Scilab Textbook Companion for Fundamentals Of Thermodynamics by B. Claus And R. E. Sonntag¹

Created by Kush Garg B.Tech Civil Engineering Indian Institute of Technology Roorkee College Teacher Not Applicable Cross-Checked by TechPassion

July 31, 2019

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fundamentals Of Thermodynamics
Author: B. Claus And R. E. Sonntag
Publisher: Wiley India Pvt. Ltd., New Delhi
Edition: 7
Year: 2010
ISBN: 978-81-265-2152-4

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
2	Control Volumes and Units	5
3	Pure Substance Behaviour	10
4	Energy Transfers	18
5	Energy Equation for a Control Mass	21
6	Energy Equation for a Control Volume	29
7	The Classical Second Law of Thermodynamics	38
8	Entropy for a Control Mass	41
9	Entropy Equation for a Control Volume	49
10	Availibility	57
11	Power and Refrigeration Systems with phase change	60
12	Power and Refrigeration Systems gaseous working fluids	66
13	Ideal Gas Mixtures	75

14 Thermodynamics Property Relations	80
15 Comustion	85
16 Phase and Chemical Equilbrium	90
17 Compressible Flow	93

List of Scilab Codes

Exa 2.1	Weight of a person	5
Exa 2.2		5
Exa 2.3	Calculating the required force	6
Exa 2.4	Calculating atmospheric pressure	7
Exa 2.5	Pressure inside vessel	7
Exa 2.6	Calculating Pressure	8
Exa 2.7	Calculating Balancing Force	8
Exa 3.1	Determining the phase of water	0
Exa 3.2	Determining the phase of Ammonia 1	0
Exa 3.3	Determining the quality and specific volume 1	1
Exa 3.4	Percentage of vapor	1
Exa 3.5	Calculating pressure after heat addition 1	2
Exa 3.6	Determining the missing property 1	3
Exa 3.7	Determining the pressure of water 1	3
Exa 3.8	Calculating mass of air	4
Exa 3.9	Calculating pressure inside tank 1	4
Exa 3.10		5
Exa 3.11	Predicting the nature of given state 1	5
Exa 3.12	Determining specific using different laws 1	6
Exa 3.13	Calculating mass of gas	7
Exa 4.1		8
Exa 4.3	work produced	9
Exa 4.4	<u>U</u>	9
Exa 4.7		0
Exa 5.1		1
Exa 5.2	Change in internal energy	21
Exa 5.3	Analysis of energy transfer	22
Exa 5.4	Determining the missing properties	3

Exa 5.5	Calculating heat transfer for the given process	24
Exa 5.6	Calculating work and heat transfer for the	
	process	25
Exa 5.8		25
Exa 5.9	Determining amount of heat transfer	26
Exa 5.10	Calculating rate of increase of internal energy	27
Exa 5.11	Rate of change of temperature	27
Exa 6.1	Calculating mass flow rate	29
Exa 6.2	Work done for adding the fluid	29
Exa 6.3	Rate of flow of water	30
$Exa \ 6.4$	Determining quality of steam	30
Exa 6.5	Quality of ammonia leaving expansion valve	31
Exa 6.6		31
Exa 6.7	Heat transfer rate in aftercooler	32
$Exa \ 6.8$	Required Pump work	33
Exa 6.9		33
Exa 6.10	Analysis of refrigerator	34
Exa 6.11	Determining the final temperature of steam	35
Exa 6.12	Calculating mass flow of steam in tank	36
Exa 6.13	Calculating mass flow of steam in tank	36
Exa 7.1	Rate of fuel consumption	38
Exa 7.2	Coefficient of performance of refrigerator	38
Exa 7.4	Comparison of ideal carnot heat engine with	
	actual heat engine	39
Exa 7.5	Calculating required work	40
Exa 8.1	Coefficient of performance of refrigerator	41
Exa 8.2	Heat transfer in a given process	42
Exa 8.3	Entropy change	42
Exa 8.4	Entropy change with different assumptions .	43
Exa 8.5	Entropy change	44
Exa 8.6	Work done by air	45
Exa 8.7	Work and heat transfer	45
Exa 8.8	Calculating increase in entropy	46
Exa 8.9	Entropy generation	47
Exa 8.10	Determining the entropy generated	47
Exa 9.1		49
Exa 9.2		50
Exa 9.3		50

Calculating required specific work	51
Entropy generation	51
Work required to fill the tank	52
Work required to pump water isentropically	53
Velocity in exit flow	53
Rate of Entropy Generation	54
Turbine efficiency	54
Turbine inlet pressure	55
Required work input	56
Calculating reversible work	57
Calculating reversible work	58
Calculating reversible work and irreversibility	58
To determine the efficiency of Rankine cycle	60
To determine the efficiency of Rankine cycle	6
To determine the efficiency of a cycle	62
Efficiency of Refrigeration cycle	63
To determine thermal efficiency of cycle	64
Standard brayton cycle	66
Standard brayton cycle	6
efficiency of the cycle	68
Calculation of work in the given cycle	69
air standard cycle for jet repulsion	69
air standard refrigeration cycle	70
the otto cycle	7
the diesel cycle	72
calculating humidity ratio dew point mass of	
air mass of vapor	75
calculating amount of water vapour condensed	
on cooling	7
calculating heat transfer per kilogram of dry	
air	70
calculating heat transferred in gas vapour mix-	
ture	7
calculating humidity ratio and relative hu-	
midity	78
to determine the sublimation pressure of water	80
compressibility	80
	Entropy generation

Exa 14.5	adiabatic steady state processes	81
Exa 14.6	isothermal steady state processes	82
Exa 14.7	percent deviation using specific volume calcu-	
	lated by kays rule and vander waals rule	83
Exa 15.1	theoratical air fuel ratio for combustion of oc-	
	tane	85
Exa 15.6	determining heat transfer per kilomole of fuel	
	entering combustion chamber	85
Exa 15.7	calculating enthalpy of water at given pres-	
	sure and temperature	86
Exa 15.15	calculating reversible electromotive force	88
Exa 15.17	efficiency of generator and plant	88
Exa 16.2	to determine change in gibbs free energy	90
Exa 16.3	calculating equilibrium constant	91
Exa 17.1	to determine isentropic stagnation pressure	
	and temperature	93
Exa 17.3	determining the thrust acting on a control	
	surface	93
Exa 17.5	determining velocity of sound in air	94
Exa 17.6	determining mass flow rate through control	
	volume	95
Exa 17.7	determining exit properties in a control volume	96
Exa 17.9	determining exit plane properties in control	
	volume	97

Chapter 2

Control Volumes and Units

Scilab code Exa 2.1 Weight of a person

```
1 // example 1
2 // weight of a person
3 clear
4 clc
5 m=1 //kg
6 g=9.75 //acc.due to gravity in m/s^2
7 F=m*g //weight of 1 kg mass in N
8 printf("\n hence, weight of person is F = %.3f N. \n"
,F)
```

Scilab code Exa 2.2 Average Volume and Density

```
1 //example 2
2 //average volume and density
3 clear
4 clc
5 Vliq=0.2 //volume of liquid in m<sup>3</sup>
6 dliq=997 //density of liquid in kg/m<sup>3</sup>
```

```
7 Vstone=0.12 //volume of stone in m^3
8 Vsand=0.15 //volume of sand in m<sup>3</sup>
9 Vair=0.53 //vo; ume of air in m<sup>3</sup>
10 mliq=Vliq*dliq //mass of liquid in kg
11 dstone=2750 //density of stone in kg/m^3
12 dsand=1500 //density of sand in kg/m^3
13 mstone=Vstone*dstone //volume of stone in m^3
14 msand=Vsand*dsand //volume of sand in m<sup>3</sup>
15 Vtot=1 //total volume in m^3
16 dair=1.1 //density of air in kg/m^3
17 mair=Vair*dair //mass of air
18 mtot=mair+msand+mliq+mstone //total mass in kg
19 v=Vtot/mtot //specific volume in m<sup>3</sup>/kg
20 d=1/v //overall density in kg/m^3
21 printf("\n hence, average specific volume is v=%.6f
     m^3/kg. n",v)
22 printf("\n and overall density is d=\%.0 f kg/m<sup>3</sup>. \n"
      ,d)
```

Scilab code Exa 2.3 Calculating the required force

```
12 mp=25 //mass of (rod+piston) in kg
```

```
the upward direction is F = \%.3 f N. n, F)
```

Scilab code Exa 2.4 Calculating atmospheric pressure

```
1 // example 4
2 // Calculating atmospheric pressure
3 clear
4 clc
5 dm=13534 // density of mercury in kg/m<sup>3</sup>
6 H=0.750 // height difference between two columns in
    metres
7 g=9.80665 // acc. due to gravity in m/s<sup>2</sup>
8 Patm=dm*H*g/1000 // atmospheric pressure in kPa
9 printf("\n hence, atmospheric pressure is Patm = %.2
    f kPa. \n", Patm)
```

Scilab code Exa 2.5 Pressure inside vessel

```
1 //example 5
2 //pressure inside vessel
3 clear
4 clc
5 dm=13590 //density of mercury in kg/m^3
6 H=0.24 //height difference between two columns in
    metres
7 g=9.80665 //acc. due to gravity in m/s^2
8 dP=dm*H*g //pressure difference in Pa
9 Patm=13590*0.750*9.80665 //Atmospheric Pressure in
    Pa
```

- 10 Pvessel=dP+Patm // Absolute Pressure inside vessel in Pa
- 11 Pvessel=Pvessel/101325//Absolute Pressure inside vessel in atm
- 12 printf("\n hence, the absolute pressure inside vessel is Pvessel = %.3f atm. \n",Pvessel)

Scilab code Exa 2.6 Calculating Pressure

```
1 // example 6
2 //calculating pressure
3 clear
4 clc
5 dg=750 //density of gaasoline in kg/m<sup>3</sup>
6 dR=1206 //density of R-134a in kg/m^3
7 H=7.5 //height of storage tank in metres
8 g=9.807 //acc. due to gravity in m/s^2
9 dP1=dg*g*H/1000 //in kPa
10 Ptop1=101 //atmospheric pressure in kPa
11 P1=dP1+Ptop1
12 disp('hence, pressure at the bottom of storage tank
     if fluid is gasoline is 156.2 kPa')
13 dP2=dR*g*H/1000 //in kPa
14 Ptop2=1000 //top surface pressure in kPa
15 P2=dP2+Ptop2
16 printf("\n hence, pressure at the bottom of storage
     tank if liquid is R-134a is P2 = \%.0 f kPa. \n", P2
     )
```

Scilab code Exa 2.7 Calculating Balancing Force

```
1 //example 6
2 //calculating balancing force
```

- one in m 12 P2=P1-d*g*H/1000 //pressure at higher elevation on

piston 2 in kPa

- 13 A2=0.05 // cross sectional area of higher piston in $\rm m^3$
- 14 F2=(P2-Po)*A2 //balancing force on second piston in kN
- 15 printf("\n hence, balancing force on second larger piston is F2 = %.1 f N. \n",F2)

Chapter 3

Pure Substance Behaviour

Scilab code Exa 3.1 Determining the phase of water

```
1 // example 1
2 // determinig the phase of water
3 clear
4 clc
5 disp('from the table, we find that at 120C, saturation
        pressure of water is 198.5 kPa.But here we have
        pressure of 500 kPa.hence, water exists as a
        compressed liquid here.')
6 disp('also at 120C, vf=0.00106 kg/m^3 and vg=0.89186
        kg/m^3.given v=0.5 m^3/kg i.e. vf<v<vg, so we have
        two phase mixture of liquid and vapor.')</pre>
```

Scilab code Exa 3.2 Determining the phase of Ammonia

```
1 //example 2
2 //determinig the phase
3 clear
4 clc
```

```
5 disp('from the table, we find that at 30C, saturation
    pressure of ammonia is 1167 kPa.But here we have
    pressure of 1000 kPa.hence, ammonia exists in
    superheated vapor state.')
6 disp('for R-22 at 200 kPa, vg=0.1119 kg/m^3.given v
    =0.15 m^3/kg i.e. v>vg, so the state is
    superheated vapor')
```

Scilab code Exa 3.3 Determining the quality and specific volume

```
1 //example 3
2 //determining the quality and specific volume
3 clear
4 clc
5 v1=0.5 //given specific volume in m^3/kg
6 vf=0.001073 //specific volume when only liquid phase
      is present in m^3/kg
7 vfg=0.60475 //in m^{3}/kg
8 disp('For water at a pressure of 300 kPa, the state
     at which v1 is 0.5 \text{ m}^3/\text{kg} is seen to be in the
     liquid-vapor two-phase region, at which T=133.6 C
     and the quality x is ')
9 x=(v1-vf)/vfg //quality
10 v2=1 //given specific volume in m^3/kg
11 disp('By comparing with the values given in the
     table, this state is seen to be in the superheated
      vapor region.temperature will be calculated
     using the method of interplotation.')
12 T=((400-300)*(1.0-0.8753))/(1.0315-0.8753)+300 //
     temperature of the water
```

