure Pab = %3.3 f kPa ', Pab)
```

Scilab code Exa 1.12 Absolute pressure

```
1 clc

2 clear

3 //Input data

4 Z=70;//Vaccum gauge reading in cm of Hg

5 Pa=101.325;//Atmospheric pressure in kPa

6 d=13.6*10^3;//Density of Hg in kg/m^3

7 g=9.81;//Gravity in m/sec^2

8

9 //Calculations

10 Pv=(d*g*Z)/10^5;//Vaccum pressure in kPa

11 Pab=Pa-Pv;//Absolute pressure in kPa

12

13 //Output

14 printf('Absolute pressure Pab = %3.4f kPa ',Pab)
```

Scilab code Exa 1.13 Absolute pressure

```
1 clc

2 clear

3 //Input data

4 Pv=30;//Vaccum pressure in kPa

5 Z=755;//Barometer reading in mm of Hg

6 d=13590;//Density of Hg in kg/m<sup>3</sup>

7 g=9.81;//Gravity in m/sec<sup>2</sup>

8

9 //calculations

10 Pa=(d*g*Z)/10<sup>6</sup>;//Atmospheric perssure in kPa

11 Pab=Pa-Pv;//Absolute pressure in kPa

12

13 //Output
```

14 printf('Asolute pressure in the tank Pab = %3.3 f kPa ',Pab)

Scilab code Exa 1.14 The gas pressure

```
1 clc
2 clear
3 //Input data
4 Z=0.562; //Level of open limb in m
5 Z1=0.761; // Barometer reading in m of Hg
6 g=9.79;//Gravity in m/sec<sup>2</sup>
7 d=13640; // Density of Hg in kg/m^2
8
9 //Calculations
10 Pa=(d*g*Z1)/1000;//Atmospheric pressure in kPa
11 Ph=(d*g*Z)/1000;//Pressure exercterd due to height
      in kPa
12 Pab=Pa+Ph;//Absolute pressure in kPa
13
14 //Output
15 printf('The gas pressure Pab = \%3.3 \text{ f kN/m}^2', Pab)
```

Scilab code Exa 1.15 The absolute pressure

```
1 clc
2 clear
3 //Input data
4 d=13.596*10^3;//Density of Hg in kg/m^3
5 dl=800;//Density of liquid in kg/m^3
6 Z=30;//Level of the liquid in the arm in cm
7 Z1=0.75;//Barometric pressure in m
8 g=9.81;//Gravity in m/sec^2
9
```

```
10 // Calculatins
11 Pg=(dl*g*Z)/10^7;//Gauge pressure in bar
12 Pa=(d*g*Z1)/10^5;//Atmospheric pressure in bar
13 Pab=Pa+Pg;//Absolute pressure in bar
14
15 //Output
16 printf('Absolute pressure of the gas Pab = %3.5f bar
',Pab)
```

Scilab code Exa 1.16 The absolute pressure of the gas

```
1 clc
2 clear
3 //Input data
4 Z1=0.17;//Level of liquid in m
5 Z=0.76; // Barometer readings in m
6 d=13596; // Density of Hg in kg/m^3
7 g=9.806; // Gravity in m/sec<sup>2</sup>
8 s=0.8; // Specific gravity
9 d1=1000; // Density of water in kg/m^3
10
11 // Calculations
12 dl=s*d1; // Density of given liquid in kg/m<sup>3</sup>
13 Pa=d*g*Z;//Atmospheric pressure in N/m<sup>2</sup>
14 p=dl*g*Z1; //Pressure in N/m^2
15 Pab=(Pa-p)/10<sup>5</sup>;//Absolute pressure in bar
16
17 //Output
18 printf('Absolute pressure of the gas Pab = \%3.6 f bar
       ',Pab)
```

Scilab code Exa 1.17 The absolute pressure of steam

```
1 clc
2 clear
3 //Input data
4 g=9.806; // Gravity in m/sec^2
5 d=13596; // Density of Hg in kg/m^3
6 Z=9.75; //Level of Hg in cm
7 dw=1000; // Density of water in kg/m^3
8 Zw=0.034; //Coloumn of condensate in m
9 Zo=0.76; // Atmospheric pressure in m of Hg
10
11 // Calculations
12 P=dw*g*Zw;//Pressure in N/m<sup>2</sup>
13 Pa=d*g*Zo; // Atmospheric pressure in N/m<sup>2</sup>
14 Pg=(d*g*Z)/100; //Gauge pressure in N/m^2
15 Pab=(Pa+Pg-P)/10<sup>5</sup>;//Absolute pressure in bar
16
17 //Output
18 printf('Absolute pressure of steam Pab = \%3.6 f bar '
      ,Pab)
```

Scilab code Exa 1.18 The absolute pressure of steam

```
1 clc

2 clear

3 //Input data

4 g=9.7;//Gravity in m/sec^2

5 d=13.69*10^3;//Density of Hg in kg/m^3

6 dw=1000;//Density of water in kg/m^3

7 Pa=98;//Atmospheric pressure in kPa

8 Z=0.6;//Manometer level difference in m of Hg

9 Zw=0.04;//Water coloumn level in m

10

11 //Calculations

12 Pw=(dw*g*Zw)/1000;//Pressure due to water in kPa

13 Pg=(d*g*Z)/1000;//Pressure in kPa
```

Scilab code Exa 1.19 The absolute pressure of steam

```
1 clc
2 clear
3 //Input data
4 Z=0.76; // Actual height of mercury coloumn in m
5 g=9.806; // Gravity in m/sec<sup>2</sup>
6 d=13596; // Density of Hg in kg/m^3
7 dw=1000; // Density of water in kg/m^3
8 Zw=0.035; //Height of condensate coloumn in m
9 Zh=0.10;//Height of mercury coloumn in m
10
11 // Calculations
12 Pa=d*g*Z;//Atmospheric pressure in N/m<sup>2</sup>
13 Pw=dw*g*Zw;//Pressure due to water in N/m<sup>2</sup>
14 Ph=d*g*Zh; // Pressure due to Hg in N/m<sup>2</sup>
15 Pab=(Pa+Ph-Pw)/10<sup>5</sup>;//Absolute pressure in bar
16
17 //Output
18 printf('Absolute pressure of steam in the pipe Pab =
       %3.2f bar', Pab)
```

Scilab code Exa 1.20 The absolute pressure of vapour

1 clc 2 clear

```
3 //Input data
4 dk=800; // Density of kerosene in kg/m<sup>3</sup>
5 g=9.81; // gravity in m/sec<sup>2</sup>
6 Zk=0.051;//Kerosene vapour on Hg coloumn in m
7 d=13600; // Density of Hg in kg/m^3
8 Zh=0.1; //Hg level in m
9 Z=0.755; // Atmospheric pressure in m of Hg
10
11 // Calculations
12 Pk=dk*g*Zk; // Pressure of kerosene in N/m<sup>2</sup>
13 Pa=d*g*Z; // Atmospheric pressure in N/m<sup>2</sup>
14 Ph=d*g*Zh; // Pressure due to Hg in N/m<sup>2</sup>
15 Pab=(Pa+Ph-Pk)/1000;//Absolute pressure in kPa
16
17 //Output
18 printf('Absolute pressure of vapour Pab = \%3.5 f kPa
      ', Pab)
```

Scilab code Exa 1.21 The absolute pressure of the gas

```
1 clc

2 clear

3 //Input data

4 d=13596;//Density of Hg in kg/m<sup>3</sup>

5 g=9.806;//Gravity in m/sec<sup>2</sup>

6 df=0.8*1000;//Density of fluid in kg/m<sup>3</sup>

7 Z=0.76;//Atmospheric pressure in m of Hg

8 Zf=0.3;//Height of fluid coloumn in m

9

10 //Calculations

11 Pa=d*g*Z;//Atmospheric perssure in N/m<sup>2</sup>

12 P=df*g*Zf;//Pressure due to fluid in N/m<sup>2</sup>

13 Pab=(Pa+P)/10<sup>5</sup>;//Absolute pressure in bar

14 Zh=((Pab*10<sup>5</sup>-Pa)/(d*g))*100;//Difference between

the height of Hg coloumn in 2 arms in m
```

```
15
16 //Output
17 printf('(a)The Absolute pressure of the gas in pipe
    line Pab = %3.7 f bar \n (b)If the fluid used is
    Hg then the difference of height of Hg coloumn in
    the 2 arms Zh = %3.3 f cm of Hg ',Pab,Zh)
```

Scilab code Exa 1.22 The pressure in bar

```
1
2 clc
3 clear
4 //Input data
5 Pa=1; // Atmospheric pressure in bar
6 g=9.81; // Gravity in m/sec<sup>2</sup>
7 do=0.8*1000; // Density of oil in kg/m^3
8 Zo=0.8; //Level of oil in m
9 dw=1000; // Density of water in kg/m<sup>3</sup>
10 Zw=0.65; //Level of water in m
11 d=13.6*10<sup>3</sup>; // Density of Hg in kg/m<sup>3</sup>
12 Z=0.45; //Level of Hg in m
13
14 // Calculations
15 Po=(do*g*Zo)/10<sup>5</sup>;//Pressure of oil in bar
16 Pw=(dw*g*Zw)/10<sup>5</sup>;//Pressure of water in bar
17 P=(d*g*Z)/10^{5}; // Pressure of Hg in bar
18 Pab=Pa+Po+Pw+P; // Pressure at the bottom of the
      coloumn in bar
19 Pow=Pa+Po;//Pressure at the interface of oil and
      water in bar
20 Poh=Pa+Po+Pw; // Pressure at the interface of water
      and Hg
21
22 //Output
```

