Scilab Textbook Companion for Thermal Engineering by A. V. Arasu¹

Created by
Karnati Saiaman
B. TECH
Mechanical Engineering
Sastra University
College Teacher
K. Ramakrishna Reddy
Cross-Checked by
Lavitha Pereira and Mukul R. Kulkarni

July 31, 2019

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Thermal Engineering

Author: A. V. Arasu

Publisher: Tata Mcgraw Hill

Edition: 1

Year: 2009

ISBN: 9788182091658

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	ist of Scilab Codes	4
1	Fuels and Combustion	5
2	Gas Power Cycles	23
3	Internal Combustion Engines	51
4	Steam nozzles and Steam turbines	61
5	Air Compressors	98
6	Refrigeration Cycles	126
7	Air Conditioning	148

List of Scilab Codes

Exa 1.1	Minimum mass of air required	5
Exa 1.2	Theoretical volume of air required	6
Exa 1.3	Minimum quantity of air and Total mass of	
	products of combustion	7
Exa 1.4	Mass of dry flue gas	8
Exa 1.5	Minimum air required and Mass of air actu-	
	ally supplied and Amount of excess air sup-	
	plied	9
Exa 1.6	Mass of air to be supplied and Mass of gaseous	
	products	11
Exa 1.7	Total mass of dry flue gases and Percentage	
	composition of dry flue gases by volume	12
Exa 1.8	Mass of air actually supplied and Percentage	
	of excess air supplied	14
Exa 1.9	Mass of excess air supplied and air fuel ratio	16
Exa 1.10	Volume of air required	18
Exa 1.11	Air fuel ratio	19
Exa 1.12	Volume and analysis of products of combustion	20
Exa 2.1	Maximum pressure and temperature of cycle	
	and Cycle efficiency and Mean effective pres-	
	sure	23
Exa 2.2	Relative efficiency of engine	24
Exa 2.3	Air standard efficiency	25
Exa 2.4	Highest temperature and pressure in cycle and	
	Amount of heat transferred and Thermal ef-	
	ficiency and Mean effective pressure	26

Exa 2.5	Pressure and Temperature at the end of heat
	addition process and Net work output and
	Thermal efficiency and Mean effective pres-
	sure
Exa 2.6	Air standard efficiency
Exa 2.7	Cutoff ratio and Heat supplied and Cycle ef-
	ficiency and MEP
Exa 2.8	Air standard efficiency and percentage loss in
	efficiency
Exa 2.9	Maximum temperature and Thermal efficiency
	of cycle
Exa 2.10	Thermal efficiency and MEP
Exa 2.11	Cutoff ratio and air standard efficiency
Exa 2.12	Ideal efficiency of cycle
Exa 2.13	Ideal efficiency of engine
Exa 2.14	Amount of heat added and rejected and Work
	done and Thermal efficiency
Exa 2.15	MEP and Thermal efficiency
Exa 2.16	Cycle efficiency and Heat supplied and re-
	jected and Work output and Turbine exit tem-
	perature
Exa 2.17	Pressure ratio and Maximum net specific work
	output and Thermal efficiency and Work ra-
	tio and Carnot efficiency
Exa 2.18	Maximum work output and Cycle efficiency
	and Comparison with carnot efficiency
Exa 2.19	Net power output and Thermal efficiency and
	Work ratio
Exa 2.20	Percentage increase in cycle efficiency
Exa 2.21	Velocity of air leaving nozzle
Exa 2.22	Turbine exit pressure and Velocity of exhaust
	gases and Propulsive efficiency
Exa 3.1	Air standard efficiency and Indicated Power
	and Indicated thermal efficiency
Exa 3.2	Relative efficiency of engine

Exa 3.3	Indicated power and Brake power and and Brake thermal efficiency and Brake mean ef-
	fective pressure and Mechanical efficiency and
	Brake specific fuel consumption
Exa 3.4	Indicated power and Brake output and Me-
LAG 9.4	chanical efficiency and Overall energy balance
Exa 3.5	Brake power and Brake specific fuel consump-
LAG 0.0	tion and Indicated thermal efficiency and En-
	ergy balance
Exa 3.6	Indicated power and Mechanical efficiency of
Zna oro	engine
Exa 3.7	Engine dimensions and Brake power
Exa 4.1	Throat area and Exit area and Mach number
	at exit
Exa 4.2	Increase in pressure and temperature and in-
	ternal energy
Exa 4.3	Throat area and exit area and Degree of un-
	dercooling at exit
Exa 4.4	Throat and exit velocities and Throat and
	exit areas
Exa 4.5	Nozzle dimensions and Degree of undercool-
	ing and supersaturation and Loss in available
	heat and Increase in entropy and Ratio of
	mass flow rate
Exa 4.6	Nozzle efficiency and Exit area and Throat
	velocity
Exa 4.7	Areas at throat and exit and Steam quality
	at exit
Exa 4.8	Maximum discharge and Area of nozzle at exit
Exa 4.9	Type of nozzle and Minimum area of nozzle
Exa 4.10	Throat velocity and Mass flow rate of steam
Exa 4.11	Degree of undercooling and supersaturation
Exa 4.12	Quantity of steam used and Exit velocity of
	steam
Exa 4.13	Blade angles and Tangential force and Axial
	thrust and Diagram power and Diagram effi-
	ciency

Exa 4.14	Power developed and Blade efficiency and Steam	1
	consumption	77
Exa 4.15	Blading efficiency and Blade velocity coeffi-	
	cient	79
Exa 4.16	Blade angles and Turbine power	80
Exa 4.17	Nozzle angle and Blade angle at entry and exit	81
Exa 4.18	Diagram efficiency	82
Exa 4.19	Blade speed and Blade tip angles and Dia-	
	gram efficiency	84
Exa 4.20	Blade speed and Turbine power	86
Exa 4.21	Mean diameter of drum and Volume of steam	87
Exa 4.22	Drum diameter and Blade height	88
Exa 4.23	Rotor blade angles and Flow coefficient and	
	Blade loading coefficient and Power developed	90
Exa 4.24	Rotor blade angles and Power developed and	
	Final state of steam and Blade height	91
Exa 4.25	Rotor blade angles and Power developed and	
	Final state of steam and Blade height	93
Exa 4.26	Rotor blade angles	95
Exa 4.27	Rotor blade angles and Power developed and	
	Isentropic enthalpy drop	96
Exa 5.1	Indicated power and Mass of air and Temper-	
	ature delivered by compressor	98
Exa 5.2	Size of cylinder	99
Exa 5.3	Cylinder dimensions	100
Exa 5.4	Volumetric efficiency and Volumetric efficiency	
	referred to atmospheric conditions and Work	
	required	101
Exa 5.5	Theoretical volume of air taken	103
Exa 5.6	Mean effective pressure and Power required	104
Exa 5.7	Free air delivered and Volumetric efficiency	
	and Delivery temperature and Cycle power	
	and Isothermal efficiency	105
Exa 5.8	Mean effective pressure and Brake power	107
Exa 5.9	Cylinder dimensions	108
Exa 5.10	Volumetric efficiency and Indicated power and	
	Isothermal efficiency of compressor	109
Exa. 5.11	Power required	111

Exa 5.12	Theoretical volume efficiency and Volume of	
	air delivered and Power of compressor	112
Exa 5.13	Minimum indicated power and Maximum tem-	
	perature and Heat to be removed and Mass	
	of cooling water	113
Exa 5.14	Intermediate pressure and Total volume of	
	each cylinder and Cycle power	115
Exa 5.15	Power of compressor	117
Exa 5.16	Heat rejected and Diameter of HP cylinder	
	and Power required	118
Exa 5.17	Ratio of cylinder diameters	120
Exa 5.18	Delivery pressures and Ratio of cylinder vol-	
	umes and Temperature and Heat rejected in	
	intercooler and Total indicated power	121
Exa 5.19	Intermediate pressures and Effective swept vol-	
	ume and Temperature and volume of air de-	
	livered and Workdone	122
Exa 5.20	Number of stages and Exact stage pressure	
	ratio and Intermediate pressures	124
Exa 6.1	Claim is correct or not	126
Exa 6.2	Weight of ice formed and Minimum power re-	
	quired	127
Exa 6.3	Mass of ice formed	128
Exa 6.4	Rate of heat removed and Power input to	
	compressor and Rate of heat rejection to en-	
	vironment and Coefficient of performance .	129
Exa 6.5	COP of system	130
Exa 6.6	Capacity of refrigeration plant and Mass flow	
	rate of refrigerant and Discharge temperature	
	and Cylinder dimensions and Power of com-	
	pressor and Theoretical and actual COP	131
Exa 6.7	Circulation rate of ammonia and Power re-	
	quired and COP	133
Exa 6.8	Refrigerating effect and Mass flow rate of re-	
	frigerant and Theoretical power and COP and	
	Theoretical bore and stroke of compressor .	134
Exa 6.9	COP when there is no subcooling and when	
	there is subcooling	136

Exa 6.10	Ideal COP of system	137
Exa 6.11	Maximum and minimum temperature in cycle	
	and COP and Rate of refrigeration	138
Exa 6.12	Work developed and Refrigerating effect and	
	COP	139
Exa 6.13	COP of refrigerator and Driving power re-	
	quired and Air mass flow rate	141
Exa 6.14	Theoretical COP and Net cooling produced	142
Exa 6.15	Theoretical COP of machine	143
Exa 6.16	Theoretical COP of refrigerator and Capacity	
	of refrigerator	144
Exa 6.17	COP and Theoretical power required	145
Exa 7.1	Heating capacity of coil and Surface temper-	
2310 111	ature and Capacity	148
Exa 7.2	Capacity of coils and Amount of water vapour	110
LXa 1.2	removed and by pass factor	149
T. # 0		149
Exa 7.3	Supply air condition and Refrigeration load	
	and Total refrigeration capacity and Quantity	
	of fresh air supplied	151

Chapter 1

Fuels and Combustion

```
Scilab code Exa 1.1 Minimum mass of air required
```

```
1 //Chapter-1, Illustration 1, Page 15
2 //Title: Fuels and Combustion
3 //
```

```
4 clc
5 clear
6
7 //INPUT DATA
8 C=0.91; // Percentage composition of Carbon
9 H=0.03; // Percentage composition of Hydrogen
10 0=0.02; // Percentage composition of Oxygen
11 N=0.008; // Percentage composition of Nitrogen
12 S=0.008; // Percentage composition of Sulphur
13
14 //CALCULATIONS
15 m=(11.5*C)+(34.5*(H-(0/8)))+(4.3*S); // Mass of air per kg of coal in kg
16
17 //OUTPUT
18 mprintf('Minimum mass of air per kg of coal is %3.2 f
```

```
kg',m)

19
20
21
22
23
24 //
END OF PROGRAM
```

Scilab code Exa 1.2 Theoretical volume of air required

```
1 / Chapter -1, Illustration 2, Page 16
2 // Title: Fuels and Combustion
3 //
4 clc
5 clear
7 //INPUT DATA
8 C=0.86; // Percentage composition of Carbon
9 H=0.12; // Percentage composition of Hydrogen
10 0=0.01; // Percentage composition of Oxygen
11 S=0.01; // Percentage composition of Sulphur
12 v=0.773; // Specific volume of air at N.T.P in (m<sup>3</sup>)/
      kg
13
14 //CALCULATIONS
15 m = (11.5*C) + (34.5*(H-(0/8))) + (4.3*S); // Theoretical
      mass of air per kg of coal in kg
16 vth=m*v;//Theoretical volume of air at N.T.P per kg
      fuel in (m<sup>3</sup>)/kg of fuel
17
18 //OUTPUT
```

19 mprintf('Theoretical volume of air at N.T.P per kg

Scilab code Exa 1.3 Minimum quantity of air and Total mass of products of combusti

```
2 //Title: Fuels and Combustion
3 //
4 clc
5 clear
7 //INPUT DATA
8 C=0.78; // Percentage composition of Carbon
9 H=0.06; // Percentage composition of Hydrogen
10 0=0.078; // Percentage composition of Oxygen
11 N=0.012; // Percentage composition of Nitrogen
12 S=0.03; // Percentage composition of Sulphur
13
14 //CALCULATIONS
15 m = (11.5*C) + (34.5*(H-(0/8))) + (4.3*S); //Minimum
      quantity of air required in kg
16 mt = ((11*C)/3) + (9*H) + (2*S) + (8.32+N); // Total mass of
      products of combustion in kg
17
18 //OUTPUT
19 mprintf ('Minimum quantity of air required for
      complete combustion is %3.2 f kg \n Total mass of
```

1 / Chapter -1, Illustration 3, Page 16

```
products of combustion is %3.3 f kg',m,mt)

20
21
22
23
24
25 //
________END OF PROGRAM
```

Scilab code Exa 1.4 Mass of dry flue gas

```
1 / Chapter -1, Illustration 4, Page 17
2 //Title: Fuels and Combustion
3 //
4 clc
5 clear
7 //INPUT DATA
8 C=0.84; // Percentage composition of Carbon
9 H=0.09; // Percentage composition of Hydrogen
10 CO2=0.0875; // Volumetric composition of CO2
11 CO=0.0225; // Volumetric composition of CO
12 02=0.08; // Volumetric composition of Oxygen
13 N2=0.81; // Volumetric composition of Nitrogen
14 M1=44; // Molecular mass of CO2
15 M2=28; // Molecular mass of CO
16 M3=32; // Molecular mass of O2
17 M4=28; // Molecular mass of N2
18
19 //CALCULATIONS
20 c1=CO2*M1; // Proportional mass of CO2
21 c2=C0*M2;//Proportional mass of CO
```

22 c3=02*M3; // Proportional mass of O2

```
23 c4=N2*M4; // Proportional mass of N2
24 c=c1+c2+c3+c4; //Total proportional mass of
      constituents
25 m1=c1/c; //Mass of CO2 per kg of flue gas in kg
26 m2=c2/c;//Mass of CO per kg of flue gas in kg
27 m3=c3/c;//Mass of O2 per kg of flue gas in kg
28 m4=c4/c;//Mass of N2 per kg of flue gas in kg
29 d1=m1*100; //Mass analysis of CO2
30 d2=m2*100; //Mass analysis of CO
31 d3=m3*100;//Mass analysis of O2
32 d4=m4*100; //Mass analysis of N2
33 m = ((3*m1)/11) + ((3*m2)/7); //Mass of carbon in kg
34 md=C/m; //Mass of dry flue gas in kg
35
36 //OUTPUT
37 mprintf('Mass of dry flue gases per kg of coal burnt
       is \%3.1 f \text{ kg}', \text{md})
38
39
40
41
42
                              END OF PROGRAM
43
```

 ${f Scilab\ code\ Exa\ 1.5}$ Minimum air required and Mass of air actually supplied and Amo

```
1 //Chapter-1, Illustration 5, Page 17
2 //Title: Fuels and Combustion
3 //
4 clc
5 clear
```

6

```
7 //INPUT DATA
8 C=0.624; // Percentage composition of Carbon
9 H=0.042; // Percentage composition of Hydrogen
10 0=0.045; // Percentage composition of Oxygen
11 CO2=0.13; // Volumetric composition of CO2
12 CO=0.003; // Volumetric composition of CO
13 02=0.06; // Volumetric composition of Oxygen
14 N2=0.807; // Volumetric composition of Nitrogen
15 M1=44; // Molecular mass of CO2
16 M2=28; // Molecular mass of CO
17 M3=32; // Molecular mass of O2
18 M4=28; // Molecular mass of N2
19 mw = 0.378; //Mass of H2O in kg
20
21 //CALCULATIONS
22 m=(11.5*C)+(34.5*(H-(0/8)));//Minimum air required
      in kg
23 c1=CO2*M1; // Proportional mass of CO2
24 c2=C0*M2; // Proportional mass of CO
25 c3=02*M3; // Proportional mass of O2
26 c4=N2*M4; // Proportional mass of N2
27 c=c1+c2+c3+c4; // Total proportional mass of
      constituents
28 m1=c1/c; //Mass of CO2 per kg of flue gas in kg
29 m2=c2/c; //Mass of CO per kg of flue gas in kg
30 m3=c3/c; //Mass of O2 per kg of flue gas in kg
31 m4=c4/c; //Mass of N2 per kg of flue gas in kg
32 d1=m1*100; //Mass analysis of CO2
33 d2=m2*100; //Mass analysis of CO
34 d3=m3*100; //Mass analysis of O2
35 d4=m4*100; //Mass analysis of N2
36 \text{ mC} = ((3*m1)/11) + ((3*m2)/7); //Mass \text{ of carbon in kg}
37 md=C/mC;//Mass of dry flue gas in kg
38 mact=(md+mw)-(C+H+O);//Actual air supplied per kg of
       fuel in kg
39 me=mact-m;//Mass of excess air per kg of fuel in kg
40
41 //OUTPUT
```

Scilab code Exa 1.6 Mass of air to be supplied and Mass of gaseous products

```
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 C=0.78; // Percentage composition of Carbon
9 H=0.03; // Percentage composition of Hydrogen
10 0=0.03; // Percentage composition of Oxygen
11 S=0.01; // Percentage composition of Sulphur
12 me=0.3; //Mass of excess air supplied
13
14 //CALCULATIONS
15 m = (11.5*C) + (34.5*(H-(0/8))) + (4.3*S); //Mass of air
     per kg of coal in kg
16 mec=me*m; // Excess air supplied per kg of coal in kg
17 mact=m+mec;//Actual mass of air supplied per kg of
```

1 //Chapter-1, Illustration 6, Page 19

2 //Title: Fuels and Combustion

```
coal in kg
18 mCO2=(11*C)/3;//Mass of CO2 produced per kg of coal
19 mHw=9*H; //Mass of H2O produced per kg of coal in kg
20 mSO2=2*S; //Mass of SO2 produced per kg of coal in kg
21 mO2=0.232*mec;//Mass of excess O2 produced per kg of
       coal in kg
22 mN2=0.768*mact; //Mass of N2 produced per kg of coal
      in kg
23
24 //OUTPUT
25 mprintf('Mass of air to be supplied is \%3.2 f kg \n
     Mass of CO2 produced per kg of coal is \%3.2 f kg \
     n Mass of H2O produced per kg of coal is %3.2 f kg
      \n Mass of SO2 produced per kg of coal is \%3.2f
      kg \n Mass of excess O2 produced per kg of coal
      is %3.2 f kg \n Mass of N2 produced per kg of coal
       is \%3.2 \, \text{f} kg \n', m, mCO2, mHw, mSO2, mO2, mN2)
26
27
28
29
                            END OF PROGRAM
30
```

 ${f Scilab\ code\ Exa\ 1.7}$ Total mass of dry flue gases and Percentage composition of dry

```
1 //Chapter-1, Illustration 7, Page 20
2 //Title: Fuels and Combustion
3 //
4 clc
```

5 clear

```
7 //INPUT DATA
8 C=0.9; // Percentage composition of Carbon
9 H=0.033; // Percentage composition of Hydrogen
10 0=0.03; // Percentage composition of Oxygen
11 N=0.008; // Percentage composition of Nitrogen
12 S=0.009; // Percentage composition of Sulphur
13 M1=44; // Molecular mass of CO2
14 M2=64; // Molecular mass of SO2
15 M3=32; // Molecular mass of O2
16 M4=28; // Molecular mass of N2
17
18 //CALCULATIONS
19 m = (11.5*C) + (34.5*(H-(0/8))) + (4.3*S); //Minimum mass
      of air per kg of coal in kg
20 mCO2=(11*C)/3;//Mass of CO2 produced per kg of coal
21 mHw=9*H; //Mass of H2O produced per kg of coal in kg
22 mSO2=2*S; //Mass of SO2 produced per kg of coal in kg
23 mt=11.5*1.5; // Total mass of air supplied per kg of
      coal in kg
24 me=mt-m; // Excess air supplied in kg
25 mO2=0.232*me; //Mass of excess O2 produced per kg of
      coal in kg
26 mN2=0.768*mt; //Mass of N2 produced per kg of coal in
27 mtN2=mN2+N; // Total mass of Nitrogen in exhaust in kg
28 md=mCO2+mSO2+mO2+mtN2; // Total mass of dry flue gases
       per kg of fuel in kg
  CO2=(mCO2/md)*100; // Percentage composition of CO2 by
      mass in percent
  SO2=(mSO2/md)*100; // Percentage composition of SO2 by
      mass in percent
31 02=(m02/md)*100; //Percentage composition of O2 by
     mass in percent
32 N2=(mN2/md)*100; // Percentage composition of N2 by
     mass in percent
33 c1=CO2/M1; // Proportional volume of CO2
34 c2=SO2/M2;//Proportional volume of SO2
```

```
35 c3=02/M3;//Proportional volume of O2
36 c4=N2/M4; // Proportional volume of N2
37 c=c1+c2+c3+c4; // Total proportional volume of
      constituents
38 m1=c1/c; //Volume of CO2 in 1 (m<sup>3</sup>) of flue gas
39 m2=c2/c; //Volume of SO2 in 1 (m<sup>3</sup>) of flue gas
40 m3=c3/c; //Volume of O2 in 1 (m<sup>3</sup>) of flue gas
41 m4=c4/c; //Volume of N2 in 1 (m<sup>3</sup>) of flue gas
42 d1=m1*100; //Volume analysis of CO2
43 d2=m2*100; //Volume analysis of SO2
44 d3=m3*100;//Volume analysis of O2
45 d4=m4*100; //Volume analysis of N2
46
  //OUTPUT
47
48 mprintf('Minimum mass of air required is \%3.1 f kg \n
       Total mass of dry flue gases per kg of fuel is
      \%3.2 \,\mathrm{f} kg \n Percentage composition of CO2 by
      volume is %3.2f percent \n Percentage composition
       of SO2 by volume is %3.3f percent \n Percentage
      composition of O2 by volume is \%3.1f percent \n
      Percentage composition of N2 by volume is %3.2 f
      percent', m, md, d1, d2, d3, d4)
49
50
51
52
53
54
                                      END OF PROGRAM
55
```

 ${f Scilab\ code\ Exa\ 1.8}$ Mass of air actually supplied and Percentage of excess air sup

```
1 // Chapter -1, Illustration 8, Page 21 2 // Title: Fuels and Combustion
```

```
3 //
```

```
4 clc
5 clear
7 //INPUT DATA
8 C=0.88; // Percentage composition of Carbon
9 H=0.036; // Percentage composition of Hydrogen
10 0=0.048; // Percentage composition of oxygen
11 CO2=0.109; // Volumetric composition of CO2
12 CO=0.01; // Volumetric composition of CO
13 02=0.071; // Volumetric composition of Oxygen
14 N2=0.81; // Volumetric composition of Nitrogen
15 M1=44; // Molecular mass of CO2
16 M2=28; // Molecular mass of CO
17 M3=32; // Molecular mass of O2
18 M4=28; // Molecular mass of N2
19
20 //CALCULATIONS
21 m = (11.5 * C) + (34.5 * (H - (0/8))); // Theoretical air
      required in kg
22 c1=CO2*M1; // Proportional mass of CO2
23 c2=C0*M2; // Proportional mass of CO
24 c3=02*M3; // Proportional mass of O2
25 c4=N2*M4; // Proportional mass of N2
26 c=c1+c2+c3+c4; // Total proportional mass of
      constituents
27 m1=c1/c;//Mass of CO2 per kg of flue gas in kg
28 m2=c2/c; //Mass of CO per kg of flue gas in kg
29 m3=c3/c;//Mass of O2 per kg of flue gas in kg
30 m4=c4/c; //Mass of N2 per kg of flue gas in kg
31 mC = ((3*m1)/11) + ((3*m2)/7); //Mass of carbon in kg
32 md=C/mC; //Mass of dry flue gas in kg
33 hc=H*9; //Hydrogen combustion in kg of H2O
34 mair=(md+hc)-(C+H+O); //Mass of air supplied per kg
      of coal in kg
35 me=mair-m; //Excess air per kg of coal in kg
```

```
36 mN2=m4*md;//Mass of nitrogen per kg of coal in kg
37 mact=mN2/0.768; // Actual mass of air per kg of coal
38 pe=(me/m)*100; // Perccentage excess air in percent
39
40 //OUTPUT
41 mprintf('Mass of air actually supplied per kg of
      coal is %3.2 f kg \n Percentage of excess air is
     \%3.2 f percent', mact, pe)
42
43
44
45
46
47
48
                             END OF PROGRAM
```

