Scilab Textbook Companion for Solid State Physics Principles And Applications by R. Asokamani¹

> Created by Pankaj Biswas Solid State Physics Physics Shri Mata Vaishno Devi University College Teacher Dr. Kamni Cross-Checked by Lavitha Pereira

> > July 31, 2019

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Solid State Physics Principles And Applications
Author: R. Asokamani
Publisher: Anamaya Publishers & New Delhi
Edition: 1
Year: 2006
ISBN: 81-88342-07-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
1	Structure of Solids	6
2	Bonding in Solids	28
3	Specific Heat of Solids and Lattice Vibrations	34
4	Free Electron Theory of Metals	51
5	Band Theory of Solids	83
6	Semiconductor Physics	89
8	Magnetism	104
9	Superconductivity	117

List of Scilab Codes

Exa 1.1	Lattice parameter and atomic radius of fcc	
	structure	6
Exa 1.2	Determining type of niobium cubic structure	6
Exa 1.3	Lattice constants of hcp structure of Ti	7
Exa 1.4	c by a c by a ratios of Mg and Cd	8
Exa 1.5	Lattice constant of NaCl unit cell	9
Exa 1.6	Ionic packing factor of fcc KCl	10
Exa 1.7	The number of atoms in unit cells of diamond	
	and graphite	10
Exa 1.8	Densities of si and GaAs	11
Exa 1.9	Lattice parameters of GaP and GaAs	12
Exa 1.10	Crystal structures of some ionic compounds	13
Exa 1.11	Maximum radius of the sphere to fit into void	
	between two bcc unit cells	15
Exa 1.12	Maximum radius of the sphere to fit into void	
	between two fcc unit cells	16
Exa 1.13	Radius of largest void in the bcc lattice	16
Exa 1.14	Radius of void for carbon atoms in iron	17
Exa 1.15	Radius of triangular void	18
Exa 1.16	Radius ratio of tetrahedral void	18
Exa 1.17	Radius ratio of octahedral void	19
Exa 1.18	Miller indices of the crystal plane	19
Exa 1.19	Miller indices of planes cutting axes of an or-	
	thorhombic crystal	20
Exa 1.20	Miller indices of set of parallel planes	21
Exa 1.21	Miller indices of planes with given intercepts	21
Exa 1.22	Interplanar spacing in cubic fcc crystal \ldots	22

Exa 1.23	Wavelength of K alpha radiation of copper	
	using Bohr atom model	23
Exa 1.24	Wavelength of K alpha radiation of tungesten	24
Exa 1.25	Lattice constants of copper palladium alloy in	
	different proportions	24
Exa 1.26	Amount of required Rh in Pt to change the	
	unit cell volume	25
Exa 1.27	Percent volume change with the structural	
	change	26
Exa 2.1	Binding energy of KCl	28
Exa 2.2	Lattice energy of NaCl	28
Exa 2.3	Nearest neighbour distance of KCl	29
Exa 2.4	Nearest distance of CsCl	30
Exa 2.5	Repulsive exponent in NaI	30
Exa 2.6	Compressibility of solid	31
$Exa \ 2.7$	Percentage ionic character present in a solid	32
$Exa \ 2.8$	Fractional ionicity of compounds	32
Exa 3.1	Grunesien parameter for Pb	34
Exa 3.2	Heat capacity of Cu	35
Exa 3.3	Debye cut off frequency of Al	35
Exa 3.4	Specific heat capacity of diamond	36
Exa 3.5	Debye cut off frequency of Be	36
Exa 3.6	Electronic and lattice heat capacities of Cu .	37
Exa 3.7	Heat capacities of Cu at a given temperature	38
Exa 3.8	Electronic specific heat of Na at 20 K	38
Exa 3.9	Lattice specific heat of Hf	39
Exa 3.10	Temperature at which lattice specific heat equals	1
	electronic specific heat	40
Exa 3.11	Debye temperature of Al	41
Exa 3.12	Debye temperatures of Cu and Na	42
Exa 3.13	Debye temperature as a function of tempera-	
	ture	43
Exa 3.14	Variation of Gruneisen frequency and Debye	
	temperature for Lu with pressure	45
Exa 3.15	Lindemann rule to calculate the Debye tem-	
	perature	48
Exa 3.16	Frequency of vibration of ions in InSb crystal	48
Exa 3.17	Debye temperature for diamond	49

Exa 4.1	Collision time for an electron in monovalent	-
Erro 4.9	Cu	51
$\mathbf{E}\mathbf{X}\mathbf{a} 4.2$	Relaxation time and mean free path at UK.	01
Exa 4.5	tivity of monomolant Cu	5
Erro 4.4	Energy differences between two levels for the	J∠
LXa 4.4	free electrons	E.
D 4 5	Drahahilita af the alextern in terms at an arr	95
Exa 4.0	Frobability of the electron in tungsten at room	F /
Erra 4 C	Emperature	-04 5
Exa 4.0	N have fortestered D	- D0 - F F
Exa 4.7	Number of states at Fermi energy	56
Exa 4.8	Energy separation between adjacent energy	F (
$\mathbf{E} = 10$	levels of Mg and Ca	50
Exa 4.9	Fermi momentum of sodium	51
Exa 4.10	Change in Fermi energy with temperature .	51
Exa 4.11	Electrical conductivity of Pb and Ag	58
Exa 4.12	Lorentz number	26
Exa 4.13	Lorentz numbers for metals at 273 K and com-	
	parison with the given values	56
Exa 4.14	Thermal conductivity of gold at 100 K and	
-	273 K	61
Exa 4.15	Hall coefficient of sodium	63
Exa 4.16	Hall coefficient of beryllium	64
Exa 4.17	Electronic concentration of silver from Hall	
	coefficient	64
Exa 4.18	Resistivity of a metal using Matthiessen rule	65
Exa 4.19	Resitivity of Ge at 20 degree celsius	65
Exa 4.20	Solid radius and Fermi level quantities for Li	66
Exa 4.21	Fermi energy for yittrium	67
Exa 4.22	Plasmon energy of Al using free electron gas	
	parameter	67
$Exa \ 4.23.1$	Occupation probability of an electron at a	
	given temperature	68
Exa 4.23.2	Variation of occupation probability with tem-	
	perature	7(
Exa 4.23.3	Average energy and speed of free electron in	
	metal	70

Exa 4.23.4	Temperature dependence of occupation prob- ability	71
Exa 4.23.5	Fermi velocity of Potassium	72
Exa 4.23.6	Energy level of Cu for given occupation prob- ability	72
Exa 4.23.7	Electronic concentration in cesium	73
Exa 4.23.8	Fermi temperature corresponding to Fermi energy	73
Exa 4.23.9	Density of states for the electron in a cubical box	74
Exa 4.23.10	Occupation probability of an electron above and below Fermi energy	75
Exa 4.23.11	Occupation probability at two different tem-	76
Exa 4.23.12	Concentration of free electrons and electrical conductivity in Cu	77
Exa 4.23.13	Interelectronic energy separation between bands of Al	77
Exa 4.23.14	Density of states in Cu contained in cubic metal	78
Exa 4.23.15	Electronic energy level spacing between successive levels of Cu	79
Exa 4 23 16	Energy hand gaps of the solids	79
Exa 4.23.18	Solid radius and Fermi level quantities for Cu	10
	and ND	80
Exa 5.1	Fermi energy of Na and K	83
Exa 5.5	Fermi momentum of Na	84
Exa 5.5	levels	85
Exa 5.9	Coupling constant of superconducting lead .	86
Exa 5.10	Electronic specific heat coefficient of super- conductor	86
Exa 5.11	Electron phonon coupling constant for metal	87
Exa 5.12	Pauli spin susceptibility of Mg	87
Exa 6.1	Crystal absorption wavelengths from energy	0.0
Exa 6.2	gaps	89 90

Exa 6.3	Densitites of Si and GaAs	91
$Exa \ 6.4$	Intrinsic carrier concentration of GaAs at 300	
	K	92
$Exa \ 6.5$	Position of Fermi level of Si at room temper-	
	ature	92
Exa 6.6	Intrinsic resistivity of Ge at room temperature	93
$Exa \ 6.7$	Conductivity in CdS	94
Exa 6.8	Energy Gap of Ge	95
Exa 6.9	Energy gap and emission wavelength of Al	
	doped GaAs	97
Exa 6.10	Energy gap of Al doped GaAs	97
Exa 6.11	Resistivity of Ge at 20 degree celsius	98
Exa 6.12	Donor ionization energies at room temperature	98
Exa 6.13	Radius of the orbit of the fifth valence elec-	
	tron of the acceptor impurity in Ge	99
Exa 6.14	Mobility of electron and hole concentration in	
	Ge	100
Exa 6.15	Hole concentration in Ge at room temperature	101
Exa 6.16	Hall effect in n type semiconductor	102
Exa 8.1	Spontaneous magnetization of iron	104
Exa 8.2	Saturation magnetization of a ferromagnetic	
	material	105
Exa 8.3	Magnetic susceptibility of Lithium	105
Exa 8.4	Diamagnetic susceptibility of helium atom in	
	ground state	106
Exa 8.5	Atomic radii of helium and copper from atomic	
	susceptibilities	107
Exa 8.6	Atomic susceptibility of Ne atom	107
Exa 8.7	Langevin approximation for paramagnetism	108
Exa 8.8	Paramagnetic susceptibility of Mg	109
Exa 8.9	Pauli spin susceptibility and diamagnetic con-	
	tribution in Aluminium	110
Exa 8.10	Pauli spin susceptibility for Na	110
Exa 8.11	Effective magneton number of Mn ion	111
Exa 8.12	Magnetic moment of 3d electrons of Fe using	
	Hunds rule	112
Exa 8.13	Magnetic moment of compounds using Hunds	
	rule	112

Exa 8.14	Magnetic structure of the solids from total	
	energy	114
Exa 9.1	Critical field required to destroy superconduc-	
	$tivity \ldots \ldots$	117
Exa 9.2	Limiting magnetic field of Nb to serve as su-	
	perconductor 	117
Exa 9.3	Transition temperature of a specimen	118
Exa 9.4	Coherence length of aluminium	119
Exa 9.6	Wavelength of photon required to break a Coop	\mathbf{er}
	pair	119
Exa 9.7	London penetration depth in Pb	120
Exa 9.8	Isotopic exponent in Isotopic effect of Hg	120
Exa 9.9	Transition temperature of isotope of Hg whose	
	mass number is $199 \dots \dots \dots \dots \dots \dots$	121
Exa 9.10	Constant of proportionality in Isotopc effect	122
Exa 9.11	Transition temperature and energy gap of a	
	material	122
Exa 9.12	Transition temperature of a superconductor	
	using McMillan formula	123
Exa 9.13	Superconducting transition temperature of a	
	superconductor using mcMillan formula	124
Exa 9.15	Superconducting transition temperature of a	
	borocarbide superconductor	124
Exa 9.16	Electron phonon coupling constant for a su-	
	$perconductor \dots \dots \dots \dots \dots \dots \dots \dots \dots $	125
Exa 9.17	Debye temperature of a BCS superconductor	126

List of Figures

6.1	Energy (Gap of	f Ge .																						(95
-----	----------	--------	--------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	----

Chapter 1

Structure of Solids

Scilab code Exa 1.1 Lattice parameter and atomic radius of fcc structure

1 // Scilab Code Ex1.1 Page-13 (2006) 2 clc; clear; // Atomic radius of fcc 3 r = 1.278e - 010;structure, m 4 a = 4*r/sqrt(2); // Lattice parameter of fcc strucure, m 5 V = a^3; // Volume of fcc unit cell, metre, cube 6 printf("\nThe lattice parameter of fcc strucure = %4.2 e m", a); 7 printf("\nThe volume of fcc unit cell = %5.2e metre, cube", V); 8 9 // Result 10 // The lattice parameter of fcc strucure = 3.61e-010 \mathbf{m} 11 // The volume of fcc unit cell = 4.72 e - 029 metre cube

Scilab code Exa 1.2 Determining type of niobium cubic structure

```
1 // Scilab Code Ex1.2 Page-14 (2006)
2 clc; clear;
3 r = 0.143e-09; // Radius of Nb unit cell, m
4 d = 8.57e+03; // Density of Nb unit cell, kg/metre-
     cube
5 M = 92.91e - 03;
                       // Atomic weight of Nb, kg per
      mole
6 \text{ N} = 6.023\text{D}+23; // Avogadro's No.
7
8 // For fcc
9 a = 4*r/sqrt(2); // Lattice parameter for fcc
     structure of Nb, m
10 n = a^3*d*N/M; // Number of lattice points per unit
      cell
11 if (modulo(n, int(n)) < 0.001) then
12 printf("\nThe number of atoms associated with the
      cell is %d, Nb should have fcc structure", int(n)
     );
13 end
14
15 // For bcc
16 a = 4*r/sqrt(3); // Lattice parameter for bcc
     structure of Nb, m
17 n = a^3*d*N/M; // Number of lattice points per unit
      cell
18 if (modulo(n, int(n)) < 0.001) then
19 printf("\nThe number of atoms associated with the
      cell is %d, Nb should have bcc structure", int(n)
     );
20 end
21
22 // Result
23 // The number of atoms associated with the cell is
     2\,,~\mathrm{Nb} should have bcc structure
```

Scilab code Exa 1.3 Lattice constants of hcp structure of Ti

```
1 // Scilab Code Ex1.3 : Page-17 (2006)
2 clc; clear;
3 V = 10.58e-29; // Volume of the unit cell, metre
     cube
4 a = poly(0, 'a'); // Declare a variable
5 a = roots(3*sqrt(3)/2*1.58*a^3-V);
                                             // First
     lattice parameter, m
6 c = 1.58*a(3); // Third lattice parameter, m
7 printf("\nThe lattice parameters of hcp structure of
      Ti are:");
8 printf("\na = \%4.2 f angstorm, c = \%4.2 f angstorm", a
      (3)/1e-010, c/1e-010);
9
10 // Result
11 // The lattice parameters of hcp structure of Ti are
12 // a = 2.95 angstorm, c = 4.67 angstorm
```

```
Scilab code Exa 1.4 c by a c by a ratios of Mg and Cd
```

```
1 // Scilab Code Ex1.4 : Page-17 (2006)
2 clc; clear;
3 c_by_a_ratio = 1.633; // Ideal c/a ratio
4 A = cell(2,4); // Declare a cell
5 // Assign values to the elements of the cell from
the table
6 A(1,1).entries = 'Mg';
7 A(2,1).entries = 'Cd';
8 A(1,2).entries = 5.21;
9 A(2,2).entries = 5.62;
10 A(1,3).entries = 3.21;
11 A(2,3).entries = 2.98;
12 A(1,4).entries = A(1,2).entries/A(1,3).entries;
```

```
13 A(2,4).entries = A(2,2).entries/A(2,3).entries;
14 if (A(1,4).entries - c_by_a_ratio) < 0.01 then
       printf("\n%s satisfies ideal c/a ratio and %s
15
          has large deviation from this value.", A(1,1)
          .entries, A(2,1).entries);
16 else if (A(1,4).entries - c_by_a_ratio) < 0.01 then
       printf ("\n\%s satisfies ideal c/a ratio and %s
17
          has large deviation from this value.", A(2,1)
          .entries, A(1,1).entries);
18
       end
19 end
20
21 // Result
22 // Mg satisfies ideal c/a ratio and Cd has large
     deviation from this value.
```

Scilab code Exa 1.5 Lattice constant of NaCl unit cell

```
1 // Scilab Code Ex 1.5 : Page-18 (2006)
2 clc; clear;5
3 M_Na = 23;
                     // Atomic weight of Na, gram per
     mole
                       // Atomic weight of Cl, gram per
4 M_C1 = 35.5;
      mole
5 d = 2.18e+06;
                   // Density of Nacl salt, g per
     metre cube
6 n = 4; // No. of atoms per unit cell for an fcc
     lattice of NaCl crystal
7 N = 6.023D+23;
                    // Avogadro's No.
8 // Volume of the unit cell is given by
9 // a^3 = M*n/(N*d)
10 // Solving for a
11 a = (n*(M_Na + M_Cl)/(d*N))^{(1/3)}; // Lattice
     constant of unit cell of NaCl
12 printf("\nLattice constant for the NaCl crystal = \%4
```

```
.2 f angstorm", a/1e-010);
13
14 // Result
15 // Lattice constant for the NaCl crystal = 5.63
angsotrm
```

Scilab code Exa 1.6 Ionic packing factor of fcc KCl

```
1 // Scilab Code Ex 1.6 : Page-18 (2006)
2 clc; clear;
3 r = 1.33; // Ionic radii of K+ ion, angstrom
4 R = 1.81; // Ionic radii of Cl- ion, angstrom
5 n = 4; // No. of atoms per unit cell for an fcc
lattice of NaCl crystal
6 APF = (n*(4*%pi*r^3/3)+n*(4*%pi*R^3/3))/(2*r+2*R)^3;
// Atomic packing factor of fcc KCl
7 printf("\nThe ionic packing factor of fcc KCl = %4.2
f", APF);
8
9 // Result
10 // The ionic packing factor of fcc KCl = 0.56
```

Scilab code Exa 1.7 The number of atoms in unit cells of diamond and graphite

```
1 // Scilab Code Ex 1.7 : Page-20 (2006)
2 clc; clear;
3 N = 6.023e+23; // Avogadro's number
4 M = 12.01e-03; // Atomic weight of diamond/graphite
    , kg
5
6 // For diamond
7 a = 3.568e-010; // Lattice parameter of diamond,
    m
```

```
8 rho = 3.518e+03; // Density of diamond, kg per
     metre cube
9 n = a^3*rho*N/M;
                    // Number of atoms in the unit
     cell of diamond structure
10 printf("\nThe number of atoms in the unit cell of
     diamond structure = \%1d", n);
11
12 // For graphite
13 a = 2.451e-010;
                       // First lattice parameter of
     graphite, m
14 \ c = 6.701 e - 010;
                       // Third lattice parameter of
     graphite, m
15 rho = 2.2589e+03; // Density of graphite, kg per
     metre cube
16 V = 3*sqrt(3)*a^2*c/2; // Volume of hexagonal unit
     cell of graphite, metre cube
17 n = V*rho*N/M; // Number of atoms in the unit
     cell of graphite structure
18 printf("\nThe number of atoms in the unit cell of
     graphite structure = \%2d", ceil(n));
19
20 // Result
21 // The number of atoms in the unit cell of diamond
     structure = 8
22 // The number of atoms in the unit cell of graphite
     structure = 12
```

Scilab code Exa 1.8 Densities of si and GaAs

```
1 // Scilab Code Ex 1.8 :Page-21 (2006)
2 clc; clear;
3 N = 6.023e+23; // Avogadro's number
4 
5 // For silicon crystallized into diamond structure
6 a = 5.43e-08; // Lattice parameter of Si, cm
```

```
7 M = 28.1; // Atomic mass of Si, g/mol
                   // Number of atoms per unit volume,
8 n = 8/a^3;
      atoms per cm cube
              // Density of Si crytal, g/cm
9 d = n*M/N;
10 printf("\nThe density of crystallized Si = \%4.2 f
     gram per cm cube", d);
11
12 // For GaAs crystallized into Zinc Blende structure
13 a = 5.65e-08; // Lattice parameter of GaAs, cm
                 // Atomic weight of Ga, g/mol
14 M_Ga = 69.7;
15 M_As = 74.9; // Atomic weight of As, g/mol
16 M = M_Ga + M_As; // Atomic weight of GaAs, g/mol
17 n = 4/a^3;
                  // Number of atoms per unit volume,
      atoms per cm cube
18 \, d = n * M / N;
             // Density of Si crytal, g/cm
19 printf("\nThe density of crystallized GaAs = \%5.3 f
     gram per cm cube", d);
20
21 // Result
22 // The density of crystallized Si = 2.33 gram per cm
      cube
23 // The density of crystallized GaAs = 5.324 gram per
      cm cube 12
```

Scilab code Exa 1.9 Lattice parameters of GaP and GaAs

```
1 // Scilab Code Ex 1.9 :Page-21 (2006)
2 clc; clear;
3 N = 6.023e+23; // Avogadro's number
4
5 r1 = 0.122e-09; // Ionic radii of Ga, m
6 r2 = 0.125e-09; // Ionic radii of As, m
7 r3 = 0.11e-09; // Ionic radii of P, m
8
9 // For GaP
```

```
10 r = r1 + r3;
                       // Interatomic separation
     between Ga and P atoms, m
11 a = 4*r/3^{(1/2)};
                       // Lattice parameter of GaP
     structure, m
12 printf("\nThe lattice parameter of GaP structure =
     %5.3f angstrom", a/1e-10);
13
14 // For GaAs
                       // Interatomic separation
15 r = r1 + r2;
     between Ga and As atoms, m
16 a = 4*r/3^{(1/2)};
                    // Lattice parameter of GaP
     structure, m
17 printf("\nThe lattice parameter of GaAs structure =
     \%4.2 f angstrom", a/1e-10);
18
19 // Result
20 // The lattice parameter of GaP structure = 5.358
     angstrom
21 // The lattice parameter of GaAs structure = 5.70
     angstrom
```