```
23 printf('(a) Pressure at the bottom of the coloumn Pab
```

```
= \%3.5 \text{ f} bar \n (b) Pressure at the inter surface
of oil and water Pow = \%3.6 \text{ f} bar \n (c) Pressure
at the inter surface of water and Hg Poh = \%3.6 \text{ f}
bar', Pab, Pow, Poh)
```

Scilab code Exa 1.23 The height of fluid

```
1 clc
2 clear
3 //Input data
4 Z=0.76; //Barometer reading in m
5 g=9.81; // Gravity in m/sec<sup>2</sup>
6 d=13.6*10<sup>3</sup>;//Density of Hg in kg/m<sup>3</sup>
7 Pab=1.2*10<sup>5</sup>; // Absolute pressure in N/m<sup>2</sup>
8 do=0.8*1000; // Density of oil in kg/m^3
9 dw=1000; // Density of water in kg/m^3
10 dh=13.6*10^3; // Density of Hg in kg/m<sup>3</sup>
11
12 //calculations
13 Pa=dh*g*Z; // Atmospheric pressure in N/m<sup>2</sup>
14 Pg=Pab-Pa;//Gauge pressure in N/m<sup>2</sup>
15 Zo=Pg/(do*g); // Height of oil in manometer in m
16 Pw=Pab-Pa; // Pressure exercted by water in N/m<sup>2</sup>
17 Zw=Pw/(dw*g);//Height of water in manometer in m
18 P=Pab-Pa;//Pressure of Hg in N/m<sup>2</sup>
19 Zh=P/(d*g); //Height of Hg in manometer in m
20
21 //Output
22 printf('(a) The height of fluid for oil Manometer Zo
      = %3.2 f m \n (b) The height of fluid for water
      Manometer Zw = \%3.2 \text{ fm} \setminus n (c) The height of fluid
      for Hg Manometer Zh = \%3.2 f m ', Zo, Zw, Zh)
```

Scilab code Exa 1.24 The altitude of the plane

```
1 clc
2 clear
3 //Input data
4 Zg=0.753; // Barometer reading at ground level in m
5 Zp=0.690;//Pilots barometer reading in the plane in
     m
6 d=13600; // Density of Hg in kg/m^3
7 g=9.81; // Gravity in m/sec<sup>2</sup>
8 da=1.25; // Density of air in kg/m^3
9
10 // Calculations
11 Pg=d*g*Zg;//Pressure at ground level in N/m<sup>2</sup>
12 Pp=d*g*Zp; // Pressure at plane level in N/m<sup>2</sup>
13 P=Pg-Pp;//Change of pressure at ground level and
      that of plane level in N/m^2
14 Za=P/(da*g); // Altitude of plane from ground in m
15
16 //Output
17 printf('The altitude of the plane from ground level
      Za = \%3.2 f m ', Za)
```

Scilab code Exa 1.25 The pressure

```
1 clc
2 clear
3 //Input data
4 dw=1000;//Density of water in kg/m<sup>3</sup>
5 dh=13590;//Density of Hg in kg/m<sup>3</sup>
6 Pa=400;//Pressure at A in kPa
7 g=9.81;//Gravity in N/m<sup>2</sup>
8 Zw1=2.5;//First level of water in m
9 Zw2=0.4;//Second level of water in m
10 Zh=0.6;//Level of Hg in m
```

Scilab code Exa 1.26 Weight of piston and slab

```
1 clc
2 clear
3 //Input data
4 do=0.902*10^3; // Density of oil in kg/m<sup>3</sup>
5 Pg=2*10^5; //Gauge pressure in N/m<sup>2</sup>
6 g=9.81; // Gravity in m/sec<sup>2</sup>
7 ho=2;//Level of oil in m
8 d=2;//Diameter of cylinder in m
9 pi=3.141595; // Constant value of pi
10
11 // Calculations
12 A=(pi/4)*d^2;//Area of cylinder
13 Po=do*g*ho; // Pressure due to oil in N/m<sup>2</sup>
14 W=(Pg+Po)*A;//Weight of the piston in N
15
16 //Output
17 printf('The total weight of piston and slab W = \%3.2
      f N ',W)
```

Scilab code Exa 1.27 The pressure in the gas

```
1 clc
2 clear
3 //Input data
4 m=21;//Mass of piston in kg
5 P1=600; // Pressure in the pipe 1 in kPa
6 P2=170;//Pressure in the pipe 2 in kPa
7 d1=0.10;//Diameter of the piston 1 in m
8 d2=0.20; // Diameter of the piston 2 in m
9 pi=3.14155;//Constant value of pi
10
11 // Calculations
12 F=(m*9.81)/1000;//Force due to mass in kN
13 F1=(pi/4)*d1^2*P1;//Force 1 acting on 10 cm diameter
       piston in kN
14 F2=(pi/4)*(d2^2-d1^2)*P2;//Force 2 acting on 20 cm
     diameter piston in kN
15 F3=F+F1+F2; // Total downward force in kN
16 P3=F3/((pi/4)*d2^2);//Pressure 3 in the gas in kPa
17
18 //Output
19 printf('The pressure in the gas P3 = \%3.4 \text{ f kPa}',P3)
```

Scilab code Exa 1.28 The height of building

```
6 P2=0.73; //Barometric reading at the top of the
        building in m
7 da=1.18; //Density of air in kg/m^3
8 g=9.81; //Gravitalional constant in m/sec^2
9 d=13600; //Density of Hg in kg/m^3
10
11 //Calculations
12 h=((P1-P2)*d*g)/(da*g); //The height of the building
        in m
13
14 //Output
15 printf('The height of the building h = %3.2f m',h)
```

```
Scilab code Exa 1.29 The absolute pressure
```

```
1 clc
2 clear
3 PA=200; //Gauge pressure reading for A in kPa
4 PB=120; //Gauge pressure reading for B in kPa
5 hb=750; //Barometer reading in mm of Hg
6 g=9.806;//Gravitational constant in m/sec^2
7 d=13597; // Density of Hg in barometer in kg/m<sup>3</sup>
8
9 // Calculations
10 Pa=d*g*hb/10^6; // Atmospheric pressure in kPa
11 Pab1=PA+Pa;//Absolute pressure in container A in kPa
12 Pab2=PB+Pab1;//Absolute pressure in container B in
      kPa
13
14 //Output
15 printf('(a) The absolute pressure in the container A
      Pab1 = \%3.2 f kPa \setminus n (b) The absolute pressure in
      the container B Pab2 = \%3.2 f kPa ', Pab1, Pab2)
```

Scilab code Exa 1.30 The temperature

```
1 clc

2 clear

3 //Input data

4 C1=40;//Temperature 1 in degree centigrade

5 C2=-20;//Temperature 2 in degree centigrade

6

7 //calculations

8 F1=((C1/100)*180)+32;//Temperature 1 in Fahrenheit

9 F2=((C2/100)*180)+32;//Temperature 2 in Fahrenheit

10

11 //Output

12 printf('(a)Temperature 40 degree C =%3.0f F \n (b)

Temperature -20 degree C=%3.0f F',F1,F2)
```

Scilab code Exa 1.31 The temperature

```
1 //Given that the temperature has the same value on
both the centrigrade and fahrenheit scales
2 //(C/100)=((F-32)/180)
3
4 //Putting C=F
5 C=(-32/180)/((1/100)-(1/180));//Centrigade
temperature in degree C
6 F=C;//Fahrenheit temperature in degree Fahrenheit
7
8 printf('The temperature which has the same value on
both the centrigrade and fahrenheit scales is %i
degree C = %i degree F',C,F)
```

Scilab code Exa 1.32 The temperature

```
1 clc
2 clear
3 //Input data
4 P1=1.5; // Thermometric properties at ice point
5 P2=7.5; // Thermometric properties at steam point
6 P3=3.5; // Thermometric property
\overline{7}
8 // Calculations
9 A = [log(P2) 1]
      log(P1) 1] // Coefficient matrix
10
11 B=[100
12
      0]
              //Constant matrix
13 X=inv(A)*B //Inverse matrix
14 t=(X(1)*log(P3)+X(2)); //Required temperature in
      degree C
15
16 //Output
17 printf('The required temperature is %3.6f degree C',
      t)
```

Scilab code Exa 1.33 The temperature

```
1 \text{ clc}
```

```
2 clear
```

```
3 //Input data
```

- 4 T=[100,300];//Temperature of ice and steam point in the scale
- 5 P=[1.86,6.8];//Values of thermometric properties at ice point nad steam point respectively
- 6 P1=2.5; // Thermometric property

```
7
8 // Calculations
9 A = [log(P(2)) 1]
      log(P(1)) 1] // Coefficient matrix
10
11 B = [T(2)]
12
      T(1)]
            //Constant matrix
13 X=inv(A)*B;//Variable matrix
14 t=(X(1)*\log(P1)+X(2)); //Required temperature in
      degree C
15
16 //Output
17 printf('Temperature corresponding to the
      thermometric property is %3.1f degree C',t)
```

```
Scilab code Exa 1.34 The temperature
```

```
1 clc
2 clear
3 //Input data
4 p1=32; // Pressure in mm of Hg at triple point of
     water
5 p2=76; // Pressure in mm of Hg above atmospheric
      pressure
6 p3=752;//Barometric pressure in mm of Hg
7 T=273.16; // Triple point of water in K
8
9 // Calculations
10 P1=p3+p1; // Total pressure in mm of Hg
11 P2=p2+p3;//Total pressure in mm of Hg
12 T2=((T*P2)/P1)-273.16;//Temperture in degree C
13
14 //Output
15 printf('Temperature is %3.2f degree C',T2)
```

Scilab code Exa 1.35 The temperature