 ${\bf Scilab}\ {\bf code}\ {\bf Exa}\ {\bf 1.9}\ {\bf Mass}\ {\bf of}\ {\bf excess}\ {\bf air}\ {\bf supplied}\ {\bf and}\ {\bf air}\ {\bf fuel}\ {\bf ratio}$

```
4 clc
5 clear
6
7 //INPUT DATA
8 C=0.84; // Percentage composition of Carbon
9 H=0.14; // Percentage composition of Hydrogen
10 0=0.02; // Percentage composition of oxygen
11 C02=8.85; // Volumetric composition of CO2
12 C0=1.2; // Volumetric composition of CO
```

1 //Chapter-1, Illustration 9, Page 22

2 //Title: Fuels and Combustion

```
13 02=6.8; // Volumetric composition of Oxygen
14 N2=83.15; // Volumetric composition of Nitrogen
15 M1=44; // Molecular mass of CO2
16 M2=28; // Molecular mass of CO
17 M3=32; // Molecular mass of O2
18 M4=28; // Molecular mass of N2
19 a=8/3; //O2 required per kg C
20 b=8; //O_2 required per kg H2
21 mair=0.23; //Mass of air
22
23 //CALCULATIONS
24 c=C*a; //O2 required per kg of fuel for C
25 d=H*b; //O2 required per kg of fuel for H2
26 t02=c+d+0; // Theoreticcal O2 required in kg/kg of
27 tm=t02/mair;//Theoretical mass of air in kg/kg of
      fuel
28 c1=CO2*M1; // Proportional mass of CO2 by Volume
29 c2=C0*M2; // Proportional mass of CO by Volume
30 c3=02*M3; // Proportional mass of O2 by Volume
31 c4=N2*M4; // Proportional mass of N2 by Volume
32 c=c1+c2+c3+c4; // Total proportional mass of
      constituents
33 m1=c1/c; //Mass of CO2 per kg of flue gas in kg
34 m2=c2/c; //Mass of CO per kg of flue gas in kg
35 m3=c3/c; //Mass of O2 per kg of flue gas in kg
36 m4=c4/c; //Mass of N2 per kg of flue gas in kg
37 \text{ mC} = ((m1*12)/M1) + ((m2*12)/M2); //Mass \text{ of carbon per kg}
       of dry flue gas in kg
38 md=C/mC; //Mass of dry flue per kg of fuel in kg
39 p=(4*m2)/7;//Oxygen required to burn CO in kg
40 meO2=md*(m3-p); //Mass of excess O2 per kg of fuel in
       kg
41 me=meO2/mair; //Mass of excess air in kg/kg fuel
42 mt=tm+me;//Total air required per kg fuel
43
44 //OUTPUT
45 mprintf('Mass of excess air supplied per kg of fuel
```

Scilab code Exa 1.10 Volume of air required

1 //Chapter-1, Illustration 10, Page 23

combustion is $\%3.3 \, \text{f} \, (\text{m}^3)$, v)

19

```
2 //Title: Fuels and Combustion
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 H2=0.27; // Percentage composition of H2 by volume
9 CO2=0.18; // Percentage composition of CO2 by volume
10 CO=0.125; // Percentage composition of CO by volume
11 CH4=0.025; // Percentage composition of CH4 by volume
12 N2=0.4; // Percentage composition of N2 by volume
13
14 //CALCULATIONS
15 v = (2.38*(H2+C0)) + (9.52*CH4); //Volume of air required
       for complete combustion in (m<sup>3</sup>)
16
17 //OUTPUT
18 mprintf('Volume of air required for complete
```

```
20
21
22
23
24
25 //=______END_OF_PROGRAM
```

Scilab code Exa 1.11 Air fuel ratio

```
1 //Chapter-1, Illustration 11, Page 24
2 //Title: Fuels and Combustion
3 //
```

```
4 clc
5 clear
7 //INPUT DATA
8 H2=0.5; // Percentage composition of H2 by volume
9 CO2=0.1; // Percentage composition of CO2 by volume
10 CO=0.05; // Percentage composition of CO by volume
11 CH4=0.25; // Percentage composition of CH4 by volume
12 N2=0.1; // Percentage composition of N2 by volume
13 pCO2=8; // Percentage volumetric analysis of CO2
14 p02=6; // Percentage volumetric analysis of O2
15 pN2=86; // Percentage volumetric analysis of N2
16
17
18 //CALCULATIONS
19 v = (2.38*(H2+C0)) + (9.52*CH4); //Volume of air required
       for complete combustion in (m<sup>3</sup>)
20 vN2=v*0.79; //Volume of nitrogen in the air in m<sup>3</sup>
21 a=CO+CH4+CO2; //CO2 formed per m<sup>3</sup> of fuel gas burnt
22 b=vN2+N2;//N2 formed per m<sup>3</sup> of fuel gas burnt
```

```
vt=a+b;//Total volume of dry flue gas formed in m^3
ve=(p02*vt)/(21-p02);//Excess air supplied in m^3
V=v+ve;//Total quantity of air supplied in m^3

//OUTPUT
mprintf('Air-fuel ratio by volume is %3.3f:1',V)

modeling flue gas formed in m^3
ve=(p02*vt)/(21-p02);//Excess air supplied in m^3

//OUTPUT

mprintf('Air-fuel ratio by volume is %3.3f:1',V)

END OF PROGRAM
```

Scilab code Exa 1.12 Volume and analysis of products of combustion

```
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 H2=0.14; // Percentage composition of H2 by volume
9 CO2=0.05; // Percentage composition of CO2 by volume
10 CO=0.22; // Percentage composition of CO by volume
11 CH4=0.02; // Percentage composition of CH4 by volume
12 O2=0.02; // Percentage composition of O2 by volume
13 N2=0.55; // Percentage composition of N2 by volume
14 e=0.4; //Excess air supplied
15 //CALCULATIONS
v = (2.38*(H2+C0)) + (9.52*CH4) - (4.76*02); //Volume of
      air required for complete combustion in (m^3)
17 ve=v*e; //Volume of excess air supplied in m^3
```

1 //Chapter-1, Illustration 12, Page 24

2 // Title: Fuels and Combustion

```
18 vtN2=v-(v*0.21); //Volume of N2 in theoretical air in
       m^3
19 veN2=ve-(ve*0.21);//Volume of N2 in excess air in m
20 vt=vtN2+veN2; // Total volume of N2 in air supplied in
21 vCO2=CO+CH4+CO2; //CO2 formed per m<sup>3</sup> of fuel gas
22 vN2=vt+N2; //N2 formed per m<sup>3</sup> of fuel gas
23 veO2=ve*0.21; //Volume of excess O2 per m^3 of fuel
      gas
24 vT=vCO2+vN2+veO2; // Total volume of dry combustion
      products
25 pCO2=(vCO2*100)/vT;//Percentage volume of CO2
26 pN2=(vN2*100)/vT;//Percentage volume of N2
27 p02=(ve02*100)/vT;//Percentage volume of O_2
28
29 //OUTPUT
30 mprintf ('Volume of air required for complete
      combustion is %3.3 f (m^3) \n Volume of CO2 per m
      ^3 of gas fuel is \%3.2 \, \mathrm{f} \, \mathrm{m}^3/\mathrm{m}^3 of gas fuel n
      Volume of N2 per m<sup>3</sup> of gas fuel is %3.3 f m<sup>3</sup>/m<sup>3</sup>
       of gas fuel \n Volume of excess O2 per m^3 of
      gas fuel is %3.2 f m^3/m^3 of gas fuel \n Total
      volume of dry combustion products is \%3.3 f m^3/m
      ^3 of gas fuel \n Percentage volume of CO2 is \%3
      .1f percent \n Percentage volume of N2 is %3.2f
      percent \n Percentage volume of O2 is \%3.2 f
      percent', v, vCO2, vN2, veO2, vT, pCO2, pN2, pO2)
31
32
33
34
35
36
37
38
39
                                       ≢ND OF PROGRAM
40 //=
```

Chapter 2

Gas Power Cycles

1 / Chapter -2, Illustration 1, Page 55

17 y=Cp/Cv;//Ratio of specific heats

Scilab code Exa 2.1 Maximum pressure and temperature of cycle and Cycle efficiency

```
2 //Title: Gas Power Cycles
3 //

4 clc
5 clear
6
7 //INPUT DATA
8 P1=0.1; // Pressure of air supplied in MPa
9 T1=308; // Temperature of air supplied in K
10 rv=8; // Compression ratio
11 q1=2100; // Heat supplied in kJ/kg
12 Cp=1.005; // Specific heat at constant pressure in kJ/kg-K
13 Cv=0.718; // Specific heat at constant volume in kJ/kg
-K
14 R=0.287; // Universal gas constant in kJ/kg-K
15
16 //CALCULATIONS
```

```
18 n=(1-(1/(rv^{(y-1))}))*100; //Cycle efficiency
19 v1=(R*T1)/(P1*1000); // Specific volume at point 1 in
      (m^3)/kg
20 v2=v1/rv; // Specific volume at point 2 in (m<sup>3</sup>)/kg
21 T2=T1*(rv^(y-1)); // Temperature at point 2 in K
22 T3=(q1/Cv)+T2;//Temperature at point 3 in K
23 P2=P1*(rv^y); // Pressure at point 2 in MPa
24 P3=P2*(T3/T2);//Pressure at point 3 in MPa
25 wnet=(q1*n)/100; //Net workdone in J/kg
26 MEP=(wnet/(v1-v2))/1000;//Mean effective pressure in
      MPa
27
28 //OUTPUT
29 mprintf ('Maximum pressure of the cycle is %3.3 f MPa
      \n Maximum temperature of the cycle is \%3.0\,\mathrm{f} K\n
       Cycle efficiency is %3.1f percent \n Mean
      effective pressure is %3.3 f MPa', P3, T3, n, MEP)
30
31
32
33
34
                             END OF PROGRAM
35
```

Scilab code Exa 2.2 Relative efficiency of engine

```
1 //Chapter-2, Illustration 2, Page 57
2 //Title: Gas Power Cycles
3 //
```

```
4 clc
5 clear
6
```

```
7 //INPUT DATA
8 d=80; //Bore in mm
9 L=85; // Stroke in mm
10 Vc=0.06; // Clearance volume in litre
11 n=0.22;//Actual thermal efficiency
12 y=1.4; //Ratio of specific heats
13
14 //CALCULATIONS
15 Vs = (3.147/4)*(d^2)*L; //Stroke volume in mm^3
16 Vt=Vs+(Vc*(10^6)); // Total volume in mm^3
17 rv=Vt/(Vc*(10^6));//Compression ratio
18 ni=(1-(1/(rv^(y-1)))); //Ideal thermal efficiency
19 nr=(n/ni)*100;//Relative efficiency
20
21 //OUTPUT
22 mprintf ('Relative efficiency of the engine is %3.1 f
      percent', nr)
23
24
25
26
27
28
29
                                    ≡END OF PROGRAM
30
```

Scilab code Exa 2.3 Air standard efficiency

```
1 //Chapter-2, Illustration 3, Page 57
2 //Title: Gas Power Cycles
3 //
```

4 clc

```
5 clear
7 //INPUT DATA
8 d=0.137; //Bore in m
9 L=0.13; // Stroke in m
10 Vc = 280*(10^-6); //Clearance volume in m^3
11 y=1.4; //Ratio of specific heats
12
13 //CALCULATIONS
14 Vs = (3.147/4)*(d^2)*L; //Stroke volume in m^3
15 rv=(Vc/Vs)*100;//Compression ratio
16 rvf=(Vs+Vc)/Vc;//final compression ratio
17 n=(1-(1/rvf^(y-1)))*100; //Cycle efficiency
18
19 //OUTPUT
20 mprintf('Clearance volume is %3.1f percent of swept
      volume \n Otto cycle efficiency is %3.2f percent'
      ,rv,n)
21
22
23
24
25
26
                                    ■END OF PROGRAM
27
```

Scilab code Exa 2.4 Highest temperature and pressure in cycle and Amount of heat t

```
1 //Chapter-2, Illustration 4, Page 58
2 //Title: Gas Power Cycles
3 //
```

4 clc

```
5 clear
7 //INPUT DATA
8 rv=9.5;//Compression ratio
9 P1=100; // Air pressure in kPa
10 T1=290; // Air temperature in K
11 V1=600*(10^-6); //Volume of air in m^3
12 T4=800; // Final temperature in K
13 R=287; // Universal gas constan in J/kg.K
14 Cv=0.718; // Specific heat at constant volume in kJ/kg
      .K
15 y=1.4; //Ratio of specific heats
16
17 //CALCULATIONS
18 T3=T4*(rv^(y-1)); // Temperature at the end of
      constant volume heat addition in K
19 P2=P1*(rv^y); // Pressure at point 2 in kPa
20 T2=T1*(rv^(y-1)); // Temperature at point 2 in K
21 P3=P2*(T3/T2);//Pressure at point 3 in kPa
22 m=(P1*1000*V1)/(R*T1);//Specific mass in kg/s
23 Q=m*Cv*(T3-T2);//Heat transferred in kJ
24 n = (1 - (1/rv^(y-1))) *100; //Thermal efficiency
25 Wnet=(n*Q)/100; //Net workdone in kJ
26 MEP=Wnet/(V1*(1-(1/rv))); //Mean effective pressure
      in kPa
27
28
  //OUTPUT
29 mprintf ('Maximum pressure of the cycle is %3.2 f kPa
      \n Maximum temperature of the cycle is \%3.1f K \n
      Amount of heat transferred is %3.2 f kJ \n
      Thermal efficiency is %3.1f percent \n Mean
      effective pressure is %3.1f kPa', P3, T3, Q, n, MEP)
30
31
32
33
34
35
```

```
36
37 //=_____END_OF_PROGRAM
```

Scilab code Exa 2.5 Pressure and Temperature at the end of heat addition process a

```
1 / Chapter - 2, Illustration 5, Page 60
2 // Title: Gas Power Cycles
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 rv=8;//Compression ratio
9 P1=95; // Pressure at point 1 in kPa
10 T1=300; // Temperature at point 1 in K
11 q23=750; // Heat transferred during constant volume
     heat addition process in kJ/kg
12 y=1.4; // Ratio of specific heats
13 Cv=0.718; // Specific heat at constant volume in kJ/kg
     -K
14 R=287; // Universal gas constant in J/kg-K
15
16 //CALCULATIONS
17 T2=T1*(rv^(y-1)); // Temperature at point 2 in K
18 P2=P1*(rv^y);//Pressure at point 2 in kPa
19 T3=(q23/Cv)+T2;//Temperature at point 3 in K
20 P3=P2*(T3/T2);//Pressure at point 3 in kPa
21 nth=(1-(1/(rv^(y-1))))*100;//Thermal efficiency
22 Wnet=(nth*q23)/100;//Net work output in kJ/kg
23 v1=(R*T1)/(P1*1000);//Speific volume at point 1 in (
     m^3)/kg
24 MEP=Wnet/(v1*(1-(1/rv))); //Mean effective pressure
```

```
in kPa
25
26 //OUTPUT
27 mprintf('Pressure at the end of heat addition
      process is %3.1f kPa \n Temperature at the end of
       heat addition process is \%3.1\,\mathrm{f}\ \mathrm{K}\ \mathrm{Net}\ \mathrm{work}
      output is %3.2 f kJ/kg \n Thermal efficiency is %3
      .2f percent \n Mean effective pressure is \%3.0f
      kPa',P3,T3,Wnet,nth,MEP)
28
29
30
31
32
33
34
                                END OF PROGRAM
35
```

Scilab code Exa 2.6 Air standard efficiency

1 / Chapter - 2, Illustration 6, Page 61

```
2 //Title: Gas Power Cycles
3 //

4 clc
5 clear
6 
7 //INPUT DATA
8 rv=14;//Compression ratio
9 c=0.06;//Cut-off percentage
10 y=1.4;//Ratio of specific heats
11
12 //CALCULATIONS
```

 ${f Scilab\ code\ Exa\ 2.7}$ Cutoff ratio and Heat supplied and Cycle efficiency and MEP

```
d clc
5 clear
6
7 //INPUT DATA
8 rv=16; //Compression ratio
9 P1=0.1; // Pressure at point 1 in MPa
10 T1=288; // Temperature at point 1 in K
11 T3=1753; // Temperature at point 3 in K
12 y=1.4; // Ratio of specific heats
13 Cp=1.005; // Specific heat at constant pressure in kJ/kg-K
```

1 //Chapter-2, Illustration 7, Page 62

2 // Title: Gas Power Cycles

```
14 R=0.287; // Universal gas constant in kJ/kg-K
15
16 //CALCULATIONS
17 T2=T1*(rv^(y-1)); // Temperature at point 2 in K
18 rc=T3/T2; //Cut-off ratio
19 q1=Cp*(T3-T2);//Heat supplied in kJ/kg
20 nth=(1-(((rc^y)-1)/((rv^(y-1))*y*(rc-1))))*100;//
      Cycle efficiency
21 wnet=(q1*nth)/100; //Net work done in kJ/kg
22 \text{ v1}=(R*T1)/(P1*1000); //Speific volume at point 1 in (
     m^3)/kg
23 v2=v1/rv; // Speific volume at point 2 in (m<sup>3</sup>)/kg
24 MEP=wnet/(v1-v2);//Mean effective pressure in kPa
25
26 //OUTPUT
27 mprintf('Cut-off ratio is %3.2f \n Heat supplied is
     %3.1f kJ/kg \n Cycle efficiency is %3.1f percent
     \n Mean effective pressure is \%3.2 f kPa',rc,q1,
     nth, MEP)
28
29
30
31
                       END OF PROGRAM
32
```

Scilab code Exa 2.8 Air standard efficiency and percentage loss in efficiency

```
1 //Chapter-2, Illustration 8, Page 64
2 //Title: Gas Power Cycles
3 //
```

4 clc 5 clear

```
6
7 //INPUT DATA
8 d=0.15; //Bore in m
9 L=0.25; // Stroke in m
10 Vc=400*(10^-6); // Clearance volume in m<sup>3</sup>
11 V2=Vc; // Clearance volume in m<sup>3</sup>
12 c1=0.05; //Cut-off percentage 1
13 c2=0.08; //Cut-off percentage 2
14 y=1.4; //Ratio of specific heats
15
16 //CALCULATIONS
17 Vs = (3.147/4)*(d^2)*L; //Stroke volume in m^3
18 V31=V2+(c1*Vs); // Volume at the point of cut-off in m
      ^3
19 rc1=V31/V2; //Cut-off ratio 1
20 rv=(Vc+Vs)/Vc;//Compression ratio
21 nth1=(1-(((rc1^y)-1)/((rv^(y-1))*y*(rc1-1))))*100;//
      Air standard efficiency 1
22 V32=V2+(c2*Vs); // Volume at the point of cut-off in m
      ^3
23 rc2=V32/V2; //Cut-off ratio 2
24 nth2=(1-(((rc2^y)-1)/((rv^(y-1))*y*(rc2-1))))*100;//
      Air standard efficiency 2
25 pl=nth1-nth2; // Percentage loss in efficiency
26
27 //OUTPUT
28 mprintf('Air standard efficiency at 5 percent cut-
      off is %3.2f percent \n Air standard efficiency
      at 8 percent cut-off is %3.2f percent \n
      Percentage loss in efficiency is \%3.2f percent',
      nth1, nth2, pl)
29
30
31
32
33
                                     END OF PROGRAM
```

Scilab code Exa 2.9 Maximum temperature and Thermal efficiency of cycle

```
1 / Chapter -2, Illustration 9, Page 65
2 // Title: Gas Power Cycles
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 e=7.5; //Expansion ratio
9 c=15; // Compression ratio
10 P1=98; // Pressure at point 1 in kN/(m^2)
11 P4=258; // Pressure at point 4 in kN/(m^2)
12 T1=317; // Temperature at point 1 in K
13 y=1.4; // Ratio of specific heats
14
15 //CALCULATIONS
16 T4=T1*(P4/P1); // Temperature at point 4 in K
17 T3=T4*(e^(y-1)); // Temperature at point 3 in K
18 t3=T3-273; // Temperature at point 3 in oC
19 T2=T1*(c^(y-1)); //Temperature at point 2 in K
20 n = (1 - ((T4 - T1) / (y * (T3 - T2)))) * 100; //Thermal efficiency
21
22 //OUTPUT
23 mprintf ('Maximum temperature attained during the
      cycle is %3.1f oC \n Thermal efficiency of the
      cycle is %3.1f percent',t3,n)
24
25
26
27
28
```

```
29
30 //=______END OF PROGRAM
```

Scilab code Exa 2.10 Thermal efficiency and MEP

```
1 //Chapter -2, Illustration 10, Page 66
2 // Title: Gas Power Cycles
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 rv=20;//Compression ratio
9 P1=95; // Pressure at point 1 in kPa
10 T1=293; // Temperature at point 1 in K
11 T3=2200; // Temperature at point 3 in K
12 y=1.4; //Ratio of specific heats
13 R=287; // Universal gas constant in J/kg-K
14 Cp=1.005; // Specific heat at constant pressure in kJ/
     kg-K
15
16 //CALCULATIONS
17 P2=P1*(rv^y); // Pressure at point 2 in kPa
18 T2=T1*(rv^(y-1)); // Temperature at point 2 in K
19 v2=(R*T2)/(P2*1000); // Specific volume at point 2 in
      (m^3)/kg
20 v3=v2*(T3/T2); // Specific volume at point 3 in (m^3)/
21 rc=v3/v2; //Cut-off ratio
22 nth=(1-(((rc^y)-1)/((rv^(y-1))*y*(rc-1))))*100;//
      Thermal efficiency
23 q23=Cp*(T3-T2);//Heat flow between points 2 and 3 in
```

```
kJ/kg
24 wnet=(nth*q23)/100;//Net workdone in kJ/kg
25 MEP=wnet/(v2*(rv-1));//Mean effective pressure in
     kPa
26
27 //OUTPUT
28 mprintf('Thermal efficiency is %3.1f percent \n Mean
       effective pressure is %3.2f kPa', nth, MEP)
29
30
31
32
33
34
                            END OF PROGRAM
35
```

Scilab code Exa 2.11 Cutoff ratio and air standard efficiency

1 //Chapter-2, Illustration 11, Page 68

2 // Title: Gas Power Cycles

```
4 clc
5 clear
6
7 //INPUT DATA
8 rv=21;//Compression ratio
9 re=10.5;//Expansion ratio
10 y=1.4;//Ratio of specific heats
11
12 //CALCULATIONS
13 rc=rv/re;//Cut-off ratio
```