Scilab code Exa 1.10 Crystal structures of some ionic compounds

```
1 // Scilab Code Ex 1.10 : Page-24 (2006)
2 clc; clear;
3 function str = structure(r_ratio)
       if r_ratio > 0.732 then
4
5
           str = 'Caesium Chloride';
       else if r_ratio < 0.732 & r_ratio > 0.414 then
6
7
                str = 'Rock Salt';
8
           else if r_ratio < 0.414 then</pre>
                    str = 'Rutile'
9
10
                 end
11
           end
12
       end
```

```
13 endfunction
14
15 \text{ crystal} = \text{cell}(6,2);
                           // Declare cells of 6 rows
      and 2 columns
16 crystal(1,1).entries = 'I';
17 crystal(1,2).entries = 2.19;
                                            // Ionic radius
      of I, angstrom
18 crystal(2,1).entries = 'Cl';
19 \text{ crystal}(2,2) \text{ .entries} = 1.81;
                                            // Ionic radius
      of Cl, angstrom
20 crystal(3,1).entries = 'Na';
21 crystal(3,2).entries = 0.95;
                                            // Ionic radius
      of Na, angstrom
22 crystal(4,1).entries = 'Cs';
23 \text{ crystal}(4, 2) \text{ .entries} = 1.69;
                                            // Ionic radius
      of Cs, angstrom
24 crystal(5,1).entries = 'Mg';
25 \text{ crystal}(5,2) \text{ .entries} = 0.99;
                                            // Ionic radius
      of Mg2+, angstrom
26 \text{ crystal}(6,1) \text{ .entries} = 'O';
27 \text{ crystal(6,2).entries} = 1.40;
                                            // Ionic radius
      of O2-, angstrom
28
29 printf("\nThe crystal structure of %s%s with radius
      ratio = \%6.4 \, \text{f} is \%s", crystal(3,1).entries,
      crystal(1,1).entries, crystal(3,2).entries/
      crystal(1,2).entries, structure(crystal(3,2).
      entries/crystal(1,2).entries));
30
31 printf("\nThe crystal structure of %s%s with radius
      ratio = \%6.4 \, \text{f} is \%s", crystal(3,1).entries,
      crystal(2,1).entries, crystal(3,2).entries/
      crystal(2,2).entries, structure(crystal(3,2).
      entries/crystal(2,2).entries));
32
33 printf("\nThe crystal structure of %s%s with radius
      ratio = \%6.4 \, \text{f} is \%s", crystal(4,1).entries,
      crystal(2,1).entries, crystal(4,2).entries/
```

```
crystal(2,2).entries, structure(crystal(4,2).
      entries/crystal(2,2).entries));
34
35 printf("\nThe crystal structure of %s%s with radius
      ratio = \%6.4 \, \text{f} is \%s", crystal(4,1).entries,
      crystal(1,1).entries, crystal(4,2).entries/
      crystal(1,2).entries, structure(crystal(4,2).
      entries/crystal(1,2).entries));
36
37 printf("\nThe crystal structure of %s%s with radius
      ratio = \%6.4 \, \text{f} is \%s", crystal(5,1).entries,
      crystal(6,1).entries, crystal(5,2).entries/
      crystal(6,2).entries, structure(crystal(5,2).
      entries/crystal(2,2).entries));
38
39 // Result
40 //The crystal structure of NaI with radius ratio =
      0.4338 is Rock Salt
41 //The crystal structure of NaCl with radius ratio =
      0.5249 is Rock Salt
42 //The crystal structure of CsCl with radius ratio =
      0.9337 is Caesium Chloride
43 //The crystal structure of CsI with radius ratio =
      0.7717 is Caesium Chloride
44 //The crystal structure of MgO with radius ratio =
      0.7071 is Rock Salt
```

Scilab code Exa 1.11 Maximum radius of the sphere to fit into void between two bcc

```
1 // Scilab Code Ex 1.11 :Page-25 (2006)
2 clc; clear;
3 R = 1; // For simplicity we assume radius of atom
        to be unity, m
4 // For bcc Structure,
5 a = 4*R/sqrt(3); // Lattice parameter of bcc
```

```
crystal, m
6 // We have R+r = a/2, solving for r
7 r = a/2-R // Relation between radius of the void
and radius of the atom, m
8 printf("\nThe maxiumum radius of the sphere that can
fit into void between two bcc unit cells = %5.3
fR", r);
9
10 // Result
11 // The maxiumum radius of the sphere that can fit
into void between two bcc unit cells = 0.155R
```

Scilab code Exa 1.12 Maximum radius of the sphere to fit into void between two fcc

```
1 // Scilab Code Ex 1.12 : Page-25 (2006)
2 clc; clear;
3 R = 1; // For simplicity we assume radius of atom
     to be unity, m
4 // For fcc Structure,
5 a = 4*R/sqrt(2); // Lattice parameter of fcc
     crystal, m
6 // We have R+r = a/2, solving for r
7 r = a/2-R // Relation between radius of the void
     and radius of the atom, m
8 printf("\nThe maxiumum radius of the sphere that can
      fit into void between two fcc unit cells = \%5.3
     fR", r);
9
10 // Result
11 // The maxiumum radius of the sphere that can fit
     into void between two fcc unit cells = 0.414R
```

Scilab code Exa 1.13 Radius of largest void in the bcc lattice

```
1 // Scilab Code Ex 1.13 : Page-26 (2006)
2 clc; clear;
3 R = 1; // For simplicity we assume radius of atom
     to be unity, m
4 // For bcc Structure,
5 a = 4*R/sqrt(3); // Lattice parameter of bcc
     crystal, m
6 // We have (R+r)^2 = (a/2)^2 + (a/4)^2, solving for r
7 r = sqrt(5)*a/4-R // Relation between radius of
     the void and radius of the atom, m
8 printf("\nThe radius of largest void in the bcc
     lattice = \%4.2 \, fR'', r);
9
10 // For fcc Structure,
11 a = 4*R/sqrt(2); // Lattice parameter of fcc
     crystal, m
12 // We have (R+r)^2 = (a/2)^2 + (a/4)^2, solving for r
13 r_fcc = a/2-R // Relation between radius of the
     void and radius of the atom, m
14 printf("\nThe radius of largest void in the fcc
     lattice is %4.2f times larger than that in the
     bcc lattice", r_fcc/r);
15
16 // Result
17 // The radius of largest void in the bcc lattice =
     0.29R
18 // The radius of largest void in the fcc lattice is
     1.42 times larger than that in the bcc lattice
```

Scilab code Exa 1.14 Radius of void for carbon atoms in iron

1 // Scilab Code Ex 1.14 :Page-26 (2006)
2 clc; clear;
3 R = 1; // For simplicity we assume radius of atom
 to be unity, m

```
4
5 // For bcc Structure,
6 a = 4*R/sqrt(3); // Lattice parameter of bcc
crystal, m
7 // We have (R+r)^2 = (a/2)^2+(a/4)^2, solving for r
8 r = a/2-R // Relation between radius of the void
and radius of the atom, m
9 printf("\nThe radius of void for carbon atoms in
iron = %5.3 fR", r);
10
11 // Result
12 //The radius of void for carbon atoms in iron =
0.155R
```

Scilab code Exa 1.15 Radius of triangular void

```
1 // Scilab Code Ex 1.15 :Page-27 (2006)
2 clc; clear;
3 R = 1; // For simplicity we assume radius of atom
        to be unity, m
4 // From the right triangle LMO, LM/LO = R/(R + r) =
        cosd(30), solving for r
5 r = poly(0, 'r');
6 r = roots(R/cosd(30)-R-r);
7 printf("\nThe radius of triangular void = %5.3fR", r
      );
8
9 // Result
10 // The radius of triangular void = 0.155R
```

Scilab code Exa 1.16 Radius ratio of tetrahedral void

1 // Scilab Code Ex 1.16 : Page-27 (2006)

```
2 clc; clear;
3 R = 1; // For simplicity we assume radius of atom
to be unity, m
4 // From the right triangle LMN similar to trinagle
LPO, LM/LO = R/(R + r) = LP/LO = sqrt(2/3),
solving for r
5 r = poly(0, 'r');
6 r = roots(R/sqrt(2/3)-R-r);
7 printf("\nThe radius ratio of tetragonal void = %5.3
f", r/R);
8
9 // Result
10 // The radius ratio of tetragonal void = 0.225
```

Scilab code Exa 1.17 Radius ratio of octahedral void

```
1 // Scilab Code Ex 1.17 :Page-28 (2006)
2 clc; clear;
3 R = 1; // For simplicity we assume radius of atom
        to be unity, m
4 // From the isosceles right triangle LMN, LM/LO = (R
            + r)/R = sqrt(2)/1, solving for r
5 r = poly(0, 'r');
6 r = roots(R*sqrt(2)-R-r);
7 printf("\nThe radius ratio of octahedral void = %5.3
        f", r/R);
8
9 // Result
10 // The radius ratio of octahedral void = 0.414
```

Scilab code Exa 1.18 Miller indices of the crystal plane

1 // Scilab Code Ex 1.18 Page-32 (2006)

```
2 clc; clear;
3 p = 3; q = -3; r = 3/2; // Coefficients of
     intercepts along three axes
                   // Reciprocate the first coefficient
4 h = 1/p;
5 k = 1/q;
                   // Reciprocate the second
     coefficient
6 \ l = 1/r;
                   // Reciprocate the third coefficient
7 mul_fact = double(lcm(int32([p,q,r]))); // Find l.c.
     m. of m, n and p
8 h = h*mul_fact;
                     // Clear the first fraction
9 k = k*mul_fact; // Clear the second fraction
                     // Clear the third fraction
10 l = l*mul_fact;
11 printf("\nThe required miller indices are : (%d %d
     %d) ", h,k,l);
12
13 // Result
14 // The required miller indices are : (1 - 1 2)
```

Scilab code Exa 1.19 Miller indices of planes cutting axes of an orthorhombic crys

```
1 // Scilab Code Ex 1.19 Page-32 (2006)
2 clc; clear;
3 p = 2; q = 3; r = 4; // Coefficients of intercepts
      along three axes
4 h = 1/p;
                   // Reciprocate the first coefficient
                   // Reciprocate the second
5 k = 1/q;
      coefficient
6 l = 1/r;
                    // Reciprocate the third coefficient
7 mul_fact = double(lcm(int32([p,q,r]))); // Find l.c.
     m. of m, n and p
                        // Clear the first fraction
8 h = h*mul_fact;
9 k = k*mul_fact; // Clear the second fraction
10 l = l*mul_fact; // Clear the third fraction
11 printf("\nThe required miller indices are : (%d %d
      %d) ", h,k,l);
```

```
12
13 // Result
14 // The required miller indices are : (6 4 3)
```

```
Scilab code Exa 1.20 Miller indices of set of parallel planes
```

```
1 // Scilab Code Ex 1.20 Page-32 (2006)
2 clc; clear;
3 p = 4; q = 4; r = \%inf; // Coefficients of
      intercepts along three axes
4 h = 1/p;
                 // Reciprocate the first coefficient
5 k = 1/q;
                    // Reciprocate the second
      coefficient
            // Reciprocate the third coefficient
6 \ 1 = 1/r;
7 mul_fact = double(lcm(int32([p,q]))); // Find l.c.m.
       of m, n and p
8 h = h*mul_fact; // Clear the first fraction
9 k = k*mul_fact; // Clear the second fraction
10 l = l*mul_fact; // Clear the third fraction
                      // Clear the third fraction
11 printf("\nThe required miller indices are : (%d %d
     %d) ", h,k,l);
12
13 // Result
14 // The required miller indices are : (1 \ 1 \ 0)
```

Scilab code Exa 1.21 Miller indices of planes with given intercepts

```
5 p = 0.424/a; q = 2/b; r = 0.183/c; // Coefficients
of intercepts along three axes
6 h = 1/p; // Reciprocate the first coefficient
7 k = 1/q; // Reciprocate the second
coefficient
8 l = 1/r; // Reciprocate the third coefficient
9 printf("\nThe required miller indices are : (%d %d
%d) ", h,k,l);
10
11 // Result
12 // The required miller indices are : (1 1 2)
```

Scilab code Exa 1.22 Interplanar spacing in cubic fcc crystal

```
1 // Scilab Code Ex 1.22 Page-33 (2006)
2 clc; clear;
3 r = 1.746e-010; // Atomic radius of lead atom,
     angstrom
4 a = 4*r/sqrt(2); // Interatomic spacing, m
5 h = 1; k = 0; l = 0; // Miller Indices for planes in
      a cubic crystal
6 d_{100} = a/(h^2+k^2+l^2)(1/2); // The interplanar
     spacing for cubic crystals, m
7 printf("\nThe interplanar spacing between
     consecutive (100) planes = \%4.2 f angstrom", d_100
     /1e-010);
8
9 h = 1; k = 1; l = 0; // Miller Indices for planes in
      a cubic crystal
10 d_110 = a/(h^2+k^2+l^2)(1/2); // The interplanar
     spacing for cubic crystals, m
11 printf("\nThe interplanar spacing between
     consecutive (110) planes = \%5.3 f angstrom", d_110
     /1e-010);
12
```

```
13 h = 1; k = 1; l = 1; // Miller Indices for planes in
a cubic crystal
14 d_111 = a/(h^2+k^2+l^2)^(1/2); // The interplanar
spacing for cubic crystals, m
15 printf("\nThe interplanar spacing between
consecutive (111) planes = %4.2f angstrom", d_111
/1e-010);
16
17 // Result
18 // The interplanar spacing between consecutive (100)
planes = 4.94 angstrom
19 // The interplanar spacing between consecutive (110)
planes = 3.492 angstrom
20 // The interplanar spacing between consecutive (111)
planes = 2.85 angstrom
```

Scilab code Exa 1.23 Wavelength of K alpha radiation of copper using Bohr atom mod

```
1 // Scilab Code Ex 1.23 Page-34 (2006)
2 clc; clear;
3 e = 1.6e - 0.19;
                  // Energy equivalent of 1 eV, J/eV
4 h = 6.626e - 034;
                      // Planck's constant, Js
5 c = 3.0e+08; // Speed of light, m/s
6 E_K = 13.6*29^2; // Energy of electron in the K-
     shell
7 E_L = 13.6*29^2/4; // Energy of electron in the L-
     shell
8 // As E_K - E_L = h*c/lambda, solving for lambda
9 lambda = h*c/((E_K - E_L)*e);
                                   // Wavelength of
      K_alpha radiation of tungsten, m
10 printf("\nThe wavelength of K_alpha radiation of Cu
     = %5.3 f angstrom", lambda/le-010);
11
12 // Result
13 // The wavelength of K_alpha radiation of Cu = 1.448
```

Scilab code Exa 1.24 Wavelength of K alpha radiation of tungesten

```
1 // Scilab Code Ex 1.24 Page-35 (2006)
2 clc; clear;
                   // Energy equivalent of 1 eV, J/eV
3 e = 1.6e - 019;
4 h = 6.626e - 034;
                      // Planck's constant, Js
                 // Speed of light, m/s
5 c = 3.0e + 08;
6 E_K = 13.6*74^2; // Energy of electron in the K-
     shell
7 E_L = 13.6*74^2/4; // Energy of electron in the L-
     shell
8 // As E_K - E_L = h*c/lambda, solving for lambda
9 lambda = h*c/((E_K - E_L)*e);
                                       // Wavelength of
      K_alpha radiation of tungsten, m
10 printf("\nThe wavelength of K_alpha radiation of
     tungsten = \%4.2 e angstrom", lambda/le-010);
11
12 // Result
13 // The wavelength of K_alpha radiation of tungsten =
      2.22 e - 01 angstrom
```

```
Scilab code Exa 1.25 Lattice constants of copper palladium alloy in different prop
```

```
1 // Scilab Code Ex 1.25 Page-35 (2006)
2 clc; clear;
3 a_Cu = 3.61; // Lattice constant of Cu, angstrom
4 a_Pd = 3.89; // Lattice constant of Pd, angstrom
5
6 // For x = 20% of Pd
7 x = 0.20; // Percentage of Pd in Cu-Pd alloy
8 a_Cu_Pd = ((1-x)*a_Cu + x*a_Pd);
```

```
9 printf("\nFor %2d percent of Pd in Cu-Pd alloy, a =
     %4.2f angstrom", x*100, a_Cu_Pd);
10
11 // For x = 40\% of Pd
12 x = 0.40; // Percentage of Pd in Cu-Pd alloy
13 \ a_Cu_Pd = ((1-x)*a_Cu + x*a_Pd);
14 printf("\nFor %2d percent of Pd in Cu-Pd alloy, a =
     %5.3f angstrom", x*100, a_Cu_Pd);
15
16 // For x = 60\% of Pd
17 x = 0.60; // Percentage of Pd in Cu-Pd alloy
18 a_Cu_Pd = ((1-x)*a_Cu + x*a_Pd);
19 printf("\nFor %2d percent of Pd in Cu-Pd alloy, a =
     %5.3f angstrom", x*100, a_Cu_Pd);
20
21 // For x = 80\% of Pd
22 x = 0.80; // Percentage of Pd in Cu-Pd alloy
23 a_Cu_Pd = ((1-x)*a_Cu + x*a_Pd);
24 printf("\nFor %2d percent of Pd in Cu-Pd alloy, a =
     %5.3f angstrom", x*100, a_Cu_Pd);
25
  // Result
26
  // For 20 percent of Pd in Cu-Pd alloy, a = 3.67
27
     angstrom
  // For 40 percent of Pd in Cu-Pd alloy, a = 3.722
28
     angstrom
29 // For 60 percent of Pd in Cu-Pd alloy, a = 3.778
     angstrom
30 // For 80 percent of Pd in Cu-Pd alloy, a = 3.834
     angstrom
```

Scilab code Exa 1.26 Amount of required Rh in Pt to change the unit cell volume

```
1 // Scilab Code Ex 1.26 Page-36 (2006)
2 clc; clear;
```

```
3 a_Rh = 3.80;
                   // Lattice constant of Rh, angstrom
                 // Lattice constant of Pt, angstrom
4 a_{Pt} = 3.92;
5 a_{Pt_Rh} = 3.78;
                   // Lattice constant of unit cell
     of Pt-Rh alloy, angstrom
6 V = (a_Pt*1e-08)^3; // Volume of unit cell of Pt,
     metre cube
7 V_90 = 0.9 * V; // 90 percent of the cell volume of
     Pt, metre cube
9 // For x = 20\% of Rh in Pt-Rh alloy, we have
10 // a_P t_R h = ((1-x) * a_P t + x * a_R h), solving for x
11 x = poly(0, 'x');
12 x = roots (a_Pt_Rh - a_Pt + x*a_Pt - x*a_Rh);
     // Amount of required Rh in Pt to change the unit
      cell volume
13 printf("\nThe amount of Rh required in Pt to change
      the unit cell volume = \%4.2 f percent", x);
14
15 // Result
16 // The amount of Rh required in Pt to change the
     unit cell volume = 1.17 percent
```

Scilab code Exa 1.27 Percent volume change with the structural change

```
1 // Scilab Code Ex 1.27 :Page-36 (2006)
2 clc; clear;
3 r_bcc = 0.126; // Atomic radius of the iron
atoms in the bcc structure, nm
4 r_fcc = 0.129; // Atomic radius of the iron
atoms in the fcc structure, nm
5 a_bcc = 4*r_bcc/sqrt(3);
6 a_fcc = 4*r_fcc/sqrt(2);
7 V_bcc = 2*a_bcc^3; // Volume of bcc unit cell,
nm cube
8 V_fcc = a_fcc^3; // Volume of fcc unit cell, nm
```

```
cube
9 delta_V = V_fcc - V_bcc; // Change in volume from
    bcc to fcc structure, nm cube
10 V = V_bcc;
11 V_frac = delta_V/V; // Fractional change in
    volume from bcc to fcc structure
12
13 printf("\nThe percentage change in volume from bcc
    to fcc structure = %3.1f percent", V_frac*100);
14
15 // Result
16 // The percentage change in volume from bcc to fcc
    structure = -1.4 percent
```

Chapter 2

Bonding in Solids

Scilab code Exa 2.1 Binding energy of KCl

1 // Scilab Code Ex2.1 : Page-62 (2006) 2 clc; clear; 3 epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, F/m 4 e = 1.6e-019; // Energy equivalent of 1 eV, eV/J5 r = 3.147e-010; // Nearest neighbour distance for KCl, m // Repulsive exponent of KCl 6 n = 9.1;7 A = 1.748; // Madelung constant for lattice binding energy 8 E = $A*e^2/(4*\%pi*epsilon_0*r)*(n-1)/n/e;$ Binding energy of KCl, eV 9 printf("\nThe binding energy of KCl = %5.3 f eV", E); 10 11 // Result 12 // The binding energy of KCl = 7.110 eV

Scilab code Exa 2.2 Lattice energy of NaCl

```
1 // Scilab Code Ex2.2 : Page-62 (2006)
2 clc; clear;
3 epsilon_0 = 8.854e-012; // Absolute electrical
     permittivity of free space, F/m
4 N = 6.023e+023;
                      // Avogadro's number
5 e = 1.6e - 019;
                   // Energy equivalent of 1 eV, eV/J
6 = 30 = 5.63e - 010;
                   // Lattice parameter of NaCl, m
7 r0 = a0/2;
                   // Nearest neighbour distance for
     NaCl, m
              // Repulsive exponent of NaCl
8 n = 8.4;
             // Madelung constant for lattice binding
9 \quad A = 1.748;
      energy
10 E = A*e^2/(4*%pi*epsilon_0*r0)*(n-1)/n/e;
                                                 Binding energy of NaCl, eV
11 printf("\nThe binding energy of NaCl = \%5.3 f kcal/
     mol", E*N*e/(4.186*1e+03));
12
13 // Result
14 // The binding energy of NaCl = 181.101 eV
```