Scilab code Exa 3.4 Percentage of vapor

```
1 // example 4
2 // percentage of vapor
3 clear
4 clc
5 vliq=0.1 // volume of saturated liquid in m^3
6 vf=0.000843 // in m^3/kg
7 vvap=0.9 // volume of saturated vapor R-134a in
equilbrium
8 vg=0.02671 // in m^3/kg
9 mliq=vliq/vf // mass of liquid in kg
10 mvap=vvap/vg // mass of vapor in kg
11 m=mliq+mvap // total mass in kg
12 x=mvap/m // percentage of vapor on mass basis
13 disp('hence,% vapor on mass basis is 22.1')
```

```
Scilab code Exa 3.5 Calculating pressure after heat addition
```

```
1 //example 5
2 //calculating pressure after heat addition
3 clear
4 clc
5 v1=0.14922 //specific volume of sautrated ammonia in
    m^3/kg
6 disp('Since the volume does not change during the
    process, the specific volume remains constant.
    therefore, ')
7 v2=v1 //in m^3/kg
8 disp('Since vg at 40C is less than v2, it is evident
    that in the final state the Ammonia is
    superheated vapor.By interplotation, we find that
    ')
9 P2=945 //final pressure in kPa
```

```
10 disp('hence, the final pressure is 945 kPa')
```

Scilab code Exa 3.6 Determinig the missing property

```
1 / (example 6)
2 // Determinig the missing property
3 clear
4 clc
5 T1=273-53.2 //given temperature in K
6 P1=600 //given pressure in kPa
7 disp('This temperature is higher than the critical
      temperature (critical temp. at P=600 kPa) is
      96.37 K. Hence, v = 0.10788 \text{ m}^3/\text{kg}')
8 T2=100 //given temp. in K
9 v2=0.008 //given specific volume in m<sup>3</sup>/kg
10 vf=0.001452 //in m^{3}/kg
11 vg=0.0312 //in m^{3}/kg
12 Psat=779.2 //saturation pressure in kPa
13 vfg=vg-vf //in m^3/kg
14 x=(v2-vf)/vfg //quality
15 printf("\n hence, the pressure is Psat = \%.1 f kPa. \
      n", Psat)
16 printf("\n and quality is x = \%.4 f. \n",x)
```

Scilab code Exa 3.7 Determining the pressure of water

```
1 //example 7
2 //determining the pressure of water
3 clear
4 clc
5 vg=0.12736 //specific volume in m^3/kg for water at
        200C
6 v=0.4 //specific volume in m^3/kg
7 P1=500 //in kPa
```

12 disp('hence, the pressure of water is 534.2 kPa')

Scilab code Exa 3.8 Calculating mass of air

```
1 //example 8
2 //calculating mass of air
3 clear
4 clc
5 P=100 //pressure in kPa
6 V=6*10*4 //volume of room in m<sup>3</sup>
7 R=0.287 //in kN-m/kg-K
8 T=25 //temperature in Celsius
9 m=P*V/(R*(T+273.2)) //mass of air contained in room
10 printf("\n hence, mass of air contained in room is m
= %.3 f kg. \n",m)
```

Scilab code Exa 3.9 Calculating pressure inside tank

```
1 // example 9
2 // calculating pressure inside tank
3 clear
4 clc
5 V=0.5 //volumr of tank in m^3
6 m=10 //mass of ideal gas in kg
7 T=25 //temperature of tank in Celsius
8 M=24 //molecular mass of gas in kg/kmol
9 Ru=8.3145 //universal gas constant in kN-m/kmol-K
```

```
10 R=Ru/M //gas constant for given ideal gas in kN-m/kg -K
```

11 P=m*R*(T+273.2)/V //pressure inside tank

```
12 printf("\n hence, pressure inside tank is P = \%.0 f kPa. \n",P)
```

Scilab code Exa 3.10 Mass flow rate

```
1 / \text{example 10}
2 //mass flow rate
3 clear
4 clc
5 dt=185 //time period in seconds over which there is
     incrrease in volume
6 dV=0.75 //increase in volume in 0.75 in m^3
7 V=dV/dt //volume flow rate in m^3/s
8 P=105 //pressure inside gas bell kPa
9 T=21 //temperature in celsius
10 R=0.1889 //ideal gas constant in kJ/kg-K
11 m=P*V/(R*(T+273.15)) //mass flow rate of the flow in
      kg/s
12 printf("\n hence, mass flow rate is m = \%.3 f kg/s. \n
     ",m)
13 printf("\n and volume flow rate is V = \%.3 \text{ fm}^3/\text{s.}
     n",Ⅴ)
```

Scilab code Exa 3.11 Predicting the nature of given state

```
1 //example 11
2 //predicting the nature of given state
3 clear
4 clc
```

- 5 disp('For Nitrogn, the critical properties are 126.2
 K, 3.39 MPa. Given T=20+273.2 K, P=1.0 MPa.
 Since, given temperature is more than twice Tc
 and the reduced pressure is less than 0.3, ideal
 gas behaviour is a very good assumption.')
- 6 disp('For Carbon Dioxide, the critical properties are 304.1 K,7.38 MPa.Given T=20+273.2 K, P=1.0 MPa Therefore, reduced properties are 0.96(T/Tc) and 0.136 (P/Pc). CO2 is a gas with a Z of about 0.95, os the ideal gas is accurate to within about 5% in this case.')
- 7 disp('Given P=1.0MPa, T=20+273.2 K. For Ammonia, at T=293.2 K, Pg=858 kPa. Since, P>Pg, this state is compressible liquid and not a gas.')

Scilab code Exa 3.12 Determining specific using diffenet laws

```
1 / \text{example } 12
2 //determining specific using differet laws
3 clear
4 clc
5 T=100 //given temp.in 100 celsius
6 P=3 //given pressure in MPa
7 v1=0.0065 //specific volume in m^3/kg using table
8 printf("\n hence, the specific volume for R-134a
      using R-134a tables is v1 = \%.3 \text{ fm}^3/\text{kg}. \n",v1)
9 M=102.3 //molecular mass in kg
10 R=8.3145 //in kJ/K
11 Ru=R/M //in kJ/K-kg
12 v2=Ru*(T+273)/(P*1000) //specific volume assuming R
      -134a to be ideal gas in m<sup>3</sup>/kg
13 printf("\n hence, the specific volume for R-134a
      using R-134a the ideal gas laws is v_2 = \%.3 \text{ fm}^3/
      kg. \langle n^{"}, v2 \rangle
```

14 Tr=373.2/374.2 //reduced temperature using

```
generalized chart
```

- 15 Pr=3/4.06 //reduced pressure using generalized chart
- 16 Z=0.67 //compressibility factor
- 18 printf("\n hence, the specific volume for R-134a using the generalized chart is $v3 = \%.3 \text{ fm}^3/\text{kg}.$ \n",v3)

Scilab code Exa 3.13 Calculating mass of gas

```
1 / \text{example } 13
2 //calculating mass of gas
3 clear
4 clc
5 Pc=4250 //critical pressure of propane in kPa
6 Tc=369.8 //critical temperature in K
7 T=15 //temperature of propane in celsius
8 Tr=T/Tc //reduced temperature
9 Prsat=0.2 // reduced pressure
10 P=Prsat*Pc //pressure in kPa
11 x=0.1 //given quality
12 Zf=0.035 //from graph
13 Zg=0.83 //from graph
14 Z=(1-x)*Zf+x*Zg //overall compressibility factor
15 V=0.1 //volume of steel bottle in m<sup>3</sup>
16 R=0.1887 //in kPa-m^3/kg-K
17 m=P*V/(Z*R*(T+273)) //total propane mass in kg
18 printf("\n hence, the total propane mass is m = \%.3 f
      kg. \langle n^{"}, m \rangle
```

```
19 printf("\n and pressure is P = \%.3 f kPa. \n",P)
```

Chapter 4

Energy Transfers

Scilab code Exa 4.1 Work done during different processes

```
1 / (example 1)
2 //work done during different processes
3 clear
4 clc
5 P1=200 //initial pressure inside cylinder in kPa
6 V2=0.1 //in m<sup>3</sup>
7 V1=0.04 //initial volume of gas in m^3
8 W1=P1*(V2-V1) //work done in isobaric process in kJ
9 printf("\n hence, the work done during the isobaric
      process is W1 = \%.3 f kJ. \langle n, W1 \rangle
10 W2=P1*V1*log(V2/V1) //work done in isothermal
      process in kJ
11 printf("\n hence, the work done in isothermal process
       is W2 = \%.3 f kJ. \ n'', W2)
12 P2=P1*(V1/V2)^(1.3) //final pressure according to
      the given process
13 W3 = (P2 * V2 - P1 * V1) / (1 - 1.3)
14 printf("\n hence, the work done during the described
      process is W3 = \%.3 f kJ. \langle n, W3 \rangle
15 W4=0 //work done in isovolumic process
16 printf("\n hence, the work done in the isovolumic
```

Scilab code Exa 4.3 work produced

```
1 //example 3
2 //work produced
3 clear
4 clc
5 Psat=190.2 //in kPa
6 P1=Psat //saturation pressure in state 1
7 vf=0.001504 //in m^3/kg
8 vfg=0.62184 //in m^{3}/kg
9 x1=0.25 //quality
10 v1=vf+x1*vfg //specific volume at state 1 in m<sup>3</sup>/kg
11 v2=1.41*v1 //specific volume at state 2 in m<sup>3</sup>/kg
12 P2=600 //pressure in state 2 in kPa
13 m=0.5 //mass of ammonia in kg
14 W=m*(P1+P2)*(v2-v1)/2 //woork produced by ammonia in
      k.J
15 disp('hence, work produced by ammonia is 12.71 kJ')
```

Scilab code Exa 4.4 Calculating work done

```
1 //example 4
2 //calculating work done
3 clear
4 clc
5 v1=0.35411 //specific volume at state 1 in m^3/kg
6 v2=v1/2
7 m=0.1 //mass of water in kg
8 P1=1000 //pressure inside cylinder in kPa
9 W=m*P1*(v2-v1) //in kJ
```

10 disp('hence, the work in the overall process is -17.7 kJ')

Scilab code Exa 4.7 Heat transfer

- 1 // example 7
- 2 //heat transfer
- 3 clear
- 4 clc
- 5 k=1.4 //conductivity of glass pane in W/m-K
- 6 A=0.5 //total surface area of glass pane
- 7 dx=0.005 //thickness of glasspane in m
- 8 dT1=20-12.1 //temperature difference between room air and outer glass surface temperature in celsius
- 9 Q=-k*A*dT1/dx //conduction through glass slab in W
- 10 h=100 //convective heat transfer coefficient in W/m $^{\rm 2-K}$
- 11 dT=12.1-(-10) //temperature difference between warm room and colder ambient in celsius
- 12 Q2=h*A*dT //heat transfer in convective layer in W
- 13 printf("\n hence, the rate of heat transfer in the glass and convective layer is Q2 = %.0 f kW. \n", Q2)

Chapter 5

Energy Equation for a Control Mass

Scilab code Exa 5.1 Calculating height

```
1 // example 1
2 // calculating height
3 clear
4 clc
5 m=1100 // mass of car in kg
6 ke=400 // kinetic energy of car in kJ
7 V=(2*ke*1000/m)^0.5 // velocity of car in m/s
8 g=9.807 // acc. due to gravity in m/s^2
9 H=ke*1000/(m*g) // height to which the car should be
lifted so that its potential energy equals its
kinetic energy
10 disp('hence, the car should be raised to a height of
37.1 m to make its potential energy equal to
kinetic energy')
```

Scilab code Exa 5.2 Change in internal energy

```
1 //example 2
2 //change in internal energy
3 clear
4 clc
5 W=-5090 //work input to paddle wheel in kJ
6 Q=-1500 //heat transfer from tank in kJ
7 dU=Q-W //change in internal energy in kJ
8 disp('hence, change in internal energy is 3590 kJ')
```

Scilab code Exa 5.3 Analysis of energy transfer

```
1 //example 3
2 //analysis of energy transfer
3 clear
4 clc
5 g=9.806 //acceleration due to gravity in m/s^2
6 \text{ m=10} //\text{mass of stone in kg}
7 H1=10.2 //initial height of stone above water in
     metres
8 H2=0 //final height in metres
9 dKE1=-m*g*(H2-H1) //change in kinetic energy when
      stone enters state 2 in J
10 dPE1=-1 //change in potential energy when stone
     enters state 2 in J
11 printf("\n hence, when stone is about to enter state
      2, dKE = \%.3 f J. n, dKE1)
12 printf("\n and dPE = %.3 f J. \n",dPE1)
13 dPE2=0 //change in potential energy when stone
      enters state 3 in JQ2=0 //no heat transfer when
     stone enters state 3 in J
14 W2=0 //no work done when stone enters state 3 in J
15 dKE2=-1 //change in kinetic energy when stone enters
       state 3
16 dU2=-dKE2 //change in internal energy when stone
     enters state 3 in J
```

- 17 printf("\n hence, when stone has just come to rest in the bucket i.e. state 3, W=0, dPE=0, dKE1 = %.3 f J. \n", dKE2)
- 18 printf(" \n and dU = %.3 f J. \n ", dU2)
- 19 dKE3=0 //change in kinetic energy when stone enters state 4
- 20 dPE=0 //change in potential energy when stone enters state 4 in J
- 21 W3=0 //no work done when stone enters state 4 in J
- 22 dU3=-1 //change in internal energy when stone enters state 4 in J
- 23 Q3=dU3 //heat transfer when stone enters state 4 in J
- 24 printf("\n hence, when stone has entered state 4, dPE =0, W3=0, dKE=0, dU= %.3 f J. \n", dU3)
- 25 printf("\n and Q3= %.3 f J. \n",Q3)