14 $nth=(1-(((rc^y)-1)/((rv^(y-1))*y*(rc-1))))*100;//Air$

Scilab code Exa 2.12 Ideal efficiency of cycle

1 / Chapter -2, Illustration 12, Page 69

```
// Title: Gas Power Cycles
//

clc
clear
//INPUT DATA
rv=16;//Compression ratio
prp=1.5;//Pressure ratio
up=1.4;//Ratio of specific heats
cp=8;//Cut-off percentage
//CALCULATIONS
rc=2.2;//Cut-off ratio
ntd=(1-((rp*(rc^y)-1)/((rv^(y-1)*((rp-1)+(y*rp*(rc)))))
```

Scilab code Exa 2.13 Ideal efficiency of engine

1 //Chapter-2, Illustration 13, Page 69

```
2 //Title: Gas Power Cycles
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 d=0.2; //Bore in m
9 L=0.5; //Stroke in m
10 c=0.06; //Cut-off percentage
11 y=1.4; //Ratio of specific heats
12 rv=15; //Compression ratio
13 rp=1.4; // Pressure ratio
14
15 //CALCULATIONS
16 Vs=(3.147/4)*(d^2)*L; //Stroke volume in m^3
17 DV=c*Vs; // Difference in volumes at points 4 and 3
```

```
18 V3=Vs/(rv-1); // Specific volume at point 3 in m<sup>3</sup>
19 V4=V3+DV; // Specific volume at point 4 in m<sup>3</sup>
20 rc=V4/V3;//Cut-off ratio
21 ntd=(1-((rp*(rc^y)-1)/((rv^(y-1)*((rp-1)+(y*rp*(rc^y)-1)))))
      -1)))))))*100;//Ideal efficiency
22
23 //OUTPUT
24 mprintf('Ideal efficiency of the engine is %3.1f
      percent', ntd)
25
26
27
28
29
                                  END OF PROGRAM
30
```

 ${
m Scilab\ code\ Exa\ 2.14}$ Amount of heat added and rejected and Work done and Thermal e

```
4 clc
5 clear
6
7 //INPUT DATA
8 d=0.2; //Bore in m
9 L=0.3; //Stroke in m
10 c=0.04; //Cut-off percentage
11 y=1.4; //Ratio of specific heats
12 rv=8; //Compression ratio
13 P1=1; // Pressure at point 1 in bar
14 P3=60; // Pressure at point 3 in bar
```

1 //Chapter-2, Illustration 14, Page 70

2 // Title: Gas Power Cycles

```
15 T1=298; // Temperature at point 1 in K
16 R=287; // Universal gas constant in J/kg
17 Cv=0.718; // Speific heat at constant volume in kJ/kg-
18 Cp=1.005; // Speific heat at constant pressure in kJ/
      kg-K
19
20 //CALCULATIONS
21 Vs = (3.147/4) * (d^2) * L; //Stroke volume in m^3
22 V2=Vs/(rv-1); // Specific volume at point 2 in m<sup>3</sup>
23 V3=V2; // Specific volume at point 3 in m<sup>3</sup>
24 V1=V2+Vs; // Specific volume at pont 1 in m<sup>3</sup>
25 V5=V1; // Specific volume at pont 5 in m<sup>3</sup>
26 P2=P1*(rv^y); // Pressure at point 2 in bar
27 T2=T1*(rv^(y-1)); // Temperature at point 2 in K
28 T3=T2*(P3/P2);//Temperature at point 3 in K
29 V4=V3+(c*(V1-V2)); // Specific volume at point 4 in m
30 T4=T3*(V4/V3); // Temperature at point 4 in K
31 T5=T4*((V4/V5)^(y-1)); //Temperature at point 5 in K
32 q1=(Cv*(T3-T2))+(Cp*(T4-T3)); //Heat added in kJ/kg
33 q2=Cv*(T5-T1);//Heat rejected in kJ/kg
34 nth=(1-(q2/q1))*100; //Thermal efficiency
35 \text{ m} = (P1*V1*(10^5))/(R*T1); //Mass of air supplied in kg
36 W=m*(q1-q2);//Workdone in kJ/cycle
37
38 //OUTPUT
39 mprintf ('Amount of heat added is \%3.1 f kJ/kg \n
      Amount of heat rejected is \%3.2 f kJ/kg \n
      Workdone per cycle is %3.2 f kJ/cycle \n Thermal
      efficiency is %3.2f percent',q1,q2,W,nth)
40
41
42
43
44
45
46
```

```
47 //——END OF PROGRAM
```

${\it Scilab} \ {\it code} \ {\it Exa} \ 2.15 \ {\it MEP} \ {\it and} \ {\it Thermal} \ {\it efficiency}$

```
1 //Chapter-2, Illustration 15, Page 72
2 // Title: Gas Power Cycles
3 //
4 clc
5 clear
7 //INPUT DATA
8 P1=1; // Pressure at point 1 in bar
9 P3=70; // Pressure at point 3 in bar
10 T1=310; // Temperature at point 1 in K
11 rv=10; // Compression ratio
12 y=1.4;//Ratio of specific heats
13 qin=2805; //Heat added in kJ/kg
14 m=1; //Mass of air in kg
15 R=287; // Universal gas constant in J/kg
16 Cv=0.718; // Speific heat at constant volume in kJ/kg-
17 Cp=1.005; // Speific heat at constant pressure in kJ/
     kg-K
18
19 //CALCULATIONS
20 V1=(m*R*T1)/(P1*(10^5));//Volume at point 1 in m^3
21 T2=T1*(rv^(y-1)); // Temperature at point 2 in K
22 P2=P1*(rv^y); // Pressure at point 2 in K
23 T3=T2*(P3/P2); //Temperature at point 3 in K
24 q23=Cv*(T3-T2); // Heat supplied at constant volume in
25 q34=qin-q23;//Heat supplied at constant pressure in
```

```
kJ/kg
26 T4=(q34/Cp)+T3;//Temperature at point 4 in K
27 V2=V1/rv;//Volume at point 2 in m<sup>3</sup>
28 V4=V2*(T4/T3);//Volume at point 4 in m<sup>3</sup>
29 V5=V1;//Volume at point 5 in m<sup>3</sup>
30 T5=T4*((V4/V5)^(y-1)); //Temperature at point 5 in K
31 qout=Cv*(T5-T1);//Heat rejected in kJ/kg
32 nth=(1-(qout/qin))*100;//Thermal efficiency
33 W=qin-qout;//Workdone in kJ/kg
34 Vs=V1*(1-(1/rv));//Swept volume in (m<sup>3</sup>)/kg
35 MEP=(W/Vs)/100;//Mean effective pressure in bar
36
37 //OUTPUT
38 mprintf('Mean effective pressure is %3.2f bar \n
      Thermal efficiency is %3.2f percent', MEP, nth)
39
40
41
42
43
44
                                     ■END OF PROGRAM
45
```

 ${f Scilab\ code\ Exa\ 2.16}$ Cycle efficiency and Heat supplied and rejected and Work outp

```
1 //Chapter-2, Illustration 16, Page 74
2 //Title: Gas Power Cycles
3 //
4 clc
5 clear
6
7 //INPUT DATA
```

```
8 P1=1; // Pressure at point 1 in bar
9 T1=298; //Temperature at point 1 in K
10 P2=3; // Pressure at point 2 in bar
11 T3=923; // Temperature at point 3 in K
12 y=1.4; //Ratio of specific heats
13 Cp=1.005; // Speific heat at constant pressure in kJ/
     kg-K
14
  //CALCULATIONS
15
16 x=(y-1)/y;//Ratio
17 rp=P2/P1;//Pressure ratio
18 nth=(1-(1/(rp^x)))*100;//Cycle efficiency
19 T2=T1*(rp^x); // Temperature at point 2 in K
20 q1=Cp*(T3-T2);//Heat supplied in kJ/kg
21 Wout=(nth*q1)/100; //Work output in kJ/kg
22 q2=q1-Wout;//Heat rejected in kJ/kg
23 T4=T3*((1/rp)^x);//Temperature at point 4 in K
24
25
  //OUTPUT
26 mprintf('Cycle efficiency is %3.2f percent \n Heat
      supplied to air is %3.1f kJ/kg \n Work available
      at the shaft is %3.2f kJ/kg \n Heat rejected in
      the cooler is \%3.2 f kJ/kg \n Turbine exit
      temperature is \%3.2 \, \text{f K}, nth, q1, Wout, q2, T4)
27
28
29
30
31
32
33
                                    ■END OF PROGRAM
```

Scilab code Exa 2.17 Pressure ratio and Maximum net specific work output and Therm

```
2 // Title: Gas Power Cycles
3 //
4 clc
5 clear
7 //INPUT DATA
8 T1=283; // Temperature at point 1 in K
9 T3=1353; // Temperature at point 3 in K
10 y=1.41; // Ratio of specific heats
11 Cp=1.007; // Specific heat constant pressure in kJ/kg-
      K
12
13 //CALCULATIONS
14 x = (y-1)/y; // Ratio
15 rpmax = ((T3/T1)^(1/x)); //Maximum pressure ratio
16 rpopt=sqrt(rpmax); //Optimum pressure ratio
17 T2=T1*(rpopt^x); // Temperature at point 2 in K
18 T4=T2; //Maximum temperature at point 4 in K
19 \operatorname{Wmax}=\operatorname{Cp}*((T3-T4)-(T2-T1));//\operatorname{Maximum} net specific
      work output in kJ/kg
20 nth=(Wmax/(Cp*(T3-T2)))*100; //Thermal efficiency
21 WR=nth/100; //Work ratio
22 nc = ((T3-T1)/T3)*100; //Carnot efficiency
23
24 //OUTPUT
25 mprintf('Optimum pressure ratio is %3.2 f \n Maximum
      net specific work output \%3.0 f kJ/kg \n Thermal
      efficiency %3.0 f percent \n Work ratio is %3.2 f \
      n Carnot efficiency is %3.0f percent', rpopt, Wmax,
      nth, WR, nc)
26
27
28
29
30
```

1 //Chapter -2, Illustration 17, Page 75

```
31
32 //=______END_OF_PROGRAM
```

 ${\it Scilab\ code\ Exa\ 2.18}$ Maximum work output and Cycle efficiency and Comparison with

```
1 //Chapter-2, Illustration 18, Page 76
2 // Title: Gas Power Cycles
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 Tmin=300; //Minimum temperature in K
9 Tmax=1073; //Maximum temperature in K
10 Cp=1.005;//Specific heat at constant pressure in kJ/
     kg-K
11
12 //CALCULATIONS
13 Wmax=Cp*((sqrt(Tmax)-sqrt(Tmin))^2);//Maximum work
      output in kJ/kg
14 nB=(1-sqrt(Tmin/Tmax))*100;//Brayton cycle
      efficiency
15 nC=(1-(Tmin/Tmax))*100;//Carnot efficiency
16 r=nB/nC;//Ratio of brayton cycle efficiency to
      carnot efficieny
17
18 //OUTPUT
19 mprintf('Maximum work per kg of air is \%3.2\,\mathrm{f} kJ/kg \
     n Cycle efficiency is %3.0f percent \n Ratio of
      brayton cycle efficiency to carnot efficieny is
      \%3.3 \, \mathrm{f}', Wmax, nB, r)
20
```

```
21
22
23
24
25
26 //
END OF PROGRAM
```

1 / Chapter - 2, Illustration 19, Page 77

Scilab code Exa 2.19 Net power output and Thermal efficiency and Work ratio

```
2 // Title: Gas Power Cycles
3 //
4 clc
5 clear
7 //INPUT DATA
8 T1=291; // Temperature at point 1 in K
9 P1=100; // Pressure at point 1 in kN/(m^2)
10 nC=0.85; // Isentropic efficiency of compressor
11 nT=0.88; // Isentropic effficiency of turbine
12 rp=8; // Pressure ratio
13 T3=1273; // Temperature at point 3 in K
14 m=4.5; //Mass flow rate of air in kg/s
15 y=1.4; // Ratio of specific heats
16 Cp=1.006;//Specific heat at constant pressure in kJ/
     kg-K
17
18 //CALCULATIONS
19 x = (y-1)/y; // Ratio
20 T2s=T1*(rp^x);//Temperature at point 2s in K
21 T2=T1+((T2s-T1)/nC);//Temperature at point 2 in K
22 t2=T2-273; // Temperature at point 2 in oC
```

```
23 T4s=T3*((1/rp)^x); //Temperature at point 4s in K
24 T4=T3-((T3-T4s)*nT); //Temperature at point 4 in K
25 t4=T4-273; // Temperature at point 4 in oC
26 W=m*Cp*((T3-T4)-(T2-T1)); //Net power output in kW
27 nth=(((T3-T4)-(T2-T1))/(T3-T2))*100;//Thermal
      efficiency
28 WR=W/(m*Cp*(T3-T4)); //Work ratio
29
30 //OUTPUT
31 mprintf('Net power output of the turbine is \%3.0 f kW
       \n Thermal efficiency of the plant is \%3.0 f
      percent \n Work ratio is \%3.3 f', W, nth, WR)
32
33
34
35
36
37
38
                               END OF PROGRAM
```

Scilab code Exa 2.20 Percentage increase in cycle efficiency

```
3 //

4 clc
5 clear
6
7 //INPUT DATA
8 P1=0.1; // Pressure at point 1 in MPa
```

9 T1=303; // Temperature at point 1 in K 10 T3=1173; // Temperature at point 3 in K

1 / Chapter - 2, Illustration 20, Page 79

2 // Title: Gas Power Cycles

```
11 rp=6; // Pressure ratio
12 nC=0.8; // Compressor efficiency
13 nT=nC; // Turbine efficiency
14 e=0.75; // Regenerator effectiveness
15 y=1.4; //Ratio of specific heats
16 Cp=1.005; // Specific heat at constant pressure in kJ/
     kg-K
17
18 //CALCULATIONS
19 x = (y-1)/y; // Ratio
20 T2s=T1*(rp^x); // Temperature at point 2s in K
21 T4s=T3/(rp^x);//Temperature at point 4s in K
22 DTa=(T2s-T1)/nC;//Difference in temperatures at
      point 2 and 1 in K
23 DTb=(T3-T4s)*nT;//Difference in temperatures at
      point 3 and 4 in K
24 wT=Cp*DTb; // Turbine work in kJ/kg
25 wC=Cp*DTa; //Compressor work in kJ/kg
26 T2=DTa+T1; // Temperature at point 2 in K
27 q1=Cp*(T3-T2); //Heat supplied in kJ/kg
28 nth1 = ((wT - wC)/q1)*100; //Cycle efficiency without
      regenerator
29 T4=T3-DTb; // Temperature at point 4 in K
30 T5=T2+(e*(T4-T2)); // Temperature at point 5 in K
31 q2=Cp*(T3-T5); //Heat supplied with regenerator in kJ
32 nth2 = ((wT - wC)/q2)*100; //Cycle efficiency with
      regenerator
  p=((nth2-nth1)/nth1)*100;//Percentage increase due
      to regeneration
34
35 //OUTPUT
36 mprintf ('Percentage increase in the cycle efficiency
       due to regeneration is \%3.2 f percent',p)
37
38
39
40
```

```
41
42
43
44
45 //
_________END OF PROGRAM
```

Scilab code Exa 2.21 Velocity of air leaving nozzle

```
1 / Chapter - 2, Illustration 21, Page 80
2 // Title: Gas Power Cycles
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 P1=1;//Pressure at point 1 in atm
9 P3=5; // Pressure at point 3 in atm
10 T1=288; // Temperature at point 1 in K
11 T4=1143; // Temperature at point 4 in K
12 y=1.4; // Ratio of specific heats
13 Cp=1.005; // Specific heat at constant pressure in kJ/
     kg-K
14
15 //CALCULATIONS
16 rp=P3/P1; // Pressure ratio
17 x = (y-1)/y; // Ratio
18 T3=T1*(rp^x); // Temperature at point 3 in K
19 T5=T4-(T3-T1); // Temperature at point 5 in K
20 T6=T4/(rp^x);//Temperature at point 6 in K
21 C6 = sqrt(2000 * Cp * (T5 - T6)); // Velocity of air leaving
      the nozzle in m/s
```

22

Scilab code Exa 2.22 Turbine exit pressure and Velocity of exhaust gases and Propu

```
2 // Title: Gas Power Cycles
3 //
4 clc
5 clear
7 //INPUT DATA
8 C1=280; // Velocity of aircraft in m/s
9 P1=48; // Pressure at point 1 kPa
10 T1=260; // Temperature at point 1 in K
11 rp=13; // Pressure ratio
12 T4=1300; // Temperature at point 4 in K
13 Cp=1005; // Specific heat at constant pressure in J/kg
14 y=1.4; // Ratio of specific heats
15
16 //CALCULATIONS
17 x = (y-1)/y; // Ratio
18 T2=T1+((C1^2)/(2*Cp));//Temperature at point 2 in K
19 P2=P1*((T2/T1)^(1/x)); //Pressure at point 2 in kPa
```

1 //Chapter-2, Illustration 22, Page 81

```
20 P3=rp*P2; // Pressure at point 3 in kPa
21 P4=P3; // Pressure at point 4 in kPa
22 T3=T2*(rp^x); // Temperature at point 3 in K
23 T5=T4-T3+T2; // Temperature at point 5 in K
24 P5=P4*((T5/T4)^(1/x)); //Pressure at point 5 in kPa
25 P6=P1; // Pressure at point 6 in kPa
26 T6=T5*((P6/P5)^x); // Temperature at point 6 in K
27 C6=sqrt(2*Cp*(T5-T6));//Velocity of air at nozzle
      exit in m/s
28 W=(C6-C1)*C1; // Propulsive power in J/kg
29 Q=Cp*(T4-T3);//Total heat transfer rate in J/kg
30 nP=(W/Q)*100; // Propulsive efficiency
31
32 //OUTPUT
33 mprintf('Pressure at the turbine exit is \%3.1 f kPa \
      n Velocity of exhaust gases are %3.1 f m/s \n
      Propulsive efficiency is %3.1f percent', P5, C6, nP)
34
35
36
37
38
39
40
41
42
43
44
                                    ■END OF PROGRAM
45
```

Chapter 3

Internal Combustion Engines

1 / Chapter -3, Illustration 1, Page 139

Scilab code Exa 3.1 Air standard efficiency and Indicated Power and Indicated ther

```
2 //Title: Internal Combustion Engines
3 //

4 clc
5 clear
6
7 //INPUT DATA
8 d=200; // diameter of cylinder in mm
9 L=300; // stroke of cylinder in mm
10 Vc=1.73; // Clearance volume in litres
11 imep=650; // indicated mean effective pressure in kN/(m^2)
12 g=6.2; // gas consumption in (m^3)/h
13 CV=38.5; // Calorific value in MJ/(m^3)
14 y=1.4; // Ratio of specific heats
15 N=150; // No. of firing cycles per minute
16
17 //CALCULATIONS
```

18 $Vs = ((3.1415/4)*(d^2)*L)*(10^-6); //Stroke volume in$

```
litres
19 Vt=Vs+Vc;//Total volume in litres
20 rv=(Vt/Vc);//Compression ratio
21 n=(1-(1/rv^{(y-1)}))*100; //Air standard efficiency
22 IP=imep*(Vs*10^-3)*(N/60); //Indicated power in kW
23 F=(g*CV*1000)/3600;//Fuel energy input in kW
24 nT=(IP/F)*100;//Indicated thermal efficiency
25
26 //OUTPUT
27 mprintf('Air Standard Efficiency is %3.1f percent \n
       Indicated Power is %3.1f kW \n Indicated thermal
       efficiency is %3.0f percent',n,IP,nT)
28
29
30
31
                          END OF PROGRAM
```

Scilab code Exa 3.2 Relative efficiency of engine

```
4 clc
5 clear
6
7 //INPUT DATA
8 Vs=0.0008; //Swept volume in m^3
9 Vc=0.00015; // Clearance volume in m^3
10 CV=38; // Calorific value in MJ/(m^3)
11 v=0.45; // volume in m^3
12 IP=81.5; // Indicated power in kW
```

1 //Chapter-3, Illustration 2, Page 140
2 //Title: Internal Combustion Engines

```
13 y=1.4; // Ratio of specific heats
14
15 //CALCULATIONS
16 rv=(Vs+Vc)/Vc;//Compression ratio
17 n=(1-(1/rv^{(y-1))});//Air standard efficiency
18 Ps=(v*CV*1000)/60;//Power supplied in kW
19 nact=IP/Ps;//Actual efficiency
20 nr=(nact/n)*100;//Relative efficiency
21
22 //OUTPUT
23 mprintf('Relative Efficiency is %3.2f percent',nr)
24
25
26
                      END OF PROGRAM
27
```

Scilab code Exa 3.3 Indicated power and Brake power and and Brake thermal efficien

```
4 clc
5 clear
6
7 //INPUT DATA
8 n=6;//No. of cylinders
9 d=0.61;//Diameter in m
10 L=1.25;//Stroke in m
11 N=2;//No. of revolutions per second
12 m=340;//mass of fuel oil in kg
13 CV=44200;//Calorific value in kJ/kg
14 T=108;//Torque in kN-m
```

1 // Chapter -3, Illustration 3, Page 141
2 // Title: Internal Combustion Engines

```
15 imep=775; //Indicated mean efective pressure in kN/(m
      ^2)
16
17 //CALCULATIONS
18 IP = (imep*L*3.1415*(d^2)*N)/(8); //Indicated power in
19 TotalIP=(n*IP); // Total indicated power in kW
20 BP=(2*3.1415*N*T); // Brake power in kW
21 PI=(m*CV)/3600;//Power input in kW
22 nB=(BP/PI)*100;//Brake thermal efficiency
23 bmep=(BP*8)/(n*L*3.1415*(d^2)*2);//Brake mean
      effective pressure in kN/(m^2)
24 nM=(BP/TotalIP)*100;//Mechanical efficiency
25 bsfc=m/BP; //Brake specific fuel consumption in kg/
     kWh
26
27 //OUTPUT
28 mprintf('Total Indicated Power is %3.1 f kW \n Brake
      Power is %3.1 f kW \n Brake thermal efficiency is
     %3.1f percent \n Brake mean effective pressure is
      \%3.1 \text{ f kN/(m^2)} \setminus \text{n Mechanical efficiency is } \%3.1 \text{ f}
       percent \n Brake specific fuel consumption is \%3
      .3 f kg/kW.h', TotalIP, BP, nB, bmep, nM, bsfc)
29
30
31
                   END OF PROGRAM
32
```