Scilab code Exa 2.3 Nearest neighbour distance of KCl

```
1 // Scilab Code Ex2.3 : Page-62 (2006)
2 clc; clear;
3 epsilon_0 = 8.854e-012; // Absolute electrical
    permittivity of free space, F/m
4 N = 6.023e+023; // Avogadro's number
5 e = 1.6e-019; // Energy equivalent of 1 eV, eV/J
6 E = 162.9e+03; // Binding energy of KCl, cal/mol
7 n = 8.6; // Repulsive exponent of KCl
8 A = 1.747; // Madelung constant for lattice binding
    energy
9 // As lattice binding energy, E = A*e^2/(4*%pi*
    epsilon_0*r0)*(n-1)/n, solving for r0
10 r0 = A*N*e^2/(4*%pi*epsilon_0*E*4.186)*(n-1)/n;
```

```
// Nearest neighbour distance of KCl, m
11 printf("\nThe nearest neighbour distance of KCl = %4
        .2f angstorm", r0/1e-010);
12
13 // Result
14 // The nearest neighbour distance of KCl = 3.14
        angstorm
```

Scilab code Exa 2.4 Nearest distance of CsCl

```
1 // Scilab Code Ex2.4 : Page-63 (2006)
2 clc; clear;
3 epsilon_0 = 8.854e-012; // Absolute electrical
     permittivity of free space, F/m
4 N = 6.023e+023;
                      // Avogadro's number
5 e = 1.6e-019; // Energy equivalent of 1 eV, eV/J
6 E = 152e+03; // Binding energy of CsCl, cal/mol
               // Repulsive exponent of CsCl
7 n = 10.6;
8 A = 1.763; // Madelung constant for lattice binding
      energy
9 // As lattice binding energy, E = A * e^2 / (4 * \% pi *
     epsilon_0 * r0  (n-1)/n, solving for r0
10 r0 = A*N*e^2/(4*%pi*epsilon_0*E*4.186)*(n-1)/n;
     // Nearest neighbour distance of CsCl, m
11 printf("\nThe nearest neighbour distance of CsCl =
     %4.2 f angstrom", r0/1e-010);
12
13 // Result
14 // The nearest neighbour distance of CsCl = 3.48
     angstrom
```

Scilab code Exa 2.5 Repulsive exponent in NaI
```
1 // Scilab Code Ex2.5 : Page-63 (2006)
2 clc; clear;
3 epsilon_0 = 8.854e-012; // Absolute electrical
      permittivity of free space, F/m
4 N = 6.023e + 023;
                      // Avogadro's number
5 e = 1.6e-019; // Energy equivalent of 1 eV, eV/J
6 r0 = 6.46e-010; // Nearest neighbour distance of
      NaI
7 E = 157.1e+03; // Binding energy of NaI, cal/mol
8 A = 1.747; // Madelung constant for lattice binding
       energy
9 // As lattice binding energy, E = -A \cdot e^2/(4 \cdot \% pi \cdot pi)
      epsilon_0 * r0 (n-1)/n, solving for n
10 n = 1/(1+(4.186*E*4*%pi*epsilon_0*r0)/(N*A*e^2));
     // Repulsive exponent of NaI
11 printf("\nThe repulsive exponent of NaI = \%5.3 f", n)
      ;
12
13 // Result
14 // The repulsive exponent of NaI = 0.363
```

Scilab code Exa 2.6 Compressibility of solid

```
1 // Scilab Code Ex2.6 : Page-63 (2006)
2 clc; clear;
3 e = 1.6e-019; // Energy equivalent of 1 eV, eV/J
4 a0 = 2.815e-010; // Nearest neighbour distance
of solid
5 A = 1.747; // Madelung constant for lattice binding
energy
6 n = 8.6; // The repulsive exponent of solid
7 c = 2; // Structural factor for rocksalt
8 // As n = 1 + (9*c*a0^4)/(K0*e^2*A), solving for K0
9 K0 = 9*c*a0^4/((n-1)*e^2*A); //
Compressibility of solid, metre square per newton
```

```
10 printf("\nThe compressibility of the solid = %5.3e
    metre square per newton", K0);
11
12 // Result
13 // The compressibility of the solid = 3.325e-001
    metre square per newton (Answer Given in the
    textbook is wrong)
```

```
Scilab code Exa 2.7 Percentage ionic character present in a solid
```

```
1 // Scilab Code Ex2.7 : Page-69 (2006)
2 clc; clear;
3 chi_diff = 1; // Electronegativity difference
    between the constituent of elements of solid
4 percent_ion = 100*(1-exp(-(0.25*chi_diff^2))); //
    Percentage ionic character present in solid given
    by Pauling
5 printf("\nThe percentage ionic character present in
    solid = %2d percent ", percent_ion);
6
7 // Result
8 // The percentage ionic character present in solid =
    22 percent
```

Scilab code Exa 2.8 Fractional ionicity of compounds

```
1 // Scilab Code Ex2.8 : Page-69 (2006)
2 clc; clear;
3 A = cell(2,3); // Declare a cell of 3X2
4 A(1,1).entries = 'GaAs'; // First compound name
5 A(1,2).entries = 4.3; // Homopolar gap of
      first compound, eV
```

```
// Ionic gap of first
6 \quad A(1,3) \text{ . entries } = 2.90;
      compound, eV
7 A(2,1).entries = 'CdTe';
                                    // Second compound name
                                    // Homopolar gap of
8 A(2,2).entries = 3.08;
      second compound, eV
9 A(2,3).entries = 4.90;
                                    // Ionic gap of second
      compound, eV
10 printf("\nThe fractional ionicity of the compounds
      are given in the last column of the following
      table:");
                               \mathbf{E}\mathbf{h}
                                         С
11 printf("\nCompound
                                                  fi");
12 \text{ for } i = 1:1:2
13 printf ("\n\%s
                             %3.1 f
                                        \%4.2 \text{ f}
                                                   %5.3 f", A(i
      ,1).entries, A(i,2).entries, A(i,3).entries, A(i
      ,3).entries<sup>2</sup>/(A(i,2).entries<sup>2</sup>+A(i,3).entries<sup>2</sup>)
      ); // Philips and Vanvechten model of fractional
       ionicity
14 end
15
16 // Result
17 // The fractional ionicity of the compounds are
      given in the last column of the following table:
18 // Compound
                       \mathbf{E}\mathbf{h}
                                С
                                          fi
19 // GaAs
                       4.3
                                 2.90
                                          0.313
20 // sCdTe
                        3.1
                                  4.90
                                           0.717
```

Chapter 3

Specific Heat of Solids and Lattice Vibrations

Scilab code Exa 3.1 Grunesien parameter for Pb

```
1 // Scilab Code Ex3.1: Page-79 (2006)
2 clc; clear;
3 VO = 9.1e-05; // Atomic volume of Pb, metre cube
     per kg
                  // Compressibility of Pb, metre
4 K = 2.3e-011;
     square per newton
5 alpha = 86e-06; // Coefficient of thermal expansion,
      per K
6 Cv = 1.4e+02; // Specific heat at constant volume,
      J/kg
7 gama = alpha*VO/(K*Cv); // Grunesien parameter
     for Pb
8 printf("\nThe Grunesien parameter for Pb = \%3.1 \text{ f}",
     gama);
9
10 // Result
11 // The Grunesien parameter for Pb = 2.4
```

Scilab code Exa 3.2 Heat capacity of Cu

```
1 // Scilab Code Ex3.2: Page-79 (2006)
2 clc; clear;
3 VO = 11e-05; // Atomic volume of Cu, metre cube
     per kg
4 K = 0.75e-011; // Compressibility of Cu, metre
     square per newton
5 alpha = 49e-06; // Coefficient of thermal expansion,
      per K
6 gama = 1.9; // The Grunesien parameter for Cu =
     2.4
7 Cv = alpha*V0/(K*gama);
                           // Specific heat of Cu at
     constant volume, J/kg
8 printf("\nThe specific heat capacity of Cu = \%3.1e J
     /kg", Cv);
9
10 // Result
11 // The specific heat capacity of Cu = 3.8e+02 J/kg
```

Scilab code Exa 3.3 Debye cut off frequency of Al

```
8 V = M/rho; // Atomic volume of Al, metre cube
9 f_c = (9*N/(4*%pi*V*(1/C_t^3+2/C_1^3)))^(1/3);
10 printf("\nThe Debye cut-off frequency of Al = %4.2e
        per sec", f_c);
11
12 // Result
13 // The Debye cut-off frequency of Al = 8.47e+012 per
        sec
```

Scilab code Exa 3.4 Specific heat capacity of diamond

```
1 // Scilab Code Ex3.4: Page-89 (2006)
2 clc; clear;
3 N = 6.02e+23; // Avogadro's number, per mole
4 k = 1.38e-023; // Boltzmann constant, J/K
5 R = N*k; // Molar gas constant, J/mol/K
6 \text{ theta_D} = 2230;
                          // Debye temperature for
     diamond, K
7 T = 300;
                   // Room temperature, K
8 C_v = 12/5*(%pi^4*R)*(T/theta_D)^3; // Specific heat
       capacity per unit volume of diamond, J/mol-K
9 printf("\nThe heat capacity per unit volume of
     diamond = \%4.2 \text{ f} \text{ J/mol}-\text{K}", C_v);
10
11 // Result
12 // The heat capacity per unit volume of diamond =
     4.73 J/mol-K
```

Scilab code Exa 3.5 Debye cut off frequency of Be
1 // Scilab Code Ex3.5: Page-89 (2006)
2 clc; clear;
3 k = 1.38e-023; // Boltzmann constant, J/K

```
4 theta_D = 1440; // Debye temperature for Be,
K
5 h = 6.626e-034; // Planck's constant, Js
6 f_D = k*theta_D/h; // Debye cut off frequency
of Be, Hz
7 printf("\nThe Debye cut off frequency of Be = %g per
sec", f_D);
8
9 // Result
10 // The Debye cut off frequency of Be = 2.99909e+013
per sec
```

Scilab code Exa 3.6 Electronic and lattice heat capacities of Cu

1 // Scilab Code Ex3.6: Page-89 (2006) 2 clc; clear; 3 N = 6.023e+023; // Avogadro's number, per kmol 4 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV5 k = 1.38e-023; // Boltzmann constant, J/K6 R = N*k; // Molar gas constant, J/kmol/K $7 E_F = 7;$ // Fermi energy of Cu, eV 8 theta_D = 348; // Debye temperature of Cu, K 9 T = 300; // Room temperature, K 10 T_F = E_F/k; // Fermi temperature of Cu, K 11 C_e = %pi^2/2*R*1e+03*(T/(T_F*e)); // Electronic heat capacity of Cu, J/kmol/K 12 C_l = 12/5*(%pi^4*R)*(T/theta_D)^3; // Lattice heat capacity of Cu, J/kmol/K 13 printf("\nThe electronic heat capacity of Cu = %3d J /kmol/K", round(C_e)); 14 printf("\nThe lattice heat capacity of Cu = %4.2 e J/mol/K", C_l); 1516 // Result 17 // The electronic heat capacity of Cu = 152 J/kmol/K

18 // The lattice heat capacity of Cu = 1.24e+003 J/mol /K

Scilab code Exa 3.7 Heat capacities of Cu at a given temperature

```
1 // Scilab Code Ex3.7: Page-90 (2006)
2 clc; clear;
3 N = 6.023e+023; // Avogadro's number, per kmol
4 e = 1.602e-019; // Energy equivalent of 1 eV, J/eV
5 k = 1.38e-023; // Boltzmann constant, J/K
6 R = N*k;
            // Molar gas constant, J/kmol/K
            // Fermi energy of Cu, eV
7 E_F = 7;
8 theta_D = 348; // Debye temperature of Cu, K
9 T = 0.01; // Room temperature, K
10 T_F = E_F/k; // Fermi temperature of Cu, K
11 C_e = \frac{12}{2*R*(T/(T_F*e))}; // Electronic heat
     capacity of Cu, J/mol/K
12 C_l = 12/5*(%pi^4*R)*(T/theta_D)^3;
                                       // Lattice
     heat capacity of Cu, J/kmol/K
13 printf("\nThe electronic heat capacity of Cu = \%4.2 e
      J/mol/K", C_e);
14 printf("\nThe lattice heat capacity of Cu = \%3.1 e J/
     mol/K", C_1);
15
16 // Result
17 // The electronic heat capacity of Cu = 5.05e - 006 J/
     mol/K
18 // The lattice heat capacity of Cu = 4.6 e - 011 J/mol/
     Κ
```

Scilab code Exa 3.8 Electronic specific heat of Na at 20 K

1 // Scilab Code Ex3.8: Page-90 (2006)

```
2 clc; clear;
3 N = 6.023e+023; // Avogadro's number, per kmol
4 e = 1.602e-019; // Energy equivalent of 1 eV, J/eV
5 k = 1.38e-023; // Boltzmann constant, J/K
6 R = N * k;
            // Molar gas constant, J/kmol/K
7 E_F = 3.2; // Fermi energy of Cu, eV
8 theta_D = 150; // Debye temperature of Cu, K
9 T = 20; // Given temperature, K
10 T_F = E_F/k; // Fermi temperature of Cu, K
11 C_e = \frac{12}{2*R*(T/(T_F*e))}; // Electronic heat
     capacity of Cu, J/mol/K
                                          // Lattice
12 C_l = 12/5*(%pi^4*R)*(T/theta_D)^3;
     heat capacity of Cu, J/kmol/K
13 printf("\nThe electronic heat capacity of Na = \%5.3e
      J/mol/K", C_e);
14 printf("\nThe lattice heat capacity of Na = \%6.4 \text{ e J}/
     mol/K", C_l);
15
16 // Result
17 // The electronic heat capacity of Na = 2.208 e - 002 J
     /mol/K
18 // The lattice heat capacity of Na = 4.6059e+000 J/
```

```
18 // The lattice heat capacity of Na = 4.6059e+000 J/mol/K
```

Scilab code Exa 3.9 Lattice specific heat of Hf

```
1 // Scilab Code Ex3.9: Page-91 (2006)
2 clc; clear;
3 N = 6.023e+023; // Avogadro's number, per kmol
4 e = 1.602e-019; // Energy equivalent of 1 eV, J/eV
5 k = 1.38e-023; // Boltzmann constant, J/K
6 R = N*k; // Molar gas constant, J/Kmol/K
7 E_F = 3.2; // Fermi energy of Hf, eV
8 theta_D = 242; // Debye temperature of Hf, K
9 T_F = E_F/k; // Fermi temperature of Hf, K
```

```
10 T = [300, 200, 100, 10, 5]; // Declare a vector of 5
      temperature values, K
11 printf("\n....");
12 printf("\nT(K) C<sub>-</sub>l (J/kmol/K)");
13 printf("\n.....")
14 \text{ for } i = 1:1:5
       C_l = 12/5*(%pi^4*R)*(T(i)/theta_D)^3;
15
                                                 //
         Lattice heat capacity of Hf, J/kmol/K
       printf ("\n\%3d
                      %8.3 f", T(i), C_1);
16
17 end
18 printf("\n.....")
19
20 // Result
21 // ____
22 // T(K) C<sub>-</sub>l (J/kmol/K)
23 // _____
24//3003701.86325//2001096.848
26 // 100 137.106
\begin{array}{cccc} 27 & // & 10 \\ 28 & // & 5 \end{array}
                0.137
         0.017
29 // _____
```

Scilab code Exa 3.10 Temperature at which lattice specific heat equals electronic

```
1 // Scilab Code Ex3.10: Page-91 (2006)

2 clc; clear;

3 N = 6.023e+023; // Avogadro's number, per kmol

4 e = 1.602e-019; // Energy equivalent of 1 eV, J/eV

5 k = 1.38e-023; // Boltzmann constant, J/K

6 R = N*k; // Molar gas constant, J/kmol/K

7 E_F = 7; // Fermi energy of Hf, eV

8 theta_D = 343; // Debye temperature of Hf, K

9 T_F = E_F/k; // Fermi temperature of Hf, K

10 // As C_l = 12/5*(\%pi^4*R)*(T/theta_D)^3 and C_e =
```

```
%pi^2/2*R*(T/(T_F*e)) so that
11 // For C_l = C_e, we have
12 T = sqrt((%pi^2/2*R*1/(T_F*e))/(12/5*%pi^4*R)*
    theta_D^3); // Required temperature when C_l =
    C_e, K
13 printf("\nThe temperature at which lattice specific
    heat equals electronic specific heat for Cu = %4
    .2f K", T);
14
15 // Result
16 // The temperature at which lattice specific heat
    equals electronic specific heat for Cu = 3.24 K
```

Scilab code Exa 3.11 Debye temperature of Al

```
1 // Scilab Code Ex3.11: Page-92 (2006)
2 clc; clear;
3 \text{ C11} = 1.08e+12, \text{ C12} = 0.62e+12, \text{ C44} = 0.28e+12;
      // Elastic constants of Al, dynes/cm square
                     // Lattice constant for Al cubic
4 = 4.05e - 08;
      structure, cm
5 \text{ rho} = 2.70;
                   // g/cm cube
6 \text{ k} = 1.38\text{e}-023; // Boltzmann constant, J/K
7 h = 6.626e-034; // Planck's constant, Js
8 s = 4; // Number of atoms in Al unit cell
9 Va = a<sup>3</sup>; // Volume of unit cell, cm cube
10 theta_D = (3.15/(8*%pi)*(h/k)^3*s/(rho^(3/2)*Va)*(
      C11-C12)^{(1/2)} * (C11+C12+2*C44)^{(1/2)} * C44^{(1/2)})
      ^(1/3);
11 printf("\nThe Debye temperature of Al = \%3d K",
      theta_D);
12
13 // Result
14 // The Debye temperature of Al = 466 K
```

Scilab code Exa 3.12 Debye temperatures of Cu and Na

```
1 // Scilab Code Ex3.12: Page-93 (2006)
2 clc; clear;
3 k = 1.38e-023; // Boltzmann constant, J/K
4 h = 6.626e-034; // Planck's constant, Js
5 A = cell(2,8); // Declare a matrix of 2X8
6 \quad A(1,1) \text{ . entries } = 'Cu';
7 A(1,2).entries = 1.684e+012;
8 A(1,3).entries = 1.214e+012;
9 A(1,4).entries = 0.754e+012;
10 A(1,5).entries = 4;
11 A(1,6).entries = 3.61e-08;
12 A(1,7).entries = 8.96;
13 A(2,1).entries = 'Na';
14 A(2,2).entries = 0.055e+012;
15 \quad A(2,3) \text{ . entries } = 0.047e+012;
16 \quad A(2,4) \text{ . entries } = 0.049e+012;
17 A(2,5).entries = 2;
18 \quad A(2,6) \text{ . entries } = 4.225e-08;
19 A(2,7).entries = 0.971;
20
21 // For Cu
22 Va = A(1,6).entries<sup>3</sup>; // Volume of unit cell, cm
      cube
23 A(1,8).entries = (3.15/(8*%pi)*(h/k)^3*A(1,5).
      entries /(A(1,7).entries^{(3/2)}*Va)*(A(1,2).entries)
      -A(1,3).entries)^(1/2)*(A(1,2).entries+A(1,3).
      entries +2*A(1,4). entries) (1/2)*A(1,4). entries
      (1/2))^{(1/3)};
24
25 // For Na
26 Va = A(2,6).entries<sup>3</sup>; // Volume of unit cell, cm
      cube
```

```
27 A(2,8).entries = (3.15/(8*\% pi)*(h/k)^{3}*A(2,5).
    entries/(A(2,7).entries^{(3/2)}*Va)*(A(2,2).entries
    -A(2,3).entries)^(1/2)*(A(2,2).entries+A(2,3).
    entries + 2 * A(2,4) . entries)^{(1/2)} * A(2,4) . entries
    (1/2))(1/3);
28
29 printf("\n_____")
30 printf("\nMetal C11 C12 C44 thetaD")
31 printf("\n....")
32 \text{ for } i = 1:1:2
33
     printf ("\n\%s
                %5.3 f %5.3 f %5.3 f %3d"
       , A(i,1).entries, A(i,2).entries/1e+12, A(i
       ,3).entries/1e+12, A(i,4).entries/1e+12, A(i
       ,8).entries);
34 end
35 printf("\n.....")
36
37 // Result
38 // ____
39 // Metal C11 C12 C44 thetaD
40 // _____
41 // Cu 1.684 1.214 0.754 380
42 // Na
           0.055 0.047 0.049
                              150
43 // _____
```