```
1 clc
2 clear
3 T=[32,212];//Temperatures of ice point and steam
     point respectively
4 P=[1.86,6.81];//P values at ice point and steam
     point respectively
5 P1=2.5; //Reading on the thermometer
6
7 // Calculations
8 A = [log(P(2))] 1
     log(P(1)) 1] // Coefficient matrix
9
10 B = [T(2)]
            //Constant matrix
11
      T(1)]
12 X=inv(A)*B;//Variable matrix
13 t=(X(1)*log(P1)+X(2)); //Required temperature in
     degree C
14
15 //Output
16 printf('Temperature corresponding to the
     thermometric property is %3.0f degree C',t)
```

Chapter 2

First Law of Thermodynamics

Scilab code Exa 2.1 The net work

```
1 clc

2 clear

3 //Input data

4 h1=60;//The heat transfer in the process in kJ

5 h2=-8;//The heat transfer in the process in kJ

6 h3=-34;//The heat transfer in the process in kJ

7 h4=6;//The heat transfer in the process in kJ

8

9 //Calculations

10 Q=h1+h2+h3+h4;//Net work transfer in a cycle in kJ

11

12 //Output

13 printf('Net work transfer in a cycle Q = %3.0f kJ ',

Q)
```

Scilab code Exa 2.2 The work done

1 clc

```
2 clear
3 //Input data
4 Q=-300;//Heat transfer in the system consisting of
the gas in kJ
5 u=0;//Internal energy is constant
6
7 //Calculations
8 W=Q-u;//Work done of the system in kJ
9
10 //Output
11 printf('The work done of the system W = %3.0f kJ ',W
)
```

Scilab code Exa 2.3 Internal energy

```
1 clc

2 clear

3 //Input data

4 v1=1.5;//Initial volume of the process in m<sup>3</sup>

5 v2=4.5;//Final volume of the process in m<sup>3</sup>

6 Q=2000;//Amount of heat added in kJ

7

8 //Calculations

9 W=100*((3.5*log(v2/v1))+(3*(v2-v1)));//Amount of

work done in kJ

10 U=Q-W;//The change in internal energy in kJ

11

12 //Output

13 printf('The change in internal energy is %3.4f kJ ',

U)
```

Scilab code Exa 2.4 The change in KE and PE

```
1 clc
2 clear
3 //Input data
4 h1=35; //Enthalpy of water entering the boiler in kJ/
     kg
5 h2=705; //Enthalpy of steam leaving the boiler in kJ/
     kg
6 C=0;//Change in kinetic energy is neglected
7 Z=0;//Change in potential energy is neglected
8
9 //Calculations
10 q=h2-h1; //The heat transfer per kg of steam in kJ/kg
11
12 //Output
13 printf('The heat transfer per kg of steam q = \%3.0 f
     kJ/kg ',q)
```

Scilab code Exa 2.5 The net rate of work output

```
1 clc
2 clear
3 //Input data
4 Q=-170;//Sum of all heat transfers per cycle in kJ
5 N=100; // Total number of cycles per min in cycles/min
6 Q1=0;//Heat developed in a-b process in kJ/min
7 Q2=21000; //Heat developed in b-c process in kJ/min
8 Q3=-2100;//Heat developed in c-d process in kJ/min
9 W1=2170; //Work done in the process a-b in kJ/min
10 W2=0;//Work done in the b-c process in kJ/min
11 E3=-36600; //Change in energy in the process in kJ/
     min
12
13 // Calculations
14 E1=Q1-W1;//Change in energy in process a-b in kJ/min
15 E2=Q2-W2;//Change in energy in b-c process in kJ/min
```

```
16 W3=Q3-E3; //Work done in the c-d process in kJ/min
17 Qt=Q*N;//Total heat transfer per min in kJ/min
18 Q4=Qt-Q1-Q2-Q3; //Heat developed in the process d-a
      in kJ/min
19 Et=0;//Total change in energy of the cycle
20 E4=Et-E1-E2-E3; //Energy in the process d-a in kJ/min
21 W4=Q4-E4;//Work done in the d-a process in kJ/min
22 Wn=Qt/60;//Net rate of work output in kW
23
24 //Output
25 printf('(a) Change in energy in a-b process E = \%3.0 f
       kJ/min \setminus n (b) Change in energy in b-c process E =
       \%3.0 \text{ f kJ/min } (c) Work done in the c-d process
      W=\ensuremath{\,^{\ensuremath{\times}}\!3.0\,f}\ kJ/min\ \ (d)\,Heat\ developed\ in\ the
      process d-a Q = \%3.0 \text{ f kJ/min} \setminus n (e) Energy in the
      process d-a E = \%3.0 \text{ f kJ/min} \setminus n (f)Work done in
      the d-a process W = \%3.0 f kJ/min \ln (g) Net rate of
       work output W = \%3.2 \text{ f kW}^{-1}, E1, E2, W3, Q4, E4, W4, Wn)
```

Scilab code Exa 2.6 The power developed

```
1 clc

2 clear

3 //Input data

4 Q1=50;//Heat developed in the 1-2 process in kJ/kg

5 U1=20;//Change in energy in the 1-2 process in kJ/kg

6 Q2=-30;//Heat developed in the 2-3 process in kJ/kg

7 W2=-40;//Work done in the 2-3 process in kj/kg

8 U3=-30;//Change in energy in the 3-1 process in kJ/kg

9 Wt=30;//Net work done per kg of fluid in kJ/kg

10 m=0.1;//Mass of fluid in the cycle in kg

11 N=10;//Number of cycles per sec in cycles/sec

12

13 //Calculations
```

```
14 W1=Q1-U1; //Work done in the 1-2 process in kJ/kg
15 U2=Q2-W2; //Change in energy in the 2-3 process in kJ
      /kg
16 W3=Wt-W1-W2; //Work done in the 3-1 process in kJ/kg
17 Q3=W3+U3;//Heat developed in the process in kJ/kg
18 m1=m*N; //mass flow rate per sec in kg/sec
19 P=Wt*m1; //Rate of power in kW
20
21 //Output
22 printf('(a)Work done in the 1-2 process W = \%3.0 \text{ f kJ}/
      kg h (b) Change in energy in the 2-3 process U =
      \%3.0 \text{ f kJ/kg} \ (c) Work done in the 3-1 process W
      = \%3.0 \text{ f kJ/kg } (d) Heat developed in the process
       Q = \%3.0 f kJ/kg \ln (e) mass flow rate per sec m =
       \%3.0 \text{ f kg/sec} \setminus n \text{ (f)} \text{ Rate of power } P = \%3.0 \text{ f kW'},
      W1,U2,W3,Q3,m1,P)
```

Scilab code Exa 2.7 The work transfer

```
1 clc

2 clear

3 //Input data

4 m=3;//Mass of substance in the system in kg

5 P1=500;//Initial pressure of the system in kPa

6 P2=100;//Final pressure of the system in kPa

7 V1=0.22;//Initial volume of the system in m<sup>3</sup>

8 n=1.2;//Polytropic index

9 Q1=30;//Heat transfer for the another process

10

11 //Calculations

12 V2=V1*(P1/P2)<sup>(1/1.2)</sup>;//Final volume of the system

in m<sup>3</sup>

13 U=3.56*(P2*V2-P1*V1);//Total change in internal

energy in kJ

14 Wie (D2 V2 V2 V2 V2 V1);//Total change in internal

energy in kJ
```

```
14 W1 = (P2 * V2 - P1 * V1) / (1 - n); / Work done for the 1-2
```

Scilab code Exa 2.8 Heat transfer work and IE

```
1 clc
2 clear
3 m=5; //Mass of the substance in the system in kg
4 P1=500; // Initial pressure of the system in kPa
5 P2=100; //Final pressure of the system in kPa
6 V1=0.22; // Initial volume of the system in m<sup>3</sup>
7 n=1.2; // Polytropic index
8
9 // Calculations
10 V2=V1*(P1/P2)^(1/1.2); // Final volume of the system
      in m<sup>3</sup>
11 U=3.5*(P2*V2-P1*V1);//Change in the internal energy
      of the system in kJ
12 W=(P1*V1-P2*V2)/(n-1);//Work developed in the
      process in kJ
13 Q=U+W; //Heat transfer in the process in kJ
14
15 //Output
16 printf('(1) Heat transfer of the process Q = \%3.0 \text{ f kJ}
       (2) Total change in Internal Energy U = \%3.0 f
      kJ \langle n \rangle (3) Non flow work in the process W = \%3.0 f
      kJ ',Q,U,W)
```

Scilab code Exa 2.9 Work and heat transfer