Scilab code Exa 3.4 Indicated power and Brake output and Mechanical efficiency and

```
1 //Chapter-3, Illustration 4, Page 142
2 //Title: Internal Combustion Engines
3 //
```

```
4 clc
5 clear
7 //INPUT DATA
8 Hm=21; //Mean height of indicator diagram in mm
9 isn=27; // indicator spring number in kN/(m^2)/mm
10 Vs=14; //Swept volume in litres
11 N=6.6; //Speed of engine in rev/s
12 Pe=77; // Effective brake load in kg
13 Re=0.7; // Effective vrake radius in m
14 mf = 0.002; // fuel consumed in kg/s
15 CV=44000; // Calorific value of fuel in kJ/kg
16 mc=0.15; //cooling water circulation in kg/s
17 Ti=311; //cooling water inlet temperature in K
18 To=344; //cooling water outlet temperature in K
19 C=4.18; //specific heat capacity of water in kJ/kg-K
20 Ee=33.6; //Energy to exhaust gases in kJ/s
21 g=9.81; // Acceleration due to geravity in m/(s<sup>2</sup>)
22
23 //CALCULATIONS
24 imep=isn*Hm;//Indicated mean efective pressure in kN
      /(m^2)
25 IP=(imep*Vs*N)/(2000); //Indicated Power in kW
26 BP=(2*3.1415*N*g*Pe*Re)/1000;//Brake Power in kW
27 nM=(BP/IP)*100; // Mechanical efficiency
28 Ef=mf*CV; //Eneergy from fuel in kJ/s
29 Ec=mc*C*(To-Ti); //Energy to cooling water in kJ/s
30 Es=Ef-(BP+Ec+Ee); // Energy to surroundings in kJ/s
31 p=(BP*100)/Ef;//Energy to BP in \%
32 q=(Ec*100)/Ef;//Energy to coolant in \%
33 r=(Ee*100)/Ef;//Energy to exhaust in \%
34 w=(Es*100)/Ef;//Energy to surroundings in %
35
36 //OUTPUT
37 mprintf('Indicated Power is %3.1 f kW \n Brake Power
      is %3.0 f kW \n Mechanical Efficiency is %3.0 f
      percent \n \nENERGY BALANCE
                                                       kJ
```

```
/ s
                  Percentage \nEnergy from fuel
                            \%3.0 f
                                                100\nEnergy to BP
                                 \%3.0 \text{ f}
                                                    %3.0 f\nEnergy
       to coolant
                                           \%3.01 \, \mathrm{f}
                                                             %3.1 f\
                                                     %3.1 \text{ f}
       nEnergy to exhaust
       %3.1 f\nEnergy to surroundings, etc
                                                             \%3.1 \text{ f}
                \%3.1\;\mathrm{f} ',IP,BP,nM,Ef,BP,p,Ec,q,Ee,r,Es,w)
38
39
40
41
                                       END OF PROGRAM
42
```

 ${f Scilab\ code\ Exa\ 3.5}$ Brake power and Brake specific fuel consumption and Indicated

```
d clc
5 clear
6
7 //INPUT DATA
8 t=30; //duration of trial in minutes
9 N=1750; //speed in rpm
10 T=330; //brake torque in Nm
11 m=9.35; //mass of fuel in kg
12 CV=42300; // Calorific value in kJ/kg
13 mj=483; //jacket cooling water circulation in kg
14 Ti=290; //inlet temperature in K
15 T0=350; // outlet temperature in K
16 ma=182; // air consumption in kg
17 Te=759; // exhaust temperature in K
```

1 //Chapter-3, Illustration 5, Page 143
2 //Title: Internal Combustion Engines

```
18 Ta=256; //atmospheric temperature in K
19 nM=0.83; // Mechanical efficiency
20 ms=1.25; //mean specific heat capacity of exhaust gas
      in kJ/kg-K
21 Cw=4.18; //specific heat capacity of water in kJ/kg-K
22
23 //CALCULATIONS
24 BP=(2*3.1415*T*N)/(60*1000);//Brake power in kW
25 sfc=(m*2)/BP;//specific fuel consumption in kg/kWh
26 IP=BP/nM;//Indicated power in kW
27 nIT=((IP*3600)/(m*CV*2))*100;//Indicated thermal
      efficiency
28 Ef=(m*CV)/t;//Eneergy from fuel in kJ/min
29 EBP=BP*60; //Energy to BP in kJ/min
30 Ec=(mj*Cw*(TO-Ti))/t;//Energy to cooling water in kJ
31 Ee=((ma+m)*ms*(Te-Ti))/30;//Energy to exhaust in kJ/
32 Es=Ef-(EBP+Ec+Ee); //Energy to surroundings in kJ/min
33
34 //OUTPUT
35 mprintf('Brake power is %3.1 f kW \n Specific fuel
      consumption is %3.3 f kg/kWh \n Indicated thermal
      efficiency is %3.1f percent \n Energy from fuel
      is %3.0 f kJ/min \n Energy to BP is %3.0 f kJ/min \
     n Energy to cooling water is %3.0 f kJ/min \n
      Energy to exhaust is %3.0 f kJ/min \n Energy to
      surroundings is \%3.0 f kJ/min', BP, sfc, nIT, Ef, EBP,
     Ec, Ee, Es)
36
37
38
39
40
41
                                 END OF PROGRAM
42
```

Scilab code Exa 3.6 Indicated power and Mechanical efficiency of engine

```
1 //Chapter-3, Illustration 6, Page 144
2 // Title: Internal Combustion Engines
3 //
4 clc
5 clear
7 //INPUT DATA
8 BP0=12; //Brake Power output in kW
9 BP1=40.5; //Brake Power in trial 1 in kW
10 BP2=40.2; //Brake Power in trial 2 in kW
11 BP3=40.1; //Brake Power in trial 3 in kW
12 BP4=40.6; //Brake Power in trial 4 in kW
13 BP5=40.7; //Brake Power in
                             trial 5 in kW
14 BP6=40.0; //Brake Power in trial 6 in kW
15
16 //CALCULATIONS
17 BPALL=BPO+BP6; // Total Brake Power in kW
18 IP1=BPALL-BP1; // Indicated Power in trial 1 in kW
19 IP2=BPALL-BP2; // Indicated Power in trial 2 in kW
20 IP3=BPALL-BP3; //Indicated Power in trial 3 in kW
21 IP4=BPALL-BP4; //Indicated Power in trial 4 in kW
22 IP5=BPALL-BP5; //Indicated Power in trial 5 in kW
23 IP6=BPALL-BP6;//Indicated Power in trial 6 in kW
24 IPALL=IP1+IP2+IP3+IP4+IP5+IP6; // Total Indicated
     Power in kW
25 nM=(BPALL/IPALL)*100; // Mechanical efficiency
26
27 //OUTPUT
28 mprintf('Indicated Power of the engine is \%3.1 f kW \
     n Mechanical efficiency of the engine is %3.1 f
```

```
percent', IPALL, nM)
29
30
31
32
                           END OF PROGRAM
   Scilab code Exa 3.7 Engine dimensions and Brake power
1 //Chapter-3, Illustration 7, Page 145
2 // Title: Internal Combustion Engines
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 n=2;//No. of cylinders
9 N=4000; //speed of engine in rpm
10 nV=0.77; // Volumetric efficiency
11 nM=0.75; // Mechanical efficiency
12 m=10; //fuel consumed in lit/h
13 g=0.73; //spcific gravity of fuel
14 Raf=18; // air - fuel ratio
15 Np=600; //piston speed in m/min
16 imep=5; //Indicated mean efective pressure in bar
17 R=281; // Universal gas constant in J/kg-K
18 T=288; //Standard temperature in K
19 P=1.013; //Standard pressure in bar
20
21 //CALCULATIONS
22 L=Np/(2*N);//Piston stroke in m
23 mf=m*g; //mass of fuel in kg/h
24 ma=mf*Raf;//mass of air required in kg/h
```

Chapter 4

Steam nozzles and Steam turbines

Scilab code Exa 4.1 Throat area and Exit area and Mach number at exit

```
1 //Chapter-4, Illustration 1, Page 161
2 //Title: Steam Nozzles and Steam Turbines
3 //
```

```
4 clc
5 clear
6
7 //INPUT DATA
8 P1=3.5; // Pressure at entry in MN/(m^2)
9 T1=773; // Temperature at entry in K
10 P2=0.7; // Pressure at exit in MN/(m^2)
11 ma=1.3; // mass flow rate of air in kg/s
12 y=1.4; // Ratio of specific heats
13 R=0.287; // Universal gas constant in KJ/Kg-K
14
15 //CALCULATIONS
16 c=y/(y-1); // Ratio
17 Pt=((2/(y+1))^c)*P1; // Throat pressure in MN/(m^2)
```

```
18 v1=(R*T1)/(P1*1000);//Specific volume at entry in (m)
      ^3)/kg
19 Ct = ((2*c*P1*v1*(1-((Pt/P1)^(1/c))))^0.5)*1000; //
      Velocity at throat in m/s
20 vt=v1*((P1/Pt)^(1/y));//Specific volume at throat in
       (m^3)/kg
21 At=((ma*vt)/Ct)*(10^6); //Area of throat in (mm^2)
22 C2=((2*c*P1*v1*(1-((P2/P1)^(1/c))))^0.5)*1000;//
      Velocity at exit in m/s
23 v2=v1*((P1/P2)^(1/y)); //Specific volume at exit in (
     m^3)/kg
24 A2=((ma*v2)/C2)*(10^6);//Area of exit in (mm^2)
25 M=C2/Ct; //Mach number at exit
26
27 //OUTPUT
28 mprintf('Throat area is %3.0 f (mm^2) \n Exit area is
      %3.0 f (mm<sup>2</sup>) \n Mach number at exit is %3.2 f', At
      ,A2,M)
29
30
31
32
33
34
                                    ≡END OF PROGRAM
35
```

 ${\it Scilab\ code\ Exa\ 4.2}$ Increase in pressure and temperature and internal energy

```
1 //Chapter-4, Illustration 2, Page 163
2 //Title: Steam Nozzles and Steam Turbines
3 //
```

4 clc

```
5 clear
7 //INPUT DATA
8 T1=273; // Temperature at section 1 in K
9 P1=140; // Pressure at section 1 in KN/(m^2)
10 v1=900; // Velocity at section 1 in m/s
11 v2=300; // Velocity at section 2 in m/s
12 Cp=1.006; // Specific heat at constant pressure in kJ/
13 Cv=0.717; // Specific heat at constant volume in kJ/kg
      -K
14 y=1.4; // Ratio of specific heats
15
16 //CALCULATIONS
17 c=y/(y-1); //Ratio
18 R=Cp-Cv; // Universal gas constant in KJ/Kg-K
19 T2=T1-(((v2)^2-(v1)^2)/(2000*c*R)); // Temperature at
      section 2 in K
20 DT=T2-T1; // Increase in temperature in K
21 P2=P1*((T2/T1)^c); //Pressure at section 2 in KN/(m)
      ^2)
22 DP=(P2-P1)/1000; //Increase in pressure in MN/(m^2)
23 IE=Cv*(T2-T1);//Increase in internal energy in kJ/kg
24
25 //OUTPUT
26 mprintf ('Increase in temperature is \%3.0 \,\mathrm{f} \,\mathrm{K} \,\mathrm{n}
      Increase in pressure is \%3.2 \, f \, MN/(m^2) \, n
      Increase in internal energy is \%3.0 f kJ/kg', DT, DP
      , IE)
27
28
29
30
31
                                     ■END OF PROGRAM
32
```

Scilab code Exa 4.3 Throat area and exit area and Degree of undercooling at exit

```
1 / Chapter - 4, Illustration 3, Page 163
2 // Title: Steam Nozzles and Steam Turbines
3 //
4 clc
5 clear
7 //INPUT DATA
8 P1=2; // Pressure at entry in MN/(m^2)
9 T1=598; // Temperature at entry in K
10 P2=0.36; // Pressure at exit in MN/(m^2)
11 m=7.5; //mass flow rate of steam in kg/s
12 n=1.3; // Adiabatic gas constant
13 v1=0.132; //Volume at entry in (m<sup>3</sup>)/kg from steam
      table
14 Ts=412.9; // Saturation temperature in K
15
16 //CALCULATIONS
17 c=n/(n-1);//Ratio
18 Pt=((2/(n+1))^c)*P1;//Throat pressure in MN/(m^2)
19 Ct = ((2*c*P1*v1*(1-((Pt/P1)^(1/c))))^0.5)*1000; //
      Velocity at throat in m/s
20 vt=v1*((P1/Pt)^(1/n));//Specific volume at throat in
       (m^3)/kg
21 At=((m*vt)/Ct)*(10^6); //Area of throat in (mm^2)
22 C2=((2*c*P1*v1*(1-((P2/P1)^(1/c))))^0.5)*1000;//
      Velocity at exit in m/s
23 v2=v1*((P1/P2)^(1/n)); //Specific volume at exit in (
     m^3)/kg
24 A2=((m*v2)/C2)*(10^6); //Area of exit in (mm^2)
25 T2=T1*((P2/P1)^(1/c)); // Temperature at exit in K
```

```
D=Ts-T2; // Degree of undercooling at exit in K
//OUTPUT
mprintf('Throat area is %3.0 f (mm^2) \n Exit area is %3.0 f (mm^2) \n Degree of undercooling at exit is %3.1 f K', At, A2, D)
```

Scilab code Exa 4.4 Throat and exit velocities and Throat and exit areas

```
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 P1=2.2; // Pressure at entry in MN/(m<sup>2</sup>)
9 T1=533;//Temperature at entry in K
10 P2=0.4; // Pressure at exit in MN/(m^2)
11 m=11; //mass flow rate of steam in kg/s
12 n=0.85; // Efficiency of expansion
13 h1=2940; // Enthalpy at entrance in kJ/kg from Moiller
       chart
14 ht=2790;//Enthalpy at throat in kJ/kg from Moiller
      chart
15 h2s=2590; //Enthalpy below exit level in kJ/kg from
      Moiller chart
```

1 //Chapter-4, Illustration 4, Page 165

2 // Title: Steam Nozzles and Steam Turbines

```
16 vt=0.16; // Throat volume in (m^3)/kg
17 v2=0.44; //Volume at exit in (m^3)/kg
18
19 //CALCULATIONS
20 Ct = (2000*(h1-ht))^0.5; // Throat velocity in m/s
21 h2=ht-(0.85*(ht-h2s));//Enthalpy at exit in kJ/kg
22 C2=(2000*(h1-h2))^0.5; //Exit velocity in m/s
23 At=((m*vt)/Ct)*(10^6); //Area of throat in (mm^2)
24 A2=((m*v2)/C2)*(10^6); //Area of exit in (mm^2)
25
26 //OUTPUT
27 mprintf('Throat velocity is %3.0 f m/s \n Exit
      velocity is \%3.0\,\mathrm{f} m/s \n Throat area is \%3.0\,\mathrm{f} (mm
      ^2) \n Exit area is \%3.0\,\mathrm{f} (mm^2) \n',Ct,C2,At,A2)
28
29
30
31
32 //=
                               END OF PROGRAM
```

 ${f Scilab\ code\ Exa\ 4.5\ Nozzle\ dimensions}$ and Degree of undercooling and supersaturati

```
2 // Title: Steam Nozzles and Steam Turbines
3 //

4 clc
5 clear
6
7 //INPUT DATA
8 P1=35; // Pressure at entry in bar
9 T1=573; // Temperature at entry in K
10 P2=8; // Pressure at exit in bar
```

1 //Chapter-4, Illustration 5, Page 166

```
11 Ts=443.4; // Saturation temperature in K
12 Ps=3.1; //Saturation pressure in bar
13 m=5.2; //mass flow rate of steam in kg/s
14 n=1.3; // Adiabatic gas constant
15 v1=0.06842; // Specific volume at entry in (m^3)/kg
      from steam table
16 v3=0.2292; // Specific volume at exit in (m<sup>3</sup>)/kg from
       steam table
17 h1=2979; //Enthalpy in kJ/kg from Moiller chart
18 h3=2673.3; //Enthalpy in kJ/kg from Moiller chart
19
20 //CALCULATIONS
21 c=n/(n-1); //Ratio
22 \quad C2 = ((2*c*P1*(10^5)*v1*(1-((P2/P1)^(1/c))))^0.5); //
      Velocity at exit in m/s
23 v2=v1*((P1/P2)^(1/n)); //Specific volume at exit in (
     m^3)/kg
24 A2=((m*v2)/C2)*(10^4); //Area of exit in (cm^2)
25 a=((A2/18)^0.5)*10; //Length in mm
26 b=3*a; //Breadth in mm
27 T2=T1*((P2/P1)^(1/c));//Temperature at exit in K
28 D=Ts-T2; // Degree of undercooling in K
29 Ds=P2/Ps;//Degree of supersaturation
30 hI=h1-h3; // Isentropic enthalpy drop in kJ/kg
31 ha=(C2^2)/2000; // Actual enthalpy drop in kJ/kg
32 QL=hI-ha; //Loss in available heat in kJ/kg
33 DS=QL/Ts; // Increase in entropy in kJ/kg-K
34 \text{ C3} = (2000*(h1-h3))^0.5; // \text{Exit velocity from nozzle}
35 mf = ((A2*C3*(10^-4))/v3); //Mass flow rate in kg/s
36 Rm=m/mf; //Ratio of mass rate
37
38 //OUTPUT
39 mprintf('Cross section of nozzle is %3.1 f mm * %3.1 f
      mm \n Degree of undercooling is \%3.1 f K and
      Degree of supersaturation is \%3.2 f \n Loss in
      available heat drop due to irreversibility is \%3
      .2 f kJ/kg \n Increase in entropy is \%3.5 f kJ/kg-K
       \n Ratio of mass flow rate with metastable
```

```
expansion to the thermal expansion is %3.3f',b,a,
D,Ds,QL,DS,Rm)

40
41
42
43
44
45 // END OF PROGRAM
```

1 //Chapter-4, Illustration 6, Page 169

 m^2

2 // Title: Steam Nozzles and Steam Turbines

Scilab code Exa 4.6 Nozzle efficiency and Exit area and Throat velocity

```
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 m=14; //Mass flow rate of steam in kg/s
9 P1=3; // Pressure of Steam in MN/(m^2)
10 T1=300; //Steam temperature in oC
11 h1=2990; //Enthalpy at point 1 in kJ/kg
12 h2s=2630; //Enthalpy at point 2s in kJ/kg
13 ht=2850; //Enthalpy at point t in kJ/kg
14 n=1.3; // Adiabatic gas constant
15 C2=800; //Exit velocity in m/s
16 v2=0.4; // Specific volume at exit in (m<sup>3</sup>)/kg
17
18 //CALCULATIONS
19 x=n/(n-1); //Ratio
20 Pt=((2/(n+1))^x)*P1;//Temperature at point t in MN/(
```

Scilab code Exa 4.7 Areas at throat and exit and Steam quality at exit

```
d clc
5 clear
6
7 //INPUT DATA
8 P1=10; // Pressure at point 1 in bar
9 P2=0.5; // Pressure at point 2 in bar
10 h1=3050; // Enthalpy at point 1 in kJ/kg
11 h2s=2480; // Enthalpy at point 2s in kJ/kg
12 ht=2910; // Enthalpy at throat in kJ/kg
13 n=1.3; // Adiabatic gas constant
14 r=0.1; // Total available heat drop
15 v1=0.258; // Specific volume at point 1 in (m^3)/kg
```

1 / Chapter - 4, Illustration 7, Page 170

2 // Title: Steam Nozzles and Steam Turbines

```
16 h2f=340.6; //Enthalpy for exit pressure from steam
      tables in kJ/kg
17 hfg=2305.4; //Enthalpy for exit pressure from steam
      tables in kJ/kg
  m=0.5; // Mass flow rate in kg/s
18
19
20 //CALCULATIONS
21 x=n/(n-1); //Ratio
22 Pt=((2/(n+1))^x)*P1;//Temperature at throat in bar
23 h2=h2s+(r*(h1-h2s));//Enthalpy at point 2 in kJ/kg
24 vt = ((P1/Pt)^(1/n)) * v1; // Specific volume at throat in
       (m^3)/kg
25
  v2=((P1/P2)^(1/n))*v1;//Specific volume at point 2
      in (m^3)/kg
26 Ct=sqrt(2000*(h1-ht)); //Throat velocity in m/s
27 At=((m*vt)/Ct)*(10^6); //Throat area in (mm^2)
28 C2=sqrt(2000*(h1-h2)); //Exit velocity in m/s
29 A2=((m*v2)/C2)*(10^6); //Exit area in (mm^2)
30 x2=((h2-h2f)/hfg)*100; //Steam quality at exit
31
32 //OUTPUT
33 mprintf('Throat area is %3.0 f (mm^2) \n Exit area is
      %3.0 f (mm<sup>2</sup>) \n Steam quality at exit is %3.0 f
      percent', At, A2, x2)
34
35
36
37
38
39
                                     ≢ND OF PROGRAM
40
```

Scilab code Exa 4.8 Maximum discharge and Area of nozzle at exit

```
2 // Title: Steam Nozzles and Steam Turbines
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 P1=3.5; //Dry saturated steam in bar
9 P2=1.1; // Exit pressure in bar
10 At=4.4; //Throat area in cm^2
11 h1=2731.6; //Enthalpy at P1 in kJ/kg
12 v1=0.52397; // Specific volume at P1 in m<sup>3</sup>/kg
13 n=1.135; // Adiabatic gas constant
14 ht=2640; // Enthalpy at Pt in kJ/kg
15 vt=0.85; // Specific volume at throat in m<sup>3</sup>/kg
16 h2=2520; //Enthalpy at P2 in kJ/kg
17 v2=1.45; // Specific volume at P2 in m<sup>3</sup>/kg
18
19 //CALCULATIONS
20 x=n/(n-1); // Ratio
21 Pt=((2/(n+1))^x)*P1;//Throat pressure in bar
22 Ct=sqrt(2000*(h1-ht)); //Throat velocity in m/s
23 mmax = ((At*Ct*(10^-4))/vt)*60; //Maximum discharge in
      kg/min
24 C2=sqrt(2000*(h1-h2)); //Exit velocity in m/s
25 A2=((mmax*v2)/(C2*60))*(10^6);//Exit area in mm^2
26
27 //OUTPUT
   mprintf ('Maximum discharge is \%3.3 f kg/min \n Exit
      area is \%3.2 \text{ f mm}^2', mmax, A2)
29
30
31
32
                                     END OF PROGRAM
```

1 //Chapter-4, Illustration 8, Page 171

Scilab code Exa 4.9 Type of nozzle and Minimum area of nozzle

1 / Chapter - 4, Illustration 9, Page 172

```
2 // Title: Steam Nozzles and Steam Turbines
3 //
4 clc
5 clear
7 //INPUT DATA
8 P1=10; // Pressure at point 1 in bar
9 T1=200; // Temperature at point 1 in oC
10 P2=5; // Pressure at point 2 in bar
11 n=1.3; // Adiabatic gas constant
12 h1=2830; //Enthalpy at P1 in kJ/kg
13 ht=2710; //Enthalpy at point Pt in kJ/kg
14 vt=0.35; // Specific volume at Pt in m<sup>3</sup>/kg
15 m=3; //Nozzle flow in kg/s
16
17 //CALCULATIONS
18 x=n/(n-1); // Ratio
19 Pt=((2/(n+1))^x)*P1;//Throat pressure in bar
20 Ct=sqrt(2000*(h1-ht)); //Throat velocity in m/s
21 At=(m*vt)/Ct; //Throat area in m^2
22
23 //OUTPUT
24 mprintf('Since throat pressure is greater than exit
      pressure, nozzle used is convergent-divergent
      nozzle \n Minimum area of nozzle required is \%3.5
      f m^2, At)
25
26
27
```

```
28
29
30 //=_____END OF PROGRAM
```

Scilab code Exa 4.10 Throat velocity and Mass flow rate of steam

```
1 //Chapter-4, Illustration 10, Page 173
2 //Title: Steam Nozzles and Steam Turbines
3 //
```

```
4 clc
5 clear
7 //INPUT DATA
8 P1=10.5; // Pressure at point 1 in bar
9 x1=0.95; // Dryness fraction
10 n=1.135; // Adiabatic gas constant
11 P2=0.85; // Pressure at point 2 in bar
12 vg=0.185; // Specific volume in m<sup>3</sup>/kg
13
14
15 //CALCULATIONS
16 c=n/(n-1); // Ratio
17 Pt=((2/(n+1))^c)*P1;//Throat pressure in MN/(m^2)
18 v1=x1*vg; // Specific volume at point 1 in m^3/kg
19 Ct = sqrt((2*n*P1*v1*(10^5)/(n+1))); // Velocity at
      throat in m/s
20 vt = ((P1/Pt)*(v1^n))^(1/1.135); //Specific volume at
      throat in m<sup>3</sup>/kg
21 m=Ct/vt; // Mass flow rate per unit throat area in kg
      /(m^2)
22
23 //OUTPUT
```