Scilab code Exa 5.4 Determinig the missing properties

```
1 / (example 4)
2 //Determinig the missing properties
3 clear
4 clc
5 T1=300 //given temp. in Celsius
6 u1=2780 //given specific internal enrgy in kJ/kg
7 disp('From steam table, at T=300 C, ug=2563.0 kJ/kg.
      So,ul>ug, it means the state is in the
      superheated vapor region. So, by interplotation, we
       find P=1648 kPa and v=0.1542 \text{ m}^{3}/\text{kg'})
8 P2=2000 //hiven pressure in kPa
9 u2=2000 //given specific intrernal energy in kJ/kg
10 disp('at P=2000 \text{ kPa},')
11 uf=906.4 //in kJ/kg
12 ug=2600.3 //in kJ/kg
13 x2=(u2-906.4)/(ug-uf)
```

```
14 disp('Also, under the given conditions')
15 vf=0.001177 //in m^3/kg
16 vg=0.099627 //in m^3/kg
17 v2=vf+x2*(vg-vf)//Specific volume for water in m^3/kg
18 printf("\n hence, specific volume for water is v2 = %
.5f m^3/kg. \n",v2)
19 printf("\n Therefore, this state is in the two phase
        region with quality x2=%.4f . \n",x2)
```

Scilab code Exa 5.5 Calculating heat transfer for the given process

```
1 / | example 5
2 //calculating heat transfer for the given process
3 clear
4 clc
5 Vliq=0.05 //volume of saturated liquid in m<sup>3</sup>
6 vf=0.001043 //in m^{3}/kg
7 Vvap=4.95 //volume of saturated water vapour in m<sup>3</sup>
8 vg=1.6940 //in m^{3}/kg
9 m1liq=Vliq/vf //mass of liquid in kg
10 m1vap=Vvap/vg //mass of vapors in kg
11 ulliq=417.36 //specific internal energy of liquid in
       kJ/kg
12 ulvap=2506.1 //specific internal energy of vapors in
       kJ/kg
13 U1=m1liq*u1liq+m1vap*u1vap //total internal energy
      in kJ
14 m=m1liq+m1vap //total mass in kg
15 V=5 //total volume in m^3
16 v2=V/m //final specific volume in m^3/kg
17 disp('by interplotation we find that for steam, if
      vg=0.09831 \text{ m}^3/\text{kg} then pressure is 2.03 MPa')
18 u2=2600.5 //specific internal energy at final state
      in kJ/kg
```

Scilab code Exa 5.6 Calculating work and heat transfer for the process

```
1 / \text{example } 6
2 //calculating work and heat transfer for the process
3 clear
4 clc
5 V1=0.1 //volume of cylinder in m<sup>3</sup>
6 m=0.5 //mass of steam in kg
7 v1=V1/m //specific volume of steam in m<sup>3</sup>/kg
8 vf=0.001084 //m^3/kg
9 vfg=0.4614 //m^{3}/kg
10 x1=(v1-vf)/vfg //quality
11 hf = 604.74 //kJ/kg
12 hfg=2133.8//kJ/kg
13 h2=3066.8 //final specific heat enthalpy in kJ/kg
14 h1=hf+x1*hfg //initial specific enthalpy in kJ/kg
15 Q=m*(h2-h1) //heat transfer for this process in kJ
16 P=400 //pressure inside cylinder in kPa
17 v2=0.6548 //specific enthalpy in m^3/kg
18 W=m*P*(v2-v1) //work done for the process in kJ
19 printf("\n hence, work done for the process, W = \%.3
      f kJ. \langle n, W \rangle
20 printf("\n and heat transfer, Q=\%.3 f kJ.\n",Q)
```

Scilab code Exa 5.8 Calculating change in enthalpy

```
1 //example 8
2 //calculating change in enthalpy
```

- 3 clear
- 4 clc
- 5 h1=273.2 //specific heat enthalpy for oxygen at 300 K
- 6 h2=1540.2 //specific heat enthalpy for oxygen at 1500 K
- 7 T1=300 //initial temperature in K
- 8 T2=1500 //final temparature in K
- 9 x=poly([0], 'x');
- 11 dh1=h2-h1 //this change in specific heat enthalpy is calculated using ideal gas tables
- 12 dh2=1000*integrate(' $0.88-0.00001*x+0.54*x^2-0.33*x^3$ ','x',T1/1000,T2/1000) //using empirical equation
- 13 dh3=0.922*(T2-T1) //it is claculated if we assume specific heat enthalpy to be constant and uses its value at 300K
- 14 dh4=1.0767*(T2-T1) //it is claculated if we assume specific heat enthalpy to be constant and uses its value at 900K i.e mean of initial and final temperature
- 15 printf("\n Hence, change in specific heat enthalpy if ideal gas tables are used is dh1=%.1f kJ/kg. \n" , dh1)
- 16 printf("\n if empirical equations are used, dh2=%.1 f kJ/kg. \n", dh2)
- 17 printf("\n if specific heat is assumed to be constant and using its value at T1, dh3=%.1f kJ/ kg. \n", dh3)
- 18 printf("\n if specific heat is assumed to be constant at its value at (T1+T2)/2, dh4=%.1f kJ/ kg. \n", dh4)

```
1 //example 9
2 //determining amount of heat transfer
3 clear
4 clc
5 P=150 //pressure of nitrogen in cylinder in kPa
6 V=0.1 //initial volume of cylinder in m<sup>3</sup>
7 T1=25 //initial temperature of nitrogen in celsius
8 T2=150 //final tempareture of nitrogen in celsius
9 R=0.2968 //in kJ/kg-K
10 m=P*V/(R*(T1+273)) //mass of nitrogen in kg
11 Cv=0.745 //constant volume specific heat for
      nitrogen in kJ/kg-K
12 W=-20 //work done on nitrogen gas in kJ
13 Q=m*Cv*(T2-T1)+W //heat transfer during the process
      in kJ
14 printf("\n hence, the heat transfer for the above
      process is Q=\%.1 f kJ. \langle n, Q \rangle
```

Scilab code Exa 5.9 Determining amount of heat transfer

Scilab code Exa 5.10 Calculating rate of increase of internal energy

```
1 //example 10
2 //calculating rate of increase of internal energy
3 clear
4 clc
5 W=-12.8*20 //power consumed in J/s
6 Q=-10 //heat transfer rate from battery in J/s
7 r=Q-W //rate of increase of internal energy
8 printf("\n hence, the rate of increase of internal energy is r=%.0f J/s. \n", r)
```

Scilab code Exa 5.11 Rate of change of temperature

```
1 / \text{example 11}
2 //rate of change of temperature
3 clear
4 clc
5 Q=1500 //power produced by burning wood in J/s
6 mair=1 //mass of air in kg
7 mwood=5 //mass of soft pine wood in kg
8 miron=25 //mass of cast iron in kg
9 Cvair=0.717 //constant volume specific heat for air
     in kJ/kg
10 Cwood=1.38 //constant volume specific heat for wood
     in kJ/kg
11 Ciron=0.42 //constant volume specific heat for iron
      in kJ/kg
12 dT=75-20 //increase in temperature in Celsius
13 T=(Q/1000)/(mair*Cvair+mwood*Cwood+miron*Ciron) //
      rate of change of temperature in K/s
14 dt=(dT/T)/60 //in minutes
15 printf(" hence, the rate of change of temperature is
      dt = \%.4 f K/s. \langle n, T \rangle
16 printf(" and time taken to reach a temperature of T=
```

```
\%.0 f min. \langle n", dt \rangle
```

Chapter 6

Energy Equation for a Control Volume

Scilab code Exa 6.1 Calculating mass flow rate

```
1 // example 1
2 // calculating mass flow rate in kg/s
3 clear
4 clc
5 R=0.287 // in kJ/kg-K
6 T=25 // temperature in celsius
7 P=150 // pressure in kPa
8 v=R*(T+273.2)/P // specific volume in m^3/kg
9 D=0.2 // diameter of pipe in metre
10 A=%pi*D^2/4 // cross sectional area in m^2
11 V=0.1 // velocity of air in m/s
12 m=V*A/v // mass flow rate in kg/s
13 printf("\n hence, the mass flow rate is m=%.4f kg/s.\
n",m)
```

Scilab code Exa 6.2 Work done for adding the fluid

```
1 //example 2
2 //work done for adding the fluid
3 clear
4 clc
5 P=600 //pressure in kPa
6 m=1 //in kg
7 v=0.001 //specific volume in m^3/kg
8 W=P*m*v //necessary work in kJ for adding the fluid
9 printf(" \n hence, the work involved in this process
is W=%.3 f kJ. \n",W)
```

Scilab code Exa 6.3 Rate of flow of water

```
1 //example 3
2 //rate of flow of water
3 clear
4 clc
5 hir=441.89 //in kJ/kg for refrigerant using steam
     table
6 her=249.10 //in kJ/kg for refrigerant using steam
     table
7 hiw=42 //in kJ/kg for water using steam table
8 hew=83.95 //in kJ/kg for water using steam table
9 mr=0.2 //the rate at which refrigerant enters the
     condenser in kg/s
10 mw=mr*(hir-her)/(hew-hiw) //rate of flow of water in
      kg/s
11 printf("\n hence, the rate at which cooling water
     flows thorugh the condenser is mw=%.3f kg/s. \n",
      mw)
```

Scilab code Exa 6.4 Determining quality of steam

Scilab code Exa 6.5 Quality of ammonia leaving expansion valve

```
1 // example 5
2 // quality of ammonia leaving expansion valve
3 clear
4 clc
5 hi=346.8 // specific heat enthalpy for ammonia at
initial state in kJ/kg
6 he=hi // specific heat enthalpy for ammonia at final
state will be equal that at initial state because
it is a throttling process
7 hf=134.4 //at final state in kJ/kg
8 hfg=1296.4//at final state in kJ/kg
9 xe=(he-hf)/hfg // quality at final state
10 printf("\n hence, quality of the ammonia leaving the
expansion valve is xe=%.4f. \n",xe')
```

Scilab code Exa 6.6 Power output of turbine in kW
```
1 / \text{example } 6
2 //power output of turbine in kW
3 clear
4 clc
5 hi=3137 //initial specific heat of enthalpy in kJ/kg
6 he=2675.5 //final specific heat of enthalpy in kJ/kg
7 Vi=50 //initial velocity of steam in m/s
8 Ve=100 //final velocity of steam in m/s
9 Zi=6 //height of inlet conditions in metres
10 Ze=3 //height of exit conditions in metres
11 m=1.5 //mass flow rate of steam in kg/s
12 g=9.8066 //acc. due to gravity in m/s^2
13 Qcv=-8.5 //heat transfer rate from turbine in kW
14 Wcv=Qcv+m*(hi+Vi^2/(2*1000)+g*Zi/1000)-m*(he+Ve
     ^2/(2*1000)+g*Ze/1000) //power output of turbine
     in kW
15 printf("\n hence, the power output of the turbine is
     Wev=\%.3 f kW. \langle n, wev \rangle
```

Scilab code Exa 6.7 Heat transfer rate in aftercooler

```
1 //example 7
2 //heat transfer rate in aftercooler
3 clear
4 clc
5 V1=0 //we assume initial velocity to be zero because
    its given that it enters with a low velocity
6 V2=25 //final velocity with which carbon dioxide
    exits in m/s
7 h2=401.52 //final specific enthalpy of heat when
    carbon dioxide exits in kJ/kg
8 h1=198 //initial specific enthalpy of heat in kJ/kg
9 w=h1-h2-V2^2/(2*1000) //in kJ/kg
10 Wc=-50 //power input to the compressor in kW
11 m=Wc/w //mass flow rate of carbon dioxide in kg/s
```

```
12 h3=257.9 //final specific enthalpy of heat when
carbon dioxide flows into a constant pressure
aftercooler
```

```
13 Qcool=-m*(h3-h2) //heat transfer rate in the aftercooler in kW
```

14 printf(" \n hence, heat transfer rate in the aftercooler is Qcool=%.3f kW. \n",Qcool)

Scilab code Exa 6.8 Required Pump work

```
1 // example 8
2 // Required pump work
3 clear
4 clc
5 m=1.5 // mass flow rate of water in kg/s
6 g=9.807 // acceleration due to gravity in m/s^2
7 Zin=-15 // depth of water pump in well in metres
8 Zex=0 // in metres
9 v=0.001001 // specific volume in m^3/kg
10 Pex=400+101.3 // exit pressure in kPa
11 Pin=90 // in kPa
12 W=m*(g*(Zin-Zex)*0.001-(Pex-Pin)*v) // power input in
kW
13 printf(" \n Hence, the pump requires power input of
W=%.0f W. \n",W*1000)
```

Scilab code Exa 6.9 Heat tranfer in simple steam power plant

```
1 //example 9
2 //heat tranfer in simple steam power plant
3 clear
4 clc
```

```
37
```