```
1 clc
2 clear
3 //Input data
4 p1=170; // Initial pressure of the fluid in kPa
5 p2=400; // Final pressure of the fluid in kPa
6 v1=0.03; // Initial volume in m<sup>3</sup>
7 v2=0.06; // Final volume in m<sup>3</sup>
8
9 // Calculations
10 U=3.15*[(p2*v2)-(p1*v1)];//The change in internal
      energy of the fluid in kJ
11 A=[1 v1
12
      1 v2] // Coefficient matrix
13 B=[p1
          //Constant matrix
14
      p2]
15 X=inv(A)*B;//Variable matrix
16 W = [X(1) * (v2 - v1)] + [X(2) * ((v2^2 - v1^2)/2)]; //The work
      done during the process in kJ
17 Q=U+W; //The heat transfer in kJ
18
19 //Output
20 printf('(a) The direction and magnitude of work W =
      \%3.2 f kJ \setminus n (b) The direction and magnitude of
      heat transfer Q = \%3.2 f kJ ', W, Q)
```

Scilab code Exa 2.11 The power capacity

1 clc 2 clear
```
3 //Input data
4 E1=4000; //Enthalpy at entrance in kJ/Kg
5 E2=4100;//Enthalpy at exit in kJ/kg
6 V1=50; // Velocity at entrance in m/s
7 V2=20; // Velocity at exit in m/s
8 h1=50; //Height at the entrance
9 h2=10; //Height at the exit
10 m=1;//mass flow rate to the system in kJ/s
11 Q=200; //Heat transfer rate to the system in kJ/s
12 g=9.8; // Gravitational constant in m/s<sup>2</sup>
13
14 // Calculations
15 P=m*(((V1^2-V2^2)/(2000))+(g*(h2-h1)/1000)+(E1-E2))+
     Q;//Power capacity of the system in kW
16 printf('Power capacity of the system P = \%3.4 \text{ f kW}',
     P)
```

Scilab code Exa 2.12 The specific intenal energy

```
1 clc
2 clear
3 //Input data
4 W=135; //Work done by the system in kJ/kg
5 V1=0.37; // Specific volume of fluid at inlet in m<sup>3</sup>/
      kg
6 V2=0.62; // Specific volume of fluid at outlet in m<sup>3</sup>/
      kg
7 P1=600; // Pressure at the inlet in kPa
8 P2=100; // Pressure at the outlet in kPa
9 C1=16; // Velocity at the inlet in m/s
10 C2=270; // Velocity at the outlet in m/s
11 Z1=32; //Inlet height from floor level in m
12 Z2=0; //Outlet height from floor level in m
13 q=-9;//Heat loss between inlet and discharge in kJ/
      kg
```

Scilab code Exa 2.13 The power capacity

```
1 clc
2 clear
3 //Input data
4 m=5;//Rate of fluid flow in the system in kg/s
5 P1=620; // Pressure at the entrance in kPa
6 P2=130; // Pressure at the exit in kPa
7 C1=300; // Velocity at the entrance in m/s
8 C2=150; // Velocity at the exit in m/s
9 U1=2100; //Internal energy at the entrance in kJ/kg
10 U2=1500; //Internal energy at the exit in kJ/kg
11 V1=0.37; // Specific volume at entrance in m<sup>3</sup>/kg
12 V2=1.2; // Specific volume at exit in m<sup>3</sup>/kg
13 Q=-30; //Heat loss in the system during flow in kJ/kg
14 Z=0;//Change in potential energy is neglected in m
15 g=9.81; // Gravitational constant in m/s<sup>2</sup>
16
17 // Calculations
18 W = ((C1^2 - C2^2) / (2*1000)) + (g*Z) + (U1 - U2) + (P1*V1 - P2*V2)
      +Q;//Total work done in the system in kJ/kg
19 P=W*m; // Power capacity of the system in kW
20
21 //Output
```

22 printf('(a) Total work done in the system W = %3.2 f
 kJ/kg \n (b)Power capacity of the system P = %3.2
 f kW ',W,P)

Scilab code Exa 2.14 The power required

1 clc 2 clear 3 P1=100; // Pressure at Inlet in kPa 4 P2=500; // Pressure at Exit in kPa 5 V1=0.6; // Specific volume at Inlet in m³/kg 6 V2=0.15;//Specific volume at Exit in m³/kg 7 U1=50;//Specific internal energy at inlet in kJ/kg 8 U2=125; // Specific internal energy at Exit in kJ/kg9 C1=8;//Velocity of air at Inlet in m/s 10 C2=4;//Velocity of air at Exit in m/s 11 m=5;//Mass flow rate of air in kg/s 12 Q=-45; //Heat rejected to cooling water in kW 13 Z=0;//Change in potential energy is neglected in m 14 g=9.81; // Gravitational constant in m/s² 1516 // Calculations 17 P=m*(((C1^2-C2^2)/(2*1000))+(g*Z)+(U1-U2)+(P1*V1-P2* V2))+Q;//Power required to drive the compressor in kW 18 P1=-P; //Power required to drive the compressor in kW 1920 //Output 21 printf('The power required to drive the compressor P = %3.2 f kW ',P1)

Scilab code Exa 2.15 The power developed

```
1 clc
2 clear
3 //Input data
4 m1=5000;//Steam flow rate in kg/hr
5 Q1=-250; //Heat loss from the turbine insulation to
      surroundings in kj/min
6 C1=40; // Velocity of steam at entrance in m/s
7 h1=2500; //Enthalpy of the steam at entrance in kJ/kg
8 C2=90; // Velocity of the steam at the Exit in m/s
9 h2=2030; //Enthalpy of the steam at exit in kj/kg
10 Z=0;//Change in potential energy is neglected in m
11 g=9.81; // Gravitational constant in m/s<sup>2</sup>
12
13 // Calculations
14 m=m1/3600; //Steam flow rate in kg/s
15 Q=Q1/60; //Heat loss from the turbine to the
      surroundings
16 P=m*(((C1^2-C2^2)/(2*1000))+(g*Z)+(h1-h2))+Q;//Power
       developed by the turbine in kW
17
18 //Output
19 printf('The power developed by the turbine P = \%3.3 \, f
      kW ',P)
```

Scilab code Exa 2.16 The work output

```
1 clc
2 clear
3 //Input data
4 c1=16;//Velocity of steam at entrance in m/s
5 c2=37;//Velocity of steam at exit in m/s
6 h1=2990;//Specific enthalpy of steam at entrance in
        kJ/kg
7 h2=2530;//Specific enthalpy of steam at exit in kJ/
        kg
```

Scilab code Exa 2.17 The external work output

```
1 clc
```

```
2 clear
```

```
3 //Input data
```

- 4 p1=720;//Pressure at the entrance in kPa
- 5 t1=850;//Temperature at the entrance in degree centigrade
- 6 c1=160;//Velocity of the gas at entrance in m/s
- 7 Q=0;//Insulation (adiabatic turbine)
- 8 P2=115;//Pressure at the exit in kPa
- 9 t2=450;//Temperature at the exit in degree centigrade
- 10 c2=250;//Velocity of the gas at exit in m/s

```
12
```

```
13 // Calculations
```

- 15 $W=((c1^2-c2^2)/(2*1000))+(H);//External work output of the turbine in kJ/kg$

```
16
```

17 //Output

18 printf('The external work output of the turbine W = %3.2 f kJ/kg',W)

Scilab code Exa 2.18 The work done and mass flow rate

- 1 clc
- 2 clear
- 3 //Input data
- 4 p=5000;//Power output of an adiabatic steam turbine in kW
- 5 p1=2000; // Pressure at the inlet in kPa
- 6 p2=0.15; // Pressure at the exit in bar
- 7 t1=400;//temperature at the inlet in degree centigrade
- 8 x=0.9;//Dryness at the exit
- 9 c1=50;//Velocity at the inlet in m/s
- 10 c2=180;//Velocity at the exit in m/s
- 11 z1=10;//Elevation at inlet in m
- 12 z2=6;//Elevation at exit in m
- 13 h1=3248.7;//Enthalpy at the inlet from the steam table corresponding to and 20 bar in kJ/kg
- 14 hf=226;//Enthalpy at exit at 0.15 bar from steam tables in kJ/kg
- 15 hfg=2373.2; //Enthalpy at exit at 0.15 bar from steam tables in kJ/kg

```
16 g=9.81; // Gravitational constant in m/s<sup>2</sup>
```

```
17
```

```
18 // Calculations
```

```
19 h2=hf+(x*hfg);//Enthalpy at the exit in kJ/kg
```

```
20 W=(h1-h2)+((c1^2-c2^2)/(2*1000))+((g*(z1-z2))/1000);
//Work done in the system in kJ/kg
```

```
21 m=p/W;//Mass flow rate of the steam
```

22

```
23 // Output
```

24 printf('(a)The work done per unit mass of the steam
 flowing through turbine W = %3.2 f kJ/kg \n (b)The
 mass flow rate of the steam m = %3.3 f kg/s ',W,m
)

Scilab code Exa 2.19 The power output

```
1 clc
2 clear
3 p1=1000; // Pressure at the inlet in kPa
4 t1=750; // Temperature at the inlet in K
5 c1=200; // Velocity at the inlet in m/s
6 p2=125; // Pressure at the exit in kPa
7 c2=40; //Velocity at the exit in m/s
8 m1=1000;//Mass flow rate of air in kg/hr
9 cp=1.053;//Specific heat at constant pressure in kJ/
     kgK
10 k=1.375; // Adiabatic index
11 Q=0;//The turbine is adiabatic
12
13 // Calculations
14 m=m1/3600;//The mass flow rate of air in kg/s
15 P=p2/p1;//Ratio of the pressure
16 t2=t1*((p2/p1)^{((k-1)/k)});//Temperature of air at
      exit in K
17 h=cp*(t2-t1);//Change in enthalpy of the system in
     kJ
18 p=m*(((c2^2-c1^2)/(2*1000))+h);//Power output of the
       turbine in kW
19 p1=-p;//Power output of the turbine in kW
20
21 //Output
22 printf('(a) Temperature of air at exit t_2 = \%3.3 f K \setminus
     n (b) The power output of the turbine P = \%3.3 \text{ f kW}
       ',t2,p1)
```

Scilab code Exa 2.20 The ratio of pipe diameter