Scilab code Exa 3.13 Debye temperature as a function of temperature

```
1 // Scilab Code Ex3.13: Page-93 (2006)
2 clc; clear;
3 k = 1.38e-023; // Boltzmann constant, J/K
4 h = 6.626e-034; // Planck's constant, Js
5 A = cell(4,5); // Declare a matrix of 4X5
```

```
6 \quad A(1,1) \text{ . entries } = 300;
7 A(1,2).entries = 0.878e+010;
8 A(1,3).entries = 0.483e+010;
9 A(1,4).entries = 0.448e+010;
10 A(2,1).entries = 200;
11 A(2,2).entries = 0.968e+010;
12 A(2,3).entries = 0.508e+010;
13 A(2,4).entries = 0.512e+010;
14 A(3,1).entries = 100;
15 \quad A(3,2) \text{ . entries } = 1.050e+010;
16 \quad A(3,3) \text{ . entries } = 0.540e+010;
17 A(3,4).entries = 0.579e+010;
18 \ A(4,1) . entries = 20;
19 A(4,2).entries = 1.101e+010;
20 \quad A(4,3) \text{ . entries } = 0.551e+010;
21 \quad A(4,4) \text{ . entries } = 0.624e+010;
22 \, s = 2;
              // Number of atoms in a unit cell
23 a = 4.225e-10; // Lattice parameter of Na, m
24 rho = 0.971e+03; // Density of Na, kg/metre-cube
25 Va = a^3; // Volume of unit cell, metre cube
26 printf("\n.....")
27 printf("\nT
                     C11 C12 C44 thetaD")
28 printf("\n.....")
29 for i=1:1:4
30
      A(i,5).entries = (3.15/(8*%pi)*(h/k)^3*s/(rho
         ^(3/2) *Va) *(A(i,2).entries - A(i,3).entries)
        ^(1/2) *(A(i,2).entries+A(i,3).entries+2*A(i,4)
         .entries)^(1/2)*A(i,4).entries^(1/2))^(1/3);
                    \%5.3~{
m f}
                            \%5.3 f
                                     \%5.3 f
31 printf ("\n\%3d
                                             %3d", A(i
      ,1).entries, A(i,2).entries/1e+10, A(i,3).entries
     /1e+10, A(i,4).entries/1e+10, A(i,5).entries);
32 end
33 printf("\n.....")
     ;
34
35 // Result
```

36	11							
37	11	Т	C11	C12	C44	thetaD		
38	11							
39	11	300	0.878	0.483	0.448	197		
40	11	200	0.968	0.508	0.512	210		
41	11	100	1.050	0.540	0.579	222		
42	//	20	1.101	0.551	0.624	229		
43	11							
44	11	The	theta value	s given	in the	textbook	are	wrong

Scilab code Exa 3.14 Variation of Gruneisen frequency and Debye temperature for Lu

```
1 // Scilab Code Ex3.12: Page-93 (2006)
2 clc; clear;
3 \text{ Lu} = \text{cell}(6,5);
                    // Declare a matrix of 6X5
4 Lu(1,1).entries = 0;
5 Lu(1,2).entries = 5.58;
6 Lu(1,3).entries = 3.517;
7 Lu(1,5).entries = 0.750;
8 Lu(2,1).entries = 36;
9 Lu(2,2).entries = 5.409;
10 Lu(2,3).entries = 3.440;
11 Lu(2,5).entries = 0.560;
12 Lu(3,1).entries = 103;
13 Lu(3,2).entries = 5.213;
14 Lu(3,3).entries = 3.341;
15 Lu(3,5).entries = 0.492;
16 Lu(4,1).entries = 157;
17 Lu(4,2).entries = 5.067;
18 Lu(4,3).entries = 3.259;
19 Lu(4,5).entries = 0.388;
20 Lu(5,1).entries = 191;
21 \text{ Lu}(5,2) \text{.entries} = 4.987;
22 Lu(5,3).entries = 3.217;
23 \text{ Lu}(5,5).\text{entries} = 0.357;
```

```
24 Lu(6,1).entries = 236;
25 Lu(6,2).entries = 4.921;
26 \text{ Lu}(6,3) \text{.entries} = 3.179;
27 \text{ Lu}(6,5) \text{.entries} = 0.331;
28 V0 = 3*sqrt(3)/2*Lu(1,3).entries<sup>2</sup>*Lu(1,2).entries;
29 V = zeros(6); // Declare volume array
30 printf(" \setminus
     n _____
     "):
31 printf("\nP(kbar) c(angstrom) a(angstrom)
             nu_G ");
     gamma_G
32 printf(" \setminus
     n_____
     "):
33 for i=1:1:6
     V(i) = 3*sqrt(3)/2*Lu(i,3).entries<sup>2</sup>*Lu(i,2).
34
        entries;
     Lu(i,4).entries = Lu(i,5).entries*V(i)/V0+2/3*(1-
35
        V(i)/V0)^{(1/2)};
                      \%5.3 f
36 printf("\n\%3d
                                     \%5.3 f
     %5.3 f
                 \%5.3 f", Lu(i,1).entries, Lu(i,2).
     entries, Lu(i,3).entries, Lu(i,4).entries, Lu(i
     ,5).entries);
37 end
38 printf("\
     n_____
     "):
39
40 \text{ cnt} = 0;
41 printf("\ n _____");
42 printf("\nP(kbar) Theta_D(K)");
43 printf("\n.....");
44 for i=1:1:6
      theta_D = exp(integrate('-1*Lu(i,5)).entries*exp(
45
         x)/V0-2/3*(1-\exp(x)/V0)^{(1/2)}, 'x', -0.8+cnt
         , log(V(i)/1000000)));
      cnt = cnt + 0.01;
46
      printf("\n\%3d
                               %3.0 f", Lu(i,1).
47
```

entries, theta_D); 48 **end** 49 printf("\n...."); 5051 // Result 52 // _____ 53 // P(kbar) c(angstrom) a(angstrom) gamma_G nu_G 54 // 55 // 0 5.5803.5170.7500.7503.44056 // 36 5.4090.6990.56057 // 103 5.2133.3410.679 0.492 58 // 157 3.2595.0670.6150.38859 // 191 4.9873.2170.6020.35760 // 236 3.1794.9210.5910.33161 // 62 // _____ 63 // P(kdbar) Theta_D(K) 64 // _____ 65 // 1850 66 // 36 19567 // 103 21068 // 157 22269 // 191 23070 // 236 23771 // _____

Scilab code Exa 3.15 Lindemann rule to calculate the Debye temperature

```
1 // Scilab Code Ex3.15: Page-94 (2006)
2 clc; clear;
3 T_M = 1356;
                   // Melting temperature of Cu, K
4 V = 7.114;
                   // Atomic volume of Cu, cm cube per
     g-atom
                   // atomic weight of Cu, g/mole
5 M = 63.5;
                   // Lindemann constant
6 K = 138.5;
7 theta_M = K*(T_M/M)^{(1/2)}*(1/V)^{(1/3)}; // Debye
      temperature by Lindemann method, K
8
9 printf("\nThe Debye temperature by Lindemann method
     = %3d K", ceil(theta_M));
10 printf("\nThe values obtained from other methods are
      :");
11 printf("\ntheta_s = 342 K;
                                     theta_R = 336 K;
             theta_E = 345 \text{ K}");
12
13 // Result
14 // The Debye temperature by Lindemann method = 333 K
15 // The values obtained from other methods are:
                         theta_R = 336 K;
16 // \text{theta}_{-s} = 342 \text{ K};
      theta_E = 345 K
```

Scilab code Exa 3.16 Frequency of vibration of ions in InSb crystal

```
1 // Scilab Code Ex3.16: Page-100 (2006)
2 clc; clear;
3 N_A = 6.023e+023; // Avogadro's number
4 c = 3.0e+08; // Speed of light, m/s
```

```
5 epsilon_0 = 15; // Dielectric constant of the medium
                       // Mass of ion, g
6 m = 2.0e - 0.022;
7 e = 4.8e - 010;
                  // Charge on the ion, C
8 rho = 7; // Average density of solid, g/cc
            // Average atomic weight of solid, g
9 A = 120;
10 N = rho/A*N_A; // Number of ions per cc, per cm
     cube
11 f_P = 1/(2*%pi)*sqrt(4*%pi*N*e^2/(m*epsilon_0));
          // Plasma frequency of vibrating ions in the
      crystal, Hz
                     // Plasma wavelength of
12 lambda_P = c/f_P;
      vibrating ions in the crystal, cm
13 printf("\nThe plasma frequency of vibrating ions in
     InSb crystal = \%3.1 \,\mathrm{e} Hz", f_P);
14 printf("\nThe plasma wavelength of vibrating ions in
      InSb crystal = \%3d micron", lambda_P/1e-06);
15 printf("\nThe calculated frequency lies in the
     infrared region.")
16
17 // Result
18 // The plasma frequency of vibrating ions in InSb
      crystal = 9.3e+0.11 Hz
19 // The plasma wavelength of vibrating ions in InSb
      crystal = 323 micron
20 // The calculated frequency lies in the infrared
     region.
```

Scilab code Exa 3.17 Debye temperature for diamond

```
6 rho = 3500; // Density of diamond, kg/metre-cube
7 c = sqrt(q/rho); // Speed of transverse wave
        through diamond, m/s
8 m = 12*1.66e-027; // Atomic weight of carbon,
        kg
9 theta_D = (h/k)*c*(3*rho/(4*%pi*m))^(1/3); //
        Debye temperature for diamond, K
10 printf("\nThe Debye temperature for diamond = %4d K"
        , theta_D);
11
12 // Result
13 // The Debye temperature for diamond = 1086 K
```

Chapter 4

Free Electron Theory of Metals

Scilab code Exa 4.1 Collision time for an electron in monovalent Cu

```
1 // Scilab Code Ex4.1: Page-112 (2006)
2 clc; clear;
3 m = 9.1e-031; // Mass of an electron, kg
4 e = 1.6e-019; // Charge on an electron, C
                // Concentration of electron in Cu,
5 n = 8.5e + 028;
     per metre cube
6 rho = 1.7e-08; // Resistivity of Cu, ohm-m
7 t = m/(n*e^2*rho); // Collision time for an
     electron in monovalent Cu, s
8 printf("\nThe collision time for an electron in
     monovalent Cu = \%3.1e s", t);
9
10 // Result
11 // The collision time for an electron in monovalent
     Cu = 2.5 e - 014 s
```

 ${
m Scilab\ code\ Exa\ 4.2}$ Relaxation time and mean free path at OK

```
1 // Scilab Code Ex4.2: Page-112 (2006)
2 clc; clear;
                 // Mass of an electron , kg
3 m = 9.1e - 0.031;
                  // Charge on an electron, C
4 e = 1.6e - 0.19;
5 n = 1e+029; // Concentration of electron in
     material, per metre cube
6 rho = 27e-08; // Resistivity of the material, ohm-m
7 tau = m/(n*e^2*rho); // Collision time for an
     electron in the material, s
8 v_F = 1e+08; // Velocity of free electron, cm/s
9 lambda = v_F*tau; // Mean free path of electron in
      the material, cm
10 printf("\nThe collision time for an electron in
     monovalent Cu = \%3.1e s", tau);
11 printf("\nThe mean free path of electron at 0K = \%3
     .1 e cm", lambda);
12
13 // Result
14 // The collision time for an electron in monovalent
     Cu = 1.3 e - 015 s
15 // The mean free path of electron at 0K = 1.3 e - 007
     cm
```

Scilab code Exa 4.3 Free electron density and electrical conductivity of monovalen

```
1 // Scilab Code Ex4.3: Page-112 (2006)
2 clc; clear;
3 m = 9.1e-031; // Mass of an electron, kg
4 e = 1.6e-019; // Charge on an electron, C
5 r = 1.28e-010; // Atomic radius of cupper, m
6 a = 4*r/sqrt(2); // Lattice parameter of fcc
    structure of Cu, m
7 V = a^3; // Volume of unit cell of Cu, metre cube
8 n = 4/V; // Number of atoms per unit volume of Cu
    , per metre cube
```

```
9 tau = 2.7e-04; // Relaxation time for an electron
in monovalent Cu, s
10 sigma = n*e^2*tau/m; // Electrical conductivity
of Cu, mho per cm
11 printf("\nThe free electron density in monovalent Cu
= %5.3e per metre cube", n);
12 printf("\nThe electrical conductivity of monovalent
Cu = %5.3e mho per cm", sigma);
13
14 // Result
15 // The free electron density in monovalent Cu =
8.429e+028 per metre cube
16 // The electrical conductivity of monovalent Cu =
6.403e+017 mho per cm
```

Scilab code Exa 4.4 Energy difference between two levels for the free electrons

```
1 // Scilab Code Ex4.4: Page-118 (2006)
2 clc; clear;
3 m = 9.1e-031; // Mass of an electron, kg
4 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
5 h = 6.625e-034; // Planck's constant, Js
                     // Length of side of the cube, m
6 L = 10e - 03;
7 // For nth level
8 \text{ nx} = 1, \text{ ny} = 1, \text{ nz} = 1; // Positive integers
      along three axis
9 En = h<sup>2</sup>/(8*m*L<sup>2</sup>)*(nx<sup>2</sup>+ny<sup>2</sup>+nz<sup>2</sup>)/e;
                                                      11
      Energy of nth level for electrons, eV
10 // For (n+1)th level
11 nx = 2, ny = 1, nz = 1; // Positive integers
      along three axis
12 En_plus_1 = h^2/(8*m*L^2)*(nx^2+ny^2+nz^2)/e;
      // Energy of (n+1)th level for electrons, eV
13 delta_E = En_plus_1 - En; // Energy difference
       between two levels for the free electrons
```

```
14 printf("\nThe energy difference between two levels
      for the free electrons = %4.2e eV", delta_E);
15
16 // Result
17 // The energy difference between two levels for the
      free electrons = 1.13e-014 eV
```

Scilab code Exa 4.5 Probability of the electron in tungsten at room temperature

```
1 // Scilab Code Ex4.5: Page-119 (2006)
2 clc; clear;
               // Room temperature of tungsten, K
3 T = 300;
4 k = 1.38e-023; // Boltzmann constant, J/mol/K
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
6 E_F = 4.5*e; // Fermi energy of tungsten, J
7 E = E_F-0.1*E_F; // 10% energy below Fermi energy, J
8 f_T = 1/(1 + \exp((E - E_F)/(k + T))); // Probability
     of the electron in tungsten at room temperature
      at an nergy 10% below the Fermi energy
9 printf("\nThe probability of the electron at an
      energy 10 percent below the Fermi energy in
     tungsten at 300 \text{ K} = \%4.2 \text{ f}", f_T);
10 E = 2*k*T+E_F; // For energy equal to 2kT + E_F
11 f_T = 1/(1 + \exp((E - E_F)/(k + T))); // Probability
     of the electron in tungsten at an energy 2kT
     above the Fermi energy
12 printf("\nThe probability of the electron at an
     energy 2kT above the Fermi energy = \%6.4 \text{ f}, f_T);
13
14 // Result
15 // The probability of the electron at an energy 10
     percent below the Fermi energy in tungsten at 300
      K = 1.00
16 // The probability of the electron at an energy 2kT
     above the Fermi energy = 0.1192
```

Scilab code Exa 4.6 Fermi energy of a monovalent bcc solid

```
1 // Scilab Code Ex4.6: Page-121 (2006)
2 clc; clear;
3 h = 6.625e-034; // Planck's constant, Js
4 h_cross = h/(2*%pi); // Reduced Planck's constant
      , Js
5 \text{ m} = 9.1 \text{e} - 031; // Mass of an electron, kg
6 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
7 a = 5.34e - 010;
                       // Lattice constant of
     monovalent bcc lattice, m
8 V = a^3;
            // Volume of bcc unit cell, metre cube
9 n = 2/V; // Number of atoms per metre cube
10 E_F = h_cross<sup>2</sup>/(2*m*e)*(3*%pi<sup>2</sup>*n)<sup>(2/3)</sup>;
                                                    Fermi energy of monovalent bcc solid, eV
11
12 printf("\nThe Fermi energy of a monovalent bcc solid
      = \%5.3 f eV", E_F);
13
14 // Result
15 // The Fermi energy of a monovalent bcc solid =
      2.034
```

Scilab code Exa 4.7 Number of states at Fermi energy

```
6 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
7 V = 1e-05; // Volume of cubical box, metre cube
8 E_F = 5*e; // Fermi energy, J
9 D_EF = V/(2*%pi^2)*(2*m/h_cross^2)^(3/2)*E_F^(1/2)*e
; // Density of states at Fermi energy,
states/eV
10 printf("\nThe density of states at Fermi energy = %4
.2e states/eV", D_EF);
11
12 // Result
13 // The density of states at Fermi energy = 1.52e+023
states/eV
```

Scilab code Exa 4.8 Energy separation between adjacent energy levels of Mg and Ca

```
1 // Scilab Code Ex4.8: Page-121 (2006)
2 clc; clear;
3 h = 6.626e-034; // Planck's constant, Js
4 h_cross = h/(2*%pi); // Reduced Planck's constant
     , Js
5 m = 9.1e-031; // Mass of an electron, kg
                  // Energy equivalent of 1 eV, J/eV
6 = 1.6e - 0.19;
              // Volume of cubical box, metre cube
7 V = 1e - 06;
8 E_F = 7.13*e; // Fermi energy for Mg, J
9 D_EF = V/(2*%pi^2)*(2*m/h_cross^2)^(3/2)*E_F^(1/2);
         // Density of states at Fermi energy for Cs,
     states/eV
10 E_Mg = 1/D_EF; // The energy separation between
     adjacent energy levels of Mg, J
11 printf("\nThe energy separation between adjacent
     energy levels of Mg = \%5.3 \text{ e eV}", E_Mg/e);
12 E_F = 1.58*e; // Fermi energy for Cs, J
13 D_EF = V/(2*%pi^2)*(2*m/h_cross^2)^(3/2)*E_F^(1/2);
         // Density of states at Fermi energy for Mg,
     states/eV
```

14 E_Mg = 1/D_EF; // The energy separation between adjacent energy levels of Cs, J 15 printf("\nThe energy separation between adjacent energy levels of Cs = %5.3e eV", E_Mg/e);

- 16
- 17 // Result

```
18 // The energy separation between adjacent energy levels of Mg = 5.517e - 023 eV
```

19 // The energy separation between adjacent energy levels of Cs = 1.172e-022 eV

Scilab code Exa 4.9 Fermi momentum of sodium

```
1 // Scilab Code Ex4.9: Page-122 (2006)
2 clc; clear;
3 m = 9.1e-031; // Mass of an electron, kg
4 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
5 E_F = 3.2*e; // Fermi energy of sodium, J
6 P_F = sqrt(E_F*2*m); // Fermi momentum of sodium, kg-m/s
7 printf("\nThe Fermi momentum of sodium = %5.3e kg-m/sec", P_F);
8
9 // Result
10 // The Fermi momentum of sodium = 9.653e-025 kg-m/sec
```

Scilab code Exa 4.10 Change in Fermi energy with temperature

```
1 // Scilab Code Ex4.10: Page-122 (2006)
2 clc; clear;
3 k = 1.38e-023; // Boltzmann constant, J/mol/K
4 T = 500; // Rise in temperature of Al, K
```

```
5 EF_0 = 11.63; // Fermi energy of Al, eV
6 EF_T = EF_0*(1-%pi^2/12*(k*T/EF_0)^2); // Change in
Fermi energy of Al with temperature, eV
7 printf("\nThe change in Fermi energy of Al with
tempertaure rise of 500 degree celsius = %5.2f eV
", EF_T);
8
9 // Result
10 // The change in Fermi energy of Al with tempertaure
rise of 500 degree celsius = 11.63 eV
```

```
Scilab code Exa 4.11 Electrical conductivity of Pb and Ag
1 // Scilab Code Ex4.11: Page-122 (2006)
2 clc; clear;
3 m = 9.1e-031; // Mass of an electron, kg
4 e = 1.6e-019; // Charge on an electron, C
5 lambda = 1.0e-09; // Mean free path of electron in
      metal, m
                // Average velocity of the electron
6 v = 1.11e+05;
      in metal, m/s
7
8 // For Lead
9 n = 13.2e+028; // Electronic concentration of Pb,
     per metre cube
10 sigma = n*e^2*lambda/(m*v); // Electrical
     conductivity of lead, mho per metre
11 printf("\nThe electrical conductivity of lead = \%4.2
     e mho per metre", sigma);
12
13 // For Silver
14 n = 5.85e+28; // Electronic concentration of Ag,
     per metre cube
15 sigma = n*e^2*lambda/(m*v); // Electrical
     conductivity of Ag, mho per metre
```

```
16 printf("\nThe electrical conductivity of silver = %4
        .2e mho per metre", sigma);
17
18 // Result
19 // The electrical conductivity of lead = 3.35e+007
        mho per metre
20 // The electrical conductivity of silver = 1.48e+007
        mho per metre
```

Scilab code Exa 4.12 Lorentz number

```
1 // Scilab Code Ex4.12: Page-125 (2006)
2 clc; clear;
3 k = 1.38e-023; // Boltzmann constant, J/mol/K
4 e = 1.6e-019; // Charge on an electron, C
5 L = %pi^2/3*(k/e)^2; // Lorentz number, watt-ohm/
degree-square
6 printf("\nThe Lorentz number = %4.2e watt-ohm/degree
-square", L);
7
8 // Result
9 // The Lorentz number = 2.45e-008 watt-ohm/degree-
square
```