- 5 h1=3023.5 //specific heat of enthalpy of steam leaving boiler in kJ/kg
- 6 h2=3002.5 //specific heat of enthalpy of steam entering turbine in kJ/kg
- 7 x=0.9 //quality of steam entering condenser
- 8 hf=226 //in kJ/kg
- 9 hfg=2373.1 //in kJ/kg
- 10 h3=hf+x*hfg //specific heat of enthalpy of steam entering condenser in kJ/kg
- 11 h4=188.5 //specific heat of enthalpy of steam entering pump in kJ/kg
- 12 q12=h2-h1 //heat transfer in line between boiler and turbine in kJ/kg
- 13 w23=h2-h3 //turbine work in kJ/kg
- 14 q34=h4-h3 //heat transfer in condenser
- 15 w45=-4 //pump work in kJ/kg
- 16 h5=h4-w45 //in kJ/kg
- 17 q51=h1-h5 //heat transfer in boiler in $\rm kJ/kg$
- 18 printf("\n hence, heat transfer in line between boiler and turbine is q12=%.1f kJ/kg. \n",q12')
- 19 printf("\n hence, turbine work is w23=%.1f kJ/kg. \n ",w23')
- 20 printf("\n hence, heat transfer in condenser is q34= %.1f kJ/kg. \n",q34')
- 21 printf("\n hence, heat transfer in boiler is q51=%.0
 f kJ/kg. \n",q51')

Scilab code Exa 6.10 Analysis of refrigerator

```
1 // example 10
2 // analysis of refrigerator
3 clear
4 clc
5 hf4=167.4 //in kJ/kg
6 hfg4=215.6 //in kJ/kg
```

- 7 h3=241.8 //specific heat of enthalpy of R-134a entering expansion valve
- 8 h4=h3 //specific heat of enthalpy of R-134a leaving expansion valve
- 9 h1=387.2 //in kJ/kg
- 10 h2=435.1 //in kJ/kg
- 11 x4=(h3-hf4)/hfg4 //quality of R-134a at evaporator inlet
- 12 m=0.1 //mass flow rate in kg/s
- 13 Qevap=m*(h1-h4) //rate of heat transfer to the evaporator
- 14 Wcomp=-5 //power input to compressor in kW
- 15 Qcomp=m*(h2-h1)+Wcomp //rate of heat transfer from compressor
- 16 printf("\n hence, the quality at the evaporator inlet is x4=%.3 f. \n",x4')

Scilab code Exa 6.11 Determining the final temperature of steam

```
1 // example 11
2 // Determining the final temperature of steam
3 clear
4 clc
5 u2=3040.4 // final internal energy in kJ/kg
6 hi=u2 // in kJ/kg
7 P2=1.4 // final Pressure in MPa
8 disp('Since, the final pressure is given as 1.4 MPa,
we know two properties at the final state and
hence, final state can be determined. The
temperature corresponding to a pressure of 1.4
MPa and an internal energy of 3040.4 kJ/kg is
```

```
found to be ')
9 T2=452 //final temperature in Celsius
```

Scilab code Exa 6.12 Calculating mass flow of steam in tank

```
1 / \text{example } 12
2 //Calculating mass flow of steam in tank
3 clear
4 clc
5 V1=0.4 //initial volume fo tank in m<sup>3</sup>
6 v1=0.5243 //initial specific volume in m<sup>3</sup>/kg
7 h1=3040.4 //initial specific enthalpy in k{\rm J}/k{\rm g}
8 u1=2548.9 //initial specific internal energy in \rm kJ/
      kg
9 m1=V1/v1 //initial mass of steam in tank in kg
10 V2=0.4 //final volume in m^3
11 disp('let x=V*(h1-u2)/v2-m1*(h1-u1)). If we assume T2
      =300C, then v2=0.1823m<sup>3</sup>/kg ,u2=2785.2kJ/kg and x
      =+ve. If we assume T2=350C, then v2=0.2003 \text{ m}^3/\text{kg},
      u2 = 2869.1 \, kJ/kg and x = -ve. Hence, actualt T2 must be
       between these two assumed values in order that x
      =0.By interplotation, ')
12 T2=342 //final temperature in Celsius
13 v2=0.1974 //final specific volume in m<sup>3</sup>/kg
14 m2=V2/v2 //final mass of the steam in the tank in kg
15 m=m2-m1 //mass of steam that flowsinto the tank
16 printf(" \n Hence, mass of the steam that flows into
      the tank is m=\%.3 f \text{ kg}. \ n",m)
```

Scilab code Exa 6.13 Calculating mass flow of steam in tank

```
1 //example 13
2 //Calculating mass flow of steam in tank
```

```
3 clear
4 clc
5 vf1=0.001725 //in m^{3}/kg
6 vf2=0.0016 //in m^{3}/kg
7 uf1=368.7 //in kJ/kg
8 uf2=226 //in kJ/kg
9 vg1=0.08313 //in m^{3}/kg
10 vfg2=0.20381
11 ug1=1341 //in kJ/kg
12 ufg2=1099.7 //in kJ/kg
13 Vf=1 //initial volume of liquid in m<sup>3</sup>
14 Vg=1 //initial volume of vapor in m<sup>3</sup>
15 mf1=Vf/vf1 //initial mass of liquid in kg
16 mg1=Vg/vg1 //initial mass of vapor in kg
17 m1=mf1+mg1 //initial mass of liquid in kg
18 he=1461.1 //in kJ/kg
19 V=2 //volume of tank in m<sup>3</sup>
20 disp('m1u1=mf1*uf1+mg1*ug1.If x2 is the quality, then
      m2=V/v2=2/(0.00160+0.20381*x2) and u2=uf2+x2*
      ufg2 = 226.0 + 1099.7 * x2. ')
21 disp('Also,m2*(he-u2)=m1*he-m1u1.From this equation,
      we will get an equation for x2.')
22 x2=((2*1461.1) - (2*226) - (0.00160*634706))
      /((634706*0.20381)+(2*1099.7)) //quality of
      ammonia
23 v2=0.00160+(0.20381*x2) //final specific volume in m
      3/kg
24 m2=V/v2 //final mass of ammonia in kg
25 m=m1-m2 //mass of ammonia withdrawn
26 printf(" \n Hence, mass of ammonia withdrawn is m=%.1
      f kg. \langle n, m \rangle
```

Chapter 7

The Classical Second Law of Thermodynamics

Scilab code Exa 7.1 Rate of fuel consumption

```
1 // example 1
2 // rate of fuel consumption
3 clear
4 clc
5 W=136*0.7355 // output of automobile engine in kW
6 neng=0.3 // thermal efficiency of automobile engine
7 Qh=W/neng // energy output of fuel in kW
8 Ql=Qh-W // total rate of energy rejected to the
ambient
9 qh=35000 // energy output of fuel in kJ/kg
10 m=Qh/qh // rate of fuel consumption in kg/s
11 printf("\n hence, total rate of energy rejected is Ql
=%.0 f kW.\n",Ql)
12 printf("\n and rate of fuel consumption is m=%.4f kg
/s.\n",m)
```

```
1 //example 2
2 //coefficient of performance of refrigerator
3 clear
4 clc
5 Qh=400 //heat rejected to kitchen air in W
6 W=150 //electrical input power in W
7 Ql=Qh-W //rate of energy taken out to cold space in
W
8 B=Ql/W //coefficient of performance of refrigerator
9 printf("\n hence, rate of energy taken out of the
cold space is Ql=%.3f W.\n",Ql)
10 printf("\n and coefficient of performance of the
refrigerator is B=%.3f .\n",B)
```

Scilab code Exa 7.2 Coefficient of performance of refrigerator

Scilab code Exa 7.4 Comparison of ideal carnot heat engine with actual heat engine

```
1 // example 4
```

```
2 //comparison of ideal carnot heat engine with actual heat engine
```

- 3 clear
- 4 clc

```
5 Qh=1000 //rate of heat transfer to heat engine in kW
```

- 6 W=450 //rate of production of work in kW
- 7 Ql=Qh-W //rate of heat rejected by heat engine in kW
- 8 nthermal=W/Qh //efficiency from the definition of efficiency
- 9 T1=300 //temperature of surroundings in K
- 10 Th=550 //temperature of heat source in Celsius
- 11 ncarnot=1-Tl/(Th+273) //efficiency if heat engine is considered to be ideal carnot heat engine
- 12 W2=ncarnot*Qh //rate of work production if heat engine is assumed to be ideal carnot heat engine in kW

```
14 printf("\n hence, energy discarded to the ambient
surroundings is Ql2=%.0fkW.\n",Ql2)
```

```
15 printf("\n and the engine efficiency is ncarnot=%.3f
.\n",ncarnot)
```

Scilab code Exa 7.5 Calculating required work

```
=%.2 f kW.\n",W)
```

Chapter 8

Entropy for a Control Mass

Scilab code Exa 8.1 Coefficient of performance of refrigerator

```
1 / | example | 1
2 //coefficient of performance of refrigerator
3 clear
4 clc
5 Th=60 //temperature at which heat is rejected from R
     -134a
6 Tl=0 //temperature at which heat is absorbed into
     the R-134a
7 s1=1.7262 //specific entropy at 0 Celsius
8 s2=s1 //process of state change from 1-2 is
     isentropic
9 s3=1.2857 //specific entropy at 60 celsius
10 s4=s3 //process of state change from 3-4 is
     isentropic
11 disp('if Pressure is 1400 kPa, then s=1.7360 \text{ kJ/kg-K}
     and if P=1600 kPa, then s=1.7135 kJ/kg-K. Therefore
      ')
12 P2=1400+(1600-1400) *(1.7262-1.736)/(1.7135-1.736) //
     pressure after compression in kPa
```

13 B=(Th+273)/(Th-Tl) //coefficient of performance of refrigerator

- 14 printf(" \n hence, pressure after compression is P2=%
 .3 f kPa.\n",P2)
- 15 printf("\n and coefficient of performance of refrigerator is B=%.3f .\n",B)

Scilab code Exa 8.2 Heat transfer in a given process

```
1 / \text{example } 2
2 //heat transfer in a given process
3 clear
4 clc
5 u1=87.94 //specific internal energy of R-12 at state
      1 in kJ/kg
6 u2=276.44 //specific internal energy of R-12 at
      state 2 in kJ/kg
7 s1=0.3357 //specific entropy at state 1 in kJ/kg-K
8 s2=1.2108 //specific entropy at state 2 in kJ/kg-K
9 V=0.001 //volume of saturated liquid in m<sup>3</sup>
10 v1=0.000923 //specific volume in m^3/kg
11 m=V/v1 //mass of saturated liquid in kg
12 T=20 //temperature of liquid in celsius
13 Q12=m*(T+273.15)*(s2-s1) //heat transfer in kJ to
      accomplish the process
14 W12=m*(u1-u2)+Q12 //work required to accomplish the
      process
15 printf(" \n hence, work required to accomplish the
      process is W12=\%.1 f kJ.\n",W12)
16 printf(" \n and heat transfer is Q12=\%.1f kJ.\n",Q12
     )
```

Scilab code Exa 8.3 Entropy change

1 // example 3

```
2 //entropy change
3 clear
4 clc
5 C=4.184 // specific heat of water in kJ/kg-K
6 T1=20 //initial temperature of water in celsius
7 T2=90 //final temperature of water in celsius
8 dS1=C*log((T2+273.2)/(T1+273.2)) //change in entropy
in kJ/kg-K
9 dS2=1.1925-0.2966 //in kJ/kg-K using steam tables
10 printf("\n hence, change in entropy assuming constant
specific heat is dS1=%.4f kJ/kg-K.\n",dS1)
11 printf("\n using steam table is dS2=%.4f kJ/kg-K.\n"
,dS2)
```

Scilab code Exa 8.4 Entropy change with different assumptions

```
1 / (example 4)
2 //entropy change with different assumptions
3 clear
4 clc
5 T1=300 //initial temperature in kelvins
6 T2=1500 //final temperature in kelvins
7 P1=200 //initial pressure in kPa
8 P2=150 //final pressure in kPa
9 R=0.2598 // in kJ/kg-K
10 Cp=0.922 //specific heat in kJ/kg-K at constant
     pressure
11 dsT2=8.0649 //in kJ/kg-K
12 dsT1=6.4168 //in kJ/kg-K
13 dS1=dsT2-dsT1-R*log(P2/P1) //entropy change
      calculated using ideal gas tables
14 dS2=integrate('0.88/x-0.0001+0.54*x-0.33*x^2', 'x')
      ,0.3,1.5)-R*log(P2/P1) //entropy change
      calculated using empirical equation
15 dS3=Cp*log(T2/T1)-R*log(P2/P1) //entropy change
```

assuming constant specific heat in kJ/kg-K

- 16 dS4=1.0767*log(T2/T1)+0.0747 //entropy change assuming specific heat is constant at its value at 990K
- 17 printf("\n hence, change in entropy using ideal gas tables is dS1=%.4f kJ/kg-K.\n",dS1)
- 18 printf("\n hence, change in entropy using empirical equation is dS2=%.4f kJ/kg-K.\n",dS2)
- 19 printf("\n hence, change in entropy using the value of specific heat at 300K is dS3=%.4f kJ/kg-K.\n", dS3)
- 20 printf("\n hence, change in entropy assuming specific heat is constant at its value at 900K is dS4=%.4 f kJ/kg-K.\n",dS4)

Scilab code Exa 8.5 Entropy change

```
1 / (example 5)
2 //entropy change
3 clear
4 clc
5 Cp=1.004 //specific heat at constant pressure in kJ/
     kg-K
6 R=0.287 //gas constant in kJ/kg-K
7 P1=400 //initial pressure in kPa
8 P2=300 //final pressure in kPa
9 T1=300 //initial temperature in K
10 T2=600 //final temperature in K
11 dS1=Cp*log(T2/T1)-R*log(P2/P1) //entropy change
     assuming constant specific heat
12 s1=6.8693 //specific entropy at T1
13 s2=7.5764 //specific entropy at T2
14 dS2=s2-s1-R*log(P2/P1) //entropy change assuming
     variable specific heat
15 printf("\n hence, entropy change assuming constant
```

```
specific heat is dS1=%.4f kJ/kg-K.\n",dS1)
16 printf("\n and assuming variable specific heat is
    dS2=%.4f kJ/kg-K.\n",dS2)
```