```
1 clc
2 clear
3 //Input data
4 c1=7; // Velocity of air at entrance in m/s
5 c2=5;//Velocity of air at exit in m/s
6 p1=100; // Pressure at the entrance in kPa
7 p2=700; // Pressure at the exit in kPa
8 v1=0.95; // Specific volume at entrance in m<sup>3</sup>/kg
9 v2=0.19; // Specific volume at exit in m<sup>3</sup>/kg
10 u=90;//Change in internal energy of the air entering
       and leaving in kJ/kg
11 z=0; // Potential energy is neglected
12 Q=-58; //Heat rejected to the surroundings in kW
13 m=0.5; //The rate at which air flow in kg/s
14 g=9.81; // Gravitational constant in m/s<sup>2</sup>
15
16 // Calculations
17 P=m*([(c1^2-c2^2)/(2000)]+(p1*v1-p2*v2)-u)+(Q);//The
       rate of work input to the air in kW
18 A=(v1*c2)/(v2*c1);//From continuity equation the
      ratio of areas
19 D=A^{(1/2)}; //The ratio of inlet pipe diameter to the
      outlet pipe diameter
20
21 //Output
22 printf('(a) The rate of work input to the air P = \%3
      .3 f kW \setminus n (b) The ratio of inlet pipe diameter to
      the outlet pipe diameter D = \%3.2 \text{ f}^{\prime}, P,D)
```

Scilab code Exa 2.21 The nozzle

```
1 clc
2 clear
3 //Input data
4 h1=3000; //Enthalpy of the fluid passing at inlet in
      kJ/kg
5 h2=2757; //Enthalpy of the fluid at the discharge in
      kJ/kg
6 c1=60;//Velocity of the fluid at inlet in m/s
7 A1=0.1;//Inlet area of the nozzle in m^2
8 v1=0.187; // Specific volume at inlet in m<sup>3</sup>/kg
9 v2=0.498;//Specific volume at the outlet in m^3/kg
10 q=0; //Heat loss during the flow is negligable
11 z=0; //The nozzle is horizontal so change in PE is
      constant
12 w=0;//The work done is also negligable
13
14 // Calculations
15 c2=[2*1000*((h1-h2)+(c1^2/2000))]^{(1/2)}; // Velocity
      at the exit in m/s
16 m=(A1*c1)/v1;//The mass flow rate in kg/s
17 A2=(m*v2)/c2; //Area at the exit of the nozzle in m<sup>3</sup>
18
19 //Output
20 printf('(a) The velocity at the exit c_2 = \%3.2 \text{ fm/s}
      n (b) The mass flow rate m = \%3.2 f \text{ kg/s} \ln (c) Area
       at the exit A2 = \%3.4 \text{ fm}^2 ',c2,m,A2)
```

Scilab code Exa 2.22 Velocity and Exit area

```
1 clc
2 clear
3 //Input data
```

- 4 h1=3000;//Specific enthalpy of steam at inlet in kJ/kg
- 5 h2=2762;//Specific enthalpy of steam at the outlet

in kJ/kg

```
6 v1=0.187; // Specific volume of steam at inlet in m<sup>3</sup>/
      kg
7 v2=0.498; // Specific volume of steam at the outlet in
       m^3/kg
8 A1=0.1; //Area at the inlet in m^2
9 q=0;//There is no heat loss
10 z=0;//The nozzle is horizontal , so no change in PE
11 c1=60; // Velocity of the steam at the inlet in m/s
12
13 // Calculations
14 c2=[(2*1000)*((h1-h2)+(c1^2/2000))]^(1/2);//Velocity
       of the steam at the outlet in m/s
15 m=(A1*c1)/v1;//Mass flow rate of steam in kg/s
16 m1=m*3600; //Mass flow rate of steam in kg/hr
17 A2=(m*v2)/c2; //Area at the nozzle exit in m<sup>2</sup>
18
19 //Output
20 printf('(a) Velocity of the steam at the outlet c2 =
      \%3.2 \text{ f m/s} \ (\text{b}) \text{ Mass flow rate of steam } m = \%3.3 \text{ f}
       kg/s (or) \%3.2 f kg/hr \n (c)Area at the nozzle
      exit A2 = \%3.4 \text{ fm}^2 ', c2, m, m1, A2)
```

Scilab code Exa 2.23 The exit velocity

8 z=0;//Since adiabatic

```
9
10 // Calculations
11 c2=[(2*1000)*((h)+(c1^2/(2*1000)))]^(1/2);//The exit
        velocity of air in m/s
12
13 //Output
14 printf('The exit velocity of the air C2 = %3.2f m/s
        ',c2)
```

Scilab code Exa 2.24 The shaft power

- 1 clc
- 2 clear
- 3 //Input data
- 4 p1=100;//Pressure at the inlet of the compressor in kPa
- 5 p2=500;//Pressure at the outlet of the compressor in kPa
- 6 v1=3;//Volume of the air at the inlet of the compressor in m³/kg
- 7 v2=0.8;//Volume of the air at the outlet of the compressor in m^3/kg
- 8 c1=25;//The velocity of air at the inlet of the compressor in m/s
- 9 c2=130;//The velocity of air at the outlet of the compressor in m/s
- 10 z=12;//The height of delivery connection above the inlet in m

```
11 g=9.81; // Gravitational constant in m/s^2
```

12 n=1.3;//Polytropic index

```
13
```

- 14 // Calculations
- 15 W=[(n)*(p1*v1-p2*v2)]/(n-1);//Workdone for open
 system polytropic process in kJ/kg
- 16 $K = [(c2^2-c1^2)/2000]; //Change in kinetic energy of$

the system in kJ/kg

```
17 P=g*(z)/1000; //Change in potential energy of the system in <math>kJ/kg
```

```
18 w=W-K-P;//The shaft work of the compressor in kJ/kg 19
```

20 //Output

Scilab code Exa 2.25 The power required

```
1 clc

2 clear

3 //Input data

4 m=10;//The rate of fluid compressed adiabatically in

    kg/s

5 p1=500;//Initial pressure of the process in kPa

6 p2=5000;//Final pressure of the process in kPa

7 v=0.001;//The specific volume of the fluid in m^3/kg

8

9 //Calculations

10 P=m*v*(p2-p1);//The power required in kW

11

12 //Output

13 printf('The power required P = %3.0f kW ',P)
```

Scilab code Exa 2.26 The exit air temperature

```
1 clc
2 clear
3 //Input data
4 m=2;//Mass flow rate of air in kg/s
```

```
5 t1=20;//Initial temperature of the air in degree
     centigrade
6 P=-30; //The amount of power consumed in kW
7 c1=100;//The inlet velocity of air in m/s
8 c2=150; //The outlet velocity of air in m/s
9 R=0.287; //The gas constant for air in kJ/kg-K
10 g=1.4; //It is the adiabatic index
11 cp=1.005; // Specific heat at constant pressure in kJ/
     kg-K
12 q=0;//Heat developed as it is adiabatic condition
13 z=0; //The change in potential energy is neglected
14
15 // Calculations
16 h=(P/m)+((c2^2-c1^2)/(2*1000));//The change in
     enthalpy of the system in kJ/kg
17 t=h/cp;//The change in temperature of the system in
      degree centigrade
18 t2=t1-t; //The exit air temperature in degree
     centigrade
19
20 //Output
21 printf('The exit air temperature is t2 = \%3.2 f
     degree centigrade ',t2)
```

Scilab code Exa 2.27 The exit air temperature

```
1 clc
```

```
2 clear
```

```
3 //Input data
```

```
4 m=0.6;//Mass flow rate of air in kg/s
```

- 5 W=40;//Power required to run the compressor in kW
- 6 p1=100;//Initial pressure at the inlet of the compressor in kPa
- 7 t1=30;//Initial temperature at the inlet of the compressor in degree centigrade

8 z=0; //Change in potential energy is neglected 9 c=0;//Change in kinetic energy is neglected 10 q=0.4; //Heat lost to the cooling water , bearings and frictional effects is 40% of input 11 cp=1.005; // Specific heat at constant pressure in kJ/ kg-K 1213 // Calculations 14 Q=q*W; //Net heat losses from the system in kW 15 H=W-Q; //Change in total enthalpy of the system in kW 16 t2=(H/(m*cp))+t1;//The exit air temperature in degree centigrade 1718 //Output 19 printf('The exit air temperature T2 = %3.0 f degree centigrade ',t2)

Scilab code Exa 2.28 The rate of heat transfer

```
1 clc
2 clear
3 //Input data
4 m1=100; //Air flow rate in kg/hr
5 q1=600;//The heat generated by each person in kJ/hr
6 h1=85; //The enthalpy of air entering the room in kJ/
     kg
7 h2=60;//The enthalpy of air leaving the room in kJ/
     kg
  Q1=0.2; //The heat added by each lamp in the room in
8
     kW
9 P1=0.2; //The power consumed by each fan in kW
10
11 // Calculations
12 q=(5*q1)/3600;//The heat generated by 5 persons in
     the room in kW
```

- 13 Q=3*Q1;//The heat added by three lamps in the room in kW
- 14 P=2*P1;//The power consumed by two fans in the room in kW
- 15 m=m1/3600;//Mass flow rate of air in kg/s
- 17
- 18 //Output
- 19 printf('The rate at which the heat is to be removed by cooler X = %3.3 f kJ/sec',H)

Scilab code Exa 2.29 The heat loss or gain

- 1 clc
- 2 clear
- 3 //Input data
- 4 p1=1000; // Pressure at the inlet of the system in kPa
- 5 p2=15;//Pressure at the outlet of the system in kPa
- 6 v1=0.206;//Specific volume at the inlet of the system in m³/kg
- 7 v2=8.93;//Specific volume at the outlet of the system in m^3/kg
- 8 h1=2827;//Specific enthalpy at the inlet of the system in kJ/kg
- 9 h2=2341;//Specific enthalpy at the outlet of the system in kJ/kg
- 10 c1=20; // Velocity at the inlet of the system in m/s
- 11 c2=120;//Velocity at the outlet of the system in m/s
- 12 z1=3.2;//Elevation at the inlet of the system in m
- 13 z2=0.5;//Elevation at the outlet of the system in m