Scilab code Exa 4.11 Degree of undercooling and supersaturation

```
1 //Chapter-4, Illustration 11, Page 174
2 //Title: Steam Nozzles and Steam Turbines
3 //
```

```
4 clc
5 clear
6
7 //INPUT DATA
8 P1=10; // Pressure at point 1 in bar
9 T1=452.9; //Temperature at point 1 in K
10 P2=4; // Pressure at point 2 in bar
11 n=1.3; // Adiabatic gas constant
12 Ps=0.803; // Saturation pressure at T2 in bar
13 Ts=143.6; //Saturation temperature at P2 in oC
14 //CALCULATIONS
15 x=(n-1)/n; // Ratio
16 T2=((P2/P1)^x)*T1;//Temperature at point 2 in K
17 Ds=P2/Ps; // Degree of supersaturation
18 Du=Ts-(T2-273);//Degree of undercooling
19
20 //OUTPUT
21 mprintf('Degree of supersaturation is \%3.2 \,\mathrm{f} \n
```

```
Degree of undercooling %3.0 f oC', Ds, Du)

22
23
24
25
26
27
28
29 //________END OF PROGRAM
```

Scilab code Exa 4.12 Quantity of steam used and Exit velocity of steam

```
2 // Title: Steam Nozzles and Steam Turbines
3 //
4 clc
5 clear
7 //INPUT DATA
8 P1=9;//Pressure at point 1 in bar
9 P2=1; // Pressure at point 2 in bar
10 Dt=0.0025; //Throat diameter in m
11 nN=0.9; // Nozzle efficiency
12 n=1.135;//Adiabatic gas consstant
13 h1=2770; //Enthalpy at point 1 in kJ/kg
14 ht=2670; //Throat enthlapy in kJ/kg
15 h3=2400; //Enthlapy at point 2 in kJ/kg
16 \text{ x2=0.96}; // Dryness fraction 2
17 vg2=0.361; // Specific volume in m<sup>3</sup>/kg
18
19 //CALCULATIONS
20 x=n/(n-1); //Ratio
```

1 //Chapter-4, Illustration 12, Page 174

```
21 Pt = ((2/(n+1))^x)*P1; //Throat pressure in bar
22 Ct = sqrt(2000*(h1-ht)*nN); //Throat velocity in m/s
23 At=(3.147*2*(Dt^2))/4; //Throat area in m^2
24 vt=x2*vg2; // Specific volume at throat in m<sup>3</sup>/kg
25 m=(At*Ct)/vt;//Mass flow rate of steam in kg/s
26 hact=nN*(h1-h3);//Actual enthalpy drop in kJ/kg
27 C2=sqrt(2000*hact); //Exit velocity of steam in m/s
28
29 //OUTPUT
30 mprintf ('Quantity of steam used per second is %3.3 f
      kg/s \n Exit velocity of steam is \%3.2 f m/s', m, C2
31
32
33
34
                            END OF PROGRAM
```

 ${f Scilab\ code\ Exa\ 4.13}$ Blade angles and Tangential force and Axial thrust and Diagra

```
4 clc
5 clear
6
7 //INPUT DATA
8 C1=1000; //Steam velocity in m/s
9 a1=20; //Nozzle angle in degrees
10 U=400; //Mean blade speed in m/s
11 m=0.75; //Mass flow rate of steam in kg/s
12 b1=33; //Blade angle at inlet from the velocity
```

1 // Chapter -4, Illustration 13, Page 202
2 // Title: Steam Nozzles and Steam Turbines

```
triangle in degrees
13 b2=b1; //Blade angle at exit from the velocity
      triangle in degrees
14 Cx=1120; // Change in whirl velocity from the velocity
       triangle in m/s
15 Ca=0; // Change in axial velocity from the velocity
      triangle in m/s
16
17 //CALCULATIONS
18 Fx=m*Cx; // Tangential force on blades in N
19 Fy=m*Ca; // Axial thrust in N
20 W=(m*Cx*U)/1000; //Diagram power in kW
21 ndia=((2*U*Cx)/(C1^2))*100;//Diagram efficiency
22
23 //OUTPUT
24 mprintf('Blade angles are %3.0f degrees, %3.0f
      degrees \n Tangential force on blades is \%3.0 f N
     \n Axial thrust is %3.0 f \n Diagram power is %3.0
      f kW \n Diagram efficiency %3.1f percent', b1, b2,
     Fx, Fy, W, ndia)
25
26
27
28
29
                           END OF PROGRAM
30
```

Scilab code Exa 4.14 Power developed and Blade efficiency and Steam consumption

```
1 //Chapter -4, Illustration 14, Page 203
2 //Title: Steam Nozzles and Steam Turbines
3 //
```

```
4 clc
5 clear
7 //INPUT DATA
8 D=2.5; //Mean diameter of blade ring in m
9 N=3000; //Speed in rpm
10 a1=20; // Nozzle angle in degrees
11 r=0.4; // Ratio blade velocity to steam velocity
12 Wr=0.8; //Blade friction factor
13 m=10; //Steam flow in kg/s
14 x=3; //Sum in blade angles in degrees
15 b1=32.5; //Blade angle at inlet from the velocity
      triangle in degrees
16 W1=626.7; // Relative velocity at inlet from the
      velocity triangle in m/s
17 Cx=967; // Change in whirl velocity from the velocity
      triangle in m/s
18
19 //CALCULATIONS
20 U = (3.147*D*N)/60; //Blade velocity in m/s
21 C1=U/r; //Steam velocity in m/s
22 b2=b1-x; //Blade angle at exit in degrees
23 W2=Wr*W1; // Relative velocity at outlet from the
      velocity triangle in m/s
24 W=(m*Cx*U)/1000;//Power developed in kW
25 ndia=((2*U*Cx)/(C1^2))*100; //Blade efficiency
26 sc=(m*3600)/W;//Steam consumption in kg/kWh
27
28 //OUTPUT
29 mprintf('Power developed is %3.0 f kW \n Blade
      efficiency is \%3.1f percent \n Steam consumed is
     \%3.2 \, \text{f} \, \text{kg/kWh',W,ndia,sc}
30
31
32
33
                                   END OF PROGRAM
```

Scilab code Exa 4.15 Blading efficiency and Blade velocity coefficient

```
1 //Chapter-4, Illustration 15, Page 204
2 // Title: Steam Nozzles and Steam Turbines
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 m=3; //Mass flow rate of steam in kg/s
9 C1=425; //Steam velocity in m/s
10 r=0.4; // Ratio of blade speed to jet speed
11 W=170; //Stage output in kW
12 IL=15; //Internal losses in kW
13 a1=16; // Nozzle angle in degrees
14 b2=17; //Blade angle at exit in degrees
15 W1=265; // Relative velocity at inlet from the
      velocity triangle in m/s
16 W2=130; // Relative velocity at outlet from the
      velocity triangle in m/s
17
18 //CALCULATIONS
19 U=C1*r; //Blade speed in m/s
20 P=(W+IL)*1000; //Total power developed in W
21 Cx=P/(m*W); //Change in whirl velocity in m/s
22 ndia=((2*U*Cx)/(C1^2))*100;//Blading efficiency
23 Wr=W2/W1; //Blade velocity co-efficient
24
25 //OUTPUT
26 mprintf('Blading efficiency is %3.1f percent \n
      Blade velocity co-efficient is \%3.2f', ndia, Wr)
27
```

```
28
29
30
31 //=_______END_OF_PROGRAM
```

Scilab code Exa 4.16 Blade angles and Turbine power

```
1 //Chapter-4, Illustration 16, Page 205
2 // Title: Steam Nozzles and Steam Turbines
3 //
4 clc
5 clear
7 //INPUT DATA
8 C1=375; //Steam velocity in m/s
9 a1=20; // Nozzle angle
10 U=165; //Blade speed in m/s
11 m=1;//Mass flow rate of steam in kg/s
12 Wr=0.85; //Blade friction factor
13 Ca1=130; // Axial velocity at inlet from the velocity
      triangle in m/s
14 Ca2=Ca1; // Axial velocity at outlet in m/s
15 W1=230; // Relative velocity at inlet from the
      velocity triangle in m/s
16 Cx=320; //Change in whirl velocity from the velocity
      triangle in m/s
17
18 //CALCULATIONS
19 b2=41; //Blade angle at exit from the velocity
     triangle in degrees
20 b1=34; //Blade angle at exit from the velocity
      triangle in degrees
```

```
W=(m*Cx*U)/1000;//Power developed by turbine in kW
//OUTPUT
description
f degrees \n Power developed by turbine is %3.0 f degrees, %3.0 f kW', b1, b2, W
//END OF PROGRAM
//END OF PROGRAM
```

Scilab code Exa 4.17 Nozzle angle and Blade angle at entry and exit

```
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 m=2; //Mass flow rate of steam in kg/s
9 W=130; //Turbine power in kW
10 U=175;//Blade velocity in m/s
11 C1=400; //Steam velocity in m/s
12 Wr=0.9; //Blade friction factor
13 W1=240; // Realtive velocity at inlet from the
     velocity triangle in m/s
14
15 //CALCULATIONS
16 Cx1=(W*1000)/(m*U);//Whirl velocity at inlet in m/s
17 W2=Wr*W1; // Realtive velocity at outlet from the
```

1 // Chapter -4, Illustration 17, Page 206
2 // Title: Steam Nozzles and Steam Turbines

```
velocity triangle in m/s
18 a1=19; // Nozzle angle from the velocity triangle in
     degrees
19 b1=33; //Blade angle at inlet from the velocity
     triangle in degrees
20 b2=36; //Blade angle at outlet from the velocity
     triangle in degrees
21
22 //OUTPUT
23 mprintf('Nozzle angle is %3.0f degrees \n Blade
     angles are %3.0 f degrees, %3.0 f degrees', a1, b1, b2)
24
25
26
27
28
              END OF PROGRAM
```

Scilab code Exa 4.18 Diagram efficiency

1 //Chapter-4, Illustration 18, Page 207

```
// Title: Steam Nozzles and Steam Turbines

// Clc
clear

//INPUT DATA
U=150; // Blade speed in m/s
m=3; // Mass flow rate of steam in kg/s
P=10.5; // Pressure in bar
r=0.21; // Ratio blade velocity to steam velocity
al=16; // Nozzle angle in first stage in degrees
```

```
13 b2=20; //Blade angle at exit in first stage in
      degrees
14 a3=24; // Nozzle angle in second stage in degrees
15 b4=32; //Blade angle at exit in second stage in
      degrees
16 Wr=0.79; //Blade friction factor for first stage
17 Wr2=0.88; //Blade friction factor for second stage
18 Cr=0.83; //Blade velocity coefficient
19 W1=570; // Relative velocity at inlet from the
      velocity triangle for first stage in m/s
20 C2=375; // Velocity in m/s
21 W3=185; // Relative velocity at inlet from the
      velocity triangle for second stage in m/s
22
23 //CALCULATIONS
24 C1=U/r; //Steam speed at exit in m/s
25 W2=Wr*W1; // Relative velocity at outlet for first
      stage in m/s
26 C3=Cr*C2; //Steam velocity at inlet for second stage
27 W4=Wr2*W3; // Relative velocity at exit for second
      stage in m/s
  DW1=W1+W2; // Change in relative velocity for first
28
      stage in m/s
29 DW2=275; // Change in relative velocity from the
      velocity triangle for second stage in m/s
30 ndia=((2*U*(DW1+DW2))/(C1^2))*100;//Diagram
      efficiency
31
32 //OUTPUT
33 mprintf('Diagram efficiency is %3.1f percent', ndia)
34
35
36
37
                 END OF PROGRAM
```

Scilab code Exa 4.19 Blade speed and Blade tip angles and Diagram efficiency

```
1 //Chapter-4, Illustration 19, Page 208
2 // Title: Steam Nozzles and Steam Turbines
3 //
4 clc
5 clear
7 //INPUT DATA
8 b1=30; //Blade angle at inlet in first stage in
      degrees
  b2=30; //Blade angle at exit in first stage in
      degrees
10 b3=30; //Blade angle at inlet in second stage in
11 b4=30; //Blade angle at exit in second stage in
     degrees
12 t1=240; // Temperature at entry in oC
13 P1=11.5; // Pressure at entry in bar
14 P2=5; // Pressure in wheel chamber in bar
15 vl=10; //Loss in velocity in percent
16 h=155; //Enthalpy at P2 in kJ/kg
17 W4=17.3; // Relative velocity at exit from the
      velocity triangle for second stage in m/s
18 a4=90; // Nozzle angle in second stage in degrees
19 C3=33; //Steam velocity at inlet from the velocity
      triangle for second stage in m/s
20 W2=49; // Relative velocity at outlet from the
      velocity triangle for first stage in m/s
21 x=15; //Length of AB assumed for drawing velocity
      triangle in mm
22 y=67; //Length of BC from the velocity triangle in mm
```

```
23
24 //CALCULATIONS
25 C1=sqrt(2000*h); // Velocity of steam in m/s
26 W3=W4/0.9; // Relative velocity at inlet for second
      stage in m/s
27 C2=C3/0.9; // Velocity in m/s
28 W1=W2/0.9; // Relative velocity at inlet for first
      stage in m/s
29 Cln=Cl/y; // Velocity of steam in m/s
30 U=x*C1n;//Blade speed in m/s
31 a3=17; // Nozzle angle in second stage from the
      velocity triangle in degrees
32 a2=43; //Nozzle angle from the velocity triangle in
      degrees
33 DW1=731.5; //Change in relative velocity from the
      velocity triangle for first stage in m/s
34 DW2=257.5; // Change in relative velocity from the
      velocity triangle for second stage in m/s
35 ndia=((2*U*(DW1+DW2))/(C1^2))*100;//Diagram
      efficiency
36
37 //OUTPUT
38 mprintf('Blade speed is %3.1f m/s \n Blade tip
      angles of the fixed blade are \%3.0f degrees and
      %3.0f degrees \n Diagram efficiency is %3.1f
      percent', U, a3, a2, ndia)
39
40
41
42
43
44
45
46

END OF PROGRAM

■

Output

Description:
```

Scilab code Exa 4.20 Blade speed and Turbine power

1 / Chapter - 4, Illustration 20, Page 210

```
2 // Title: Steam Nozzles and Steam Turbines
3 //
4 clc
5 clear
7 //INPUT DATA
8 C1=600; //Steam velocity in m/s
9 b1=30; //Blade angle at inlet in first stage in
     degrees
10 b2=30; //Blade angle at exit in first stage in
     degrees
  b3=30; //Blade angle at inlet in second stage in
      degrees
12 b4=30; //Blade angle at exit in second stage in
      degrees
13 a4=90; // Nozzle angle in second stage in degrees
14 m=3; //Mass of steam in kg/s
15 x=15; //Length for drawing velocity triangle in mm
16 y=56; //Length of BC from the velocity triangle in mm
17
18 //CALCUALTIONS
19 Cln=Cl/y; // Velocity of steam in m/s
20 U=x*C1n;//Blade speed in m/s
21 l=103; //Length from velocity triangle in mm
22 P=(m*l*C1n*U)/1000; //Power developed in kW
23
24 //OUTPUT
25 mprintf('Blade speed is %3.1 f m/s \n Power developed
      by the turbine is %3.2 f kW',U,P)
```

```
26
27
28
29
30
31
32 //
END OF PROGRAM
```

Scilab code Exa 4.21 Mean diameter of drum and Volume of steam

```
1 //Chapter-4, Illustration 21, Page 211
2 // Title: Steam Nozzles and Steam Turbines
3 //
4 clc
5 clear
7 //INPUT DATA
8 N=400; //Speed in rpm
9 m=8.33; //Mass of steam in kg/s
10 P=1.6; // Pressure of steam in bar
11 x=0.9; // Dryness fraction
12 W=10; //Stage power in kW
13 r=0.75; // Ratio of axial flow velocity to blade
      velocity
14 a1=20; // Nozzle angle at inlet in degrees
15 a2=35; // Nozzle angle at exit in degrees
16 b1=a2; //Blade tip angle at exit in degrees
17 b2=a1; //Blade tip angle at inlet in degrees
18 a=25; // Length of AB from velocity triangle in mm
19 vg=1.091; // Specific volume of steam from steam
      tables in (m^3)/kg
20
```

```
21 //CALCULATIONS
22 Cx=73.5; // Change in whirl velocity from the velocity
       triangle by measurement in mm
23 y=Cx/a; //Ratio of change in whirl velocity to blade
      speed
24 U=sqrt((W*1000)/(m*y));//Blade speed in m/s
25 D=((U*60)/(3.147*N))*1000;//Mean diameter of drum in
26 v=m*x*vg; //Volume flow rate of steam in (m<sup>3</sup>)/s
27
28 //OUTPUT
29 mprintf ('Mean diameter of drum is %3.0 f mm \n Volume
       of steam flowing per second is \%3.2 f m^3/s',D,v)
30
31
32
33
34
35
36
37
38
39
                                 END OF PROGRAM
40
```

Scilab code Exa 4.22 Drum diameter and Blade height

```
1 //Chapter-4, Illustration 22, Page 212 2 //Title: Steam Nozzles and Steam Turbines 3 //
```

4 clc 5 clear

```
6
7 //INPUT DATA
8 N=300; // Speed in rpm
9 m=4.28; //Mass of steam in kg/s
10 P=1.9; // Pressure of steam in bar
11 x=0.93; // Dryness fraction
12 W=3.5; //Stage power in kW
13 r=0.72; // Ratio of axial flow velocity to blade
      velocity
14 a1=20; // Nozzle angle at inlet in degrees
15 b2=a1; //Blade tip angle at inlet in degrees
16 l=0.08; //Tip leakage steam
17 vg=0.929; // Specific volume of steam from steam
      tables in (m^3)/kg
18
19 //CALCULATIONS
20 mact=m-(m*1); // Actual mass of steam in kg/s
21 a=(3.147*N)/60;//Ratio of blade velocity to mean dia
22 b=r*a; //Ratio of axial velocity to mean dia
23 c=46; // Ratio of change in whirl velocity to mean dia
24 D=sqrt((W*1000)/(mact*c*a)); //Mean dia in m
25 Ca=b*D; // Axial velocity in m/s
26 h = ((\text{mact}*x*vg)/(3.147*D*Ca))*1000; //Blade height in
     mm
27 D1=D-(h/1000);//Drum dia in m
28
29 //OUTPUT
30 mprintf('Drum diameter is %3.3 f m \n Blade height is
      \%3.0 \text{ f mm}', D1,h)
31
32
33
34
35
36
37
38
39
```

```
40 //=____END OF PROGRAM
```

Scilab code Exa 4.23 Rotor blade angles and Flow coefficient and Blade loading coefficient

```
1 //Chapter-4, Illustration 23, Page 214
2 // Title: Steam Nozzles and Steam Turbines
3 //
4 clc
5 clear
7 //INPUT DATA
8 P0=800;//Steam pressure in kPa
9 P2=100; // Pressure at point 2 in kPa
10 T0=973; //Steam temperature in K
11 a1=73; // Nozzle angle in degrees
12 ns=0.9;//Steam efficiency
13 m=35; //Mass flow rate in kg/s
14 Cp=1.005;//Specific heat at constant pressure in kJ/
15 y=1.4; // Ratio of specific heats
16
17 //CALCULATIONS
18 b1=atand(tand(a1)/2);//Blade angle at inlet in
     degrees
19 b2=b1; //Blade angle at exit in degrees
20 p=2/tand(a1);//Flow coefficient
21 s=p*(tand(b1)+tand(b2));//Blade loading coefficient
22 Dh=ns*Cp*T0*(1-((P2/P0)^((y-1)/y))); // Difference in
      enthalpies in kJ/kg
23 W=(m*Dh)/1000;//Power developed in MW
24
25 //OUTPUT
```

```
26 mprintf('Rotor blade angles are %3.2f degrees and %3
      .2f degrees \n Flow coefficient is %3.3f \n Blade
       loading coefficient is %3.0 f \n Power developed
      is \%3.1 \text{ f MW}, b1, b2, p,s, W)
27
28
29
30
31
32
33
34
35
36
37
38
39
                                      END OF PROGRAM
40
```

 ${
m Scilab\ code\ Exa\ 4.24}$ Rotor blade angles and Power developed and Final state of ste

```
2 //Title: Steam Nozzles and Steam Turbines
3 //

4 clc
5 clear
6 
7 //INPUT DATA
8 P0=100; //Steam pressure in bar
9 T0=773; //Steam temperature in K
10 a1=70; // Nozzle angle in degrees
11 ns=0.78; //Steam efficiency
```

1 //Chapter-4, Illustration 24, Page 215

```
12 m=100; //Mass flow rate of steam in kg/s
13 D=1; //Turbine diameter in m
14 N=3000;//Turbine speed in rpm
15 h0=3370; //Steam enthalpy from Moiller chart in kJ/kg
16 v2=0.041; // Specific volume at P2 from steam tables
     in (m^3)/kg
17 v4=0.05; // Specific volume at P4 from steam tables in
       (m^3)/kg
18
19 //CALCULATIONS
20 U = (3.147*D*N)/60; //Blade speed in m/s
21 C1=(2*U)/sind(a1);//Steam speed in m/s
22 b1=atand(tand(a1)/2);//Blade angle at inlet for
      first stage in degrees
23 b2=b1; //Blade angle at exit for first stage in
      degrees
24 b3=b1; //Blade angle at inlet for second stage in
     degrees
25 b4=b2; //Blade angle at exit for second stage in
     degrees
26 Wt = (4*m*(U^2))/(10^6); //Total workdone in MW
27 Dh=(2*(U^2))/1000; // Difference in enthalpies in kJ/
     kg
28 Dhs=Dh/ns;//Difference in enthalpies in kJ/kg
29 h2=h0-Dh; //Enthalpy at point 2 in kJ/kg
30 h2s=h0-Dhs; //Enthalpy at point 2s in kJ/kg
31 Dh2=(2*(U^2))/1000; // Difference in enthalpies in kJ/
     kg
32 Dh2s=Dh2/ns; // Difference in enthalpies in kJ/kg
33 h4=h2-Dh2; //Enthalpy at point 4 in kJ/kg
34 h4s=h2-Dh2s; //Enthalpy at point 4s in kJ/kg
35 Ca=C1*cosd(a1); // Axial velocity in m/s
36 hI=(m*v2)/(3.147*D*Ca);//Blade height at first stage
      in m/s
37 hII=(m*v4)/(3.147*D*Ca); //Blade height at second
     stage in m/s
38
39 //OUTPUT
```

```
40 mprintf ('Rotor blade angles for first stage are \%3.2
      f degrees and %3.2f degrees \n Rotor blade angles
       for second stage are %3.2f degrees and %3.2f
      degrees \n Power developed is %3.2 f MW \n Final
      state of steam at first stage is \%3.2 f kJ/kg \n
      Final state of steam at second stage is %3.2 f kJ/
      kg \n Blade height at first stage is \%3.4f m \n
      Blade height at second stage is %3.4 f m', b1, b2, b3
      , b4, Wt, h2s, h4s, hI, hII)
41
42
43
44
45
46
47
48
49
50
51
52
53
54
                                 END OF PROGRAM
55
```