Scilab code Exa 4.13 Lorentz numbers for metals at 273 K and comparison with the g

```
1 // Scilab Code Ex4.13: Page-125 (2006)
2 clc; clear;
3 A = cell(4,4); // Declare a 4X4 cell
4 A(1,1).entries = 'Mg';
5 A(1,2).entries = 2.54e-05;
6 A(1,3).entries = 1.5;
7 A(1,4).entries = 2.32e+02;
```

```
8 A(2,1).entries = 'Cu';
  9 A(2,2).entries = 6.45e-05;
10 A(2,3).entries = 3.85;
11 A(2,4).entries = 2.30e+02;
12 A(3,1).entries = 'Al';
13 A(3,2).entries = 4.0e-05;
14 A(3,3).entries = 2.38;
15 A(3,4).entries = 2.57e+02;
16 \ A(4,1) . entries = 'Pt';
17 A(4,2).entries = 1.02e-05;
18 A(4,3).entries = 0.69;
19 A(4,4).entries = 2.56e+02;
20 T1 = 273; // First temperature, K
21 T2 = 373; // Second temperature, K
22 printf(" \setminus
                    n _ _ _ _ _ _ _ _
                   ");
23 printf("\nMetal
                                                                              sigma x 1e-05
                                                                                                                                   K(W/cm-K)
                   Lorentz number
                                                                                                               ");
24 printf("\n
                                                                              (mho per cm)
                                                                                                                                                                               (
                   watt-ohm/deg-square)x1e-02")
25 printf(" \setminus
                                                                                                          n _ _ _ _ _
                   ");
26 \text{ for } i = 1:1:4
27
                       L1 = A(i,3).entries/(A(i,2).entries*T1); L2 = A(i,3).entries*T1); L2 = A(i,3).entries*T1); L2 = A(i,3).entries*T1); L2 = A(i,3).entries*T1); L3 = A(i,3).entries*T1); L3 = A(i,3).entries*T1); L4 = A(i,3).entries*T1); L4 = A(i,3).entries*T1); L4 = A(i,3).entries*T1); L5 
                                 i,4).entries;
                                                                                            \%4.2 \text{ f}
                                                                                                                                                      \%4.2 \text{ f}
28
                       printf ("\n\%s
                                                           \%4.2 \text{ f}
                                                                                                                      \%4.2 f", A(i,1).
                                 entries, A(i,2).entries/1e-05, A(i,3).entries
                                 , L1/1e+02, L2/1e+02);
29 end
30 printf("\
                                                           _____
                   ");
31
32 // Result
33 //
```

34	//	Metal number	sigma x 1e-05	K(W/cm–K)	Lorentz
35	//	deg-square	(mho per cm)		(watt-ohm/)
36	//	ucg square) XIC 02		
37	//	Mg	2.54	1.50	2.16
38	//	Cu	6.45 2.30	3.85	2.19
39	//	Al	4.00 2.57	2.38	2.18
40	//	Pt	1.02	0.69	2.48
41	//				

Scilab code Exa 4.14 Thermal conductivity of gold at 100 K and 273 K

```
1 // Scilab Code Ex4.14: Page-125 (2006)
2 clc; clear;
3 A = cell(2,2); // Declare a 2X3 cell
4 A(1,1).entries = 1.6e+08; // Electrcal conductivity
of Au at 100 K, mho per metre
5 A(1,2).entries = 2.0e-08; // Lorentz number of Au
at 100 K, volt/K-square
6 A(2,1).entries = 5.0e+08; // Electrcal conductivity
of Au at 273 K, mho per metre
7 A(2,2).entries = 2.4e-08; // Lorentz number of Au
at 273 K, volt/K-square
8 T1 = 100; // First temperature, K
```

9 T2 = 273; // Second temperature, K 10 11 printf("\ _____ n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ "); T = 100 K12 printf(" \n $T = 273 \ \mathrm{K}$ "); ·····"); 14 **printf**("\nElectrical conductivity) L Electrical conductivity) L "); ntf(" n mho per metre V/K-square15 printf(" \n mho per metre V/K-square"); 16 printf(" \setminus n _____ "); 17 K1 = A(1,1).entries*T1*A(1,2).entries; K2 = A(2,1). entries*T2*A(2,2).entries; %3.1e printf (" $\N3.1e$ %318 $\%3.1\,{\rm e}$ ", A(1,1).entries, .1e A(1,2).entries, A(2,1).entries, A(2,2). entries); printf (" $\ NK = \%3d W/cm-K$ 19K = %3d W/cm-K", K1 , K2); 20 printf("\ n _____ "); 2122 // Result 23 / /_____ T = 100 K24 // T = 273 K25 //

```
26 // Electrical conductivity) L

Electrical conductivity) L

27 // mho per metre V/K-square mho

per metre V/K-square 28 //

29 // 1.6e+008 2.0e-008 5.0e+008

2.4e-008 K = 320 W/cm-K K = 3276

W/cm-K 1 K = 320 K/cm-K K = 3276
```

Scilab code Exa 4.15 Hall coefficient of sodium

```
1 // Scilab Code Ex4.15: Page-131 (2006)
2 clc; clear;
3 e = 1.6e-019; // Electronic charge, C
4 a = 0.428e-09; // Lattice constant of Na, m
5 V = a^3; // Volume of unit cell, metre cube
6 N = 2; // No. of atoms per unit cell of Na
7 n = N/V; // No. of electrons per metre cube, per
     metre cube
8 R_H = -1/(n*e); // Hall coeffcient of Na, metre
     cube per coulomb
9 printf("\nThe Hall coefficient of sodium = \%4.2 \,\mathrm{e}
     metre cube per coulomb", R_H);
10
11 // Result
12 // The Hall coefficient of sodium = -2.45e-010 metre
      cube per coulomb
```

Scilab code Exa 4.16 Hall coefficient of beryllium

```
1 // Scilab Code Ex4.16: Page-131 (2006)
2 clc; clear;
3 e = 1.6e-019; // Electronic charge, C
4 n = 24.2e+028; // No. of electrons per metre cube
, per metre cube
5 R_H = -1/(n*e); // Hall coeffcient of Be, metre
cube per coulomb
6 printf("\nThe Hall coefficient of beryllium = %4.2e
metre cube per coulomb", R_H);
7
8 // Result
9 // The Hall coefficient of beryllium = -2.58e-011
metre cube per coulomb
```

Scilab code Exa 4.17 Electronic concentration of silver from Hall coefficient

```
1 // Scilab Code Ex4.17: Page-131 (2006)

2 clc; clear;

3 e = 1.6e-019; // Electronic charge, C

4 R_H = -8.4e-011; // Hall coeffcient of Ag, metre

    cube per coulomb

5 n = -3*%pi/(8*R_H*e); // Electronic concentration

    of Ag, per metre cube

6 printf("\nThe electronic concentration of Ag = %3.1e

    per metre cube", n);

7

8 // Result

9 // The electronic concentration of Ag = 8.8e+028 per

    metre cube
```

Scilab code Exa 4.18 Resistivity of a metal using Matthiessen rule

```
1 // Scilab Code Ex4.18: Page-134 (2006)
2 clc; clear;
3 // We have from Mattheissen rule, rho = rho_0 +
      alpha*T1
               // Initial temperature, K
4 T1 = 300;
5 T2 = 1000; // Final temperature, K
6 rho = 1e-06; // Resistivity of the metal, ohm-m
7 delta_rho = 0.07*rho;
                               // Increase in
      resistivity of metal, ohm-m
8 alpha = delta_rho/(T2-T1); // A constant, ohm-m/K
9 \text{ rho}_0 = \text{rho} - \text{alpha}*T1;
                               // Resistivity at room
      temperature, ohm-m
10 printf("\nThe resistivity at room temperature = \%4.2
     e ohm-m", rho);
11
12 // Result
13 // The resistivity at room temperature = 1.00 e - 006
     ohm-m
```

Scilab code Exa 4.19 Resitivity of Ge at 20 degree celsius

```
Scilab code Exa 4.20 Solid radius and Fermi level quantities for Li
```

```
1 // Scilab Code Ex4.20: Page-135 (2006)
2 clc; clear;
3 rs_a0_ratio = 3.25; // Ratio of solid radius to
      the lattice parameter
4 E_F = 50.1*(rs_a0_ratio)^(-2); // Fermi level
      energy of Li, eV
5 T_F = 58.2e+04*(rs_a0_ratio)^(-2); // Fermi level
     temperature of Li, K
6 V_F = 4.20e+08*(rs_a0_ratio)^(-1); // Fermi level
      velocity of electron in Li, cm/sec
7 K_F = 3.63e+08*(rs_a0_ratio)^(-1);
8 printf("\nE_F = \%4.2 \, f \, eV", E_F);
9 printf("\nT_F = \%4.2 e K", T_F);
10 printf("\N_F = \%4.2e cm/sec", V_F);
11 printf("\N_F = \%4.2 \,\text{e} per cm", K_F);
12
13 // Result
14 / E_F = 4.74 \text{ eV}
15 // T_F = 5.51 e + 004 K
16 // V_F = 1.29 e + 008 cm/sec
17 // K_F = 1.12 e + 008 per cm
```
Scilab code Exa 4.21 Fermi energy for yittrium

```
1 // Scilab Code Ex4.21: Page-135 (2006)
2 clc; clear;
3 n = 6.04e+022; // Concentration of electrons in
     yittrium, per metre cube
4 r_s = (3/(4*%pi*n))^(1/3)/1e-08; // Radius of the
      solid, angstrom
5 a0 = 0.529; // Lattice parameter of yittrium,
     angstrom
6 rs_a0_ratio = r_s/a0; // Solid radius to lattice
     parameter ratio
7 E_F = 50.1*(rs_a0_ratio)^(-2); // Fermi level
     energy of Y, eV
8 printf("\nThe Fermi energy of yittrium = \%5.3 f eV",
     E_F);
9 Ryd = 13.6; // Rydberg energy constant, eV
10 E_bs = 0.396*Ryd; // Band structure energy value
     of Y, eV
11 printf("\nThe band structure value of E_F = \%5.3 \,\mathrm{f} \,\mathrm{eV}
      is in close agreement with the calculated value
      of %5.3f eV", E_bs, E_F);
12
13 // Result
14 // The Fermi energy of yittrium = 5.608 eV
15 // The band structure value of E_F = 5.386 eV is in
      close agreement with the calculated value of
      5.608 eV
```

Scilab code Exa 4.22 Plasmon energy of Al using free electron gas parameter

1 // Scilab Code Ex4.22: Page-137 (2006)

```
2 clc; clear;
3 rs_a0_ratio = 2.07; // Solid radius to lattice
    parameter ratio for Al
4 E_F = 50.1*(rs_a0_ratio)^(-2); // Fermi level
    energy of Y, eV
5 // According to Jellium model, h_cross*omega_P = E =
        47.1 eV *(rs_a0_ratio)^(-3/2)
6 E = 47.1*(rs_a0_ratio)^(-3/2); // Plasmon
        energy of Al, eV
7 printf("\nThe plasmon energy of Al = %4.2 f eV", E);
8 printf("\nThe plasmon energy of Al = %4.2 f eV", E);
9 // Result
11 // The plasmon energy of Al = 15.81 eV
12 // The experimental value is 15 eV
```

Scilab code Exa 4.23.1 Occupation probability of an electron at a given temperatur

```
1 // Scilab Code Ex4.1a: Page-137 (2006)
2 clc; clear;
3 E_F = 1;
              // For simplicity assume Fermi energy to
      be unity, eV
                   // Boltzmann constant, J/mol/K
4 k = 1.38e - 023;
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
                   // Exces energy above Fermi level,
6 \, dE = 0.1;
     eV
7 T = 300;
                   // Room temperature, K
8 E = E_F + dE;
                   // Energy of the level above Fermi
     level, eV
9 f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation
      probability of the electron at 0.1 eV above E_F
10 printf("\Lambda t 300 K:");
11 printf("\n____");
12 printf("\nThe occupation probability of electron at
     \%3.1 \text{ f eV} above Fermi energy = \%7.5 \text{ f}, dE, f_E);
```

```
// Energy of the level below Fermi
13 E = E_F - dE;
      level, eV
14 f_E = 1/(exp((E-E_F)*e/(k*T))+1);
                                        // Occupation
      probability of the electron at 0.1 eV below E_F
15 printf("\nThe occupation probability of electron at
      \%3.1 \text{ f eV} below Fermi energy = \%7.5 \text{ f}, dE, f_E);
16
17 T = 1000;
                     // New temperature, K
18 printf("\n\ nAt 1000 K:");
19 printf("\n____");
20 \quad \mathsf{E} = \mathsf{E}_{\mathsf{F}} + \mathsf{d}\mathsf{E};
                     // Energy of the level above Fermi
      level, eV
21 f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation
      probability of the electron at 0.1 eV above E_F
22 printf("\nThe occupation probability of electron at
      \%3.1 \text{ f eV} above Fermi energy = \%4.2 \text{ f}, dE, f_E);
23 E = E_F - dE;
                  // Energy of the level below Fermi
      level, eV
24 f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation
      probability of the electron at 0.1 eV below E_F
25 printf("\nThe occupation probability of electron at
      \%3.1 \text{ f eV} below Fermi energy = \%4.2 \text{ f}, dE, f_E);
26
27 // Result
28 // At 300 K:
29 // _____
30 // The occupation probability of electron at 0.1 eV
      above Fermi energy = 0.02054
  // The occupation probability of electron at 0.1 eV
31
      below Fermi energy = 0.97946
32
33 // At 1000 K:
34 // =
35 // The occupation probability of electron at 0.1 eV
      above Fermi energy = 0.24
36 // The occupation probability of electron at 0.1 eV
      below Fermi energy = 0.76
```

Scilab code Exa 4.23.2 Variation of occupation probability with temperature

```
1 // Scilab Code Ex4.2a: Page-138 (2006)
2 clc; clear;
                  // Occupation probability of
3 f_E = 0.01;
      electron
4 E_F = 1;
              // For simplicity assume Fermi energy to
      be unity, eV
                       // Boltzmann constant, J/mol/K
5 k = 1.38e - 023;
6 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
                   // Exces energy above Fermi level,
7 \, dE = 0.5;
     eV
8 E = E_F + dE;
                 // Energy of the level above Fermi
     level, eV
9 // We have, f_E = 1/(\exp((E-E_F)*e/(k*T))+1),
     solving for T
10 T = (E-E_F)*e/k*1/log(1/f_E-1); // Temperature at
      which the electron will have energy 0.1 eV above
      the Fermi energy, K
11 printf("\nThe temperature at which the electron will
       have energy \%3.1 \,\mathrm{f} eV above the Fermi energy =
     %4d K", dE, T);
12
13 // Result
14 // The temperature at which the electron will have
      energy 0.5 \text{ eV} above the Fermi energy = 1261 \text{ K}
```

Scilab code Exa 4.23.3 Average energy and speed of free electron in metal

```
1 // Scilab Code Ex4.3a: Page-139 (2006)
2 clc; clear;
3 E_F = 10; // Fermi energy of electron in metal, eV
```

```
4 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
5 m = 9.1e-031; // Mass of an electron, kg
                       // Average energy of free
6 E_av = 3/5 * E_F;
      electron in metal at 0 K, eV
7 V_F = sqrt(2*E_av*e/m); // Speed of free electron
     in metal at 0 K, eV
8 printf("\nThe average energy of free electron in
     metal at 0 K = \%1d eV", E_av);
9 printf("\nThe speed of free electron in metal at 0 K
      = \%4.2 \, \text{em/s"}, V_F);
10
11 // Result
12 // The average energy of free electron in metal at 0
      K = 6 eV
13 // The speed of free electron in metal at 0 K = 1.45
     e + 006 m/s
```

Scilab code Exa 4.23.4 Temperature dependence of occupation probability

1 // Scilab Code Ex4.4a: Page-139 (2006) 2 clc; clear; $3 f_E = 0.1;$ // Occupation probability of electron // Fermi energy of Cu, eV $4 E_F = 5.5;$ 5 k = 1.38e - 023;// Boltzmann constant, J/mol/K 6 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV $7 \text{ dE} = 0.05 * \text{E}_F;$ // Exces energy above Fermi level, eV 8 E = E_F + dE; // Energy of the level above Fermi level, eV 9 // We have, $f_E = 1/(\exp((E - E_F) * e/(k * T)) + 1)$, solving for T 10 T = $(E-E_F)*e/k*1/log(1/f_E-1);$ // Temperature at which the electron will have energy 0.1 eV above the Fermi energy, K

11 printf("\nThe temperature at which the electron will

```
have energy %1d percent above the Fermi energy
%4d K", dE/E_F*100, T);
12
13
14 // Result
15 // The temperature at which the electron will have
energy 5 percent above the Fermi energy 1451 K (
The answer given in the textbook is wrong)
```

Scilab code Exa 4.23.5 Fermi velocity of Potassium

```
1 // Scilab Code Ex4.5a: Page-139 (2006)
2 clc; clear;
3 T_F = 24600; // Fermi temperature of potassium, K
4 k = 1.38e-023; // Boltzmann constant, J/mol/K
5 m = 9.1e-031; // Mass of an electron, kg
6 E_F = k*T_F; // Fermi energy of potassium, eV
7 v_F = sqrt(2*k*T_F/m); // Fermi velocity of
potassium, m/s
8 printf("\nThe Fermi velocity of potassium = %5.3e m/
s", v_F);
9
10 // Result
11 // The Fermi velocity of potassium = 8.638e+005 m/s
```

Scilab code Exa 4.23.6 Energy level of Cu for given occupation probability

```
1 // Scilab Code Ex4.6a: Page-139 (2006)
2 clc; clear;
3 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
4 E_F = 7.0; // Fermi energy of Cu, eV
5 f_E = 0.9; // Occupation probability of Cu
6 k = 1.38e-023; // Boltzmann constant, J/mol/K
```

```
7 T = 1000; // Given temperature, K
8 // We have, f_E = 1/(exp((E-E_F)*e/(k*T))+1),
solving for E
9 E = k*T*log(1/f_E-1) + E_F*e; // Energy level of
Cu for 10% occupation probability at 1000 K, J
10 printf("\nThe energy level of Cu for 10 percent
occupation probability at 1000 K = %4.2f eV", E/e
);
11
12 // Result
13 // The energy level of Cu for 10 percent occupation
probability at 1000 K = 6.81 eV
```

Scilab code Exa 4.23.7 Electronic concentration in cesium

```
1 // Scilab Code Ex4.7a: Page-140 (2006)
2 clc; clear;
3 m = 9.1e-031; // Mass of an electron, kg
4 e = 1.6e-019; // Electronic charge, C
5 h = 6.626e-034; // Planck's constant, Js
6 E_F = 1.55; // Fermi energy of Cu, eV
7 n = %pi/3*(8*m/h^2)^(3/2)*(E_F*e)^(3/2); //
Electronic concentration in cesium, electrons/cc
8 printf("\nThe electronic concentration in cesium =
%5.3e electrons/cc", n);
9
10 // Result
11 // The electronic concentration in cesium = 8.733e
+027 electrons/cc
```

Scilab code Exa 4.23.8 Fermi temperature corresponding to Fermi energy

1 // Scilab Code Ex4.8a: Page-141 (2006)

```
2 clc; clear;
3 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
4 E_F = 7; // Fermi energy, eV
5 k = 1.38e-023; // Boltzmann constant, J/mol/K
6 T_F = E_F*e/k; // Fermi temperature, K
7 printf("\nThe Fermi temperature corresponding to
Fermi energy = %5.3 e K", T_F);
8
9 // Result
10 // The Fermi temperature corresponding to Fermi
energy = 8.116e+004 K
```

Scilab code Exa 4.23.9 Density of states for the electron in a cubical box

```
1 // Scilab Code Ex4.9a: Page-141 (2006)
2 clc; clear;
3 \text{ m} = 9.1 \text{e}-031; // Mass of the electron, kg
4 h = 6.626e-034; // Planck's constant, Js
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
6 h_cross = h/(2*%pi); // Reduced Planck's constant
     , Js
7 s = 0.01; // Side of the box, m
8 E = 2; // Energy range of the electron in the box,
     eV
9 V = s^3;
            // Volume of the box, metre cube
10 I = integrate("E^{(1/2)}", 'E', 0, 2); // Definite
     integral over E
11 D_E = V/(2*%pi^2)*(2*m/h_cross^2)^(3/2)*I*e^(3/2);
     // Density of states for the electron in a
     cubical box, states
12 printf("\nThe density of states for the electron in
     a cubical box = \%5.3e states", D_E);
13
14 // Result
15 // The density of states for the electron in a
```

Scilab code Exa 4.23.10 Occupation probability of an electron above and below Ferm

```
1 // Scilab Code Ex4.10a: Page-141 (2006)
2 clc; clear;
3 E_F = 1;
               // For simplicity assume Fermi energy to
      be unity, eV
                       // Boltzmann constant, J/mol/K
4 k = 1.38e - 023;
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
                   // Exces energy above Fermi level,
6 \, dE = 0.5;
     eV
7 T = 300;
                  // Room temperature, K
8 E = E_F + dE;
                   // Energy of the level above Fermi
     level, eV
9 f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation
      probability of the electron at 0.1 eV above E_F
10 printf("\ 300 \ K:");
11 printf("\n____");
12 printf("\nThe occupation probability of electron at
     \%3.1 \text{ f eV} above Fermi energy = \%11.9 \text{ f}, dE, f_E);
13 E = E_F - dE;
                  // Energy of the level below Fermi
     level, eV
14 f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation
      probability of the electron at 0.1 eV below E_F
15 printf("\nThe occupation probability of electron at
     \%3.1 \text{ f eV} below Fermi energy = \%11.9 \text{ f}, dE, f_E);
16
17 // Result
18 // At 300 K:
19 // _____
20 // The occupation probability of electron at 0.5 \text{ eV}
      above Fermi energy = 0.000000004
21 // The occupation probability of electron at 0.5 eV
      below Fermi energy = 0.999999996
```