Scilab code Exa 8.6 Work done by air

```
1 / \text{example } 6
2 //work done by air
3 clear
4 clc
5 T1=600 //initial temperature of air in K
6 P1=400 //intial pressure of air in kPa
7 P2=150 //final pressure in kPa
8 u1=435.10 //specific internal energy at temperature
     T1 in kJ/kg
9
  sT1=7.5764 // specific entropy at temperature T1 in
     kJ/kg-K
10 R=0.287 //gas constant in kJ/kg-K
11 ds=0
12 sT2=ds+sT1+R*log(P2/P1) //specific entropy at
     temperature T2 in kJ/kg-K
13 disp('we know the values of s and P for state 2.So,
     in order to fully determine the state, we will use
      steam table')
14 T2=457 //final temperature in K
15 u2=328.14 //specific internal energy at temperature
     T2 in kJ/kg
16 w=u1-u2 //work done by air in kJ/kg
17 printf("\n hence, work done by air is w=\%.2 \text{ f kJ/kg.\n}
```

```
",w)
```

Scilab code Exa 8.7 Work and heat transfer

```
1 / | example 7
2 //work and heat transfer
3 clear
4 clc
5 P2=500
          //final pressure in cylinder in kPa
6 P1=100 //initial pressure in cylinder in kPa
7 T1=20+273.2 //initial temperature inside cylinder in
      Kelvins
8 n=1.3
9 T2=(T1)*(P2/P1)^((n-1)/n) //final temperature inside
      cylinder in K
10 R=0.2968 //gas constant in kJ/kg-K
11 w12=R*(T2-T1)/(1-n) //work in kJ/kg
12 Cvo=0.745 //specific heat at constant volume in kJ/
     kg-K
13 q12=Cvo*(T2-T1)+w12 //heat transfer in kJ/kg
14 printf(" \n hence, work done is w12=\%.1 f kJ/kg. n",
     w12)
15 printf("\n and heat transfer are q12=\%.1 f kJ/kg.\n",
     q12)
```

Scilab code Exa 8.8 Calculating increase in entropy

```
surroundings in kJ
```

```
11 dSsurroundings=Qtosurroundings/(T+273.15) //in kJ/K
```

- 12 dSnet=dScm+dSsurroundings //net increase in entropy in kJ/K
- 13 printf(" hence, net increase in entropy of water plus surroundings is dSnet=%.4f kJ/K.\n",dSnet)

Scilab code Exa 8.9 Entropy generation

```
1 // example 9
2 // entropy generation
3 clear
4 clc
5 Qout=1 // value of heat flux generated by 1kW of
      electric power
6 T=600 // temperature of hot wire surface in K
7 Sgen=Qout/T // entropy generation in kW/K
8 printf(" \n hence, entropy generation is Sgen=%.5f kW
      /K.\n",Sgen)
```

Scilab code Exa 8.10 Determining the entropy generated

```
1 //example 10
2 // Determining the entropy generated
3 clear
4 clc
5 B=4 //COP of air conditioner
6 W=10 //power input of air conditioner in kW
7 Qh=B*W //in kW
8 Ql=Qh-W //in kW
9 Thigh=323 //in Kelvin
10 Tlow=263 //in Kelvin
11 SgenHP=(Qh*1000/Thigh)-(Ql*1000/Tlow) //in W/K
12 Tl=281 // in K
```

```
13 Th=294 //in K
14 SgenCV1=Ql*1000/Tlow-Ql*1000/Tl //in W/K
15 SgenCV2=Qh*1000/Th-Qh*1000/Thigh //in W/K
16 SgenTOT=SgenCV1+SgenCV2+SgenHP //in W/K
17 printf(" \n Hence, Total entropy generated is SgenTOT
=%.1 f W/K. \n",SgenTOT)
```

Chapter 9

Entropy Equation for a Control Volume

Scilab code Exa 9.1 Entropy generation

```
1 / | example | 1
2 / work done by steam
3 clear
4 clc
5 hi=3051.2 //initial specific heat of enthalpy of
     steam in kJ/kg
6 si=7.1228 //initial specific entropy of steam in kJ/
     kg-K
7 Pe=0.15 //final pressure in MPa
8 se=si //specific entropy in final state in kJ/kg-K
9 sf=1.4335 //in kJ/kg-K
10 sfg=5.7897 //in kJ/kg-K
11 vi=50 //velocity with which steam enters turbine in
     m/s
12 ve=200 //velocity with which steam leaves the
     turbine in m/s
13 xe=(se-sf)/sfg //quality of steam in final state
```

```
14 hf = 467.1 //in kJ/kg
```

```
15 hfg=2226.5 //in kJ/kg
```

```
16 he=hf+xe*hfg //final specific heat of enthalpy of
    steam in kJ/kg
```

```
17 w=hi+vi^2/(2*1000)-he-ve^2/(2*1000) //work of steam
for isentropic process in kJ/kg
```

18 printf("\n hence, work per kilogram of steam for this isentropic process is w=%.1f kJ/kg-K.\n",w)

Scilab code Exa 9.2 Exit velocity of steam from nozzle

```
1 / | example | 2
2 //exit velocity of steam from nozzle
3 clear
4 clc
5 hi=3051.2 //initial specific heat of enthalpy in kJ/
     kg
6 si=7.1228 //initial specific entropy in kJ/kg-K
7 se=si //final specific entropy
8 Pe=0.3 //final pressure in MPa
9 disp('from steam table, various properties at final
     state are ')
10 he=2780.2 //final specific heat of enthalpy in kJ/kg
     -K
11 Te=159.1 //final temperature in celsius
12 vi=30 //velocity with which steam enters the nozzle
     in m/s
13 ve=((2*(hi-he)+(vi^2/1000))*1000)^0.5 //final
      velocity of steam with which it exits in m/s
14 printf("\n hence, exit velocity of the steam from the
       nozzle is ve=\%.0 \text{ f m/s.} n",ve)
```

Scilab code Exa 9.3 Violation of second law

1 // example 3

```
2 //violation of second law
3 clear
4 clc
5 disp('from R-134a tables')
6 se=1.7148 //specific entropy in final state in kJ/kg
        -K
7 si=1.7395 //initial specific entropy in kJ/kg-K
8 disp('therefore, se<si, whereas for this process the
        second law requires that se>=si.The process
        described involves a violation of the second law
        and thus would be impossible.')
```

Scilab code Exa 9.4 Calculating required specific work

```
1 // example 4
2 // calculating required specific work
3 clear
4 clc
5 Cp=1.004 // specific heat of air at constant pressure
in kJ/kg-K
6 Ti=290 // initial temperature in kelvins
7 Pi=100 // initial pressure in kPa
8 Pe=1000 // final pressure in kPa
9 k=1.4
10 Te=Ti*(Pe/Pi)^((k-1)/k) // final temperature in
kelvins
11 we=Cp*(Ti-Te) // required specific work in kJ/kg
12 printf("\n hence, specific work required is we=%.3f
kJ/kg.\n", we)
```

Scilab code Exa 9.5 Entropy generation

1 // example 5

```
2 //entropy generation
3 clear
4 clc
5 h1=2865.54 //specific heat of enthalpy at state 1 in
      kJ/kg
6 h2=83.94 //specific heat of enthalpy at state 2 in
     kJ/kg
7 h3=2725.3 //specific heat of enthalpy at state 3 in
     kJ?kg
8 s1=7.3115 //specific entropy at state 1 in kJ/kg-K
9 s2=0.2966 //specific entropy at state 2 in kJ/kg-K
10 s3=6.9918 //specific entropy at state 3in kJ/kg-K
11 m1=2 //mass flow rate at state 1 in kg/s
12 m2=m1*(h1-h3)/(h3-h2) //mass flow rate at state 2 in
      kg/s
13 m3=m1+m2 //mass flow rate at state 3 in kg/s
14 Sgen=m3*s3-m1*s1-m2*s2 //entropy generation in the
     process
15 printf("\n hence, entropy generated in this process
     is Sgen=%.3f kW/K.\n",Sgen)
```

Scilab code Exa 9.6 Work required to fill the tank

```
1 // example 6
2 // work required to fill the tank
3 clear
4 clc
5 T1=17+273 // initial temperature of tank in Kelvins
6 sT1=6.83521 // specific entropy in kJ/kg-K
7 R=0.287 // gas constant in kJ/kg-K
8 P1=100 // initial pressure in kPa
9 P2=1000 // final pressure in kPa
10 sT2=sT1+R*log(P2/P1) // specific entropy at
temperature T2 in kJ/kg-K
11 T2=555.7 // from interplotation
```

```
12 V1=0.04 //volume of tank in m^3
13 V2=V1 //final volume is equal to initial volume
14 m1=P1*V1/(R*T1) //initial mass of air in tank in kg
15 m2=P2*V2/(R*T2) //final mass of air in tank in kg
16 Min=m2-m1 //in kg
17 u1=207.19 //initial specific heat of enthalpy in kJ/
kg
18 u2=401.49 //final specific heat of enthalpy in kJ/kg
19 hin=290.43 //in kJ/kg
20 W12=Min*hin+m1*u1-m2*u2 //work required to fill the
tank in kJ
21 printf("\n hence, the total amount of work required
```

```
to fill the tank is W12=\%.1 \text{ f m/s.} n", W12)
```

Scilab code Exa 9.7 Work required to pump water isentropically

```
1 //example 7
2 //work required to pump water isentropically
3 clear
4 clc
5 P1=100 //initial pressure in kPa
6 P2=5000 //final pressure in kPa
7 v=0.001004 //specific volume in m^3/kg
8 w=v*(P2-P1) //work required to pump water
isentropically
9 printf("\n hence, work required to pump water
isentropically is w=%.2f kJ/kg.\n",w)
```

Scilab code Exa 9.8 Velocity in exit flow

```
1 //example 8
2 //Velocity in exit flow
3 clear
```

4 clc 5 disp('From Steam Tables, for liquid water at 20 C') 6 vf=0.001002 //in m³/kg 7 v=vf 8 Pi=300 //Line pressure in kPa 9 Po=100 //in kPa 10 Ve=(2*v*(Pi-Po)*1000)^{0.5} //velocity in the exit flow 11 printf(" \n Hence, an ideal nozzle can generate upto Ve=%.0f m/s in the exit flow. \n",Ve)

Scilab code Exa 9.9 Rate of Entropy Generation

```
1 //example 9
2 //Rate of Entropy Generation
3 clear
4 clc
5 disp('From R-410a tables, we get')
6 hi=280.6 //in kJ/kg
7 he=307.8 //in kJ/kg
8 si=1.0272 //in kJ/kg
9 se=1.0140 //in kJ/kg
10 m=0.08 //flow rate of refrigerant in kg/s
11 P=3 //electrical power input in kW
12 Qcv=m*(he-hi)-P //in kW
13 To=30 //in Celsius
14 Sgen=m*(se-si)-Qcv/(To+273.2) //rate of entropy
     generation
15 printf("\n Hence, the rate of entropy generation for
```

```
this process is Sgen=\%.5 f kW/K. \n",Sgen)
```

Scilab code Exa 9.10 Turbine efficiency

```
1 / \text{example } 10
2 //turbine efficiency
3 clear
4 clc
5 hi=3051.2 //initial specific heat of enthalpy in kJ/
     kg
6 si=7.1228 //initial specific entropy in kJ/kg-K
7 sf=0.7548 //in kJ/kg-K
8 sfg=7.2536 //in kJ/kg-K
9 ses=si //final specific entropy is same as the
      initial
10 xes=(si-sf)/sfg //quality of steam when it leaves
     the turbine
11 hf=225.9 //in kJ/kg
12 hfg=2373.1 //in kJ/kg
13 hes=hf+xes*hfg //final specific heat of enthalpy in
     kJ/kg
14 ws=hi-hes //work output of turbine calculated
      ideally in kJ/kg
15 wa=600 //actual work output of turbine in kJ/kg
16 nturbine=wa/ws //efiiciency of turbine
17 printf("\n hence, efficiency of the turbine is
      nturbine=\%.1 \text{ f}. \ n", nturbine *100)
```

Scilab code Exa 9.11 Turbine inlet pressure

- 8 w=hi-he //actual work done by turbine in kJ/kg
- 9 n=0.85 //efficiency of turbine
- 10 ws=w/n //ideal work done by turbine in kJ/kg
- 11 hes=hi-ws //from first law of isentropic process
- 12 Tes=683.7 //final temperature in kelvins from air tables
- 13 ses=7.7148 //in kJ/kg-K
- 14 R=0.287 //gas constant in kJ/kg-K
- 15 Pi=100/%e^((si-ses)/-R) //turbine inlet pressure in kPa

Scilab code Exa 9.12 Required work input

```
1 \ // example \ 12
2 //required work input
3 clear
4 clc
5 Pe=150 //final pressure of air in kPa
6 Pi=100 //initial presure of air in kPa
7 k = 1.4
8 Ti=300 //initial temperature of air in kelvis
9 Tes=Ti*(Pe/Pi)^((k-1)/k) //from second law
10 ws=1.004*(Ti-Tes) //from first law of isentropic
      process
11 n=0.7 //efficiency of automotive supercharger
12 w=ws/n //real work input in kJ/kg
13 Te=Ti-w/1.004 //temperature at supercharger exit in
     Κ
14 printf("\n hence, required work input is w=%.1f kJ/kg
     .\n",w)
15 printf("\n and exit temperature is Te=\%.1 f K. n", Te)
```