```
14 m=2.1;//The fluid flow rate in kg/s
```

```
15 W=750;//The work output of the device in kW
```

```
16 g=9.81; // Gravitational constant in m/s<sup>2</sup>
```

```
17
```

Scilab code Exa 2.30 Rate of heat transfer and power and velocity

- 1 clc
- 2 clear
- 3 //Input data
- 4 t1=15;//The inlet temperature of the air passing through the heat exchanger in degree centigrade
- 5 c1=30;//The inlet velocity of air in m/s
- 6 t2=800;//The outlet temperature of the air from heat exchanger in degree centigrade
- 7 t2'==800;//The inlet temperature of the air to the turbine in degree centigrade
- 8 c2=30;//The inlet velocity of air to the turbine in m/s
- 9 t3=650;//The outlet temperature of the air from the turbine in degree centigrade
- 10 t3'==650;//the inlet temperature of the air to the nozzle in degree centigrade
- 11 c3=60;//The outlet velocity of the air from turbine in m/s
- 12 c3'==60; // Velocity at the inlet of the nozzle in m/s
- 13 t4=500;//The temperature at the outlet of the nozzle in degree centigrade
- 14 m=2;//Air flow rate in kg/s
- 15 cp=1.005;//Specific heat at constant pressure in kJ/ kgK

```
16
```

```
17 // Calculations
18 Qh=m*cp*(t2-t1);//Rate of heat transfer to the air
19 P=m*[(cp*(t2'-t3))+((c2^2-c3^2)/2000)];//Power
0 output from the turbine in kW
20 c4=[(2*1000)*[cp*(t3'-t4)]+c3^2]^(1/2);//Velocity of
air at exit from nozzle in m/s
21
22 //Output
23 printf('(a)Rate of heat transfer to the air in the
heat exchanger q = %3.2f kJ/s \n (b)Power output
from the turbine W = %3.1f kW \n (c)Velocity of
air at exit from nozzle C = %3.2f m/s ',Qh,P,c4)
```

Scilab code Exa 2.31 The heat transfer and exit area

1 clc

- 2 clear
- 3 //Input data
- 4 p1=400;//Initial pressure of the gas in a turbine in kPa
- 5 t1=573;//Initial temperature of the gas in a turbine in K
- 6 p2=100;//Final pressure of the gas in a turbine in kPa
- 7 V=2.5;//It is the ratio of final volume to the inlet volume
- 8 c2=50;//Velocity of the gas at exit in m/s
- 9 P=1000; //Power developed by the turbine in kW
- 10 cp=5.193;//Specific heat of the helium at constant pressure in kJ/kg K
- 11 G=8.314;//Gas constant in kNm/kgK
- 12 M=4;//Molecular weight of the helium

13

14 // Calculations

- 15 R=G/M;//Characteristic gas constant in kNm/kgK
- 16 v1=(R*t1)/p1;//Specific volume at the inlet in m³/
 kg
- 17 v2=V*v1; // Specific volume at the outlet in m^3/kg
- 18 n=log(p2/p1)/log(v1/v2);//Polytropic index
- 20 w=(n/(n-1))*(R*(t1))*[1-((p2*v2)/(p1*v1))];// Specific work in kJ/kg
- 21 K=c2^2/(2*1000);//Change in kinetic energy in kJ/kg
- 22 Ws=w-K; //Work done by the shaft in kJ/kg
- 23 q=Ws+(cp*(t2-t1))+K;//The heat transfer during the process in kJ/kg
- 24 m=P/Ws;//Mass flow rate of gas required in kg/s
- 25 A2=(m*v2)/c2;//Exit area of the turbine in m²
- 26
- 27 //Output
- 28 printf('(a)The mass flow rate of the gas required m = %3.4 f kg/s \n (b)The heat transfer during the process q = %3.2 f kJ/kg \n (c)Exit area of the turbine A2 = %3.4 f m^2 ',m,q,A2)

Chapter 6

Introduction to heat transfer

Scilab code Exa 6.1 Heat transfer coefficient

- $1 \ clc$
- 2 clear
- 3 //Input data
- 4 t1=270;//Temperature inside surface of the furnace wall in degree centigrade
- 5 t3=20;//Temperature outside surface is dissipating heat by convection into air in degree centigrade
- 6 L=0.04;//Thickness of the wall in m
- 7 K=1.2;//Thermal conductivity of wall in W/m-K
- 8 t2=70;//Temperature of outside surface should not exceed in degree centigrade
- 9 A=1;//Assuming area in m²
- 10
- 11 // Calculations
- 12 Q1=(K*A*(t1-t2))/(L);//Heat transfer through the furnace wall in W
- 13 hc=(Q1)/(A*(t2-t3));//Heat transfer coefficient in W $/m^{2}K$
- 14

15 //Output

16 printf('The minimum value of heat transfer

```
coefficient at the outer surface hc = \%3.1\,f W/m^2 K',hc)
```

Scilab code Exa 6.2 Emissive power

1 clc 2 clear 3 //Input data 4 t1=30; //Normal temperature of black body in degree centigrade 5 t2=100; //Heated temperature of black body in degree centigrade 6 s=20.52*10⁻⁸;//Stefan Boltzmann constant in kJ/hrK ^4 7 A=1;//Assume area in m^2 8 9 // Calculations 10 T1=273+t1; //Black body temperatures in kelvin K 11 T2=273+t2; //Heated temperature of black body in kelvin K 12 E=s*(T2^4-T1^4);//Increase of emissive power in kJ/ hr 1314 //Output 15 printf('The change in its emissive power E= %3.4 f kJ /hr',E)

Scilab code Exa 6.3 Temperature and Heat transfer coefficient

```
1 clc
2 clear
3 //Input data
4 L=0.012;//Wall thickness of a mild steel tank in m
```

- 5 t1=100;//Temperature of water in tank in degree centigrade
- 6 t4=20;//Atmospheric temperature of air in degree centigrade
- 7 K=50;//Thermal conductivity of mild steel in W/m-K
- 8 hi=2850;//Convection heat transfer coefficient on water side in W/m^2-K
- 9 ho=10;//Convection heat transfer coefficient on air side in W/m²-K
- 10 Q1=60;//Heat trasfer from the incandicent lamp in W
- 11 $s=5.67*10^{-8}$; // Stefan boltzmann constant in W/m²/K ⁴
- 12 T1=2500;//Lamp surface temperature in K
- 13 T2=300;//Room temperature in K
- 14 A=1;//Assuming area in m²
- 15
- 16 // Calculations
- 18 Q=(T)/((1/hi)+(L/K)+(1/ho));//Rate of heat loss per m² area of surface of tank in W
- 19 t3=(Q/(ho*A))+(t4);//Temperature of the outside surface in degree centigrade
- 20 U=(Q)/(A*T);//Overall Heat transfer coefficient in W $/m^{2}/K$
- 21 $a=(Q1)/(s*(T1^4-T2^4));//surface$ area of the coil in m^2
- 22 a1=a*10^6; //Surface area of the coil in mm²
- 23

```
24 //Output
```

25 printf('(a) The rate of heat loss per sq m area of the tank Q = %3.2 f W \n (b) Overall heat transfer coefficient U = %3.2 f W/m²/K \n (c) Temperature of the outside surface of tank t3 = %3.2 f degree centigrade \n (d)The surface area of the coil is %3.3 f mm²',Q,U,t3,a1) Scilab code Exa 6.4 Heat loss rate and Temperature

```
1 clc
2 clear
3 //Input data
4 A1=3.5; //Area of the boiler plate in m<sup>2</sup>
5 X2=0.02; // Thickness of the plate in m
6 K2=50;//Thermal conductivity of plate in W/m-K
7 X1=0.002; // Thickness of layer inside boiler in m
8 K1=1;//Thermal conductivity of layer in W/m-K
9 t1=250; //The hot gas temperature of the plate in
      degree centigrade
10 t3=200; // Temperature of cold air in degree
      centigrade
11
12 // Calculations
13 T=t1-t3; // Temperature difference in degree
      centigrade
14 Q=(T*A1)/((X1/K1)+(X2/K2));//Rate of heat loss in W
15 Q1=Q/1000;//Rate of heat loss in kJ/s
16 Q2=Q1*3600; //Rate of heat loss in kJ/hr
17
18 //Output
19 printf('(a)Rate of heat loss in kJ/s = \%3.2 f kJ/s \setminus n
       (b) Rate of heat loss per hour Q = \%3.2 \text{ f kJ/hr}',
      Q1,Q2)
```

Scilab code Exa 6.5 Rate of heat loss and Temperature