 ${
m Scilab\ code\ Exa\ 4.25}$ Rotor blade angles and Power developed and Final state of ste

```
1 //Chapter-4, Illustration 25, Page 218 2 //Title: Steam Nozzles and Steam Turbines 3 //
```

⁴ clc

⁵ clear

```
6
7 //INPUT DATA
8 P0=100; //Steam pressure in bar
9 T0=773; //Steam temperature in K
10 a1=70; // Nozzle angle in degrees
11 ns=0.78; //Steam efficiency
12 m=100; //Mass flow rate of steam in kg/s
13 D=1; // Turbine diameter in m
14 N=3000; // Turbine speed in rpm
15 h0=3370; //Steam enthalpy from Moiller chart in kJ/kg
16 P4=27; // Pressure at point 4 in bar
17 T4=638; // Temperature at point 4 in K
18 v4=0.105; // Specific volume at P4 from mollier chart
      in (m^3)/kg
19 ns=0.65; //Stages efficiency
20
21 //CALCULATIONS
22 U = (3.147*D*N)/60; //Blade speed in m/s
23 C1=(4*U)/sind(a1);//Steam speed in m/s
24 Ca=C1*cosd(a1);//Axial velocity in m/s
25 b1=atand((3*U)/Ca);//Blade angle at inlet for first
      stage in degrees
  b2=b1; //Blade angle at exit for first stage in
      degrees
27
  b4=atand(U/Ca);//Blade angle at exit for second
      stage in degrees
  b3=b4; //Blade angle at inlet for second stage in
      degrees
29 WI=m*6*(U^2);//Power developed in first stage in MW
30 WII=m*2*(U^2); //Power developed in second stage in
     MW
31 W=(WI+WII)/(10<sup>6</sup>);//Total power developed in MW
32 Dh=(W*1000)/100;//Difference in enthalpies in kJ/kg
33 Dhs=(W*1000)/(ns*100); // Difference in enthalpies in
34 h4=h0-Dh; //Enthalpy at point 4 in kJ/kg
35 h4s=h0-Dhs; //Enthalpy at point 4s in kJ/kg
36 h=(m*v4)/(3.147*D*Ca);//Rotor blade height in m
```

```
37
38 //OUTPUT
39 mprintf('Rotor blade angles for first stage are \%3.2
      f degrees and \%3.2\,\mathrm{f} degrees \n Rotor blade angles
       for second stage are %3.2f degrees and %3.2f
      degrees \n Power developed is %3.2 f MW \n Final
      state of steam at first stage is \%3.1f kJ/kg \n
      Final state of steam at second stage is %3.2 f kJ/
      kg \n Rotor blade height is \%3.4 f m', b1, b2, b3, b4,
      W,h4,h4s,h)
40
41
42
43
44
45
46
47
48
49
50
                            END OF PROGRAM
```

Scilab code Exa 4.26 Rotor blade angles

```
1 //Chapter-4, Illustration 26, Page 221
2 //Title: Steam Nozzles and Steam Turbines
3 //
4 clc
5 clear
6 
7 //INPUT DATA
8 a1=30; //Nozzle angle in degrees
```

```
9 Ca=180; // Axial velocity in m/s
10 U=280; //Rotor blade speed in m/s
11 R=0.5; // Degree of reaction
12
13 //CALCULATIONS
14 alm=90-al;//Nozzle angle measured from axial
      direction in degrees
15 Cx1=Ca*tand(a1n);//Whirl velocity in m/s
16 b1=atand((Cx1-U)/Ca);//Blade angle at inlet in
      degrees
17 b2=a1n; //Blade angle at exit in degrees
18
19 //OUTPUT
20 mprintf('Blade angle at inlet is %3.0f degrees \n
      Blade angle at exit is %3.0f degrees',b1,b2)
21
22
23
24
25
26
27
28
29
                                    END OF PROGRAM
30
```

 ${f Scilab\ code\ Exa\ 4.27}$ Rotor blade angles and Power developed and Isentropic enthalp

```
1 //Chapter-4, Illustration 27, Page 222
2 //Title: Steam Nozzles and Steam Turbines
3 //
```

4 clc

```
5 clear
6
7 //INPUT DATA
8 P0=800; //Steam pressure in kPa
9 T0=900; //Steam temperature in K
10 a1=70; //Nozzle angle in degrees
11 ns=0.85; //Steam efficiency
12 m=75; //Mass flow rate of steam in kg/s
13 R=0.5; // Degree of reaction
14 U=160; //Blade speed in m/s
15
16 //CALCULATIONS
17 C1=U/sind(a1);//Steam speed in m/s
18 Ca=C1*cosd(a1);//Axial velocity in m/s
19 b1=0; // Blade angle at inlet from velocity triangle
     in degrees
20 b2=a1; //Blade angle at exit in degrees
21 a2=b1; // Nozzle angle in degrees
22 W=(m*(U^2))/(10^6);//Power developed in MW
23 Dhs=(W*1000)/(ns*m);//Isentropic enthalpy drop in kJ
     /kg
24
25 //OUTPUT
26 mprintf('Rotor blade angles are %3.0f degrees and %3
      .0f degrees \n Power developed is \%3.2f MW \n
      Isentropic enthalpy drop is %3.2 f kJ/kg', b1, b2, W,
     Dhs)
27
28
29
30
31
32
33
34
                                  END OF PROGRAM
35
```

Chapter 5

Air Compressors

Scilab code Exa 5.1 Indicated power and Mass of air and Temperature delivered by c

```
1 //Chapter -5, Illustration 1, Page 250
2 //Title: Air Compressors
3 //
4 clc
```

```
4 clc
5 clear
6
7 //INPUT DATA
8 D=0.2; // Cylinder diameter in m
9 L=0.3; // Cylinder Stroke in m
10 P1=1; // Pressure at entry in bar
11 T1=300; // Temperature at entry in K
12 P2=8; // Pressure at exit in bar
13 n=1.25; // Adiabatic gas constant
14 N=100; // Speed in rpm
15 R=287; // Universal gas constant in J/kg-K
16
17 //CALCULATIONS
18 x=(n-1)/n; // Ratio
19 V1=(3.147*L*(D^2))/4; // Volume of cylinder in m^3/
```

```
cycle
20 W=(P1*(10^5)*V1*(((P2/P1)^x)-1))/x;//Work done in J/
21 Pc=(W*100)/(60*1000);//Indicated power of compressor
      in kW
22 m=(P1*(10^5)*V1)/(R*T1);/Mass of air delivered in
     kg/cycle
23 md=m*N; // Mass delivered per minute in kg
24 T2=T1*((P2/P1)^x);//Temperature of air delivered in
25
26 //OUTPUT
27 mprintf('Indicated power of compressor is %3.2 f kW \
     n Mass of air delivered by compressor per minute
     is %3.2 f kg \n Temperature of air delivered is %3
      .1\,\mathrm{fK}', Pc, md, T2)
28
29
30
31
               END OF PROGRAM
32 / =
```

Scilab code Exa 5.2 Size of cylinder

```
1 //Chapter -5, Illustration 2, Page 251
2 //Title: Air Compressors
3 //
4 clc
5 clear
6 7 //INPUT DATA
8 IP=37; //Indicated power in kW
```

```
9 P1=0.98; // Pressure at entry in bar
10 T1=288; // Temperature at entry in K
11 P2=5.8; // Pressure at exit in bar
12 n=1.2; // Adiabatic gas constant
13 N=100; //Speed in rpm
14 Ps=151.5; // Piston speed in m/min
15 a=2; //For double acting compressor
16
17 //CALCULATIONS
18 L=Ps/(2*N);//Stroke length in m
19 x=(n-1)/n; // Ratio
20 r = (3.147*L)/4; // Ratio of volume to bore
21 D=sqrt((IP*1000*60*x)/(N*a*r*P1*(10^5)*(((P2/P1)^x))
      -1)));//Cylinder diameter in m
22
23 //OUTPUT
24 mprintf('Stroke length of cylinder is \%3.4 f m \n
      Cylinder diameter is %3.4 f m', L, D)
25
26
27
28
29
30
                                    ≡END OF PROGRAM
31
```

Scilab code Exa 5.3 Cylinder dimensions

```
1 //Chapter-5, Illustration 3, Page 251
2 //Title: Air Compressors
3 //
```

4 clc

```
5 clear
7 //INPUT DATA
8 IP=11; //Indicated power in kW
9 P1=1; // Pressure at entry in bar
10 P2=7; // Pressure at exit in bar
11 n=1.2; // Adiabatic gas constant
12 Ps=150; // Piston speed in m/s
13 a=2; //For double acting compressor
14 r=1.5; // Storke to bore ratio
15
16 //CALCULATIONS
17 x=(n-1)/n; // Ratio
18 y=3.147/(4*(r^2)); //Ratio of volume to the cube of
      stroke
19 z=(P1*(10^2)*y*(((P2/P1)^x)-1))/x;//Ratio of
      workdone to the cube of stroke
20 L=(sqrt(IP/(z*Ps)))*1000;//Stroke in mm
21 D=(L/r); //Bore in mm
22
23 //OUTPUT
24 mprintf('Stroke length of cylinder is \%3.0 f mm \n
      Bore diameter of cylinder is %3.0 f mm', L, D)
25
26
27
28
29
30
                               END OF PROGRAM
31
```

 ${f Scilab\ code\ Exa\ 5.4\ Volumetric\ efficiency\ and\ Volumetric\ efficiency\ referred\ to\ at}$

```
1 / Chapter -5, Illustration 4, Page 252
```

```
3 //
4 clc
5 clear
7 //INPUT DATA
8 x=0.05; // Ratio of clearance volume to swept volume
9 P1=1; // Pressure at point 1 in bar
10 T1=310; // Temperature at point 1 in K
11 n=1.2; // Adiabatic gas constant
12 P2=7; // Pressure at point 2 in bar
13 Pa=1.01325; // Atmospheric pressure in bar
14 Ta=288; // Atmospheric temperature in K
15
16 //CALCULATIONS
17 V1=1+x; //Ratio of volume of air sucked to stroke
18 V4=((P2/P1)^(1/n))/20; //Ratio of volume delivered to
       stroke volume
19 DV=V1-V4; // Difference in volumes
20 nv1=DV*100; // Volumetric efficiency
21 V=(P1*DV*Ta)/(T1*Pa);//Ratio of volumes referred to
      atmospheric conditions
22 nv2=V*100;//Volumetric efficiency referred to
      atmospheric conditions
23 W=(n*0.287*T1*((P2/P1)^((n-1)/n)-1))/(n-1); //Work
      required in kJ/kg
24
25 //OUTPUT
26 mprintf ('Volumetric efficiency is \%3.1f percent \n
      Volumetric efficiency referred to atmospheric
      conditions is \%3.1f percent \n Work required is
      \%3.1 \text{ f kJ/kg}', \text{nv1}, \text{nv2}, \text{W})
27
28
29
```

2 // Title: Air Compressors

```
30
31
32
33
34
35 //
END OF PROGRAM
```

Scilab code Exa 5.5 Theoretical volume of air taken

```
1 //Chapter-5, Illustration 5, Page 253
2 //Title: Air Compressors
3 //
```

```
4 clc
5 clear
7 //INPUT DATA
8 D=0.2; //Bore in m
9 L=0.3; // Stroke in m
10 lc=0.015; //Linear clearance in m
11 P1=1; // Pressure at point 1 in bar
12 P2=7; // Pressure at point 2 in bar
13 n=1.25; // Adiabatic gas constant
14
15 //CALCULATIONS
16 V3 = (3.147*(D^2)*lc)/4; //Clearance volume in m^3
17 Vs = (3.147*(D^2)*L)/4; //Stoke volume in m^3
18 C=V3/Vs; // Clearance ratio
19 nv = (1+C-(C*((P2/P1)^(1/n))))*100; //Volumetric
      efficiency
20 DV=(nv*Vs)/100; //Volume of air taken in (m^3)/stroke
21
22 //OUTPUT
```

Scilab code Exa 5.6 Mean effective pressure and Power required

1 //Chapter-5, Illustration 6, Page 254

```
2 // Title: Air Compressors
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 D=0.2;//Bore in m
9 L=0.3; // Stroke in m
10 r=0.05; // Ratio of clearance volume to stroke volume
11 P1=1; // Pressure at point 1 in bar
12 T1=293; // Temperature at point 1 in K
13 P2=5.5; // Pressure at point 2 in bar
14 n=1.3; // Adiabatic gas constant
15 N=500;//Speed of compressor in rpm
16
17 //CALCULATIONS
18 x = (n-1)/n; // Ratio
```

```
19 Vs = (3.147*L*(D^2))/4; //Stroke volume in m^3
20 Vc=r*Vs; // Clearance volume in m<sup>3</sup>
21 V1=Vc+Vs; //Volume at point 1 in m<sup>3</sup>
22 V4=Vc*((P2/P1)^(1/n)); //Volume at point 4 in m^3
23 EVs=V1-V4; // Effective swept volume in m<sup>3</sup>
24 W=(P1*(10^5)*EVs*(((P2/P1)^x)-1))/x;/Work done in J
      /cycle
25 MEP=(W/Vs)/(10<sup>5</sup>);//Mean effective pressure in bar
26 P=(W*N)/(60*1000); //Power required in kW
27
28 //OUTPUT
29 mprintf('Mean effective pressure is %3.2 f bar \n
      Power required is %3.2 f kW', MEP, P)
30
31
32
33
34
35
                                END OF PROGRAM
36
```

 ${f Scilab\ code\ Exa\ 5.7}$ Free air delivered and Volumetric efficiency and Delivery temp

```
2 // Title: Air Compressors
3 //

4 clc
5 clear
6 
7 //INPUT DATA
8 D=0.2; // Bore in m
9 L=0.3; // Stroke in m
```

1 / Chapter - 5, Illustration 7, Page 255

```
10 r=0.05; //Ratio of clearance volume to stroke volume
11 P1=97; // Pressure at entry in kN/(m^2)
12 P4=P1; // Pressure at point 4 in kN/(m<sup>2</sup>)
13 T1=293; // Temperature at point 1 in K
14 P2=550; // Compression Pressure in kN/(m^2)
15 P3=P2; // Pressure at point 3 in kN/(m^2)
16 n=1.3; // Adiabatic gas constant
17 N=500; //Speed of compressor in rpm
18 Pa=101.325; // Air pressure in kN/(m^2)
19 Ta=288; // Air temperature in K
20
21 //CALCULATIONS
22 x = (n-1)/n; // Ratio
23 DV=(3.147*L*(D^2))/4;//Difference in volumes in m^3
24 V3=r*DV; // Clearance volume in m<sup>3</sup>
25 V1=V3+DV; // Volume at point 1 in m<sup>3</sup>
26 \text{ V4=V3*((P3/P4)^(1/n));}//\text{Volume at point 4 in m^3}
27 Vs=V1-V4; // Effective swept volume in m<sup>3</sup>
28 EVs=Vs*N; // Effective swept volume per min
29 Va=(P1*EVs*Ta)/(Pa*T1); //Free air delivered in (m^3)
      /min
30 nV = ((V1 - V4)/(V1 - V3)) *100; //Volumetric effciency
31 T2=T1*((P2/P1)^x); // Air delivery temperature in K
32 t2=T2-273; //Air delivery temperature in oC
33 W=(n*P1*(V1-V4)*(((P2/P1)^x)-1))*N/((n-1)*60);//
      Cycle power in kW
34 Wiso=P1*V1*(log(P2/P1));//Isothermal workdone
35 P=(n*P1*V1*(((P2/P1)^x)-1))/(n-1); // Cycle power
      neglecting clearance
36 niso=(Wiso/P)*100; //Isothermal efficiency
37
38 //OUTPUT
39 mprintf('Free air delivered is %3.3f (m^3)/min \n
      Volumetric efficiency is %3.0f percent \n Air
      delivery temperature is %3.1 f oC \n Cycle power
      is %3.0 f kW \n Isothermal efficiency is %3.1 f
      percent', Va, nV, t2, W, niso)
40
```

```
41
42
43
44
45
46
47
48
49
50 //
END OF PROGRAM
```

Scilab code Exa 5.8 Mean effective pressure and Brake power

1 //Chapter-5, Illustration 8, Page 257

```
2 // Title: Air Compressors
3 //
4 clc
5 clear
7 //INPUT DATA
8 Ve=30; // Volume of air entering compressor per hour
      in m<sup>3</sup>
9 P1=1; // Presure of air entering compressor in bar
10 N=450; //Speed in rpm
11 P2=6.5; // Pressure at point 2 in bar
12 nm=0.8; // Mechanical efficiency
13 nv=0.75; // Volumetric efficiency
14 niso=0.76; // Isothermal efficiency
15
16 //CALCULATIONS
17 Vs=Ve/(nv*3600); //Swept volume per sec in (m^3)/s
18 V=(Vs*60)/N;//Swept volume per cycle in m^3
```

```
19 V1 = (Ve * 60) / (3600 * N); //Volume at point 1 in m^3
20 Wiso=P1*100*V1*log(P2/P1);//Isothermal workdone per
      cycle
21 Wact=Wiso/niso; // Actual workdone per cycle on air
22 MEP=(Wact/V)/100;//Mean effective pressure in bar
23 IP=(Wact*N)/60;//Indicated power in kW
24 BP=IP/nm; //Brake power in kW
25
26 //OUTPUT
27 mprintf('Mean effective pressure is %3.3f bar \n
      Brake power is %3.2 f kW', MEP, BP)
28
29
30
31
32
33
34
35
                                    END OF PROGRAM
```

Scilab code Exa 5.9 Cylinder dimensions

1 / Chapter - 5, Illustration 9, Page 258

```
2 //Title: Air Compressors
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 Va=15;//Volume of air in (m^3)/min
9 Pa=1.01325;//Pressure of air in bar
```

10 Ta=302; // Air temperature in K

```
11 P1=0.985; // Pressure at point 1 in bar
12 T1=313; // Temperature at point 1 in K
13 r=0.04; // Ratio of clearance volume to swept volume
14 y=1.3; // Ratio of stroke to bore diameter
15 N=300; //Speed in rpm
16 n=1.3; // Adiabatic gas constant
17 P2=7.5; // Pressure at point 2 in bar
18
19 //CALCULATIONS
20 x=((P2/P1)^(1/n))-1;//Ratio of volume at point 4 to
      clearance volume
21 a=x*r;//Ratio of volume at point 4 to swept volume
22 nv=1-a; // Volumetric efficiency
23 V1=(Pa*Va*T1)/(Ta*P1);//Volume at point 1 in (m<sup>3</sup>)/
      min
24 Vs=V1/(nv*N*2); //Swept volume in m<sup>3</sup>
25 D=((Vs*4)/(3.147*y))^(1/3);//Bore in m
26 L=y*D; //Stroke in m
27
28 //OUTPUT
29 mprintf('Cylinder bore in %3.3f m \n Cylinder stroke
       \%3.3 \, \text{fm}', D, L)
30
31
32
33
34
35
                                     ■END OF PROGRAM
36
```

 ${f Scilab\ code\ Exa\ 5.10}$ Volumetric efficiency and Indicated power and Isothermal effi

```
1 //Chapter-5, Illustration 10, Page 259
2 //Title: Air Compressors
```

```
3 //
```

```
4 clc
5 clear
7 //INPUT DATA
8 P1=0.98; // Pressure at point 1 in bar
9 P4=P1; // Pressure at point 4 in bar
10 P2=7; // Pressure at point 2 in bar
11 P3=P2; // Pressure at point 3 in bar
12 n=1.3; // Adiabatic gas constant
13 Ta=300; // Air temperature in K
14 Pa=1.013; // Air pressure in bar
15 T1=313; // Temperature at point 1 in K
16 c=0.04; // Ratio of clearance volume to swept volume
17 Va=15; //Volume of air delivered in m<sup>3</sup>
18 R=0.287; // Universal gas constant in kJ/kg-K
19
20 //CALCULATIONS
21 x = (n-1)/n; // Ratio
22 r=(P2/P1)^(1/n); //Ratio of volumes
23 a=r*c;//Ratio of volume at point 4 to swept volume
24 DV=1+c-a; // Difference in volumes
25 V = (P1*DV*Ta)/(T1*Pa); //Volume of air delivered per
      cycle
26 nv=V*100; // Volumetric efficiency
27 DV1=(Pa*Va*T1)/(Ta*P1);//Difference in volumes
28 T2=T1*((P2/P1)^x); // Temperature at point 2 in K
29 ma=(Pa*100*Va)/(R*Ta);//Mass of air delivered in kg/
30 IP=(ma*R*(T2-T1))/(x*60);//Indicated power in kW
31 Piso=(ma*R*T1*log(P2/P1))/60; //Isothermal indicated
      power in kW
32 niso=(Piso/IP)*100;//Isothermal efficiency
33
34 //OUTPUT
35 mprintf('Volumetric efficiency is %3.1f percent \n
```

```
Indicated power is %3.2 f kW \n Isothermal
      efficiency is %3.0f percent', nv, IP, niso)
36
37
38
39
40
41
42
43
44
45
46
47
48
49
                                END OF PROGRAM
50
```

Scilab code Exa 5.11 Power required

```
2 // Title: Air Compressors
3 //

4 clc
5 clear
6
7 //INPUT DATA
8 V1=7*(10^-3); // Volume of air in (m^3)/s
9 P1=1.013; // Pressure of air in bar
10 T1=288; // Air temperature in K
11 P2=14; // Pressure at point 2 in bar
12 n=1.3; // Adiabatic gas constant
```

1 //Chapter-5, Illustration 11, Page 261

```
13 nm=0.82; // Mechanical efficiency
14
15 //CALCULATIONS
16 x=(n-1)/n;//Ratio
17 W=(P1*100*V1*(((P2/P1)^x)-1))/x;//Work done by
      compressor in kW
18 P=W/nm; //Power required to drive compressor in kW
19
20 //OUTPUT
21 mprintf ('Power required to drive compressor is %3.2 f
     kW, P
22
23
24
25
26
27
28
29
                           END OF PROGRAM
30
```

 ${f Scilab\ code\ Exa\ 5.12}$ Theoretical volume efficiency and Volume of air delivered and

```
2 // Title: Air Compressors
3 //

4 clc
5 clear
6
7 //INPUT DATA
8 L=0.15; // Stroke in mm
9 D=0.15; // Bore in mm
```

1 //Chapter-5, Illustration 12, Page 261

```
10 N=8; //Speed in rps
11 P1=100; // Pressure at point 1 in kN/(m^2)
12 P2=550; // Pressure at point 2 in kN/(m^2)
13 n=1.32; // Adiabatic gas constant
14 C=0.06; // Ratio of clearance volume to swept volume
15
16 //CALCULATIONS
17 x=(n-1)/n; // Ratio
18 nv = (1+C-(C*((P2/P1)^(1/n))))*100; //Volumetric
      efficiency
19 DV = (3.147*(D^2)*L)/4; //Difference in volumes at
      points 1 and 3
20 DV1=(nv*DV)/100;//Difference in volumes at points 1
      and 4
21 V2=DV1*((P1/P2)^(1/n))*N;//Volume of air delivered
      per second
22 W=(P1*DV1*(((P2/P1)^x)-1))*N/x;//Power of compressor
       in kW
23
24 //OUTPUT
25 mprintf('Theoretical volume efficiency is %3.1f
      percent \n Volume of air delivered is \%3.5 f (m^3)
      /s \n Power of compressor is %3.3 f kW', nv, V2, W)
26
27
28
29
30
31
32
33
34
                                 END OF PROGRAM
35
```