Chapter 10

Availibility

Scilab code Exa 10.1 Calculating reversible work

```
1 / (example 1)
2 // Calculating reversible work
3 clear
4 clc
5 //Form the Steam Tables, the inlet and the exit state
       properties are
6 hi=171.95 //initial specific heat of enthalpy in kJ/
     kg
7 si=0.5705 //initial specific entropy in kJ/kg-K
8 se=2.1341 //final specific entropy in kJ/kg-K
9 he=765.34 //final specific heat of enthalpy in kJ/kg
     -K
10 m=5 //mass flow rate of feedwater in kg/s
11 q1=900/m //heat added by one of the sources in kJ/kg
12 q2=he-hi-q1 //second heat transfer in kJ/kg
13 To=25+273.3 //Temp. of the surroundings in K
14 T1=100+273.2 //temp. of reservoir of one of the
     source in K
15 T2=200+273.2 //temp. of reservoir of second source
     in K
16 wrev=To*(se-si)-(he-hi)+q1*(1-To/T1)+q2*(1-To/T2) //
```

```
reversible work in kJ/kg
17 printf("\n Hence, the irreversibility is i=%.1f kJ/
kg.\n",wrev)
```

Scilab code Exa 10.2 Calculating reversible work

```
1 / | example | 2
2 //Calculating reversible work
3 clear
4 clc
5 //Form the Steam Tables, the inlet and the exit state
       properties are
6 hi=298.6 //initial specific heat of enthalpy in kJ/
     kg
7 si=6.8631 //initial specific entropy in kJ/kg-K
8 se=7.4664 //final specific entropy in kJ/kg-K
9 he=544.7 //final specific heat of enthalpy in kJ/kg-
     Κ
10 q=-50 //heat lost to surroundings in kJ/kg
11 w=hi-he+q //work in kJ/kg
12 To=25+273.2 //Temp. of the surroundings in K
13 P1=100 // Pressure of ambient air in kPa
14 P2=1000 //Final pressure of air after compression in
      kPa.
15 R=0.287 //Universal gas constant in kJ/kg-K
16 wrev=To*(se-si-R*log(P2/P1))-(he-hi)+q*(1-To/To)//
      reversible work for the given change of state in
     kJ/kg
17 i=wrev-w //irreversibility in kJ/kg
18 printf("\n Hence, the irreversibility is i=\%.1 \text{ f kJ}/
     kg. \langle n, i \rangle
```

Scilab code Exa 10.3 Calculating reversible work and irreversibility

```
1 //example 3
2 // Calculating reversible work and irreversibility
3 clear
4 clc
5 //Form the Steam Tables at state 1
6 u1=1243.5 //initial specific internal energy in kJ/
     kg
7 s1=4.4819 //initial specific entropy in kJ/kg-K
8 v1=28.895 //initial specific volume in m<sup>3</sup>/kg
9 v2=2*v1 //final specific volume in kg/m<sup>3</sup>
10 u2=u1 //initial specific internal energy in kJ/kg
11 //These two independent properties, v^2 and u^2, fix
     state 2. The final temp. is calculated by
     interplotation using the data for T2=5C and v2, x
     =0/3928 and u=948.5 kJ/kg. For T2=10C and v2, x
     =0.5433 and u=1317 kJ/kg
12 T2=9.1+273.2 //final temp. in K
13 x2=0.513 //quality in final state
14 s2=4.644 //final specific entropy in kJ/kg
15 V1=1 //volume of part of A in m<sup>3</sup>
16 m=V1/v1 //mass flow rate in kg/s
17 To=20+273.2 //Room temperature in K
18 Wrev=To*m*(s2-s1) //reversible work in kJ
19 I=Wrev //irreversibility of the process
20 printf("\n The irreversibility is I=\%.3 \text{ f kJ/kg.\n",I}
     )
```

Chapter 11

Power and Refrigeration Systems with phase change

Scilab code Exa 11.1 To determine the efficiency of Rankine cycle

```
1 //Ques 1
2 //To determine the efficiency of Rankine cycle
3 clc
4 clear
5 //1-Inlet state of pump
6 //2 - Exit state of pump
7 P2=2000; //Exit pressure in kPa
8 P1=10; // Inlet pressure in kPa
9 v=0.00101; // specific weight of water in m^3/kg
10 wp=v*(P2-P1);//work done in pipe in kJ/kg
11 h1=191.8; //Enthalpy in kJ/kg from table
12 h2=h1+wp;//enthalpy in kJ/kg
13 / 2 - Inlet state for boiler
14 //3-Exit state for boiler
15 h3=2799.5; //Enthalpy in kJ/kg
16 //3-Inlet state for turbine
17 //4-Exit state for turbine
18 //s3 = s4 (Entropy remain same)
19 s4=6.3409; //kJ/kg
```

```
20 sf=0.6493; //Entropy at liquid state in kJ/kg
```

- 21 sfg=7.5009;//Entropy difference for vapor and liquid state in kJ/kg
- 22 x4=(s4-sf)/sfg;//x-factor
- 23 hfg=2392.8;//Enthalpy difference in kJ/kg for turbine
- 24 h4=h1+x4*hfg;//Enthalpy in kJ/kg
- 25
- 26 nth=((h3-h2)-(h4-h1))/(h3-h2);
- 27 printf('Percentage efficiency = $\%.1 \, \text{f}$ ', nth*100);

Scilab code Exa 11.2 To determine the efficiency of Rankine cycle

```
1 / Ques 2
2 //To determine the efficiency of Rankine cycle
3 clc
4 clear
5 //1-Inlet state of pump
6 / / 2 - Exit state of pump
7 P2=4000; //Exit pressure in kPa
8 P1=10;//Inlet pressure in kPa
9 v=0.00101; // specific weight of water in m^3/kg
10 wp=v*(P2-P1);//work done in pipe in kJ/kg
11 h1=191.8; //Enthalpy in kJ/kg from table
12 h2=h1+wp;//enthalpy in kJ/kg
13 / 2 - Inlet state for boiler
14 //3-Exit state for boiler
15 h3=3213.6; //Enthalpy in kJ/kg from table
16 //3-Inlet state for turbine
17 //4-Exit state for turbine
18 / s3 = s4 (Entropy remain same)
19 s4=6.7690; //Entropy in kJ/kg from table
20 sf=0.6493; //Entropy at liquid state in kJ/kg from
      table
21 sfg=7.5009; //Entropy difference for vapor and liquid
```

```
state in kJ/kg from table
22 x4=(s4-sf)/sfg;//x-factor
23 hfg=2392.8;//Enthalpy difference in kJ/kg for
    turbine
24 h4=h1+x4*hfg;//Enthalpy in kJ/kg
25
26 nth=((h3-h2)-(h4-h1))/(h3-h2);
27 printf('Percentage efficiency = %.1f ',nth*100);
```

Scilab code Exa 11.3 To determine the efficiency of a cycle

```
1 //Ques 3
2 //To determine the efficiency of a cycle
3 clc
4 clear
5 / / 1 - Inlet state of pump
6 / / 2 - Exit state of pump
7 P2=4000; //Exit pressure in kPa
8 P1=10; //Inlet pressure in kPa
9 v=0.00101; // specific weight of water in m^3/kg
10 wp=v*(P2-P1);//work done in pipe in kJ/kg
11 h1=191.8; //Enthalpy in kJ/kg from table
12 h2=h1+wp;//enthalpy in kJ/kg
13 / 2 - Inlet state for boiler
14 / / 3 - Exit state for Boiler
15 h3=3213.6; //Enthalpy in kJ/kg from table
16 //3-Inlet state for high pressure turbine
17 //4-Exit state for high pressure turbine
18 //s3 = s4 (Entropy remain same)
19 s4=6.7690; //Entropy in kJ/kg from table
20 sf=1.7766; //Entropy at liquid state in kJ/kg from
      table
21 sfg=5.1193; //Entropy difference for vapor and liquid
       state in kJ/kg from table
22 x4=(s4-sf)/sfg;//x-factor
```

```
23 hf=604.7//Enthalpy of liquid state in kJ/kg
24 hfg=2133.8; //Enthalpy difference in kJ/kg for
      turbine
25 h4=hf+x4*hfg; //Enthalpy in kJ/kg
26 //5-Inlet state for low pressure turbine
27 //6-Exit pressure for low pressure turbine
28 sf=0.6493; //Entropy in liquid state in kJ/kg for
      turbine
29 h5=3273.4; //enthalpy in kJ/kg
30 s5=7.8985; //Entropy in kJ/kg
31 sfg=7.5009; //entropy diff in kJ/kg
32 \text{ x6=(s5-sf)/sfg;}/x-factor}
33 hfg=2392.8; //enthalpy difference for low pressure
      turbine in kj/kg
34 h6=h1+x6*hfg; //entropy in kg/kg
35 wt=(h3-h4)+(h5-h6); // work output in kJ/kg
36 \quad qh=(h3-h2)+(h5-h4);
37
38 \text{ nth}=(wt-wp)/qh;
39 printf('Percentage efficiency = %.1f', nth*100);
```

Scilab code Exa 11.4 Efficiency of Refrigeration cycle

```
1 //ques4
2 //Efficiency of Refrigeration cycle
3 clc
4 clear
5 //from previous examples
6 h1=191.8;//kJ/kg
7 h5=3213.6;//kg/kg
8 h6=2685.7;//kJ/kg
9 h7=2144.1;//kJ/kg
10 h3=604.7;//kJ/kg
11 //1-Inlet state of pump
12 //2-Exit state of pump
```

```
13 P2=400; //Exit pressure in kPa
14 P1=10; //Inlet pressure in kPa
15 v=0.00101; // specific weight of water in m^3/kg
16 wp1=v*(P2-P1); //work done for low pressure pump in
     kJ/kg
17 h1=191.8; //Enthalpy in kJ/kg from table
18 h2=h1+wp1;//enthalpy in kJ/kg
19 //5-Inlet state for turbine
20 / 6.7 - Exit state for turbine
21 y=(h3-h2)/(h6-h2);//extraction fraction
22 wt=(h5-h6)+(1-y)*(h6-h7); //turbine work in kJ/kg
23 //3-Inlet for high pressure pump
24 //4-Exit for high pressure pump
25 P3=400; //kPa
26 P4=4000; //kPa
27 v=0.001084; // specific heat for 3-4 process in m^3/kg
28 wp2=v*(P4-P3);//work done for high pressure pump
29 h4=h3+wp2; //Enthalpy in kJ/kg
30 wnet=wt-(1-y)*wp1-wp2;
31 qh=h5-h4; //Heat output in kJ/kg
32 nth=wnet/qh;
33 printf('Refrigerator Efficiency = %.1f', nth*100);
```

Scilab code Exa 11.5 To determine thermal efficiency of cycle

```
1 //ques5
2 //To determine thermal efficiency of cycle
3 clear
4 clc
5 //5-Inlet state for turbine
6 //6-Exit state for turbine
7 //h-Enthalpy at a state
8 //s-Entropy at a state
9 //from steam table
10 h5=3169.1; //kJ/kg
```

```
11 s5=6.7235; //kJ/kg
12 s6s=s5;
13 sf=0.6493;//Entropy for liquid state in kJ/kg
14 sfg=7.5009; //Entropy difference in kJ/kg
15 hf = 191.8; //kJ/kg
16 hfg=2392.8; //Enthalpy difference in kJ/kg
17 x6s=(s6s-sf)/sfg;//x-factor
18 h6s=hf+x6s*hfg;//kJ/Kg at state 6s
19 nt=0.86; //turbine efficiency given
20 wt=nt*(h5-h6s);
21 / / 1 - Inlet state for pump
22 / / 2 - Exit state for pump
23 np=0.80;//pump efficiency given
24 v=0.001009; // specific heat in m^3/kg
25 P2=5000; //kPa
26 P1=10; //kPa
27 wp=v*(P2-P1)/np;//Work done in pump in kJ/kg
28 wnet=wt-wp;//net work in kJ/kg
29 //3-Inlet state for boiler
30 //4-Exit state for boiler
31 h3=171.8;//in kJ/kg from table
32 h4=3213.6; //kJ/kg from table
33 \, \text{qh}=\text{h}4-\text{h}3;
34 nth=wnet/qh;
35 printf('Cycle Efficiency = \%.1f', nth*100);
```

Chapter 12

Power and Refrigeration Systems gaseous working fluids

Scilab code Exa 12.1 Standard brayton cycle

```
1 //ques1
2 //Standard brayton cycle
3 clc
4 clear
5 //1-Inlet for compressor
6 //2-Exit for compressor
7 //T-Temperature at a state
8 //P-Pressure at a state
9 T1=288.2; //K
10 P2=1000; //kPa
11 P1=100; //kPa
12 k=1.4;
13 T2=T1*(P2/P1)^(1-1/k);//K
14 Cp=1.004;//Specific heat at constant pressure in kJ/
      kg
15 wc=Cp*(T2-T1); //compressor work in kJ/kg;
16 printf('Temperature T2 = \%.1 f K\n',T2);
17 printf(' Compressor work = \%.1 \text{ f kJ/kg } n', wc);
```

```
18 //3-Turbine Inlet
```

```
19 //4-Turbine Exit
20 P4=P1;
21 P3=P2;
22 T3=1373.2; //K
23 T4=T3*(P4/P3)^(1-1/k);//K
24 \text{ wt}=Cp*(T3-T4);
25 wnet=wt-wc;
26 printf(' Temperature T3 = \%.1 f K\n', T3);
27 printf(' Temperature T4 = \%.1 f K\n', T4);
28 printf(' Turbine work = \%.1 \text{ f kJ/kg/n',wt};
29 printf(' Net work = \%.1 \text{ f kJ/kg/n',wt-wc};
30 //2-Also high temperature heat exchanger Inlet
31 / (-do-) Exit
32 qh=Cp*(T3-T2);//Heat of source in kJ/kg
33 //4-high temp heat exchanger inlet
34 / (1 - (-do -)) Exit
35 ql=Cp*(T4-T1); //Heat of sink in kJ/kg
36 nth=wnet/qh;
37 printf(' Thermal Efficiency of cycle = \%.1f percent'
      ,nth*100);
```