```
1 clc
2 clear
3 //Input data
```

- 4 L1=0.225; // Thickness of the brick in m
- 5 K1=4.984;//Thermal conductivity of brick in kJ/hr m $\rm C/m$
- 6 L2=0.125; // Thickness of insulating brick in m
- 7 K2=0.623;//Thermal conductivity of insulating brick in kJ/hr m C /m
- 8 Ti=1650;//Temperature inside the furnace in degree centigrade
- 9 hl=245.28;//Conductance at inside wall in kJ/hr m^2 C
- 10 ho=40.88;//Conductance at outside wall in kJ/hr m^2 C
- 12
- 13 // Calculations
- 14 R=((1/hl)+(L1/K1)+(L2/K2)+(1/ho)); //Total resistance of the wall in C hr/kJ

- 18
- 19 //Output

```
20 printf('(a)The rate of heat loss per sq m of the
  wall q = %3.2 f kJ/hr m<sup>2</sup> \n (b)The temperature at
  the inner surface T1 = %3.2 f degree centigrade \
  n (c)The temperature at the outer surface T3 = %3
  .2 f degree centigrade ',q,T1,T3)
```

Scilab code Exa 6.6 The heat transfer and conductance

1 clc

- 2 clear
- 3 //Input data
- 4 x=0.3; //Thickness of the wall in degree centigrade
- 5 t1=24;//Inside surface temperature of the wall in degree centigrade
- 6 t2=-6;//Outside temperature of wall in degree centigrade
- 7 h=2.75; //Height of the wall in m
- 8 L=6.1;//Length of the wall in m
- 9 K=2.6;//Coefficient of conductivity of brick in kJ/ hr m C
- 10
- 11 // Calculations
- 12 A=h*L;//Area of the wall in m²
- 14 q=(K*A*(-T))/(x);//Heat transfer by conduction in kJ /hr
- 15 R=(t1-t2)/q; // Resistance of the wall in C hr/kJ
- 16 C=1/R; // Conductance of the wall in kJ/m C
- 17
- 18 //Output
- 19 printf('(a)The heat transfer by conduction through the wall q = %3.2 f kJ/hr \n (b)Resistance of the wall R = %3.5 f C hr/kJ \n Conductance of the wall C= %3.2 f kJ/m C',q,R,C)

Scilab code Exa 6.8 The energy received

```
1 clc
```

```
2 clear
```

- 3 //Input data
- 4 T=300;//Temperature of the earth as a black body in K
- 5 s=20.52*10⁻⁸;//Stefan Boltzmann constant in kJ/hr m

```
^2 T^4
6
7 //Calculations
8 Q=s*T^4;//Heat received by unit area on the earths
    surface perpendicular to solar rays in kJ/hr
9
10 //Output
11 printf('Heat received by the unit area of earths
    surface Q = %3.2 f kJ/hr',Q)
```

Scilab code Exa 6.9 The loss of heat

```
1 clc
2 clear
3 //Input data
4 D=0.07; // Diameter of the steel tube in m
5 L=3;//Length of the steel tube
6 t1=227; //Temperature of the steel tube in m
7 t2=27;//Temperature of the room in degree centigrade
8 s=20.52*10<sup>-8</sup>;//Stefan Boltzmann constant in kJ/hr m
      ^{2} T<sup>4</sup>
9 pi=3.1428;//Constant value of pi
10
11 // Calculations
12 A=2*pi*D*L;//Surface area of the tube in m<sup>2</sup>
13 Q=(A)*(s)*((t1+273)^4-(t2+273)^4);//Loss of heat by
      radiation in kJ/hr
14 Q1=Q/3600;//Loss of heat by radiation in kW
15
16 //Output
17 printf('The loss of heat by radiation from steel
      tube Q = \%3.4 \text{ f kW} ',Q1)
```

Scilab code Exa 6.10 The rate of heat removed

```
1 \text{ clc}
```

```
2 clear
```

```
3 //Input data
```

- 4 T1=7;//Inside temperature of refrigerator in degree centigrade
- 5 TO=28;//Temperature in the kitchen in degree centigrade
- 6 K1=40; //Thermal conductivity of mild steel in W/mC
- 7 x1=0.03; // Thickness of mild sheets in m
- 8 K3=40;//Thermal conductivity of the mild steel in W/ mC
- 9 x3=0.03;//Thickness of another side mild sheet in m
- 10 x2=0.05; // Thickness of glass wool insulated in m
- 11 hi=10;//Heat transfer coefficient in the inner surface of refrigerator in W/m^2 C
- 12 ho=12.5;//Heat transfer coefficient in the outer surface of refrigerator in W/m^2 C
- 13 K2=0.04;//Thermal conductivity of glass in W/mC

```
14
```

```
15 // Calculations
```

```
16 Q=(T1-T0)/((1/hi)+(x1/K1)+(x2/K2)+(x3/K3)+(1/ho)); //
Heat transfer per unit area in W/m<sup>2</sup>
```

17

```
18 //Output
```

19 printf('The rate of heat removed from the refrigirator $Q = \%3.3 \text{ f W/m}^2$ ',Q)

Scilab code Exa 6.11 Heat loss and maximum temperature

```
1 clc
2 clear
3 //Input data
4 x1=0.2;//Thickness of the fire brick
```

- 5 x2=0.2;//Thickness of the common brick
- 6 Ti=1400;//Temperature of hot gases in the inner surface of the brick in degree centigrade
- 7 To=50;//Temperature of gases in the outer surface of the brick in degree centigrade
- 8 h1=16.5;//Convection heat transfer coefficient on gas side in W/mC
- 9 h2=17.5;//radiation heat transfer coefficient on gas side in W/mC
- 10 h3=12.5;//Convection heat transfer coefficient on outer side in W/mC
- 11 h4=6.5;//Radiation heat transfer coeeficient on outer side in W/mC
- 12 K1=4;//Thermal conductivity of fire brick in W/mC
- 13 K2=0.65;//Thermal conductivity of common brick in W/ mC

14

- 15 // Calculations
- 17 ho=h3+h4;//Total heat transfer coefficient in outer in W/mC
- 18 Q=(Ti-To)/((1/hi)+(x1/K1)+(x2/K2)+(1/ho));//Heat flow through the furnace composite wall per unit area in W/m²
- 19 Q1=Q/1000;//Heat flow through the furnace composite wall per unit area in kW/m²
- 20 T1=Ti-(Q/hi);//Temperature at the inside of the fire brick in degree centigrade
- 21 T2=T1-(Q*(x1/K1));//Maximum temperature to which common brick is subjected in degree centigrade

- 23 // Output
- 24 printf('(a) Heat loss per m^2 area of the furnace wall Q = %3.2 f kW/m^2 \n (b)Maximum temperature to which common brick is subjected T1 = %3.3 f degree centigrade \n similarly on other side T2 = %3.3 f degree centigrade',Q1,T1,T2)

²²

Scilab code Exa 6.12 The thickness of brick

```
1 clc
2 clear
3 //Input data
4 K1=0.93; //Thermal conductivity of fire clay in W/mC
5 K2=0.13; // Thermal conductivity of diatomite brick in
      W/mC
6 K3=0.7;//Thermal conductivity of red brick in W/mC
7 x1=0.12;//Thickness of fire clay in m
8 x2=0.05; // Thickness of diatomite in m
9 x3=0.25; // Thickness of brick in m
10 T=1;//Assume the difference between temperature in
     degree centigrade
11
12 // Calculations
13 Q=(T)/((x1/K1)+(x2/K2)+(x3/K3));//The heat flow per
      unit area in W/m<sup>2</sup>
14 X3=K3*((T/Q)-(x1/K1));//Thickness of the red brick
     layer in m
15 X=X3*100;//Thickness of the red brick layer in cm
16
17 //Output
18 printf('The thickness of the red brick layer, \n if
     the brick work is to be laid with out diatomic is
      %3.3f cm ',X)
```

Scilab code Exa 6.13 The rate of heat loss

1 clc 2 clear

4 R1=0.06; // Thickness of material layer in m 5 R2=0.12;//Thickness of the two insulating materials in m 6 R3=0.16; // Thickness of material layers with pipe in m K1=0.24; //Thermal conductivity of one layer in W/mC 78 K2=0.4; //Thermal conductivity of another layer in W/ mC 9 L=60;//Length of the pipe in m 10 hi=60;//Heat transfer coefficient inside in W/m^2C 11 ho=12;//Heat transfer coefficient outside in W/m^2C 12 ti=65; // Temperature of hot air flowing in pipe in degree centigrade 13 to=20; // Atmospheric temperature in degree centigrade 14 pi=3.1428; //Constant value of pi 1516 // Calculations 17 Q=(ti-to)*(2*pi*L)/((1/(hi*R1))+(log(R2/R1)/(K1))+(log(R3/R2)/(K2))+(1/(ho*R3)));//Rate of heat loss in W 18 Q1=Q/1000; //Rate of heat loss in kW 1920 //Output 21 printf('The rate of heat loss Q = %3.5 f kW',Q1)

Scilab code Exa 6.14 Heat loss

3 //Input data