Scilab code Exa 4.23.11 Occupation probability at two different temperatures

```
1 // Scilab Code Ex4.9a: Page-141 (2006)
2 clc; clear;
3 E_F = 1;
               // For simplicity assume Fermi energy to
      be unity, eV
                   // Boltzmann constant, J/mol/K
4 k = 1.38e - 023;
                   // Energy equivalent of 1 eV, J/eV
5 e = 1.6e - 019;
                   // Exces energy above Fermi level,
6 \text{ dE} = 0.2;
     eV
7 T = 0+273;
                     // Room temperature, K
8 E = E_F + dE;
                    // Energy of the level above Fermi
     level, eV
9 f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation
      probability of the electron at 0.1 eV above E_F
10 printf("\ NAt 273 K:");
11 printf("\n____");
12 printf("\nThe occupation probability of electron at
     \%3.1 \text{ f eV} above Fermi energy = \%4.2 \text{ e}, dE, f_E);
13 T = 100+273;
                  // Given temperature of 100 degree
      celsius, K
14 f_E = 1/(exp((E-E_F)*e/(k*T))+1); // Occupation
      probability of the electron at 0.1 eV below E_F
15 printf ("\ N \in 373 K:");
16 printf("\n____");
17 printf("\nThe occupation probability of electron at
     \%3.1 \text{ f eV} above Fermi energy = \%4.2 \text{ e}, dE, f_E);
18
19 // Result
20 // At 273 K:
21 // ===
22 // The occupation probability of electron at 0.2 eV
      above Fermi energy = 2.05 e - 004
23
```

```
24 // At 373 K:
25 // ______
26 // The occupation probability of electron at 0.2 eV
above Fermi energy = 1.99e-003
```

Scilab code Exa 4.23.12 Concentration of free electrons and electrical conductivit

```
1 // Scilab Code Ex4.12a: Page-142 (2006)
2 clc; clear;
3 m = 9.1e-031; // Mass of the electron, kg
4 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
5 r = 1.28e-010; // Atomic radius of Cu, m
6 a = 4*r/sqrt(2); // Lattice constant of Cu, m
                         // Relaxation time for the
7 \text{ tau} = 2.7 \text{e} - 14;
      electron in Cu, s
8 V = a<sup>3</sup>; // Volume of the cell, metre cube
            // Concentration of free electrons in
9 n = 4/V;
      monovalent copper,
10 sigma = n*e^2*tau/m; // Electrical conductivity
      of monovalent copper, mho per m
11 printf("\nThe electrical conductivity of monovalent
      copper = \%5.3 \,\mathrm{e} mho per cm", sigma/100);
12
13 // Result
14 // The electrical conductivity of monovalent copper
      = 6.403 e + 005 mho per cm
```

Scilab code Exa 4.23.13 Interelectronic energy separation between bands of Al

```
1 // Scilab Code Ex4.13a: Page-142 (2006)
2 clc; clear;
3 n = 18.1e+022; // Number of electrons per unit
volume, per cm cube
```

```
4 N = n/2; // Pauli's principle for number of
energy levels, per cm cube
5 E_F = 11.58; // Fermi energy of Al, eV
6 E = E_F/N; // Interelectronic energy separation
between bands of Al, eV
7 printf("\nThe interelectronic energy separation
between bands of Al = %4.2e eV", E);
8
9 // Result
10 // The interelectronic energy separation between
bands of Al = 1.28e-022 eV
```

Scilab code Exa 4.23.14 Density of states in Cu contained in cubic metal

```
1 // Scilab Code Ex4.14a: Page-142 (2006)
2 clc; clear;
3 \text{ m} = 9.1 \text{e}-031; // Mass of the electron, kg
4 h = 6.626e-034; // Planck's constant, Js
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
6 h_cross = h/(2*%pi); // Reduced Planck's constant
     , Js
7 E_F = 7; // Fermi energy of Cu, eV
8 V = 1e-06; // Volume of the cubic metal, metre cube
9 D_EF = V/(2*%pi^2)*(2*m/h_cross^2)^(3/2)*(E_F)^(1/2)
     *e^(3/2); // Density of states in Cu contained
     in cubic metal, states/eV
10 printf("\nThe density of states in Cu contained in
     cubic metal = \%3.1e states/eV", D_EF);
11
12 // Result
13 // The density of states in Cu contained in cubic
     metal = 1.8e + 022 states/eV
```

Scilab code Exa 4.23.15 Electronic energy level spacing between successive levels

```
1 // Scilab Code Ex4.15a: Page-143 (2006)
2 clc; clear;
3 \text{ m} = 9.1 \text{e-}031; // Mass of the electron, kg
4 h = 6.626e-034; // Planck's constant, Js
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
6 h_cross = h/(2*%pi); // Reduced Planck's constant
     , Js
            // Fermi energy of Cu, eV
7 E_F = 7;
8 V = 1e-06; // Volume of the cubic metal, metre cube
9 D_EF = V/(2*%pi<sup>2</sup>)*(2*m/h_cross<sup>2</sup>)<sup>(3/2)</sup>*(E_F)<sup>(1/2)</sup>
     *e^(3/2); // Density of states in Cu contained
     in cubic metal, states/eV
10 d = 1/(D_EF); // Electronic energy level spacing
       between successive levels of Cu, eV
11 printf("\nThe electronic energy level spacing
      between successive levels of Cu = \%4.2 \, e \, eV", d);
12
13 // Result
14 // The electronic energy level spacing between
      successive levels of Cu = 5.57 e - 023 eV
```

Scilab code Exa 4.23.16 Energy band gaps of the solids

```
1 // Scilab Code Ex4.16a: Page-143 (2006)
2 clc; clear;
3 A = cell(4,2); // Declare a 3X2 cell
4 A(1,1).entries = 'Li'; //
5 A(1,2).entries = -0.4039; // Energy of outermost
atomic orbital of Li, Rydberg unit
6 A(2,1).entries = 'Na'; //
7 A(2,2).entries = -0.3777; // Energy of outermost
atomic orbital of Na, Rydberg unit
8 A(3,1).entries = 'F'; //
```

```
9 A(3,2).entries = -1.2502; // Energy of outermost
     atomic orbital of F, Rydberg unit
10 A(4,1).entries = 'Cl';
                           11 A(4,2).entries = -0.9067; // Energy of outermost
     atomic orbital of Cl, Rydberg unit
12 cf = 13.6; // Conversion factor for Rydberg to eV
13 printf("\n.....")
                                       Energy gap")
14 printf("\nAtom
15 printf("\n\%s\%s
                                       %5.2f eV", A
     (2,1).entries, A(4,1).entries, (A(2,2).entries-A
     (4,2).entries)*cf);
16 printf("\n\%s\%s
                                         %5.2 f eV",
      A(2,1).entries, A(3,1).entries, (A(2,2).entries-
     A(3,2).entries)*cf);
17 printf("\n\%s\%s
                                         %5.2 f eV",
      A(1,1).entries, A(3,1).entries, (A(1,2).entries-
     A(3,2).entries)*cf);
18 printf("\n.....")
     ;
19
20 // Result
21 // ____
              _____.
22 // Atom
                                Energy gap
23 // NaCl
                                 7.19 \text{ eV}
24 // NaF
                                 11.87 \text{ eV}
                                 11.51 \, \mathrm{eV}
25 // LiF
26 // _____
```

Scilab code Exa 4.23.18 Solid radius and Fermi level quantities for Cu and Nb

```
1 // Scilab Code Ex4.18a: Page-144 (2006)
2 clc; clear;
3 // For Cu
```

```
4 rs_a0_ratio = 2.67; // Ratio of solid radius to
      the lattice parameter
5 E_F = 50.1*(rs_a0_ratio)^(-2); // Fermi level
      energy of Cu, eV
6 T_F = 58.2e+04*(rs_a0_ratio)^(-2); // Fermi level
      temperature of Cu, K
7 V_F = 4.20e+08*(rs_a0_ratio)^(-1); // Fermi level
      velocity of electron in Cu, cm/sec
8 K_F = 3.63e+08*(rs_a0_ratio)^(-1);
9 printf("\nFor Cu :");
10 printf("\n____");
11 printf("\nE_F = \%6.4 \text{ f eV}", E_F);
12 printf ("\nT_F = \%5.3 \,e\,K", T_F);
13 printf("\N_F = \%7.5 e cm/sec", V_F);
14 printf("\K_F = \%6.4e per cm", K_F);
                          // Ratio of solid radius to
15 rs_a0_ratio = 3.07;
      the lattice parameter
16 E_F = 50.1*(rs_a0_ratio)^(-2); // Fermi level
      energy of Nb, eV
17 T_F = 58.2e+04*(rs_a0_ratio)^(-2); // Fermi level
     temperature of Nb, K
18 V_F = 4.20e+08*(rs_a0_ratio)^(-1); // Fermi level
      velocity of electron in Nb, cm/sec
19 K_F = 3.63e+08*(rs_a0_ratio)^(-1);
20 printf("\n\nFor Nb:");
21 printf("\n_"");
22 printf("\nE_F = \%6.4 \text{ f eV}", E_F);
23 printf("\nT_F = \%5.3 \, e \, K", T_F);
24 printf("\N_F = \%6.4 e cm/sec", V_F);
25 printf("\N_F = \%6.4e per cm", K_F);
26
27 // Result
28 // For Cu :
29 // _____
30 // E_{-}F = 7.0277 eV
31 / / T_{-}F = 8.164 e + 004 K
32 // V_F = 1.57303 e + 008 cm/sec
33 // K_F = 1.3596 e + 008 per cm
```

34 // 35 // For Nb: 36 // ______ 37 // E_F = 5.3157 eV38 // T_F = 6.175 e+004 K39 // V_F = 1.3681 e+008 cm/sec40 // K_F = 1.1824 e+008 per cm

Chapter 5

Band Theory of Solids

Scilab code Exa 5.1 Fermi energy of Na and K

```
1 // Scilab Code Ex5.1: Page-176 (2006)
2 clc; clear;
3 h = 6.626e-34; // Planck's constant, Js
4 h_bar = h/(2*%pi); // Reduced Planck's constant, Js
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
6 \text{ m} = 9.1 \text{e}-031; // Mass of an electron, kg
\overline{7}
8
9 // For Na
10 n_Na = 2.65e+28; // electronic concentration of
     Na, per metre cube
11 k_F = (3*\%pi^2*n_Na)^{(1/3)}; // Fermi wave vector,
      per cm
12 E_F = h_bar^2 k_F^2/(2*m*e); // Fermi energy of Na,
      eV
13 printf("\nThe fermi energy of Na = \%4.2 \text{ f eV}", E_F);
14 printf("\nThe band structure value of Na = \%4.2 f eV"
     , 0.263*13.6);
15 // For K
16 n_K = 1.4e+28; // electronic concentration of K,
     per metre cube
```

```
17 k_F = (3*\%pi^2*n_K)^{(1/3)}; // Fermi wave vector,
      per cm
18 E_F = h_{bar^2*k_F^2/(2*m*e)}; // Fermi energy of K,
      eV
19 printf("\nThe fermi energy of K = \%4.2 \text{ f eV}", E_F);
20 printf("\nThe band structure value of K = \%4.2 \text{ f eV}",
       0.164*13.6);
21 printf("\nThe agreement between the free electron
      and band theoretical values are fairly good both
      for Na and K");
22
23
24 // Result
25 // The fermi energy of Na = 3.25 eV
26 // The band structure value of Na = 3.58 \text{ eV}
27 // The fermi energy of K = 2.12 eV
28 // The band structure value of K = 2.23 eV
29 // The agreement between the free electron and band
      theoretical values are fairly good both for Na
      and K
```

Scilab code Exa 5.3 Fermi momentum of Na

```
1 // Scilab Code Ex5.3: Page-177 (2006)
2 clc; clear;
3 n_Na = 2.65e+22; // electronic concentration of
Na, per cm cube
4 k_F = (3*%pi^2*n_Na)^(1/3); // Fermi wave vector,
per cm
5 printf("\nThe fermi momentum of Na = %4.2e per cm",
k_F);
6
7 // Result
8 // The fermi momentum of Na = 9.22e+07 per cm
```

Scilab code Exa 5.5 Energy separation between adjacent energy levels

```
1 // Scilab Code Ex5.5: Page-177 (2006)
2 clc; clear;
3 h = 6.626e-34; // Planck's constant, Js
4 h_bar = h/(2*%pi); // Reduced Planck's constant, Js
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
6 m = 9.1e-031; // Mass of an electron, kg
7 V = 1.0e-06; // Volume of unit cube of material,
     metre cube
8
9 // For Mg
10 E_F = 7.13*e; // Fermi energy of Mg, J
11 s = 2*%pi<sup>2</sup>/(e*V)*(h_bar<sup>2</sup>/(2*m))<sup>(3/2)</sup>*(E_F)<sup>(-1/2)</sup>
      ; // Energy separation between levels for Mg, eV
12 printf("\nThe energy separation between adjacent
      levels for Mg = \%5.3 e eV", s);
13
14 // For Cs
15 E_F = 1.58 * e; // Fermi energy of Cs, J
16 s = 2*%pi^2/(e*V)*(h_bar^2/(2*m))^(3/2)*(E_F)^(-1/2)
      ; // Energy separation between levels for Cs, eV
17 printf("\nThe energy separation between adjacent
      levels for Cs = \%5.3 e eV", s);
18
19
20 // Result
21 // The energy separation between adjacent levels for
      Mg = 5.517 e - 23 eV
22 // The energy separation between adjacent levels for
      Cs = 1.172 e - 22 eV
```

Scilab code Exa 5.9 Coupling constant of superconducting lead

```
1 // Scilab Code Ex5.9: Page-180 (2006)
2 clc; clear;
3
4 gamma_expt = 7.0e-04; // Experimental value of
      electronic specific heat, cal/mol/K-square
                            // Theoretical value of
  gamma_theory = 3.6e-04;
5
      electronic specific heat, cal/mol/K-square
6 L = poly(0, 'L');
7 L = roots(gamma_expt - gamma_theory*(1 + L));
8 printf("\nThe electron-phonon coupling constant of
     superconductor = \%3.1 \, \text{f}", L);
9
10 // Result
11 // The electron-phonon coupling constant of
     superconductor = 0.9
```

Scilab code Exa 5.10 Electronic specific heat coefficient of superconductor

```
1 // Scilab Code Ex5.10: Page-181 (2006)
2 clc; clear;
3 N_Ef = 1.235;
                  // Density of states at fermi energy
     , electrons/atom-eV
4 N = 6.023e+23; // Avogadro's number
5 k = 1.38e-23; // Boltzmann constant, J/mol/K
6 = 1.6e-019; // Charge on an electron, C
7 gama = %pi^2*k^2/3*(N_Ef*N/e); // Electronic
     specific heat coefficient, J/g-atom-kelvin square
8
9 printf("\nThe electronic specific heat coefficient
     of superconductor = %5.3 f mJ/g-atom-kelvin square
     ", gama/1e-03);
10
11 // Result
```

12 // The electronic specific heat coefficient of superconductor = 2.913 mJ/g-atom-kelvin square

Scilab code Exa 5.11 Electron phonon coupling constant for metal

```
1 // Scilab Code Ex5.11: Page-181 (2006)
2 clc; clear;
3 gamma_expt = 4.84; // Experimental value of
     electronic specific heat of metal, mJ/g-atom/K-
     square
4 gamma_theory = 2.991; // Theoretical value of
     electronic specific heat of metal, mJ/g-atom/K-
     square
5 L = poly(0, 'L');
6 L = roots(gamma_expt - gamma_theory*(1 + L));
7 printf("\nThe electron-phonon coupling constant for
     metal = \%5.3 f", L);
8
9 // Result
10 // The electron-phonon coupling constant for metal =
      0.618
```

Scilab code Exa 5.12 Pauli spin susceptibility of Mg

```
1 // Scilab Code Ex5.12: Page-181 (2006)
2 clc; clear;
3 mu_B = 9.24e-027; // Bohr's magneton, J/T
4 N_Ef = 0.826; // Density of states at fermi energy
        , electrons/atom-eV
5 N = 6.023e+23; // Avogadro's number
6 e = 1.6e-019; // Energy equivalent of 1 eV, J
7 chi_Pauli = mu_B^2*N_Ef*N/e;
```

```
8 printf("\nPauli spin susceptibility of Mg = %5.2e
cgs units", chi_Pauli/1e-03);
9
10 // Result
11 // Pauli spin susceptibility of Mg = 2.65e-07 cgs
units
```

Chapter 6

Semiconductor Physics

Scilab code Exa 6.1 Crystal absorption wavelengths from energy gaps

```
1 // Scilab Code Ex6.1: Page-190 (2006)
2 clc; clear;
3 S = cell(4,2); // Declare a 4X2 cell
4 // Enter material names
5 S(1,1).entries = 'Si'; S(2,1).entries = 'GaAs'; S
     (3,1).entries = 'GaP'; S(4,1).entries = 'ZnS';
6 // Enter energy band gap values
7 S(1,2).entries = 1.11; S(2,2).entries = 1.42; S(3,2)
     .entries = 2.26; S(4,2).entries = 3.60;
8 h = 6.626e-034; // Planck's constant, Js
9 c = 3e+08; // Speed of light, m/s
10 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
11 printf("
     n _____
     ");
12 printf("\nMaterial E_g (eV) Critical
     Wavelength (micron)");
13 printf(" \setminus
     n_____
     ");
14 \text{ for } i = 1:1:4
```

```
15
      lambda = h*c/(S(i,2).entries*e);
      printf("\n\%8s
                                        %5.3f", S(i
                   \%4.2 \text{ f}
16
         , 1).entries, S(i, 2).entries, lambda/1e-06);
17 end
18 printf("\
     n_____
     ");
19
20 // Result
21 //
22 // Material E<sub>-</sub>g (eV) Critical Wavelength (
     micron)
23 //
         Si
                  1.11
24 //
                                 1.119
25 //
        GaAs
                   1.42
                                 0.875
        GaP
                   2.26
26 //
                                 0.550
27 //
         ZnS
                   3.60
                                 0.345
28 //
```

Scilab code Exa 6.2 Phonon energy to lift the electron from valence band to conduc

```
1 // Scilab Code Ex6.2: Page-192 (2006)
2 clc; clear;
3 c = 3e+08; // Speed of light, m/s
4 h = 6.626e-034; // Planck's constant, Js
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
6 omega = 2e+014; // Wave vector involved in
phonon energy, rad per sec
7 f = omega/(2*%pi); // Frequency of the wave, Hz
```

8 E = h*f/e; // Phonon energy involved in Si to lift the electron, eV 9 printf("\nThe phonon energy involved in Si = %5.3f eV which is insufficient to lift an electron.", E); 10 11 // Result 12 // The phonon energy involved in Si = 0.132 eV which is insufficient to lift an electron.

Scilab code Exa 6.3 Densitites of Si and GaAs

1 // Scilab Code Ex6.3: Page-192 (2006) 2 clc; clear; $3 \text{ N}_A = 6.023 \text{e}+023;$ // Avogadro's number 4 // For Si 5 A = 28.1; // Atomic weight of Si, g/mol 6 a = 5.43e-08; // Lattice constant for Si, cm 7 n = 8/a^3; // Number of atoms per unit volume, atoms/cc 8 rho = $n*A/N_A$; // Density of Si, g/cc 9 printf("\nThe density of Si = %4.2 f atoms per cc", rho); 10 // For GaAs 11 A = 69.7+74.9; // Atomic weight of GaAs, g/mol 12 a = 5.65e-08; // Lattice constant for Si, cm 13 n = 4/a³; // Number of atoms per unit volume, atoms/cc 14 rho = $n*A/N_A$; // Density of GaAs, g/cc 15 printf("\nThe density of GaAs = %5.3 f atoms per cc", rho); 1617 // Result 18 // The density of Si = 2.33 atoms per cc 19 // The density of GaAs = 5.324 atoms per cc

Scilab code Exa 6.4 Intrinsic carrier concentration of GaAs at 300 K

```
1 // Scilab Code Ex6.4: Page-196 (2006)
2 clc; clear;
3 m = 9.11e - 031;
                   // Electron Rest Mass , kg
4 k = 1.38e-023; // Boltzmann constant, J/mol/K
5 h = 6.626e-034; // Planck's constant, Js
6 T = 300;
                   // Room temperature, K
7 m_e = 0.068 * m;
                   // Mass of electron, kg
8 m_h = 0.56*m; // Mass of hole, kg
9 E_g = 1.42*1.6e-019; // Energy band gap for GaAs
    , J
10 n_i = 2*(2*%pi*k*T/h^2)^(3/2)*(m_e*m_h)^(3/4)*exp(-
     E_g/(2*k*T));
11 printf("\nThe Intrinsic carrier concentration of
     GaAs at 300 K = \%1.0e per metre cube", n_i);
12
13 // Result
14 // The intrinsic carrier concentration of GaAs at
     300 \text{ K} = 3e+012 \text{ per metre cube}
```

Scilab code Exa 6.5 Position of Fermi level of Si at room temperature

```
1 // Scilab Code Ex6.5: Page-197 (2006)
2 clc; clear;
3 m = 9.11e-031; // Electron Rest Mass , kg
4 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
5 k = 1.38e-023; // Boltzmann constant, J/mol/K
6 T = 300; // Room temperature, K
7 m_e = 1.1*m; // Mass of electron, kg
8 m_h = 0.56*m; // Mass of hole, kg
```

```
9 E_g = 1.1; // Energy band gap for GaAs, J
10 E_F = E_g/2+3/4*k*T/e*log(m_h/m_e); // Position of
Fermi level of Si at room temperature, eV
11 printf("\nThe position of Fermi level of Si at room
temperature = %5.3 f eV", E_F);
12 printf("\nThe fermi level in this case is shifted
downward from the midpoint (0.55 eV) in the
forbiddem gap.");
13
14 // Result
15 // The position of Fermi level of Si at room
temperature = 0.537 eV
16 // The fermi level in this case is shifted downward
```

from the midpoint (0.55 eV) in the forbiddem gap.