Scilab code Exa 12.2 Standard brayton cycle

```
1 //Calculation mistake in book
2 //ques2
3 //Standard brayton cycle
4 clc
5 clear
6 //Calculation mistake in book
7 //1-Inlet for compressor
8 //2-Exit for compressor
9 //T-Temperature at a state
10 //P-Pressure at a state
11 T1=288.2;//K
12 P2=1000;//kPa
```
```
13 P1=100; //kPa
14 k=1.4;
15 T2s=T1*(P2/P1)^{(1-1/k)};//K
16 nc=.80; //Compressor Efficiency
17 T2=T1+(T2s-T1)/0.80;
18 Cp=1.004; // Specific heat at constant pressure in kJ/
      kg
19 wc=Cp*(T2-T1); // compressor work in kJ/kg;
20 printf('Temperature T2 = \%.1 f K\n', T2);
21 printf(' Compressor work = \%.1 \text{ f kJ/kg } n', wc);
22 //3-Turbine Inlet
23 //4-Turbine Exit
24 P4=P1;
25 P3=P2;
26 T3=1373.2; //K
27 T4s=T3*(P4/P3)^(1-1/k); //K
28 nt=0.85; //turbine Efficiency
29 T4=T3-(T3-T4s)*0.85;
30 \text{ wt}=Cp*(T3-T4);
31 wnet=wt-wc;
32 printf(' Temperature T3 = \%.1 f K\n',T3);
33 printf(' Temperature T4 = \%.1 f K\n', T4);
34 printf(' Turbine work = \%.1 \text{ f kJ/kg/n',wt};
35 printf(' Net work = \%.1 \text{ f kJ/kg\n',wt-wc};
36 //2-Also high temperature heat exchanger Inlet
37 / (-do-) Exit
38 qh=Cp*(T3-T2);//Heat of source in kJ/kg
39 //4-high temp heat exchanger inlet
40 / / 1 - (-do -) Exit
41 ql=Cp*(T4-T1);//Heat of sink in kJ/kg
42 nth=wnet/qh;
43 printf(' Thermal Efficiency of cycle = \%.1f percent'
      ,nth*100);
```

Scilab code Exa 12.3 efficiency of the cycle

```
1 //ques3
2 //efficiency of the cycle
3 clc
4 clear
5 wnet=395.2;//kJ/kg from example no 1
6 //Tx=T4
7 Tx=710.8;//K from example no 1
8 T3=1373.2;//K from example no 1
9 Cp=1.004;//specific heat in kJ/kg
10 qh=Cp*(T3-Tx);
11 nth=wnet/qh;
12 printf('Thermal efficiency = %.1f percent',nth*100);
```

Scilab code Exa 12.4 Calculation of work in the given cycle

```
1 //ques4
2 //Calculation of work in the given cycle
3 clear
4 clc
5 R=0.287;//gas constant
6 T1=288.2;//compressor temperature K
7 T2=1373.2;//K turbine temperature K
8 //Pe/Pi=c=10, Pi/Pe=1/c from example 12.1
9 c=10;
10 wc=-R*T1*log(c);
11 printf('Isothermal work in compressor = %.1f kJ/kg \
n',wc);
12 wt=-R*T2*log(1/c);
13 printf('Isothermal work in turbine = %.1f kJ/kg\n',
wt);
```

Scilab code Exa 12.5 air standard cycle for jet repulsion

```
1 //ques5
2 //air standard cycle for jet repulsion
3 clear
4 clc
5 / / 1 - compressor inlet
6 //2-Compressor exit
7 //P-Pressure at given point
8 //T-Temperature at given point
9 P1 = 100; //kPa
10 P2=1000; //kPa
11 T1=288.2; //K
12 T2=556.8; //K
13 wc=269.5; //from ex 12.1 work done in compressor in
      kJ/kg
14 //2-Burner inlet
15 //3-Burner exit
16 P3=1000; //kPa
17 T3=1373.2; //K
18 / wc=wt
19 Cp=1.004; // specific enthalpy of heat at constant
      pressure in kJ/kg
20 k = 1.4;
21 T4=T3-wc/Cp;
22 P4=P3*(T4/T3)^{(1-1/k)};
23 //from s4=s5 and h4=h5+v2/2 we get
24 T5=710.8//K, from second law
25 v = sqrt(2*Cp*1000*(T4-T5)); //m/s
26 printf('Velocity of air leaving the nozel = \%.0 \text{ f m/s}
      ',v);
```

Scilab code Exa 12.6 air standard refrigeration cycle

```
1 //ques6
2 //air standard refrigeration cycle
3 clear
```

```
4 \, clc
5 / / 1 - compressor inlet
6 //2 - compressor exit
7 P1=100; //kPa
8 P2=500; //kPa
9 k = 1.4;
10 rp=P2/P1;
11 cop=(rp^(1-1/k)-1)^-1;
12 printf('Coefficient of performance = \%.3 f \setminus n', cop);
13 //3-Expander inlet
14 //4-Expander exit
15 P3=P2;
16 P4=P1;
17 T3=288.23; //K, given and fixed
18 T4=T3/(P3/P4)^{(1-1/k)};
19 T1=253.2; //K, given
20 Cp=1.004; // Specific heat at cons pressure in kJ/kg
21 ql=Cp*(T1-T4);//heat released in kJ/kg
22 P=1/power required in kW
23 ms=P/ql;//kg/s
24 printf(' Rate at which the air enter the compressor
     = \%.3 \, f \, kg/s ',ms);
```

Scilab code Exa 12.7 the otto cycle

```
1 //ques7
2 //the otto cycle
3 clear
4 clc
5 //1-compressor inlet
6 //2-compressor exit
7 P1=100; //kPa
8 T1=288.2; //K
9 R=0.287; //gas constant
10 v1=R*T1/P1; // specific volume at inlet in m^3/kg
```

- 11 rv=10;//compression ratio given
- 12 k=1.4; // constant
- 13 T2=T1*rv^(k-1); //K
- 14 printf('Temperature at compressor exit, T2 = %.1 f K $\langle n', T2 \rangle$;
- 15 $P2=P1*rv^k; //kPa$
- 16 printf(' Pressure at compressor exit, P2 = %.3 f MPa n', P2/1000);
- 17 v2=v1/rv;//specific heat at exit in m³/kg
- 18 / / 23-heat addition process
- 19 //q23 = Cv * (T3 T2) = 1800 kJ/kg given
- 20 q23=1800; //kJ/kg heat addition, given
- 21 Cv=0.717;//specific heat at constant volume in kJ/kg

```
22 T3=T2+q23/Cv;//K
```

- 23 printf('\n Initial Temperature during heat additon process, T3 = %.0f K \n',T3);
- 24 P3=P2*(T3/T2);//kPa
- 25 printf('Initial pressure during heat addition process, P3 = %.3 f MPa n', P3/1000);
- 26 r=10; //k=V4/V3=P3/P4
- 27 $T4=T3*(1/r)^{(k-1)};$
- 28 printf(' \n Final temperature during heat addition process, T4 = %.1 f K (n', T4);
- 29 $P4=P3/r^k; //kPa$
- 30 printf(' Final pressure during heat addition process , P4 = %.4 f MPa n', P4/1000);
- 31 nth=1-1/r^k; //thermal efficiency
- 32 printf('\n Thermal efficiency = %.1f percent \n',nth
 *100);
- 33 q41=Cv*(T1-T4);///heat for process 4-1 in kJ/kg

```
34 \text{ wnet}=q23+q41;
```

- 35 mep=wnet/(v1-v2);//effective mean pressure n kPa
- 36 printf('\n Mean effective pressure = %.0 f kPa \n',
 mep);

Scilab code Exa 12.8 the diesel cycle

```
1 //ques7
2 // the diesel cycle
3 clear
4 clc
5 / 1 - compressor inlet
6 / / 2 - compressor exit
7 P1 = 100; //kPa
8 T1=288.2; //K
9 R=0.287; //gas constant
10 v1=R*T1/P1;//specific volume at inlet in m<sup>3</sup>/kg
11 rv=20; //compression ratio given
12 k=1.4; // constant
13 T2=T1*rv(k-1); //K
14 printf('Temperature at compressor exit, T2 = \%.1 f K
      \langle n', T2 \rangle;
15 P2=P1*rv^k; //kPa
16 printf(' Pressure at compressor exit, P2 = \%.3f MPa
      \n ',P2/1000);
17 v2=v1/rv;//specific heat at exit in m<sup>3</sup>/kg
18 //23-heat addition process
19 / (q23 = Cv * (T3 - T2) = 1800 kJ/kg given
20 q23=1800; //kJ/kg heat addition, given
21 Cv = .717;
22 Cp=1.004; // specific heat at constant pressure in kJ/
      kg
23 T3=T2+q23/Cp;//K
24 printf('\n Initial Temperature during heat addition
      process, T3 = \%.0 f K \langle n', T3 \rangle;
25 r=T3/T2; //T3/T2=V3/V2=r
26 v3=r*v2;
27 T4=T3/(v1/v3)^{(k-1)};
28 printf(' Final temperature during heat addition
      process, T4 = \%.0 f K \langle n', T4 \rangle;
29 q41=Cv*(T1-T4); ///heat for process 4-1 in kJ/kg
30 \text{ wnet} = q23 + q41;
31 mep=wnet/(v1-v2);//effective mean pressure in kPa
```

```
32 qh=1800; //heat transfer in kJ/kg
33 nth=wnet/qh; //thermal efficiency
34
35 printf('\n Thermal efficiency = %.1f percent \n',nth
 *100);
36 printf('\n Mean effective pressure = %.0f kPa \n',
 mep);
```

Ideal Gas Mixtures

Scilab code Exa 13.3 calculating humidity ratio dew point mass of air mass of vapo

```
1 //ques3
2 // calculating humidity ratio, dew point, mass of air,
       mass of vapor
3 clear
4 clc
5 r=0.70;//relative humidity
6 Pg=5.628;//saturation pressure in kPa
7 Pv=r*Pg;//vapour pressure in kPa
8 P=100;//net pressure kPa
9 Pa=P-Pv;//Partial pressure of air
10 w=0.622*Pv/Pa;//humidity ratio formula
11 V=100; //volume in m<sup>3</sup>
12 Ra=0.287;//gas constant for water vapour
13 T=308.2; // Temperature in K
14 ma=Pa*V/(Ra*T);//mass in kg
15 mv=w*ma;//mass of vapour
16 printf('Mass of vapour = \%.2 f Kg ', mv);
```

Scilab code Exa 13.4 calculating amount of water vapour condensed on cooling

```
1 //ques4
2 //calculating amount of water vapour condensed on
     cooling
3 clear
4 clc
5 //from example 3
6 w1=0.0255; //w1=w, humidity ratio at initial
     temperature
7 ma=108.6; // mass of air in kg
8 P=100; //kPa net pressure
9 //at 5 C mixture is saturated so Pv2=Pg2
10 Pg2=0.8721;
11 Pv2=Pg2;
12 w2=0.622*Pv2/(P-Pg2);
13 mc=ma*(w1-w2);
14 printf('Mass of vapour condense = \%.3 f kg \n',mc);
```

Scilab code Exa 13.5 calculating heat transfer per kilogram of dry air

```
1 //ques5
2 //calculating heat transfer per kilogram of dry air
3 clear
4 clc
5 //1-inlet state
6 / / 2 - Exit state
7 r1=0.80; // realtive humidity at state 1
8 Pg1=4.246;//saturation pressure of vapour in kPa
9 P1=105; //net pressure at state 1 in kPa
10 P2=100; // net pressure at state 2 in kPa
11 Pv1=r1*Pg1; // partial pressure of vapour in kPa
12 w1=0.622*Pv1/(P1-Pv1);//humidity ratio at state 1
13 r2=0.95; // relative humidity at state 2
14 Pg2=1.7051; // saturation pressure of vapour in kPa
15 Pv2=r2*Pg2;//partial pressure of vapour in kPa
16 w2=0.622*Pv2/(P2-Pv2);//humidity ratio at state 2
```

```
17 T1=30; //C
18 T2=15; //C
19 Cp=1.004; // specific heat of water vapour in kJ/kg
20 hv2=2528.9; // enthalpy of vapourisation of vapour in
    kJ/kg
21 hv1=2556.3; // enthalpy of vapourisation of vapour in
    kJ/kg
22 hl2=62.99; // enthalpy of
23 q=Cp*(T2-T1)+w2*hv2-w1*hv1+hl2*(w1-w2); //kJ/kg
24 printf('Heat transferred per unit mass = %.2 f kJ/kg
of dry air',q);
```