Scilab code Exa 5.13 Minimum indicated power and Maximum temperature and Heat to b

```
1 //Chapter-5, Illustration 13, Page 262
2 // Title: Air Compressors
3 //
4 clc
5 clear
7 //INPUT DATA
8 V=16; //Volume of air compressed in m<sup>3</sup>
9 P1=1; // Pressure at point 1 in bar
10 P3=10.5; // Pressure at point 3 in bar
11 T1=294; // Temperature at point 1 in K
12 Tc=25; // Temperature of cooling water in oC
13 n=1.35; // Adiabatics gas constant
14 R=0.287; // Universal gas constant in kJ/kg-K
15 Cp=1.005; // Specific heat at constant pressure in kJ/
     kg-K
16 Cw=4.187; // Specific heat of water in kJ/kg-K
17
18 //CALCULATIONS
19 x = (n-1)/n; // Ratio
20 P2=sqrt(P1*P3); //Pressure at point 2 in bar
21 W1 = (2*P1*100*V*(((P2/P1)^x)-1))/(x*60); //Indicated
     power of compressor from P1 to P2 in kW
22 W2=(P1*100*V*(((P3/P1)^x)-1))/(x*60);//Indicated
      power of compressor from P1 to P3 in kW
23 T4=T1*((P2/P1)^x);//Maximum temperature for two
      stage compression in K
24
  T2=T1*((P3/P1)^x);//Maximum temperature for single
      stage compression in K
25
  m=(P1*100*V)/(R*T1);//Mass of air compressed in kg/
26 Q=m*Cp*(T4-T1); //Heat rejected by air in kJ/min
27 mc=Q/(Cw*Tc);//Mass of cooling water in kg/min
28
```

```
29 //OUTPUT
30 mprintf ('Minimum indicated power required for 2
      stage compression is %3.1 f kW \n Power required
      for single stage compression is 18 percent more
      than that for two stage compression with perfect
     intercooling \n Maximum temperature for two stage
      compression is %3.1 f K \n Maximum temperature
     for single stage compression is %3.1 f K \n Heat
      rejected by air is %3.1f kJ/min \n Mass of
      cooling water required is %3.1 f kg/min', W1, T4, T2,
     Q,mc)
31
32
33
34
35
36
37
38
39
40
41
42
43
44
                                  END OF PROGRAM
45
```

 ${f Scilab\ code\ Exa\ 5.14}$ Intermediate pressure and Total volume of each cylinder and C

```
1 //Chapter-5, Illustration 14, Page 264
2 //Title: Air Compressors
3 //
```

```
4 clc
5 clear
7 //INPUT DATA
8 V=0.2; //Air flow rate in (m^3)/s
9 P1=0.1; //Intake pressure in MN/(m^2)
10 P3=0.7; //Final pressure in MN/(m^2)
11 T1=289; //Intake temperature in K
12 n=1.25; // Adiabatic gas constant
13 N=10; // Compressor speed in rps
14
15 //CALCULATIONS
16 x=(n-1)/n; // Ratio
17 P2=sqrt(P1*P3); //Intermediate pressure in MN/(m^2)
18 V1=(V/N)*1000; // Total volume of LP cylinder in
19 V2=((P1*V1)/P2);//Total volume of HP cylinder in
20 W=((2*P1*V*(((P2/P1)^x)-1))/x)*1000; //Cycle power in
       kW
21
22 //OUTPUT
23 mprintf('Intermediate pressure is \%3.3 \, \text{f MN/(m^2)} \setminus n
      Total volume of LP cylinder is %3.0f litres \n
      Total volume of HP cylinder is %3.1f litres \n
      Cycle power is \%3.0 \, \text{f kW}', P2, V1, V2, W)
24
25
26
27
28
29
30
31
                                     ≡END OF PROGRAM
32
```

Scilab code Exa 5.15 Power of compressor

```
1 //Chapter-5, Illustration 15, Page 265
2 // Title: Air Compressors
3 //
4 clc
5 clear
7 //INPUT DATA
8 P1=1; // Pressure at point 1 in bar
9 T1=290; // Temperature at point 1 in K
10 P3=60; // Pressure at point 3 in bar
11 P2=8; // Pressure at point 2 in bar
12 T2=310; // Temperature at point 2 in K
13 L=0.2; // Stroke in m
14 D=0.15; // Bore in m
15 n=1.35; // Adiabatic gas constant
16 N=200; //Speed in rpm
17
18 //CALCULATIONS
19 x = (n-1)/n; // Ratio
20 V1 = (3.147*(D^2)*L)/4; //Volume at point 1 in m^3
21 V2=(P1*V1*T2)/(T1*P2);//Volume of air entering LP
      cylinder in m<sup>3</sup>
22 W = ((P1*(10^5)*V1*(((P2/P1)^x)-1))/x)+((P2*(10^5)*V2)
      *(((P3/P2)^x)^{-1}))/x);//Workdone by compressor per
       cycle in J
23 P=(W*N)/(60*1000); //Power of compressor in kW
24
25 //OUTPUT
26 mprintf ('Power of compressor is %3.2 f kW',P)
27
```

1 //Chapter-5, Illustration 16, Page 265

2 // Title: Air Compressors

 ${\bf Scilab}\ {\bf code}\ {\bf Exa}\ {\bf 5.16}$ Heat rejected and Diameter of HP cylinder and Power required

```
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 N=220; //Speed of compressor in rpm
9 P1=1;//Pressure entering LP cylinder in bar
10 T1=300; // Temperature at point 1 in K
11 Dlp=0.36; //Bore of LP cylinder in m
12 Llp=0.4; //Stroke of LP cylinder in m
13 Lhp=0.4; //Stoke of HP cylinder in m
14 C=0.04; // Ratio of clearance volumes of both
      cylinders
15 P2=4; // Pressure leaving LP cylinder in bar
16 P5=3.8; // Pressure entering HP cylinder in bar
17 T3=300; // Temperature entering HP cylinder in K
18 P6=15.2; // Dicharge pressure in bar
19 n=1.3; // Adiabatic gas constant
```

20 Cp=1.0035; // Specific heat at constant pressure in kJ

```
/ kg - K
21 R=0.287; // Universal gas constant in kJ/kg-K
22 T5=T1; // Temperature at point 5 in K
23
24 //CALCULATIONS
25 x = (n-1)/n; // Ratio
26 Vslp = (3.147*(Dlp^2)*Llp*N*2)/4; //Swept volume of LP
      cylinder in m<sup>3</sup>/min
27 nv=1+C-(C*((P2/P1)^(1/n)));//Volumetric efficiency
28 V1=nv*Vslp; //Volume of air drawn at point 1 in (m<sup>3</sup>)
      /min
29 m = (P1*100*V1)/(R*T1); //Mass of air in kg/min
30 T2=T1*((P2/P1)^x); // Temperature at point 2 in K
31 QR=m*Cp*(T2-T5); // Heat rejected in kJ/min
32 V5=(m*R*T5)/(P5*100);//Volume of air drawn in HP
      cylinder M<sup>3</sup>/min
33 Plp=P2/P1; // Pressure ratio of LP cylinder
34 Php=P6/P5; // Pressure ratio of HP cylinder
35 Vshp=V5/nv; //Swept volume of HP cylinder in m<sup>3</sup>/min
36 Dhp=sqrt((Vshp*4)/(3.147*Lhp*N*2)); //Bore of HP
      cylinder in m
37 P=(m*R*(T2-T1))/(x*60); //Power required for HP
      cylinder in kW
38
39 //OUTPUT
40 mprintf ('Heat rejected in intercooler is \%3.1 f kJ/
      min \n Diameter of HP cylinder is \%3.4 f m \n
      Power required for HP cylinder is %3.0 f kW',QR,
      Dhp,P)
41
42
43
44
45
46
47
48
49
```

Scilab code Exa 5.17 Ratio of cylinder diameters

```
1 //Chapter-5, Illustration 17, Page 267
2 // Title: Air Compressors
3 //
4 clc
5 clear
7 //INPUT DATA
8 P1=1; // Pressure at point 1 in bar
9 P3=30; // Pressure at point 3 in bar
10 T1=300; // Temperature at point 1 in K
11 n=1.3; // Adiabatics gas constant
12
13 //CALCULATIONS
14 P2=sqrt(P1*P3);//Intermediate pressure in bar
15 rD=sqrt(P2/P1);//Ratio of cylinder diameters
16
17 //OUTPUT
18 mprintf ('Ratio of cylinder diameters is %3.2 f', rD)
19
20
21
22
23
24
25
26 / =
                 END OF PROGRAM
```

Scilab code Exa 5.18 Delivery pressures and Ratio of cylinder volumes and Temperat

```
1 //Chapter-5, Illustration 18, Page 268
2 // Title: Air Compressors
3 //
4 clc
5 clear
7 //INPUT DATA
8 P1=1.013; // Pressure at point 1 in bar
9 T1=288; // Temperaturea at point 1 in K
10 v1=8.4; //free air delivered by compressor in m<sup>3</sup>
11 P4=70; // Pressure at point 4 in bar
12 n=1.2; // Adiabatic gas constant
13 Cp=1.0035; // Specific heat at constant pressure in kJ
      / kg - K
14
15 //CALCULATIONS
16 x = (n-1)/n; // Ratio
17 P2=P1*((P4/P1)^(1/3));//LP cylinder delivery
      pressure in bar
18 P3=P2*((P4/P1)^(1/3)); //IP \ cylinder \ delivery
      pressure in bar
19 r=P2/P1; // Ratio of cylinder volumes
20 r1=P3/P2; // Ratio of cylinder volumes
21 r2=r*r1; // Ratio of cylinder volumes
22 V3=1; //Volume at point 3 in m^3
23 T4=T1*((P2/P1)^x);//Three stage outlet temperature
      in K
24 QR=Cp*(T4-T1);//Heat rejected in intercooler in kJ/
      kg of air
25 W = ((3*P1*100*v1*(((P4/P1)^(x/3))-1))/(x*60)); // Total
```

indiacted power in kW

```
26
27
  //OUTPUT
28 mprintf('LP cylinder delivery pressure is %3.3f bar
      \n IP cylinder delivery pressure is \%3.2 f bar \n
      Ratio of cylinder volumes is \%3.2\,\mathrm{f}:\%3.1\,\mathrm{f}:\%3.0\,\mathrm{f} \n
       Temperature at end of each stage is %3.2 f K \n
      Heat rejected in each intercooler is %3.1f kJ/kg
      of air \n Total indicated power is \%3.2 f kW', P2,
      P3,r2,r1,V3,T4,QR,W)
29
30
31
32
33
34
35
36
37
38
39
40
                                END OF PROGRAM
41
```

 ${f Scilab\ code\ Exa\ 5.19}$ Intermediate pressures and Effective swept volume and Tempera

```
1 //Chapter -5, Illustration 19, Page 269
2 //Title: Air Compressors
3 //
4 clc
5 clear
6
```

```
7 //INPUT DATA
8 D=0.45; //Bore in m
9 L=0.3; // Stroke in m
10 C=0.05; //Ratio of clearance volume to swept volume
11 P1=1; // Pressure at point 1 inn bar
12 T1=291; // Temperature at point 1 in K
13 P4=15; // Pressure at point 4 in bar
14 n=1.3; // Adiabatic gas constant
15 R=0.29; // Universal gas constant in kJ/kg-K
16
17 //CALCULATIONS
18 x=(n-1)/n; // Ratio
19 k=(P4/P1)^{(1/3)}; //Pressure ratio
20 P2=k*P1; // Pressure at point 2 in bar
21 P3=k*P2; // Pressure at point 1 in bar
22 Vslp=(3.147*(D^2)*L)/4;//Swept volume of LP cylinder
23 V7=C*Vslp;//Volume at point 7 in m<sup>3</sup>
24 V1=Vslp+V7; //Volume at point 1 in m<sup>3</sup>
25 V8=V7*(k^(1/n)); //Volume at point 8 in m^3
26 EVs=(V1-V8)*1000; // Effective swept volume in litres
27 T4=T1*(k^x); // Temperature at point 4 in K
28 t4=T4-273; // Delivery temperature in oC
29 DV = ((P1*T4*(V1-V8))/(P4*T1))*1000; //Delivery volume
      per stroke in litres
30 W=(3*R*T1*((k^x)-1))/x;//Workdone per kg of air in
      kJ
31
32 //OUTPUT
33 mprintf('Intermediate pressures are \%3.3f bar and \%3
      .3f bar \n Effective swept volume of LP cylinder
      is %3.2f litres \n Temperature of air delivered
      per stroke is %3.1f oC \n Volume of air delivered
       per stroke is %3.2f litres \n Work done per kg
      of air is \%3.1 \, \text{f kJ}, P2, P3, EVs, t4, DV, W)
34
35
36
37
```

```
38
39
40
41
42
43
44
45 //=________END_OF_PROGRAM
```

 ${f Scilab\ code\ Exa\ 5.20}$ Number of stages and ${f Exact\ stage}$ pressure ratio and ${f Intermedia}$

```
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 P1=1;//Pressure at point 1 in bar
9 Pns=100;//Maximum pressure in bar
10 p=4; // Pressure ratio
11
12 //CALCULATIONS
13 Ns=log(Pns)/log(p);//Number of stages
14 y=ceil(Ns); //Rounding off to next higher integer
15 ps=(Pns/P1)^(1/y);//Exact stage pressure ratio
16 P2=ps*P1; // Pressure at point 2 in bar
17 P3=ps*P2; // Pressure at point 3 in bar
18 P4=ps*P3; // Pressure at point 4 in bar
19
20 //OUTPUT
21 mprintf('Number of stages are %3.0f \n Exact stage
```

1 //Chapter-5, Illustration 20, Page 271

2 // Title: Air Compressors

Chapter 6

Refrigeration Cycles

Scilab code Exa 6.1 Claim is correct or not

```
1 //Chapter-6, Illustration 1, Page 308
2 //Title: Refrigeration cycles
3 //
```

```
4 clc
5 clear
6
7 //INPUT DATA
8 COP=8.5; //Co-efficient of performance
9 T1=300; //Room temperature in K
10 T2=267; // Refrigeration temperature in K
11
12 //CALCULATIONS
13 COPmax=T2/(T1-T2); //Maximum COP possible
14
15 //OUTPUT
16 mprintf('Maximum COP possible is %3.2f \n Since the COP claimed by the inventor is more than the maximum possible COP his claim is not correct', COPmax)
```

```
17
18
19
20 //=______END_OF_PROGRAM
```

Scilab code Exa 6.2 Weight of ice formed and Minimum power required

```
1 //Chapter-6, Illustration 2, Page 309
2 // Title: Refrigeration cycles
3 //
4 clc
5 clear
7 //INPUT DATA
8 TL=268; //Low temperature in K
9 TH=293; // High temperature in K
10 t=24; //time in hrs
11 C=2100; // Capacity of refrigerator in kJ/s
12 Tw=10; //Water temperature in oC
13 L=335; //Latent heat of ice in kJ/kg
14
15 //CALCULATIONS
16 COP=TL/(TH-TL);//Co-efficient of performance
17 Pmin=C/COP; //Minimum power required in kW
18 Qr = (4.187*(Tw-0))+L; //Heat removed from water in kJ/
     kg
19 m=C/Qr; //mass of ice formed in kg/s
20 W=(m*t*3600)/1000;//Weight of ice formed in tons
21
22 //OUTPUT
23 mprintf('Minimum power required is %3.2 f kW \n
     Weight of ice formed in 24 hours is \%3.2 f tons',
```

```
Pmin, W)

24

25

26

27

28

29

30 //

END OF PROGRAM
```

Scilab code Exa 6.3 Mass of ice formed

2 // Title: Refrigeration cycles

19 20

1 //Chapter-6, Illustration 3, Page 309

```
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 TL=-10; // Temperature of brine in oC
9 TH=20; // Temperature of water in oC
10 L=335; // Latent heat of ice in kJ/kg
11
12 //CALCULATIONS
13 Qr = (4.187*(TH-0))+L; //Heat removed from water in kJ/
14 COP=(TL+273)/(TH-TL);//Co-efficient of performance
15 mi=(COP*3600)/Qr;//mass of ice formed per kWh in kg
16
17 //OUTPUT
18 mprintf('Mass of ice formed per kWh is %3.1f kg',mi)
```

```
21
22
23
24
25 //=______END OF PROGRAM
```

1 //Chapter-6, Illustration 4, Page 310

2 // Title: Refrigeration cycles

 ${f Scilab\ code\ Exa\ 6.4}$ Rate of heat removed and Power input to compressor and Rate of

```
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 P1=1.2; // Pressure at point 1 in bar
9 P2=7; // Pressure at point 2 in bar
10 m=0.05; //mass flow rate of refrigerant in kg/s
11 h1=340.1; //Enthalpy at point 1 from refrigerant -12
      tables in kJ/kg
12 s1=1.57135; // Entropy at point 1 from refrigerant -12
      tables in kJ/kg-K
13 s2=1.57135; // Entropy at point 2 from refrigerant -12
      tables in kJ/kg-K
14 h2=372; //Enthalpy at point 2 from refrigerant -12
      tables in kJ/kg
15 h3=226.575; //Enthalpy at point 3 from refrigerant -12
       tables in kJ/kg
16 h4=226.575; // Enthalpy at point 4 from refrigerant -12
       tables in kJ/kg
17
18 //CALCULATIONS
```

```
19 Q2=m*(h1-h4); // Rate of heat removed from the
      refrigerated space in kW
20 W=m*(h2-h1); // Power input to the compressor in kW
21 Q1=m*(h2-h3); // Rate of heat rejection to the
      environment in kW
22 COP=Q2/W; //Co-efficient of performance
23
24 //OUTPUT
25 mprintf('Rate of heat removed from the refrigerated
      space is %3.2 f kW \n Power input to the
      compressor is %3.3 f kW \n Rate of heat rejection
      to the environment is %3.2 f kW \n Co-efficient of
       performance is \%3.2 \, \text{f}, \ Q2, \ W, \ Q1, \ COP)
26
27
28
29
                             END OF PROGRAM
30
```

Scilab code Exa 6.5 COP of system

1 / Chapter - 6, Illustration 5, Page 311

```
// Title: Refrigeration cycles
//

clc
clear
//INPUT DATA
T2=40; // Temperature at point 2 in oC
T1=-10; // Temperature at point 1 in oC
h2=367.155; // Enthalpy at point 2 from refrigerant -12 tables in kJ/kg
```

```
11 s2=1.54057; //Entropy at point 2 from refrigerant -12
      tables in kJ/kg-K
12 s1=1.54057; // Entropy at point 1 from refrigerant -12
      tables in kJ/kg-K
13 sg=1.56004; //Entropy from refrigerant -12 tables in
     kJ/kg-K
14 sf=0.96601; //Entropy from refrigerant -12 tables in
     kJ/kg-K
15 hf=190.822; //Enthalpy from refrigerant -12 tables in
     kJ/kg-K
16 hfg=156.319; // Enthalpy from refrigerant -12 tables in
      kJ/kg-K
  h3=238.533;//Enthalpy at point 3 from refrigerant -12
17
       tables in kJ/kg-K
18 h4=h3; // Enthalpy at point 4 from refrigerant -12
      tables in kJ/kg-K
19
20 //CALCULATIONS
21 x1=(s1-sf)/(sg-sf);//Quality factor
22 h1=hf+(x1*hfg);//Enthalpy at point 1 from
      refrigerant -12 tables in kJ/kg
23 COP = (h1-h4)/(h2-h1); //Co-efficient of performance
24
25 //OUTPUT
26 mprintf('COP of the system is %3.2 f', COP)
27
28
29
                            END OF PROGRAM
30
```

Scilab code Exa 6.6 Capacity of refrigeration plant and Mass flow rate of refriger

```
1 //Chapter-6, Illustration 6, Page 311
2 //Title: Refrigeration cycles
```

```
3 //
```

```
4 clc
5 clear
7 //INPUT DATA
8 Tc=35; // Temperature of condenser in oC
9 Te=-15; // Temperature of evaporator in oC
10 m=10; //Mass of ice per day in tons
11 Tw=30; // Temperature of water in oC
12 Ti=-5; // Temperature of ice in oC
13 nv=0.65; // Volumetric efficiency
14 N=1200; //Speed in rpm
15 x=1.2; //Stroke to bore ratio
16 na=0.85; // Adiabatic efficiency
17 nm=0.95; // Mechanical efficiency
18 S=4.187; // Specific heat of water in kJ/kg
19 L=335; // Latent heat of ice in kJ/kg
20 h1=1667.24; //Enthalpy at Te from Ammonia chart in kJ
      /kg
21 h2=1925; // Enthalpy at Te from Ammonia chart in kJ/kg
22 h4=586.41; //Enthalpy at Tc from Ammonia chart in kJ/
      kg
23 v1=0.508; // Specific humidity at Te from Ammonia
      chart in (m<sup>3</sup>)/kg
24
25
  //CALCULATIONS
26 Qr = (((m*1000)/24)*((S*(Tw-0))+L+(1.94*(0-Ti))))
      /3600; // Refrigerating capacity in kW
27 mr=Qr/(h1-h4); // Refrigerant mass flow rate in kg/s
28 T2=112; // Discharge temperature in oC
29 D=((mr*v1*4*60)/(nv*3.14*x*N))^(1/3);//Cylinder
      diameter in m
30 L=x*D; //Stroke length in m
31 W=(mr*(h2-h1))/(na*nm); //Compressor motor power in
     kW
32 COPth = (h1-h4)/(h2-h1); //Theoretical COP
```

```
33 COPact=Qr/W;//Actual COP
34
  //OUTPUT
35
36 mprintf ('Refrigerating capacity of plant is \%3.2 f kW
       \n Refrigerant mass flow rate is %3.4 f kg/s \n
      Discharge temperature is %3.0 f oC \n Cylinder
      diameter is %3.3 f m \n Stroke length is %3.3 f m \
      n Compressor motor power is %3.2 f kW \n
      Theoretical COP is \%3.2\,\mathrm{f} \n Actual COP is \%3.2\,\mathrm{f}',
      Qr, mr, T2, D, L, W, COPth, COPact)
37
38
39
40
                                END OF PROGRAM
41
```

Scilab code Exa 6.7 Circulation rate of ammonia and Power required and COP

```
4 clc
5 clear
6
7 //INPUT DATA
8 T1=-5;//Temperature at point 1 in oC
9 T2=30;//Temperature at point 2 in oC
10 m=13500;//mass of ice per day in kg
11 Tw=20;//Temperature of water in oC
12 COP=0.6;//Co-efficient of performance
13 h2=1709.33;//Enthalpy at point 2 in kJ/kg
14 s2=6.16259;//Entropy at point 2 in kJ/kg-K
```