Scilab code Exa 6.6 Intrinsic resistivity of Ge at room temperature

```
1 // Scilab Code Ex6.6: Page-197 (2006)
2 clc; clear;
3 e = 1.6e-019; // Electronic charge, C
4 n_i = 2.15e+013; // Carrier density of Ge at room
      temperature, per cc
5 mu_e = 3900; // Mobility of electron, cm-square/V
     -s
6 mu_h = 1900; // Mobility of hole, cm-square/V-s
7 sigma_i = e*(mu_e+mu_h)*n_i; // Intrinsic
     conductivity of Ge, mho per m
8 rho_i = 1/sigma_i; // Intrinsic resistivity of Ge
     at room temperature, ohm-m
  printf("\nThe intrinsic resistivity of Ge at room
9
     temperature = %2d ohm-cm", rho_i);
10
11
12 // Result
13 // The intrinsic resistivity of Ge at room
```

```
Scilab code Exa 6.7 Conductivity in CdS
```

```
1 // Scilab Code Ex6.7: Page-197 (2006)
2 clc; clear;
3 \text{ m} = 9.1 \text{e} - 031; // Mass of an electron, kg
4 e = 1.6e-019; // Electronic charge, C
5 k = 1.38e-023; // Boltzmann constant, J/mol/K
6 T = 30; // Given temperature, K
                // Carrier density of CdS, per metre
7 n = 1e + 22;
     cube
8 \text{ mu} = 1e - 02;
                 // Mobility of electron, metre-
      square /V-s
9 sigma = e*mu*n;
                       // Conductivity of CdS, mho per m
10 printf("\nThe conductivity of CdS sample = \%2d mho
      per m", ceil(sigma));
11 m_eff = 0.1*m;
                  // Effective mass of the charge
      carries, kg
12 t = m_eff*sigma/(n*e^2); // Average time between
      successive collisions, s
13 printf("\nThe average time between successive
      collisions = \%4.2e sec", t);
14 // We have 1/2*m_{eff}*v^{2} = 3/2*k*T, solving for v
15 v = sqrt(3*k*T/m_eff); // Velocity of charge
      carriers, m/s
16 \ l = v * t;
              // Mean free distance travelled by the
      carrier, m
17 printf("\nThe mean free distance travelled by the
      carrier = \%4.2 \,\text{em}", 1);
18
19 // Result
20 // The conductivity of CdS sample = 16 mho per m
21 // The average time between successive collisions =
      5.69 e - 015 sec
```


Figure 6.1: Energy Gap of Ge

22 // The mean free distance travelled by the carrier = $6.64 \,\mathrm{e} - 010$ m

Scilab code Exa 6.8 Energy Gap of Ge

```
1 // Scilab Code Ex6.8: Page-199 (2006)
2 clc; clear;
3 k = 1.38e-023; // Boltzmann constant, J/mol/K
4 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
5 T = [385 455 556 714]; // Temperatures of Ge, K
6 rho = [0.028 0.0061 0.0013 0.000274]; //
```

```
Electrical resistivity, ohm-m
7 Tinv = zeros(4); // Create an empty row matrix
      for 1/T
8 ln_sigma = zeros(4); // Create the empty row matrix
      for log(sigma)
9 for i = 1:1:4
      Tinv(i) = 1/T(i);
10
       log_sigma(i) = log(1/rho(i));
11
12 end
13 // Plot the graph
14 plot(Tinv, log_sigma);
15 a=gca(); // Handle on axes entity
16 a.box="off";
17 a.x_location = "origin";
18 a.y_location = "origin";
19 a.x_label
20 a.y_label
21 a.title
22 type(a.title);
23 x_label=a.x_label;
24 x_label.text="1/T";
25 x_label.font_style= 5;
26 y_label=a.y_label;
27 y_label.text="ln (sigma)";
28 y_label.font_style= 5;
29 t=a.title;
30 t.foreground=9;
31 t.font_size=4;
32 t.font_style=5;
33 t.text="Plot of ln (sigma) vs 1/T";
34 // Calculate slope
35 slope = (\log_sigma(2) - \log_sigma(1)) / (Tinv(2) - Tinv(1))
     );
36 E_g = abs(2*slope*k); // Energy gap of Ge, J
37 printf("\nThe energy gap of Ge = \%5.3 \text{ f eV}", E_g/e);
38
39 // Result
40 // The energy gap of Ge = 0.658 eV
```

Scilab code Exa 6.9 Energy gap and emission wavelength of Al doped GaAs

```
1 // Scilab Code Ex6.9: Page-199 (2006)
2 clc; clear;
                   // Planck's constant, Js
3 h = 6.626e - 34;
                 // Speed of light, m/s
4 c = 3e+08;
5 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
             // Al concentration in host GaAs
6 = 0.07;
7 E_g = 1.424 + 1.266*x + 0.266*x^2; // Band gap of
      GaAs as a function of x, eV
8 // As E_g = h*c/lambda, solving for lambda
9 lambda = h*c/(E_g*e); // Emission wavelength of
     light, m
10 printf("\nThe energy band gap of Al doped GaAs = \%4
     .2 f eV", E_g);
11 printf("\nThe emission wavelength of light = \%4.2 f
     micron", lambda/1e-06);
12 printf("\nThe Al atoms go as substitutional impurity
      in the host material.");
13
14 // Result
15 // The energy band gap of Al doped GaAs = 1.51 \text{ eV}
16 // The emission wavelength of light = 0.82 micron
17 // The Al atoms go as substitutional impurity in the
      host material.
```

Scilab code Exa 6.10 Energy gap of Al doped GaAs

```
1 // Scilab Code Ex6.10: Page-200 (2006)
2 clc; clear;
3 x = 0.38; // Al concentration in host GaAs
```

4 E_g = 1.424 + 1.266*x + 0.266*x^2; // Band gap of GaAs as a function of x, eV 5 printf("\nThe energy band gap of 38 percent Al doped in GaAs = %5.3 f eV", E_g); 6 7 // Result 8 // The energy band gap of 38 percent Al doped in GaAs = 1.943 eV

Scilab code Exa 6.11 Resistivity of Ge at 20 degree celsius

```
1 // Scilab Code Ex6.11: Page-200 (2006)
2 clc; clear;
3 k = 1.38e-023; // Boltzmann constant, J/mol/K
4 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
5 \text{ rho}_40 = 0.2;
                   // Resistivity of Ge at 40 degree
      celsius, ohm-m
                   // Temperature at which resistivity
6 T1 = 40+273;
      of Ge becomes 0.2 ohm-m, K
                  // Temperature at which resistivity
  T2 = 20 + 273;
7
      of Ge is to be calculated, K
8 E_g = 0.7; // Band gap of Ge, eV
9 // As rho = \exp(E_g/(2*k*T)), so for rho_20
10 rho_20 = rho_40*\exp(E_g/(2*k/e)*(1/T2-1/T1));
                                                   Resistivity of Ge at 20 degree celsius, ohm-m
11 printf("\nThe resistivity of Ge at 20 degree celsius
      = \%3.1 \, \text{f} \, \text{ohm-m}", rho_20);
12
13 // Result
14 // The resistivity of Ge at 20 degree celsius = 0.5
```

```
ohm–m
```

Scilab code Exa 6.12 Donor ionization energies at room temperature

```
1 // Scilab Code Ex6.12: Page-203 (2006)
2 clc; clear;
3 k = 1.38e - 023;
                    // Boltzmann constant, J/mol/K
4 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
5 T = 300;
                   // Room temperature of the material,
      Κ
6 K_Si = 11.7; // Dielectric constant of Si
7 K_Ge = 15.8; // Dielectric constant of Ge 8 m = 9.1e-031; // Mass of an electron, kg
9 m_eff = 0.2; // Effective masses of the electron
      in both Si and Ge, kg
10 E_ion_Si = 13.6*m_eff/K_Si^2; // Donor ionization
      energy of Si, eV
11 E_ion_Ge = 13.6*m_eff/K_Ge^2; // Donor ionization
      energy of Ge, eV
                   // Energy available for electrons at
12 E = k*T/e;
       300 K, eV
13 printf("\nThe donor ionization energy of Si = \%6.4 f
      eV", E_ion_Si);
14 printf("\nThe donor ionization energy of Ge = \%6.4 f
     eV", E_ion_Ge);
15 printf("\nThe energy available for electrons at 300
     K = \%5.3 f eV", E);
16
17 // Result
18 // The donor ionization energy of Si = 0.0199 eV
19 // The donor ionization energy of Ge = 0.0109 \text{ eV}
20 // The energy available for electrons at 300 \text{ K} =
      0.026 eV
```

Scilab code Exa 6.13 Radius of the orbit of the fifth valence electron of the acce

```
1 // Scilab Code Ex6.13: Page-203 (2006)
2 clc; clear;
3 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
```

```
4 epsilon = 15.8; // Dielectric constant of Ge
5 \text{ m} = 9.1 \text{e}-031; // Mass of an electron, kg
6 m_e = 0.2*m; // Effective masses of the electron
      in Ge, kg
7 a_Ge = 5.65; // Lattice parameter of Ge, angstrom
8 A_d = 0.53*epsilon*(m/m_e); // Radius of donor
     atom, angstrom
9 printf("\nThe radius of the orbits of fifth valence
     electron of acceptor impurity = \%2d angstrom",
     ceil(A_d));
10 printf("\nThis radius is %d times the lattice
     constant of Ge", ceil(A_d/a_Ge));
11
12 // Result
13 // The radius of the orbits of fifth valence
     electron = 42 angstrom
14 // This radius is 8 times the lattice constant of Ge
```

Scilab code Exa 6.14 Mobility of electron and hole concentration in Ge

```
1 // Scilab Code Ex6.14: Page-203 (2006)
2 clc; clear;
3 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
4 tau = 1e-012; // Life time of electron in Ge, s
5 m = 9.1e-031; // Mass of an electron, kg
6 m_e = 0.5*m; // Effective masses of the electron
in Ge, kg
7 mu = e*tau/m_e; // Mobility of electron in Ge, m-
square/V-s
8 n_i = 2.5e+019; // Intrinsic carrier
concentration of Ge at room temperature, per
metre cube
9 n_Ge = 5e+028; // Concentration of Ge atoms, per
metre cube
10 n_e = n_Ge/1e+06; // Concentration of impurity
```

```
atoms, per metre cube
```

```
11 // From law of mass action, n_e*n_h = n_i^2, solving
	for n_h
12 n_h = n_i^2/n_e; // Concentration of holes, per
	metre cube
13
14 printf("\nThis mobility of electron in Ge = %4d cm-
	square/V-s", mu/1e-04);
15 printf("\nThis concentration of holes in Ge = %4.2e
	per metre cube", n_h);
16
17 // Result
18 // This mobility of electron in Ge = 3516 cm-square/
	V-s
19 // This concentration of holes in Ge = 1.25e+016 per
	metre cube
```

Scilab code Exa 6.15 Hole concentration in Ge at room temperature

```
1 // Scilab Code Ex6.15: Page-204 (2006)
2 clc; clear;
3 n_i = 2.5e+019; // Intrinsic carrier
    concentration of Ge at room temperature, per
    metre cube
4 n_Ge = 5e+028; // Concentration of Ge atoms, per
    metre cube
5 delta_d = 1e+06; // Rate at which pentavalent
    impurity is doped in pure Ge, ppm
6 n_e = n_Ge/delta_d; // Concentration of impurity
    atoms, per metre cube
7 // From law of mass action, n_e*n_h = n_i^2, solving
     for n_h
8 n_h = n_i^2/n_e; // Concentration of holes, per
    metre cube
9
```

```
Scilab code Exa 6.16 Hall effect in n type semiconductor
```

```
1 // Scilab Code Ex6.16: Page-205 (2006)
2 clc; clear;
3 e = 1.6e-019; // Charge on an electron, C
4 mu = 1400e-04; // Mobility of electron, metre-
     square per volt per sec
5 \ 1 = 300-06; // Length of the n-type semiconductor
     , m
6 \text{ w} = 100-06; // Width of the n-type semiconductor,
      \mathbf{m}
7 t = 20-06; // Thickness of the n-type
     semiconductor, m
8 N_D = 4.5e+021; // Doping concentration of donor
     impurities, per metre-cube
9 V = 10; // Biasing voltage for semiconductor, V
10 B_prep = 1; // Perpendicular magnetic field to which
      the semiconductor is subjected, tesla
11
12 // Part (a)
              // Electron concentration in
13 n = N_D;
     semiconductor, per cc
14 R_H = -1/(n*e); // Hall Co-efficient, per C per
     metre cube
15
16 // Part (b)
17 rho = 1/(n * e * mu);
                           // Resistivity of
     semiconductor, ohm-m
```
```
18 R = rho*l/(w*t); // Resistance of the
     semiconductor, ohm
19 I = V/R; // Current through the semiconductor, A
20 V_H = R_H*I*B_prep/t; // Hall voltage, V
21
22 // Part (c)
23 theta_H = atand(-mu*B_prep); // Hall angle,
      degrees
24
25
26 printf("\nHall coefficient , R_H = \%4.2e per C metre
     cube", R_H);
27 printf("\nHall voltage, V_H = \%4.2 \text{ f V}", abs(V_H));
28 printf("\nHall angle, theta_H = \%4.2 f degree",
      theta_H);
29
30 // Result
31 // Hall coefficient, R_H = -1.39e - 003 per C metre
      cube
32 // Hall voltage, V_H = 0.45 V
33 // Hall angle, theta_H = -7.97 degree
```

Chapter 8

Magnetism

Scilab code Exa 8.1 Spontaneous magnetization of iron

```
1 // Scilab code Ex8.1 Page:241 (2006)
2 clc; clear;
3 rho = 7.9e+03; // Density of iron, kg per cubic
     meter
4 A = 56e-03; // Atomic weight of iron, g/mol
5 N_A = 6.02e+023; // Avogadro's number, atoms per
     mole
6 mu_B = 9.3e-024; // Bohr magneton; // Ampere
     meter square
7 n = rho*N_A/A; // Total number of atoms per unit
     cell, per cubic meter
8 M = 2.2 * n * mu_B;
                   // Spontaneous magnetization of
     iron, Ampere per meter
9 printf("\nSpontaneous magnetization of iron = \%4.2 \text{ e}
     Ampere per meter", M);
10
11 // Result
12 // Spontaneous magnetization of iron = 1.74e+006
     Ampere per meter
```

Scilab code Exa 8.2 Saturation magnetization of a ferromagnetic material

```
1 // Scilab code Ex8.2 Page:241 (2006)
2 clc; clear;
                // Spin density of electrons in a
3 n = 3e + 028;
    ferromagnetic material, per cubic meter
4 mu = 3e-023; // spin magnetic moment of a
    ferromagnetic material, Square Ampere
5 M_s = n*mu; // Saturation magnetization of a
     ferromagnetic material, Per Ampere
6 printf("\nSaturation magnetization of a
     ferromagnetic material = \%1.0e ampere per meter",
     M_s);
7
8 // Result
9 // Saturation magnetization of a ferromagnetic
     material = 9e+005 ampere per meter
```

Scilab code Exa 8.3 Magnetic susceptibility of Lithium

```
1 // Scilab code Ex8.3 Page:241 (2006)
2 clc; clear;
3 h_bar = 6.58e-016; // Planck's constant, eV.s
4 m = 0.511e+06; // Mass of an electron, eV
5 e = 1.6e-012; // Energy equivalent of 1 eV,
erg/eV
6 c = 3.0e+010; // Speed of light, cm/s
7 N = 4.7e+022; // Free electron gas concentration
of Lithium, per cubic cm
8 mu_B = 9.27e-021; // Bohr magneton, Ampere cm-
square
```

```
9 E_F = (h_bar*c)^2/(2*m)*(3*%pi^2*N)^(2/3); //
Fermi energy, eV
10 chi = 3*N*mu_B^2/(2*E_F*e); // Magnetic
susceptibility of Lithium, cgs units
11 printf("\nMagnetic susceptibility of Lithium = %2.0e
cgs units", chi);
12
13 // Result
14 // Magnetic susceptibility of Lithium = 8e-007 cgs
units
```

Scilab code Exa 8.4 Diamagnetic susceptibility of helium atom in ground state

```
1 // Scilab code Ex8.4 Page:241 (2006)
2 clc; clear;
3 a_B = 0.53e-08; // Bohr radius, cm
4 N = 27e+023; // Atomic density of He gas, per
     cubic cm
5 c = 3e+010; // Speed of light, cm/sec
6 e = 1.6e-019; // Charge of an electron, Coulomb
7 m = 9.1e-028; // Mass of an electron, g
                   // Mass of an electron, g
8 // As r_classic = e^2/(m*c^2), Classical radius of
     an electron
9 r_classic = 2.8e-013; // Classical radius of the
      electron, cm
10 chi = -2*N*r_classic/6*a_B^2; // Magnetic
      susceptibility of Helium, cgs units
11
12 printf("\nDiamagnetic susceptibility of helium atom
     in ground state = %3.1e emu", chi);
13
14 // Result
15 // Diamagnetic susceptibility of helium atom in
     ground state = -7.1e - 006 emu
```

Scilab code Exa 8.5 Atomic radii of helium and copper from atomic susceptibilities

```
1 // Scilab code Ex8.5 Page:242 (2006)
2 clc; clear;
3 chiA_He = 1.9e-06; // Atomic susceptibility of
      helium, cm cube per mole
4 \text{ chiA}_{Cu} = 18e-06;
                        // Atomic susceptibility of
      Copper, cm cube per mole
5 \ Q_{sp} = 1.77e+07;
                        // Specific charge of an
      electron, emu
6 Ne = 9650; // Charge of a gram ion, emu
7 Z_He = 2; // Atomic number of helium atom
8 Z_Cu = 29; // Atomic number of copper atom
9 R_He = sqrt(abs(-6*chiA_He/(Ne*Z_He*Q_sp)));
                                                         Magnetic susceptibility of helium atom, cgs units
10 R_Cu = sqrt(abs(-6*chiA_Cu/(Ne*Z_Cu*Q_sp)));
                                                        Magnetic susceptibility of copper atom, cgs units
11 printf("\nAtomic radius of helium = \%4.2 \,\mathrm{e} cm", R_He)
12 printf("\nAtomic radius of copper = \%4.2 \,\mathrm{e} cm", R_Cu)
13
14 // Result
15 // Atomic radius of helium = 5.78 e - 009 cm
16 // Atomic radius of copper = 4.67 e - 009 cm
```

Scilab code Exa 8.6 Atomic susceptibility of Ne atom

```
4 // As r_classic = e^2/(m*c^2), Classical radius of
     an electron
5 r_classic = 2.8e-013; // Classical radius of the
     electron, cm
6 Z = 10; // Atomic number of helium atom
7 a0 = 0.53e - 08;
                      // Bohr's radius, cm
8 n1 = 2, n2 = 2, n3 = 6; // Occupation numbers
     for 1s, 2s and 2p states of Ne
9 r_sq_1s = 0.031; // Expectation value for 1s
     state
10 r_sq_2s = 0.905; // Expectation value for 2s
     state
11 r_sq_2p = 1.126; // Expectation value for 2p
     state
12 \text{ mean}_r_sq = n1*r_sq_1s + n2*r_sq_2s + n3*r_sq_2p;
     // Mean square radius, cm-square
13 Chi_A = -1/6*N*Z*r_classic*mean_r_sq*a0^2;
                                                Magnetic susceptibility of helium atom, cgs units
14 printf("\nAtomic susceptibility of Ne atom = \%6.4e
     emu/mole", Chi_A);
15
16 // Result
17 // Atomic susceptibility of Ne atom = -6.8302e-006
     emu/mole
```