```
1 clc
2 clear
3 //Input data
4 R1=8;//Inner radius of the pipe in cm
5 R2=8.5;//Outter radius of the pipe in cm
6 x1=3;//Thickness of first layer in cm
7 x2=5;//Thickness of second layer in cm
```

- 8 T1=300;//Inner surface temperature of the steam pipe in degree centigrade
- 9 pi=3.1428;//Constant value of pi
- 11 L=1;//Length of the pipe in m
- 12 K1=50;//Thermal conductivity of pipe in W/mC
- 13 K2=0.15;//Thermal conductivity of first layer in W/ mC
- 14 K3=0.08;//Thermal conductivity of second layer in W/ mC
- 15 h=2751;//Enthalpy of dry and saturated steam at 300 degree centigrade in kJ/kg
- 16 q=40;//Quantity of steam flow in gm/hr
- 17 hf=1345;//Enthalpy of fluid at 300 degree centigrade in kJ/kg
- 18 hfg=1406;//enthalpy at 300 degree centigrade in kJ/kg
- 19
- 20 // Calculations
- 21 R3=R2+x1;//Radius of pipe with first layer
- 22 R4=R3+x2; //Radius of pipe with two layers
- 23 Q=(2*pi*L*(T1-T4))/((log(R2/R1)/(K1))+(log(R3/R2)/(K2))+(log(R4/R3)/(K3)));//Quantity of heat loss per meter length of pipe in W/m
- 24 Q1=Q/1000;//Quantity of heat loss per meter length of pipe in kW
- 25 Q2=Q1*3600;//Quantity of heat loss per meter length of pipe in kJ/hr
- 26 hg=((h)-(Q2/q)); // Enthalpy of steam in kJ/kg

```
27 x=(hg-hf)/(hfg);//Dryness fraction of steam
```

28

```
29 //Output
```

30 printf('(a)The quantity of heat lost per meter length of steam pipe Q = %3.1f kJ/hr \n (b)The quantity of steam coming out of one meter length pipe x = %3.5f gm/hr ',Q2,x) $Scilab \ code \ Exa \ 6.15$ Heat transfer and conductance and resistance

```
1 clc
2 clear
3 //Input data
4 x=0.3; //Thickness of brick wall in m
5 ti=24; //Inside surface temperature of wall in degree
       centigrade
6 to=-6; // Outside surface temperature of wall in
      degree centigrade
7 h=2.75;//Height of the wall in m
8 L=6.1; //Length of the wall in m
9 K=2.6; //Thermal conductivity of brick material in kJ
      /m hr C
10
11 // Calculations
12 T=ti-to; // Temperature difference across the wall in
      degree centigrade
13 A=h*L;//Area of the wall in m<sup>2</sup>
14 Q=(K*A*T)/(x);//Heat transfer through conduction by
      the wall per hour in kJ/hr
15 R=T/Q; // Resistance of the wall in hr C/kJ
16 C=1/R; // Conductance of the wall in kJ/hr C
17
18 //Output
19 printf('(a)The heat transfer by conduction through
      the wall per hr Q = \%3.1 f kJ/hr \ln (b) The
      resistance of the wall R = \%3.4 f hr C/kJ \n
      The conductance of the wall C = \%3.2 \text{ f kJ/hr } C ',Q
      ,R,C)
```

Scilab code Exa 6.16 Reduction in heat loss

- 1 clc
- 2 clear
- 3 //Input data
- 4 x1=0.3;//Thickness of refractory bricks in m
- 5 K1=5.66;//Thermal conductivity of refractory bricks in kJ/hr mC
- 6 t1=1650;//Inner surface temperature of the wall in degree centigrade
- 7 t2=320;//Outside surface temperature of the wall in degree centigrade
- 8 x2=0.3; // Thickness of insulating brick in m
- 9 K2=1.26;//Thermal conductivity of insulating brick in kJ/hr mC
- 10 A=1;//unit surface area in m²
- 11 t3=27;//Outside surface temperature of the brick in
 degree centigrade

12

- 13 // Calculations
- 14 T1=t1-t2;//Temperature difference in degree centigrade
- 15 Q1=(K1*A*T1)/(x1);//Heat loss without insulation in $kJ/hr/m^2$
- 16 R1=(K1*A)/(x1);//Heat loss for the change in temperature for refractory brick wall material in kJ/hrC
- 17 R2=(K2*A)/(x2);//Heat loss for the change in temperature for insulated brick wall material kJ/ hrC
- 18 Q2=(t1-t3)/((1/R1)+(1/R2));//Heat loss with insulation in $kJ/hr/m^2$
- 19 Q3=Q1-Q2;//Reduction in heat loss through the wall in kJ/hr/m²
- 20
- 21 //Output
- 22 printf('The reduction in heat loss through the wall is %3.2f kJ/hr/m^2 ',Q3)

 $Scilab\ code\ Exa\ 6.17$ Leakage and temperature

1	clc
2	clear
3	//Input data
4	L=4.6; //Length of the wall in m
5	b=2.3;//Breadth of the wall in m
6	x1=0.025;//Thickness of the wood in m
7	x2=0.075;//Thickness of the cork slabbing in m
8	x3=0.115;//Thickness of the brick in m
9	t1=18; // Exterior temperature of the wall in degree
10	centigrade
10	t4=-20;//Interior temperature of the wall in degree
11	centigrade K1-7 5://Thermal conductivity of the wood in k1/hr
11	K1=7.5;//Thermal conductivity of the wood in kJ/hr mC
12	K2=1.9;//Thermal conductivity of the wood in kJ/hr.
	mC
13	K3=41;//Thermal conductivity of the brick in kJ/hr
	mC
14	
15	// Calculations
16	A=L*b;//Area of the wall in m ²
17	R1=(K1*A)/(x1);//Heat loss for the change in
	temperature for insulated wood material in kJ/hrC
18	R2=(K2*A)/(x2);//Heat loss for the change in
	temperature for cork material in kJ/hrC
19	R3=(K3*A)/(x3);//Heat loss for the change in
	temperature for brick in kJ/hrC
20	Q=(t1-t4)/(1/R1+1/R2+1/R3); //Heat loss with
	insulation in kJ/hr
21	Q1=Q*24;//Heat loss with insulation in $kJ/24hr$
22	t2=t1-(Q/R1);//Interface temperature t2 in degree
	centigrade

```
23 t3=t2-(Q/R2);//Interface temperature t3 in degree
centigrade
24
25 //Output
26 printf('(a)The leakage through the wall per 24 hours
Q = %3.2f kJ/24hr \n (b)Temperature at the
interface t2 = %3.4f degree centigrade \n
Temperature at interface t3 = %3.4f degree
centigrade ',Q1,t2,t3)
```

Scilab code Exa 6.18 The heat loss

```
1 clc
2 clear
3 //Input data
4 L=0.3; //Thickness of the wall in m
5 ti=320; //Inner surface temperature in degree
      centigrade
  to=38;//Outer surface temperature in degree
6
      centigrade
7 A=1;//Assume unit area in m<sup>2</sup>
8
9 // Calculations
10 Q=(A/L)*((0.01256/2)*(ti<sup>2</sup>-to<sup>2</sup>)-(4.2/3)*10<sup>-6</sup>*(ti
      ^3-to^3)); // Heat loss per sq metre of surface
      area for a furnace wall in kJ/hr/m<sup>2</sup>
11
12 //Output
13 printf('The heat loss per sq metre of surface area
      for a furnace wall Q = \%3.1 \text{ f kJ/hr/m^2} ',Q)
```

Scilab code Exa 6.19 The heat loss and the temperature

- $1 \ clc$
- 2 clear
- 3 //Input data
- 4 d=11.5; //Outer diameter of steam pipe line in cm
- 5 t1=5;//Thickness of first layer in cm
- 6 K1=0.222;//Thermal conductivity of first layer in kJ /hr mC
- 7 t2=3;//Thickness of second layer in cm
- 8 pi=3.1428;//Constant value of pi
- 9 K2=3.14;//Thermal conductivity of second layer in kJ /hr mC
- 10 T1=235;//Outside surface temperature of steam pipe in degree centigrade
- 11 T3=38;//Outer surface of lagging in degree centigrade
- 12 L=1;//Length of the pipe in m
- 13
- 14 // Calculations
- 15 I=log((d+(2*t1))/d);//For inner layer calculation
- 17 R1=(2*pi*L*K1)/I;//Heat loss for change in temperature for first insulated material in kJ/hC
- 18 R2=(2*pi*L*K2)/O;//Heat loss for the change in temperature for second insulated material in kJ/ hC
- 19 Q=(T1-T3)/(1/R1+1/R2);//Heat loss per metre length of pipe per hr in kJ/hr
- 20 T2=T1-(Q/R1);//Temperature between the two layers of insulation in degree centigrade
- 21

```
22 //Output
```

23 printf('(a)The heat loss per metre length of pipe per hr Q = %3.2 f kJ/hr \n (b)Temperature between the two layers of insulation T= %3.2 f degree centigrade ',Q,T2) ${
m Scilab\ code\ Exa\ 6.20}$ The rate of heat flow

```
1 clc
2 clear
3 //Input data
4 t1=24; // Temperature at the outside surface in degree
       centigrade
5
  t4=-15; // Temperature at the inner surface in degree
      centigrade
6 A=1;//Assuming unit area in m<sup>2</sup>
7 K1=23.2;//Thermal conductivity of steel in W/mC
8 K2=0.014;//Thermal conductivity of glasswood in W/mC
9 K3=0.052;//Thermal conductivity of plywood in W/mC
10 x1=0.0015; // Thickness of steel sheet at outer
      surface in m
11 x2=0.02; // Thickness of glasswood in between in m
12 x3=0.01; // Thickness of plywood at a inner surface in
      m
13
14 // Calculations
15 R1=(K1*A)/x1;//Heat loss for the change in
      temperature for first insulated material
16 R2=(K2*A)/x2;//Heat loss for the change in
      temperature for second insulated material
17 R3=(K3*A)/x3;//Heat loss for the change in
      temperature for third insulated material
18
  Q=(t1-t4)/(1/R1+1/R2+1/R3);//The rate of heat flow
      in W/m^2
19
20 //Output
21 printf('The rate of heat flow Q = \%3.2 \text{ f W/m}^2',Q)
```