1 //Chapter-6, Illustration 7, Page 313

2 // Title: Refrigeration cycles

3 //

```
15 s1=6.16259; // Entropy at point 1 in kJ/kg-K
16 sf=1.8182; //Entropy in kJ/kg-K
17 sg=6.58542; // Entropy in kJ/kg-K
18 hf=400.98; //Enthalpy in kJ/kg
19 hfg=1278.35; //Enthalpy in kJ/kg
20 h4=562.75; //Enthalpy at point 4 in kJ/kg
21 S=4.187; // Specific heat of water in kJ/kg
22 L=336; // Latent heat of ice in kJ/kg
23
24 //CALCULATIONS
25 x1=(s1-sf)/(sg-sf);//Quality factor
26 h1=hf+(x1*hfg); //Enthalpy at point 1 from
      refrigerant -12 tables in kJ/kg
27 COPi = (h1-h4)/(h2-h1); //Ideal COP
28 COPact=COP*COPi; // Actual COP
29 Qr = ((m*S*(Tw-0)) + (m*L))/(24*3600); // Total amount of
      heat removed in kJ/s
30 mr=Qr/(h1-h4);//Circulation rate of ammonia in kg/s
31 W=mr*(h2-h1); //Power required in kW
32
33 //OUTPUT
34 mprintf('Circulation rate of ammonia is \%3.3 \,\mathrm{f}\,\mathrm{kg/s}
      n Power required is %3.3 f kW \n COP is %3.3 f', mr,
      W, COPact)
35
36
37
38
39
                                END OF PROGRAM
```

 ${
m Scilab\ code\ Exa\ 6.8}$ Refrigerating effect and Mass flow rate of refrigerant and The

```
1 / Chapter - 6, Illustration 8, Page 314
```

```
4 clc
5 clear
7 //INPUT DATA
8 Tc=20; //Temperature of condenser in oC
9 Te=-25; // Temperature of evaporator in oC
10 m=15; //Mass of ice per day in tons
11 Ts=5; // Subcooled temperature in oC
12 Tsh=10; //Superheated temperature in oC
13 n=6; //No. of cylinders
14 N=950; //Speed of compressor in rpm
15 x=1;//Stroke to bore ratio
16 h1=402; //Enthalpy at point 1 from R-22 tables in kJ/
17 h2=442; //Enthalpy at point 2 from R-22 tables in kJ/
  h3=216; // Enthalpy at point 3 from R-22 tables in kJ/
  h4=216; //Enthalpy at point 4 from R-22 tables in kJ/
19
20 v1=2.258; // Specific volume at point 1 in (m<sup>3</sup>)/min
21
22 //CALCULATIONS
23 Re=h1-h4; // Refrigerating effect in kJ/kg
24 mr=(m*14000)/(Re*60);//Mass flow of refrigerant in
     kg/min
25 Pth=(mr*(h2-h1))/60; //Theoretical power in kW
26 COP = (h1-h4)/(h2-h1); //Co-efficient of performance
27 Dth=v1/n;//Theoretical displacement per cylinder
28 D=(((Dth*4)/(3.147*N))^(1/3))*1000; // Theoretical
      bore of compressor in mm
29 L=D; // Theoretical stroke of compressor in mm
30
31 //OUTPUT
```

2 // Title: Refrigeration cycles

3 //

 ${f Scilab\ code\ Exa\ 6.9}$ COP when there is no subcooling and when there is subcooling

```
2 // Title: Refrigeration cycles
3 //

4 clc
5 clear
6
7 //INPUT DATA
8 T2=40; // Temperature at point 2 in oC
9 T1=-5; // Temperature at point 1 in oC
10 h2=367.155; // Enthalpy at point 2 from F-12 tables in kJ/kg
11 sg=1.55717; // Entropy from F-12 tables in kJ/kg-K
12 s1=1.54057; // Entropy at point 1 from F-12 tables in kJ/kg-K
13 sf=0.98311; // Entropy from F-12 tables in kJ/kg-K
```

1 / Chapter - 6, Illustration 9, Page 316

```
14 hf=195.394; //Enthalpy from F-12 tables in kJ/kg
15 hfg=153.934; //Enthalpy from F-12 tables in kJ/kg
16 h4=238.533; //Enthalpy at point 4 from F-12 tables in
       kJ/kg
17 h4s=218; // Enthalpy at point 4 with subcooling from F
      -12 tables in kJ/kg
18
19 //CALCULATIONS
20 x1=(s1-sf)/(sg-sf);//Quality factor
21 h1=hf+(x1*hfg); // Enthalpy at point 1 from
      refrigerant -12 tables in kJ/kg
22 COPns=(h1-h4)/(h2-h1); //Co-efficient of performance
      with no subcooling
23 COPs = (h1-h4s)/(h2-h1); //Co-efficient of performance
      with subcooling
24
25 //OUTPUT
26 mprintf('COP with no subcooling is %3.3 f \n COP with
       subcooling is %3.3 f', COPns, COPs)
27
28
29
30
31
32
33
34
35
                                     END OF PROGRAM
```

Scilab code Exa 6.10 Ideal COP of system

```
1 //Chapter-6, Illustration 10, Page 309
2 //Title: Refrigeration cycles
3 //
```

```
4 clc
5 clear
7 //INPUT DATA
8 Tg=470; // Heating temperature in K
9 T0=290;//Cooling temperature in K
10 TL=270; // Refrigeration temperature in K
11
12 //CALCULATIONS
13 COP = ((Tg-T0)/Tg)*(TL/(T0-TL)); // Ideal COP of
      absorption refrigeration system
14
15 //OUTPUT
16 mprintf('Ideal COP of absorption refrigeration
     system is \%3.2 \, \mathrm{f}, COP)
17
18
19
            END OF PROGRAM
```

 ${f Scilab\ code\ Exa\ 6.11}$ Maximum and minimum temperature in cycle and COP and Rate of

```
2 // Title: Refrigeration cycles
3 //

4 clc
5 clear
6 
7 //INPUT DATA
8 T1=-18; // Temperature at point 1 in oC
```

1 //Chapter-6, Illustration 11, Page 317

```
9 T3=27; // Temperature at point 3 in oC
10 rp=4; // Pressure ratio
11 m=0.045; //mass flow rate in kg/s
12 y=1.4; //Ratio of specific heats
13 Cp=1.005; // Specific heat at constant pressure in kJ/
     kg-K
14
  //CALCULATIONS
15
16 x = (y-1)/y; // Ratio
17 T2=(rp^x)*(273+T1); //Temperature at point 2 in K
18 Tmax=T2-273; //Maximum temperature in oC
19 T4 = ((1/rp)^x)*(273+T3); //Temperature at point 4 in K
20 Tmin=T4-273; //Minimum temperature in oC
21 qL=Cp*(T1-Tmin);//Heat rejected
22 Wcin=Cp*(Tmax-T1);//Compressor work
23 Wtout=Cp*(T3-Tmin); // Turbine work
24 Wnet=Wcin-Wtout; //Net work done
25 COP=qL/Wnet;//Co-efficient of performance
26 Qref=m*qL; //Rate of refrigeration in kW
27
28 //OUTPUT
29 mprintf ('Maximum temperature in the cycle is \%3.0 foC
       \n Minimum temperature in the cycle is \%3.0 foC \
      n COP is %3.2 f \n Rate of refrigeration is %3.2 f
     kW', Tmax, Tmin, COP, Qref)
30
31
32
33
34
35

■END OF PROGRAM
```

Scilab code Exa 6.12 Work developed and Refrigerating effect and COP

```
1 / Chapter - 6, Illustration 12, Page 318
2 // Title: Refrigeration cycles
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 P1=1; // Pressure at point 1 in bar
9 T1=268; // Temperature at point 1 in K
10 P2=5; // Pressure at point 2 in bar
11 T3=288; // Temperature at point 3 in K
12 n=1.3; // Adiabatic gas constant
13 Cp=1.005; // Specific heat at constant pressure in kJ/
      kg-K
14
15 //CALCULATIONS
16 x=(n-1)/n; // Ratio
17 T2=((P2/P1)^x)*T1;//Temperature at point 2 in K
18 T4=((P1/P2)^x)*T3;//Temperature at point 4 in K
19 W=Cp*(T3-T4);//Work developed per kg of air in kJ/kg
20 Re=Cp*(T1-T4);//Refrigerating effect per kg of air
      in kJ/kg
21 Wnet=Cp*((T2-T1)-(T3-T4)); //Net work output in kJ/kg
22 COP=Re/Wnet; //Co-efficient of performance
23
24 //OUTPUT
25 mprintf('Work developed per kg of air is \%3.3\,\mathrm{f} kJ/kg
       \n Refrigerating effect per kg of air is \%3.3f
      kJ/kg \setminus n COP of the cycle is \%3.2 \, f, W, Re, COP)
26
27
28
29
30
                                    ≡END OF PROGRAM
31
```

 ${
m Scilab\ code\ Exa\ 6.13\ COP}$ of refrigerator and Driving power required and Air mass f

```
2 // Title: Refrigeration cycles
3 //
4 clc
5 clear
6
7 //INPUT DATA
8 T1=277; // Temperature at point 1 in K
9 T3=328; // Temperature at point 3 in K
10 P1=0.1; // Pressure at point 1 in MPa
11 P2=0.3; // Pressure at point 2 in MPa
12 nc=0.72; // Isentropic efficiency of compressor
13 nt=0.78; // Isentropic efficiency of turbine
14 y=1.4; // Adiabatic gas constant
15 Cp=1.005; // Specific heat at constant pressure in kJ/
     kg-K
16 m=3; // Cooling load in tonnes
17
18 //CALCULATIONS
19 x = (y-1)/y; // Ratio
20 T2s=T1*((P2/P1)^x);//Temperature at point 2s in K
21 T2=((T2s-T1)/nc)+T1;//Temerature at point 2 in K
22 T4s=T3*((P1/P2)^x);//Temperature at point 4s in K
23 T4=T3-((T3-T4s)*nt);//Temperature at point 4 in K
24 Re=Cp*(T1-T4);//Refrigerating effect in kJ/kg
25 Wnet=Cp*((T2-T1)-(T3-T4)); //Net work output in kJ/kg
26 COP=Re/Wnet; //Co-efficient of performance
27 P=(m*3.52)/COP;//Driving power required in kW
28 ma=(m*3.52)/Re;//Mass flow rate of air in kg/s
29
```

1 / Chapter - 6, Illustration 13, Page 319

Scilab code Exa 6.14 Theoretical COP and Net cooling produced

1 / Chapter - 6, Illustration 14, Page 321

```
2 // Title: Refrigeration cycles
3 //
4 clc
5 clear
7 //INPUT DATA
8 P1=2.5; // Pressure at point 1 in bar
9 P3=9; // Pressure at point 3 in bar
10 COPr=0.65; // Ratio of actual COP to the theoretical
     COP
11 m=5; // Refrigerant flow in kg/min
12 T1=309; // Temperature at point 1 in K
13 T2s=300; // Temperature at point 2s in K
14 h1=570.3; //Enthalpy at P1 from the given tables in
     kJ/kg
15 h4=456.4; //Enthalpy at P3 from the given tables in
     kJ/kg
16 h2g=585.3; //Enthalpy at P3 from the given tables in
     kJ/kg
```

```
17 s2=4.76; //Entropy at P1 from the given tables in kJ/
     kg-K
18 s2g=4.74; //Entropy at P3 from the given tables in kJ
     / kg - K
19 Cp=0.67; // Specific heat at P3 in kJ/kg-K
20
21 //CALCULATIONS
22 T2=(2.718^{(s2-s2g)/Cp)}*T2s;//Temperature at point
     2 in K
23 h2=h2g+(Cp*(T2-T2s)); //Enthalpy at point 2 in kJ/kg
24 COPR=(h1-h4)/(h2-h1);//Refrigerant COP
25 COPact=COPr*COPR; // Actual COP
26 qL=COPact*(h2-h1); // Heat rejected in kJ/kg
27 QL=((m*qL*60)/3600)/3.516;//Cooling produced per kg
     of refrigerant in tonnes of refrigeration
28
29 //OUTPUT
30 mprintf('Theoretical COP is %3.2f \n Net cooling
     produced per hour is %3.2 f TR', COPR, QL)
31
32
33
34
                       END OF PROGRAM
35
```

Scilab code Exa 6.15 Theoretical COP of machine

```
1 //Chapter-6, Illustration 15, Page 322
2 //Title: Refrigeration cycles
3 //
```

```
4 clc
5 clear
```

```
6
7 //INPUT DATA
8 T2=298; // Temperature at point 2 in K
9 T1=268; //Temperature at point 1 in K
10 hf1=-7.54; //Liquid Enthalpy at T1 in kJ/kg
11 x1=0.6; // Quality factor 1
12 hfg1=245.3; //Latent heat at T1 in kJ/kg
13 sf1=0.251; // Liquid Entropy at T1 in kJ/kg-K
14 s1=0.507; //Entropy at point 1 in kJ/kg-K
15 hfg2=121.4; //Latent heat at T2 in kJ/kg
16 hf2=81.3;//Liquid Enthalpy at T2 in kJ/kg
17 h4=hf2; //Enthalpy at point 4 in kJ/kg
18
19 //CALCULATIONS
20 h1=hf1+(x1*hfg1); //Enthalpy at point 1 in kJ/kg
21 x2=((s1-sf1)*T2)/hfg2;//Quality factor 2
22 h2=hf2+(x2*hfg2); //Enthalpy at point 2 in kJ/kg
23 COP=(h1-h4)/(h2-h1); //COP of the machine
24
25 //OUTPUT
26 mprintf('COP of the machine is %3.2f', COP)
27
28
29
30
                            END OF PROGRAM
31
```

Scilab code Exa 6.16 Theoretical COP of refrigerator and Capacity of refrigerator

```
1 //Chapter-6, Illustration 16, Page 323
2 //Title: Refrigeration cycles
3 //
```

```
4 clc
5 clear
7 //INPUT DATA
8 P1=25; // Pressure at point 1 in bar
9 P2=60; // Pressure at point 2 in bar
10 h2=208.1; // Vapour enthalpy at P2 in kJ/kg
11 h3=61.9; //Liquid enthalpy at P2 in kJ/kg
12 h4=h3; //Liquid enthalpy at P2 in kJ/kg
13 s2=0.703; //Vapour entropy at P2 in kJ/kg-K
14 sf1=-0.075; //Liquid entropy at P1 in kJ/kg-K
15 sfg1=0.971; //Entropy in kJ/kg-K
16 hf1=-18.4; //Liquid Enthalpy at P1 in kJ/kg
17 hfg1=252.9; //Latent heat at P1 in kJ/kg
18 m=5; // Refrigerant flow in kg/min
19
20 //CALCULATIONS
21 x1=(s2-sf1)/sfg1;//Quality factor 1
22 h1=hf1+(x1*hfg1); //Enthalpy at point 1 in kJ/kg
23 COP = (h1-h4)/(h2-h1); //Co-efficient of performance
24 QL=(m*(h1-h4))/60;//Capacity of the refrigerator in
     kW
25
26 //OUTPUT
27 mprintf ('COP of refrigerator is \%3.2 f \n Capacity of
       refrigerator is %3.2 f kW', COP,QL)
28
29
30
                           END OF PROGRAM
```

Scilab code Exa 6.17 COP and Theoretical power required

```
1 / Chapter - 6, Illustration 17, Page 324
```

```
4 clc
5 clear
7 //INPUT DATA
8 T1=271; // Temperature at point 1 in K
9 T=265; // Temperature at point 1' in K
10 Ta=303; // Temperature at point 2' in K
11 Cpv=0.733; // Specific heat of vapour in kJ/kg
12 Cpl=1.235; // Specific heat of liquid in kJ/kg
13 h=184.07; // Liquid enthalpy at T in kJ/kg
14 s=0.7; //Entropy at point 1' in kJ/kg-K
15 sa=0.685; // Vapour entropy at Ta in kJ/kg-K
16 ha=199.62; // Enthalpy at point 2' in kJ/kg
17 hfb=64.59; //Liquid enthalpy at Ta in kJ/kg
18 DT3=5; // Temperature difference in oC
19 Q=2532; // Refrigeration capacity in kJ/min
20
21 //CALCULATIONS
22 \text{ s2=s+(Cpv*((log(T1/T))/(log(2.718))));//Entropy at}
      point 1 in kJ/kg-K
23 h1=h+(Cpv*(T1-T)); //Enthalpy at point 1 in kJ/kg-K
24 T2=(2.718^{((s2-sa)/Cpv)}*Ta;//Temperature at point 2
       in K
25 h2=ha+(Cpv*(T2-Ta)); //Enthalpy at point 2 in kJ/kg
26 h4=hfb-(Cpl*DT3); //Enthalpy at point 4 in kJ/kg
27 COP = (h1-h4)/(h2-h1); //Co-efficient of performance
28 m=Q/(h1-h4);//Mass flow rate of refrigerant in kJ/
29 P = (m*(h2-h1))/(60*12); //Power required in kW/TR
30
31 //OUTPUT
32 mprintf ('COP is %3.2f \n Theoretical power required
      per tonne of refrigeration is %3.3 f kW/TR', COP, P)
33
```

2 // Title: Refrigeration cycles

3 //

Chapter 7

Air Conditioning

Scilab code Exa 7.1 Heating capacity of coil and Surface temperature and Capacity

```
1 //Chapter-7, Illustration 1, Page 345
2 //Title: Air Conditioning
3 //
```

```
4 clc
5 clear
6
7 //INPUT DATA
8 DBTo=10; //Out door Dry bulb temperature in oC
9 WBTo=8; //Out door Wet bulb temperature in oC
10 DBTi=20; //In door Dry bulb temperature in oC
11 RH=0.6; //Re-Heat factor
12 a=0.3; //amount of air circulated in (m^3)/min/person
13 S=50; // Seating capacity of office
14 BPF=0.32; // ByPass factor
15 ha=25; // Enthalpy at point a from Psychrometric chart shown in Page 346 in kJ/kg
16 hb=42.5; // Enthalpy at point b from Psychrometric chart shown in Page 346 in kJ/kg
17 hc=42.5; // Enthalpy at point c from Psychrometric
```

```
chart shown in Page 346 in kJ/kg
18 Wa=0.006; // Specific humidity at point a from
      Psychrometric chart shown in Page 346 in kg/kg
      dry air
19 Wc=0.009; // Specific humidity at point c from
      Psychrometric chart shown in Page 346 in kg/kg
      dry air
20 Tb=27; // Temperature at point b in oC
21 na=0.81; // Specific Volume from Psychrometric chart
      shown in page 346 in (m<sup>3</sup>)/kg
22
23 //CALCULATIONS
24 ma=(a*S)/(na*60);//mass of air circulated per second
       in kg/s
25 Hc=ma*(hb-ha);//Heating capacity of coil in kW
26 Ts=(Tb-(BPF*DBTo))/(1-BPF);//Heating coil surface
      temperature in oC
27 C=(ma*3600)*(Wc-Wa);//Capacity of humidifier in kg/
      hr
28
29 //OUTPUT
30 \texttt{mprintf}(\text{'Heating capacity of coil is }\%3.2\,f\ kW\ \backslash n
      Surface temperature of coil is %3.0 f oC \n
      Capacity of humidifier is %3.2 f kg/hr', Hc, Ts, C)
```

 ${f Scilab\ code\ Exa\ 7.2}$ Capacity of coils and Amount of water vapour removed and by pa

```
1 //Chapter-7, Illustration 2, Page 346
2 //Title: Air Conditioning
3 //
```

4 clc 5 clear 6

```
7 //INPUT DATA
8 S=60; //No. of staff
9 DBTo=30; //Out door Dry bulb temperature in oC
10 RHo=0.7; //Re-Heat factor at out-door
11 a=0.4; //amount of air circulated in (m^3)/min/person
12 DBTi=20; //In door Dry bulb temperature in oC
13 RHi=0.6; //Re-Heat factor at indoor
14 Td=25; // Heating coil surface temperature in oC
15 ha=82.5; //Enthalpy at point a from Psychrometric
      chart shown in Page 347 in kJ/kg
16 hb=34.5; //Enthalpy at point b from Psychrometric
     chart shown in Page 347 in kJ/kg
17
  hc=42.5; //Enthalpy at point c from Psychrometric
      chart shown in Page 347 in kJ/kg
18 Wa=0.020; // Specific humidity at point a from
     Psychrometric chart shown in Page 347 in kg/kg
     dry air
19 Wb=0.009; // Specific humidity at point b from
     Psychrometric chart shown in Page 347 in kg/kg
     drv air
20 Tb=12; // Temperature at point b in oC
21 na=0.89; // Specific Volume from Psychrometric chart
     shown in page 346 in (m<sup>3</sup>)/kg
22
23 //CALCULATIONS
24 ma=(a*S)/(na*60);//mass of air circulated per second
       in kg/s
25 Hc=(ma*(ha-hb))/3.5;//Heating capacity of cooling
      coil in tonnes
26 Hh=ma*(hc-hb); // Heating capacity of heating coil in
27
  W=(ma*3600)*(Wa-Wb);//Amount of water vapour removed
       per hour in kg/hr
28 BPF=(Td-DBTi)/(Td-Tb);//By-Pass factor
29
30 //OUTPUT
31 mprintf('Capacity of cooling coil is %3.2f tonnes \n
       Capacity of heating coil is %3.1 f kW \n Amount
```

```
of water vapour removed per hour is \%3.2\,\mathrm{f\ kg/hr} \n Bypass factor is \%3.3\,\mathrm{f\ '},Hc,Hh,W,BPF)
```

 ${f Scilab\ code\ Exa\ 7.3}$ Supply air condition and Refrigeration load and Total refriger

```
1 / Chapter - 7, Illustration 3, Page 347
2 // Title: Air Conditioning
3 //
4 clc
5 clear
7 //INPUT DATA
8 RSH=10; //Room sensible heat in kW
9 RLH=10; //Room latent heat in kW
10 td1=25; // Inside temperature in oC
11 RH1=0.5; //Inside Re-Heat factor
12 h1=50.4; // Enthalpy at point 1 in kJ/kg
13 td2=35; //Out door Dry bulb temperature in oC
14 tw2=28; //Out door Wet bulb temperature in oC
15 CR=4; // Cooling coil ratio
16 BPF=0.1; // Cooling coil bypass factor
17 tADP=10; // Apparatus dew point temperature in oC
18 RH3=0.55; //Re-Heat factor at point 3
19 h3=58.2; //Enthalpy at point 3 in kJ/kg
20 RH4=0.95; //Re-Heat factor at point 4
21 h4=32.2; //Enthalpy at point 4 in kJ/kg
22 RH5=0.81; //Re-Heat factor at point 5
23 h5=36.8; //Enthalpy at point 5 in kJ/kg
24 RH6=0.54; //Re-Heat factor at point 6
25 h6=43.1; // Enthalpy at point 5 in kJ/kg
26 td6=22; // Temperature at point 6 in oC
27
28 //CALCULATIONS
```

```
29 td3=((td2-td1)/5)+td1;//Temperature at point 3 from
      Psychrometric chart shown in Page 348 in oC
30 td4=(BPF*(td3-tADP))+tADP;//Temperature at point 4
     from Psychrometric chart shown in Page 348 in oC
31 td5=td4+((td1-td4)/5);//Temperature at point 5 from
      Psychrometric chart shown in Page 348 in oC
32 RSHF=RSH/(RSH+RLH); //Room Sensible Heat Factor
33 QR=h1-h6; //Total heat removed in kJ/kg
34 S=(RSH+RLH)/QR;//Supply air quantity in kg/s
35 R=(S*(h6-h5))/3.5; // Refrigeration load due to reheat
       in ton
36 D=(S*4)/5; // Dehumidified air quantity in kg/s
37 T = (D*(h3-h4))/3.5; //Total refrigerating capacity in
     ton
  Q=(D/5)/1.2; // Quantity of fresh air supplied in (m
      ^{3})/s
39
40 //OUTPUT
41 mprintf ('Supply air condition to the room is \%3.2 f
     kg/s \n Refrigeration load due to reheat is \%3.2 f
      ton \n Total refrigerating capacity is \%3.2f ton
       \n Quantity of fresh air supplied is \%3.3 f (m^3)
     /s',S,R,T,Q)
```