Scilab code Exa 8.7 Langevin approximation for paramagnetism

```
1 // Scilab code Ex8.7: Page:249 (2006)
2 clc; clear;
3 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
4 h = 6.626e-034; // Planck's constant, Js
5 h_cross = h/(2*%pi); // Reduced Planck's constant
        , Js
6 m = 9.1e-031; // Mass of an electron, kg
7 mu = e*h_cross/(2*m); // Bohr magneton, J/T
```

```
8 mu_H = mu/e; // Magnetic energy, eV
9 kT = 0.025; // Energy associated with two degrees
of freedom, eV
10 E_ratio = mu_H/kT; // Exceptional terms in Langevin
's function
11 printf("\nThe magnitude of mu*H/(k*T) = %3.1e",
E_ratio);
12
13 // Result
14 // The magnitude of mu*H/(k*T) = 2.3e-003
```

```
Scilab code Exa 8.8 Paramagnetic susceptibility of Mg
```

```
1 // Scilab code Ex8.8 Page:249 (2006)
2 clc; clear;
3 mu = 5.78e-005; // Bohr magneton, eV/T
4 NE_F = 0.826; // Density of states at fermi level
     , electrons/atom-J
5 chi_Pauli = mu^2*NE_F/1e-004; // Pauli
     diamagnetism, cgs units
6 chi_Core = -4.2e-06; // Core diamagnetism, cgs
     units
7 chi_Landau = -1/3*chi_Pauli; // Landau
     diamagnetism, cgs units
8 chi_Total = chi_Core+ chi_Pauli+chi_Landau; //
     Paramagnetic susceptibility of Mg, cgs units
9
10 printf("\nThe paramagnetic susceptibility of Mg =
     %5.2e cgs units", chi_Total);
11
12 // Result
13 // The paramagnetic susceptibility of Mg = 1.42e-05
      cgs units
```

Scilab code Exa 8.9 Pauli spin susceptibility and diamagnetic contribution in Alum

```
1 // Scilab code Ex8.9 Page:250 (2006)
2 clc; clear;
3 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
4 mu = 9.29e-024; // Bohr magneton, J/T
5 \text{ mu}_0 = 1.26 \text{e} - 006;
                     // Permeability of free space,
     Sq. tesla cubic meter per joule
6 E_F= 11.63*e; // Fermi energy, J
                   // Atomic concentration, atoms per
7 N = 6.02e + 028;
      cubic meter
8 chi_Total = 2.2e-005; // Paramagnetic
     susceptibility of Mg, S.I. units
9 chi_Pauli = 3*N*mu^2*mu_0/(2*E_F); // Pauli
     diamagnetism, S.I. units
10 chi_dia = chi_Total - chi_Pauli; // Diamagnetic
     contribution to magnetic susceptibility
11
12 printf("\nThe Pauli spin susceptibility of Al = \%5.3
     e S.I. units", chi_Pauli);
13 printf("\nThe diamagnetic contribution to magnetic
      susceptibility of Al = \%5.3 e S.I. units", chi_dia
     );
14
15 // Result
16 // The Pauli spin susceptibility of Al = 5.277e-06 S
     .I. units
17 // The diamagnetic contribution to magnetic
     susceptibility of Al = 1.672e-05 S.I. units
```

Scilab code Exa 8.10 Pauli spin susceptibility for Na

```
1 // Scilab code Ex8.10 Page:250 (2006)
2 clc; clear;
              // Bohr radius, nm
3 a0 = 5.3;
4 rs_a0_ratio = 3.93; // Ratio of solid radius to
     the lattice parameter
5 chi_Pauli = 2.59/rs_a0_ratio; // Pauli's spin
     susceptibility, cgs units
6
7 printf("\nThe Pauli spin susceptibility for Na in
     terms of free electron gas parameter = \%4.2 f",
     chi_Pauli);
8
9 // Result
10 // The Pauli spin susceptibility for Na in terms of
     free electron gas parameter = 0.66
```

Scilab code Exa 8.11 Effective magneton number of Mn ion

```
1 // Scilab code Ex8.11 Page:264 (2006)
2 clc; clear;
3 S = 2; // Spin quantum number
4 J = 0; // Total quantum number
5 L = 2; // Orbital quantum number
6 g = 2; // Lande splitting factor
7 printf("\nThe spectroscopic term value of Mn3+ ion =
      %d_D_%d", 2*S+1, J);
8 // For J = L - S
9 J = L - S;
10 mu_N = g*sqrt(J*(J+1)); // Effective magneton number
11 printf("\nThe effective magneton number for J = L - L
     S is \%d", mu_N);
12 // For J = S, L = 0 so that
13 L = 0;
14 J = L+S;
15 mu_N = g*sqrt(J*(J+1)); // Effective magneton number
```

Scilab code Exa 8.12 Magnetic moment of 3d electrons of Fe using Hunds rule

```
1 // Scilab code Ex8.12 Page:264 (2006)
2 clc; clear;
3 mu = 9.27e-024; // Bohr's magneton, J/T
4 N_up = 5; // Number of electrons with spin up as
     per Hunds Rule
5 N_down = 1; // Number of electrons with spin down as
      per Hunds Rule
6 M = mu * (N_up - N_down);
                             // Net magnetic moment
     associated with six electrons in the 3d shell, J/
     Т
7
8 printf("\nThe magnetic moment of 3d electrons of Fe
     using Hunds rule = %d Bohr magnetons", M/mu);
9
10 // Result
11 // The magnetic moment of 3d electrons of Fe using
     Hunds rule = 4 Bohr magnetons
```

Scilab code Exa 8.13 Magnetic moment of compounds using Hunds rule

```
1 // Scilab code Ex8.13 Page:264 (2006)
2 clc; clear;
3 C = cell(3,4);
4 // Enter compound names
5 C(1,1).entries = 'LaCrO3';
6 C(2,1).entries = 'LaMnO3';
7 C(3,1).entries = 'LaCoO3';
8 // Enter Magnetic moments from Hunds rule
9 C(1,2).entries = 3.0;
10 \ C(2,2).entries = 4.0;
11 C(3,2).entries = 5.0;
12 // Enter Magnetic moments from Band theory
13 C(1,3).entries = 2.82;
14 C(2,3).entries = 3.74;
15 C(3,3).entries = 4.16;
16 // Enter Magnetic moments from the Experiment
17 C(1,4).entries = 2.80;
18 C(2,4).entries = 3.90;
19 C(3,4).entries = 4.60;
20 printf("\
     n _____
     "):
21 printf("\nCompound Magnetic moment per formula unit
     (in BM) ");
22 printf("\n
     ······");
23 printf("\n Hunds Rule Band Theory
     Experiment");
24 printf(" \setminus
     n_____
     ");
25 \text{ for } i = 1:1:3
      printf("\n%s %3.2 f
                                      \%4.2 \text{ f}
26
                 \%4.2 \text{ f}", C(i,1).entries, C(i,2).
        entries, C(i,3).entries, C(i,4).entries);
27 end
28 printf(" \setminus
     n_____
```

```
");
29
30 // Result
31 //
                     32 // Compound Magnetic moment per formula unit (in BM
      )
33 //
        Hunds Rule Band Theory
34 //
      Experiment
35 //
                         _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
                                            _ _ _ _ _ _ _ _ _ _ _ _

      36
      // LaCrO3
      3.00

      37
      // LaMnO3
      4.00

                                                       2.80
                                      2.82
                                    3.74
                                                      3.90
38 // LaCoO3
              5.00
                                      4.16
                                                       4.60
39 //
               _____
```

Scilab code Exa 8.14 Magnetic structure of the solids from total energy

```
1 // Scilab code Ex8.14 Page:268 (2006)
2 clc; clear;
3 C = cell(4,4);
4 // Enter compound names
5 C(1,1).entries = 'LaTiO3';
6 C(2,1).entries = 'LaCrO3';
7 C(3,1).entries = 'LaFeO3';
8 C(4,1).entries = 'LaCoO3';
9 // Enter total energy difference w.r.t. ground state
for Paramagnetics, mRyd
10 C(1,2).entries = 0.014;
```

```
11 C(2,2).entries = 158.3;
12 C(3,2).entries = 20.69;
13 C(4,2).entries = 0.000;
14 // Enter total energy difference w.r.t. ground state
     for Ferromagnetics, mRyd
15 C(1,3).entries = 0.034;
16 C(2,3).entries = 13.99;
17 C(3,3).entries = 0.006;
18 C(4,3).entries = 0.010;
19 // Enter total energy difference w.r.t. ground state
     for Antiferromagnetics, mRyd
20 C(1,4).entries = 0.000;
21 C(2,4).entries = 0.000;
22 C(3,4).entries = 0.000;
23 C(4,4).entries = 0.003;
24 printf("\
     n _____
    "):
25 printf("\nSolid Total energy difference (mRyd) (
    w.r.t. ground state)");
26 printf("\n
    -----
    ");
27 printf("\n
                     Paramagnetic Ferromagnetic
      Antiferromagnetic ");
28 printf("\
     n_____
    ");
29 for i = 1:1:4
     printf("\n%s %10.3 f %10.3 f %10.3 f
30
        ", C(i,1).entries, C(i,2).entries, C(i,3).
        entries, C(i,4).entries);
31 end
32 printf(" \
     n_____
    "):
33 printf("\nAll the solids given above crystallize in
    the antiferromagnetic state except that of LaCoO3
```

."); 3435 // Result 36 // 37 // Solid Total energy difference (mRyd) (w.r.t. ground state) 38 // _____ Paramagnetic Ferromagnetic 39 // Antiferromagnetic 40 // _____ 41 // LaTiO3 0.0140.0340.00042 // LaCrO3 158.300 13.9900.00020.69043 // LaFeO3 0.006 0.0000.00044 // LaCoO3 0.0100.00345 // _____ 46 // All the solids given above crystallize in the antiferromagnetic state except that of LaCoO3.

Chapter 9

Superconductivity

Scilab code Exa 9.1 Critical field required to destroy superconductivity

```
1 // Scilab code Ex9.1 Page:278 (2006)
2 clc; clear;
3 H_cO = 0.0803; // Critical field at absolute zero
     , Tesla
4 T_c = 7.19; // Transition temperature of specimen
       lead, Kelvin
5 T = 5;
            // Temperature at which destruction of
     superconductivity is to be found, Kelvin
                                // Critical field
6 H_c = H_c0 * [1 - (T/T_c)^2];
     required to destroy superconductivity, Tesla
7 printf("\nCritical field required to destroy
      superconductivity = \%6.4 \text{ f } \text{T}", H_c);
8
9 // Result
10 // Critical field required to destroy
     superconductivity = 0.0415 T
```

Scilab code Exa 9.2 Limiting magnetic field of Nb to serve as superconductor

```
1 // Scilab Code Ex9.2 Page:278 (2006)
2 clc; clear;
               // Critical field at absolute zero, Oe
3 \text{ HO} = 1970;
4 T_c = 9.25; // Transition temperature of specimen
       Nb, Kelvin
5 T = 4;
          // Temperature at which destruction of
     superconductivity is to be found, Kelvin
6 \text{ H}_c = \text{HO}*[1-(T/T_c)^2]; // Limiting magnetic
     field, Oe
  printf("\nLimiting magnetic field of Nb to serve as
7
     superconductor = %4d Oe", round(H_c));
8
9 // Result
10 // Limiting magnetic field of Nb to serve as
     superconductor = 1602 Oe
```

Scilab code Exa 9.3 Transition temperature of a specimen

```
1 // Scilab Code Ex9.3 Page:278 (2006)
2 clc;clear;
3 T_1 = 14;
                // Temperature, K
4 T_2 = 13; // Temperature, K
                   // Critical field at T_-1, K
5 \text{ H_c1} = 1.4 \text{e} + 05;
                      // Critical field at T_2, K//As
6 \text{ H}_{c2} = 4.2e+05;
      H_c 1 / H_c 2 = (T_c^2 - T_1^2) / (T_c^2 - T_2^2), solving
      for T_c
7 T_c = sqrt((H_c2/H_c1*T_1^2 - T_2^2)/2); // The
      superconducting transition temperature of a
      specimen, K
8 printf("\nTransition temperature of a specimen = \%5
      .2 f K", T_c);
9
10 // Result
11 // Transition temperature of a specimen = 14.47 K
```

Scilab code Exa 9.4 Coherence length of aluminium

Scilab code Exa 9.6 Wavelength of photon required to break a Cooper pair

```
1 // Scilab Code Ex9.6 Page:284 (2006)
2 clc; clear;
3 h = 6.6e-034; // Planck's constant, Js
4 e = 1.6e-019; // Energy eqivalent of 1 eV, eV/
J
5 k = 0.86e-004; // Boltzmann constant, eV/K
6 T_c = 0.56; // Critical temperature for
superconducting Zr, K
7 E_g = 3.52*k*T_c; // Energy gap of aluminium, J
8 c = 3e+08; // Speed of light, m/s
9 lambda = h*c/(E_g*e); // Wavelength of photon
required to break a Cooper pair, m
```

```
Scilab code Exa 9.7 London penetration depth in Pb
```

```
1 // Scilab Code Ex9.7 : Page: 285 (2006)
2 clc; clear;
3 \text{ Lambda_0} = 390;
                      // Penetration depth at absolute
     zero, angstorm
4 T_c = 7;
               // Transition temperature of Pb, K
               // Givn temperature, K
5 T = 2;
6 Lambda = Lambda_0*[1-(T/T_c)^2]^{(-1/2)};
                                                // London
      penetration depth in Pb at 2K, angstorm
7 printf("\nThe London penetration depth in Pb at 2K =
      \%7.4 f angstorm", Lambda);
  printf("\nThe London penetration depth at T = T_{c}
8
     becomes \%d" , %inf);
9
10 // Result
11 // The London penetration depth in Pb at 2K =
     406.9644 angstorm
12 // The London penetration depth at T = T_c becomes
     Inf
```

Scilab code Exa 9.8 Isotopic exponent in Isotopic effect of Hg

1 // Scilab Code Ex9.8: Page:286 (2006)

```
2 clc; clear;
3 M = [199.5 200.7 202.0 203.3]; // Isotopic mass of
     Hg, amu
4 T_c = [4.185 4.173 4.159 4.146]; // Critical
     temperature of Hg, kelvin
5 alpha = 0.5; // Trial value of Isotopic exponent
6 // Accroding to isotopic effect, T_c = K*M^{(-alpha)},
       solving for K
7 K = T_c(1)/M(1)^{(-alpha)}; // Isoptopic coefficent
8 Tc = zeros(3);
9 for i = 2:1:4
       Tc(i-1) = K*M(i)^{(-alpha)};
10
11
       printf("\nTc(\%d) = \%5.3 f", i, Tc(i-1));
12 end
13 if T_c(2)-Tc(1)<0.001 & T_c(3)-Tc(2)<0.001 & T_c(4)-
     Tc(3) < 0.001 then
       printf("\nThe isotopic exponent in Isotopic
14
          effect of Hg = \%3.1 f", alpha);
15 \text{ end}
16
17 // Result
18 // Tc(2) = 4.172
19 // Tc(3) = 4.159
20 // Tc(4) = 4.146
21 // The isotopic exponent in Isotopic effect of Hg =
      0.5
```

Scilab code Exa 9.9 Transition temperature of isotope of Hg whose mass number is 1

```
5 T_c1 = 4.153; // Transition temperature of first
isotope of mercury, K
6 //As T_c1/T_c2 = (M_2/M_1)^1/2, solving for T_c2
7 T_c2 = sqrt(M_1/M_2)*T_c1; //
8 printf("\nThe transition temperature of isotope of
Hg whose mass number is %d = %5.3 f K", M_2, T_c2);
9
10 // Result
11 // The transition temperature of isotope of Hg whose
mass number is 199 = 4.184 K
```

Scilab code Exa 9.10 Constant of proportionality in Isotopc effect

```
1 // Scilab code Ex9.10 Page:287 (2006)
2 clc; clear;
3 alpha = 0.5; // Isotopic exponent of Osmium
4 T_cc = 0.655; // Transition temperature of Osmium,
K
5 M = 190.2; // Mass of Osmium, amu
6 K = T_c*M^alpha; // K is the constant of
proportionality
7
8 printf("\nThe value of constant of proportionality =
%4.2f", K);
9
10 // Result
11 // The value of constant of proportionality = 9.03
```

Scilab code Exa 9.11 Transition temperature and energy gap of a material

```
1 // Scilab code Ex9.11 Page:298 (2006)
2 clc; clear;
```

```
3 k = 1.38e-023; // Boltzmann constant, J/mol/K
                   // Energy equivalent of 1 eV, eV/
4 e = 1.6e - 019;
     J
                   // Debye temperature, kelvin
5 Theta_D = 96;
6 \text{ NO} = 0.3678;
                   // Density of states at Fermi energy
7 V = 1;
                   // Volume of the material, metre
     cube
8 T_c = 1.14*Theta_D*exp(-1/(N0*V)); // Critical
      temperature of the material, K
9 Delta_0 = k*Theta_D/sinh(1/(N0*V)); // Energy gap at
       absolute zero, J
10 printf("\nThe transition temperature of a material =
      %4.2 f K", T_c);
11 printf("\nThe energy gap of a material = \%5.3 \text{ e eV}",
     Delta_0/e);
12
13 // Result
14 // The transition temperature of a material = 7.22~\mathrm{K}
15 // The energy gap of a material = 1.097 e - 03 eV
```

Scilab code Exa 9.12 Transition temperature of a superconductor using McMillan for

```
superconductor using McMillan formula = %5.2 f K",
T_c);
9
10 // Result
11 // The transition temperature of the superconductor
using McMillan formula = 11.26 K
```

Scilab code Exa 9.13 Superconducting transition temperature of a superconductor us

```
1 // Scilab code Ex9.13 : Page:298 (2006)
2 clc; clear;
                    // Debye temperature, kelvin
3 \text{ Theta_D} = 350;
4 Lambda = 0.641; // Electron-phonon coupling
      constant
5 mu_prime = 0.143; // Reduced mass of a
      superconductor, amu
6 \text{ T_c} = \text{Theta} D/1.45 * \exp(-1.04 * (1 + \text{Lambda}) / (\text{Lambda} - 1.04 * (1 + \text{Lambda})))
      mu_prime*(1+0.62*Lambda))); // Superconducting
      transition temperature of a superconductor using
      mcMillan's formula, K
8 printf("\n transition temperature
       of a superconductor using McMillan formula = %5
      .3 f K", T_c);
9
10 // Result
11 // The superconducting transition temperature of a
      superconductor using McMillan formula = 5.043 K
```

Scilab code Exa 9.15 Superconducting transition temperature of a borocarbide super

```
1 // Scilab code Ex9.15 Page:314 (2006)
2 clc; clear;
```

```
3 Theta_D = 490; // Debye temperature, Kelvin
4 Lambda = 0.8; // wavelength of a superconductor,
angstorm
5 mu_prime = 0.13; // Reduced mass of a
superconductor, amu
6 T_c = Theta_D/1.45*exp(-1.04*(1+Lambda)/(Lambda-
mu_prime*(1+0.62*Lambda)));
7 printf("\nThe superconducting transition temperature
of a borocarbide superconductor = %4.1f K", T_c);
8
9 // Result
10 // The superconducting transition temperature of a
borocarbide superconductor = 15.4 K
```

Scilab code Exa 9.16 Electron phonon coupling constant for a superconductor

```
1 // Scilab code Ex9.16 Page:314 (2006)
2 clc; clear;
3 T_c = 16.5;
                 // Transition temperature of a
     superconductor, K
4 Lambda = [0.7 0.8 0.9 1.0]; // Electron-phonon
     coupling constants at different Tc values
5 Theta_D = 503; // Debye temperature, kelvin
                    // Reduced mass of a
6 \text{ mu_prime} = 0.13;
     superconductor, amu
7 Tc = zeros(4);
8 printf("\ n _____");
9 printf("\nLambda
                           Tc");
10 printf("\n....");
11 for i = 1:1:4
     Tc(i) = Theta_D/1.45 * exp(-1.04 * (1 + Lambda(i))/(
12
        Lambda(i)-mu_prime*(1+0.62*Lambda(i)));
13
     if abs(Tc(i) - 16.5) < 1.0 then
14
         best_Lvalue = Lambda(i);
```

```
15
     end
     printf ("\N3.1 f %8.1 f K", Lambda(i), Tc(i))
16
       ;
17 end
18 printf("\n");
19
20 printf("\nThe best electron-phonon coupling constant
      should be slightly above %3.1f ", best_Lvalue);
21
22 // Result
23 //
     _ _ _ _ _
24 // Lambda
           \mathrm{Tc}
25 // _____
        11.1 K
26 / / 0.7
27 // 0.8
                15.8 K
28 // 0.9
                20.4 K
29 // 1.0
                24.9 K
30 // _____
31 // The best electron-phonon coupling constant should
     be slightly above 0.8
```

Scilab code Exa 9.17 Debye temperature of a BCS superconductor

```
1 // Scilab code Ex9.17 Page:317 (2006)
2 clc; clear;
3 T_c = 39.4; // Transition temperature of a
        superconductor, K
4 Lambda = 1; // Electron-phonon coupling co
```

- 4 Lambda = 1; // Electron-phonon coupling constant for a superconductor
- 5 mu_prime= 0.15; // Reduced mass of a superconductor, amu
- $\begin{array}{ll} 6 & // & \mathrm{As} \ \mathrm{T_{-c}} \ = \ \mathrm{Theta_D} \, / \, 1.45 \ast \exp\left(-1.04 \ast (1 + \mathrm{Lambda}) \, / (\\ & \mathrm{Lambda-mu_prime} \ast (1 + 0.62 \ast \mathrm{Lambda}) \,) \,) \, , \ \mathrm{solving} \ \mathrm{for} \\ & \mathrm{Theta_D} \end{array}$
- 7 Theta_D = $T_c*1.45*\exp(1.04*(1+\text{Lambda})/(\text{Lambda})$