Scilab code Exa 13.6 calculating heat transferred in gas vapour mixture

```
1 //ques6
2 //calculating heat transferred in gas vapour mixture
3 clear
4 \text{ clc}
5 //n-Nitrogen
6 //v-water vapour
7 Pn2=1995;//Pressure of nitrogen in kPa
8 V=0.5; //Volume in m<sup>3</sup>
9 Rn2=0.2968;//Gas constant for nitrogen in kJ/kg.K
10 Rv=0.4615; //gas constant for vapour
11 T1=323.2; // Temperature in K
12 T2=283.2; // Temperature in K
13 Pv1=5;//Pressure of water vapour in kPa at state 1
14 Pv2=1.2276; // Pressure of water vapour in kPa at
      state 2
15 mn2=Pn2*V/(Rn2*T1);//mass of nitrogen
16 mv1=Pv1*V/(Rv*T1);//mass of vapour in kg
17 mv2=Pv2*V/(Rv*T2);//mass of vapour in kg
18 ml2=mv1-mv2; //mass of liquid condensed n kg
19 uv1=2443.1; // specific internal energy of vapour in
     kJ/kg at state 1
```

- 20 uv2=2389.2;//specific internal energy of vapour in kJ/kg at state 2
- 22 Cv=0.745;//specific heat at constant volume in kJ/kg .K
- 23 Q=mn2*Cv*(T2-T1)+mv2*uv2+ml2*ul2-mv1*uv1;
- 24 printf('Heat transferred = %.1 f kJ ',Q);

Scilab code Exa 13.7 calculating humidity ratio and relative humidity

```
1 //ques7
2 //calculating humidity ratio and relative humidity
3 clear
4 clc
5 / / 1 - Inlet state
6 / / 2 - Exit state
7 P=100; //net pressure n kPa
8 //it is steady state adiabatic process
9 //water vapour leaving is saturated so Pv2=Pg2
10 Pg2=2.339; // saturation pressure of vapour in kPa
11 Pv2=Pg2; // partial pressure of vapour
12 w2=0.622*Pv2/(P-Pg2);
13 Cpa=1.004; // specific heat n kJ/kg/K
14 T2=20; // final temp in C
15 T1=30; // initial temp in C
16 Hfg2=2454.1;//specific heat difference at state 2 in
       kJ/kg
17 hv1=2556.3; //enthalpy of water vapour at state 1 in
     kJ/kg
18 h12=83.96; //enthalpy of liquid water in kJ/kg
19 w1=(Cpa*(T2-T1)+w2*Hfg2)/(hv1-hl2);
20 printf ('Relative humidity = \%.4 \text{ f} \setminus n', w1);
21 // also w1=0.622 * Pv1/(100 - Pv2)
```

22 Pv1=100*w1/(0.622+w1);

```
23 Pg1=4.246;//saturation pressure at state 1 in \mathrm{kPa}
```

- 24 r=Pv1/Pg1;//humidity ratio 25 printf(' Humidity ratio = %.3 f ',r);

Thermodynamics Property Relations

Scilab code Exa 14.1 to determine the sublimation pressure of water

```
1 //ques1
2 //to determine the sublimation pressure of water
3 clear
4 clc
5 //from table in appendix B.1.5
6 T1=213.2;//K, Temperature at state 1
7 P2=0.0129;//kPa, pressure at state 2
8 T2=233.2;//K, Temperature at state 2
9 hig=2838.9;//kJ/kg, enthalpy of sublimation
10 R=.46152;//Gas constant
11 //using relation log(P2/P1)=(hig/R)*(1/T1-1/T2)
12 P1=P2*exp(-hig/R*(1/T1-1/T2));
13 printf('Sublimation Pressure = %.5f kPa \n',P1);
```

Scilab code Exa 14.4 Volume expansivity Isothermal and Adiabatic compressibility

```
1 //ques4
2 //Volume expansivity, Isothermal and Adiabatic
      compressibility
3 clear
4 clc
5 //known data
6 ap=5*10<sup>-5</sup>; //K^{-1} Volume expansivity
7 bt=8.6*10^-12; //m<sup>2</sup>/N, Isothermal compressibility
8 v=0.000114; //m^3/kg, specific volume
9 P2=100*10<sup>6</sup>;//pressure at state 2 in kPa
10 P1=100; // pressure at state 1 in kPa
11 w=-v*bt*(P2^2-P1^2)/2;//work done in J/kg
12 //q=T*ds and ds=-v*ap*(P2-P1)
13 // so q=-T*v*ap*(P2-P1)
14 T=288.2; //Temperature in K
15 q=-T*v*ap*(P2-P1); //heat in J/kg
16 du=q-w;//change in internal energy in J/kg
17 printf('Change in internal energy = \%.1 \text{ f J/kg}',du);
```

Scilab code Exa 14.5 adiabatic steady state processes

```
1 //ques5
2 //adiabatic steady state processes
3 clear
4 clc
5 //from table A.2
6 P1=20;//pressure at state 1 in MPa
7 P2=2;//pressure at state 2 in MPa
8 T1=203.2;//Temperature at state 1 in K
9 Pr1=P1/3.39;//Reduced pressure at state 1
10 Pr2=P2/3.39;//Reduced pressure at state 2
11 Tr1=T1/126.2;//Reduced temperature
12 //from compressibility chart h1*-h1=2.1*R*Tc
13 //from zero pressure specific heat data h1*-h2*=Cp*(
T1a-T2a)
```

```
14 //h2*-h2=0.5*R*Tc
15 //this gives dh=h1-h2=-2.1*R*Tc+Cp*(T1a-T2a)+0.5*R*
Tc
16 R=0.2968;//gas constant for given substance
17 Tc=126.2;//K, Constant temperature
18 Cp=1.0416;//heat enthalpy at constant pressure in kJ
/kg
19 T2=146;//temperature at state 2
20 dh=-1.6*R*Tc+Cp*(T1-T2);//
21 printf('Enthalpy change = %.0f kJ/kg \n',dh);
22 printf(' Since Enthalpy change is %.0f kJ/kg so
Temperature = %.1f K',dh,T2);
```

Scilab code Exa 14.6 isothermal steady state processes

```
1 //ques6
2 //isothermal steady state processes
3 clear
4 clc
5 //from table A.2
6 P1=8;//pressure at state 1 in MPa
7 P2=0.5; // pressure at state 2 in MPa
8 T1=150; //Temperature at state 1 in K
9 Pr1=P1/3.39; //Reduced pressure at state 1
10 Pr2=P2/3.39; //Reduced pressure at state 2
11 Tr1=T1/126.2; //Reduced temperature
12 T2=125; //temperature at state 2
13 //from compressibility chart h1*-h1=2.1*R*Tc
14 //from zero pressure specific heat data h1*-h2*=Cp*(
     T1a-T2a)
15 / h2 * - h2 = 0.5 * R * Tc
16 // this gives dh=h1-h2=-2.1*R*Tc+Cp*(T1a-T2a)+0.15*R*
     Tc
17 R=0.2968; //gas constant for given substance
```

18 Tc=126.2; //K, Constant temperature

Scilab code Exa 14.7 percent deviation using specific volume calculated by kays ru

```
1 //ques7
2 //percent deviation using specific volume calculated
      by kays rule and vander waals rule
3 clear
4 clc
5 //a-denotes C02
6 //b-denotes CH4
7 T=310.94;//Temperature of mixture K
8 P=86.19; // Pressure of mixture in MPa
9 //Tc- critical Temperature
10 //Pc-critical pressure
11 Tca=304.1; //K
12 Tcb=190.4; //K
13 Pca=7.38;//MPa
14 Pcb=4.60;//MPa
15 Ra=0.1889;//gas constant for a in kJ/kg.K
16 Rb=0.5183; //gas constant for b in kJ/kg.K
17 xa=0.8; //fraction of CO2
18 xb=0.2; //fraction of CH4
19 Rm=xa*Ra+xb*Rb;//mean gas constant in kJ/kg.K
```

```
20 Ma=44.01; //molecular mass of a
21 Mb=16.043; //molecular mass of b
22 / / 1. Kay's rule
23 ya=xa/Ma/(xa/Ma+xb/Mb);//mole fraction of a
24 yb=xb/Mb/(xa/Ma+xb/Mb);//mole fraction of b
25 Tcm=ya*Tca+yb*Tcb;//mean critical temp in K
26 Pcm=ya*Pca+yb*Tcb;//mean critical pressure n MPa
27 //therefore pseudo reduced property of mixture
28 Trm=T/Tcm:
29 Prm=P/Pcm;
30 Zm=0.7; // Compressiblity from generalised
      compressibility chart
31 vc=Zm*Rm*T/P/1000;//specific volume calculated in m
      ^3/kg
32 ve=0.0006757; //experimental specific volume in m<sup>3</sup>/
      kg
33 pd1=(ve-vc)/ve*100;//percent deviation
34 printf('Percentage deviation in specific volume
      using Kays rule = \%.1f percent \n',pd1);
35
36 //2. using vander waals equation
37 //values of vander waals constant
38 Aa=27*Ra^2*Tca^2/(64*Pca*1000);
39 Ba=Ra*Tca/(8*Pca*1000);
40 Ab=27*Rb^2*Tcb^2/(64*Pcb*1000);
41 Bb=Rb*Tcb/(8*Pcb*1000);
42 //mean vander waals constant
43 Am = (xa * sqrt(Aa) + xb * sqrt(Ab))^2;
44 Bm = (xa * Ba + xb * Bb);
45 //using vander waals equation we get cubic equation
46 //solving we get
47 vc=0.0006326; //calculated specific volume in m<sup>3</sup>/kg
48 pd2=(ve-vc)/ve*100;
49 printf(' Percentage deviation in specific volume
      using vander waals eqn = \%.1 f percent \langle n', pd2 \rangle;
```

Comustion

 $Scilab \ code \ Exa \ 15.1$ theoratical air fuel ratio for combustion of octane

```
1 //ques1
2 //theoratical air-fuel ratio for combustion of
        octane
3 clear
4 clc
5 rm=(12.5+47.0)/1;//air fuel ratio on mole basis
6 rma=rm*28.97/114.2;//air fuel ratio on mass basis;
7 printf('Theoratical air fuel ratio on mass basis = %
        .1f kg air/kg fuel \n',rma);
```

Scilab code Exa 15.6 determining heat transfer per kilomole of fuel entering combu

```
1 //ques6
2 //determining heat transfer per kilomole of fuel
        entering combustion chamber
3 clear
4 clc
5 //1-CH4
```

Scilab code Exa 15.7 calculating enthalpy of water at given pressure and temperatu

```
1 //ques7
2 //calculating enthalpy of water at given pressure
     and temperature
3 clear
4 clc
5 / / 1. Assuming steam to be an ideal gas with value of
     Ср
6 T1=298.15; // Initial temperature in K
7 T2=573.15; // final temperature in K
8 T=(T1+T2)/2;//average temperature in K
9 Cp=1.79+0.107*T/1000+0.586*(T/1000)^2-.20*(T/1000)
      ^3;//specific heat at constant pressure in kj/kg.
     Κ
10 M=18.015; //mass in kg
11 dh=M*Cp*(T2-T1);//enthalpy change in kJ/kmol
12 ho=-241.826;//enthalpy at standard temperature and
      pressure in kJ/mol
13 htp1=ho+dh/1000; //enthalpy at given temp and
      pressure in kJ/kmol
14 printf('1. Enthalpy of water at given pressure and
      temperature using value of Cp = \%.3 \text{ f kJ/kmol } n',
     htp1);
15
```

```
90
```

- 16 // 2.. Assuming steam to be an ideal gas with value for dh
- 17 dh=9359;//enthalpy change from table A.9 in kJ/mol
- 18 htp2=ho+dh/1000;//enthalpy at given temp and pressure in kJ/kmol
- 19 printf(' 2. Enthalpy of water at given pressure and temperature assuming value od dh = %.3 f kJ/kmol \ n',htp2);

```
20
```

- 21 / / 3. Using steam table
- 22 dh=M*(2977.5-2547.2);//enthalpy change for gases in kJ/mol
- 23 htp3g=dh/1000+ho;
- 24 dh=M*(2977.5-104.9);//enthalpy change for liquid in kJ/mol
- 25 hl=-285.830;//standard enthalpy for liquid in kJ/ kmol
- 26 htp3l=hl+dh/1000;//enthalpy at given temp and pressure in kJ/kmol

- 29 //4.using generalised charts
- 30 //htp=ho-(h2*-h2)+(h2*-h1*)+(h1*-h1);
- 31 / h2 * h2 = Z * R * Tc,
- 32 //h2*-h1*=9539 kJ/mol, from part 2
- 33 //h1*-h1=0, as ideal gas
- 34 Z=0.21; //from chart
- 35 R=8.3145;//gas constant in SI units
- 36 Tc=647.3;//critical temperature in K
- 37 htp4=ho+9539/1000-Z*R*Tc/1000;//enthalpy at given temp and pressure in kJ/kmol

Scilab code Exa 15.15 calculatng reversible elecromotive force

```
1 //ques 15
2 //calculatng reversible elecromotive force
3 clear
4 clc
5 / / 1 - H2O
6 / / 2 - H2
7 //3-O2
8 //hf-standard enthalpy
9 //sf-standard entropy
10 hf1=-285.830; //kJ
11 hf2=0; //kJ
12 hf3=0; //kJ
13 sf1=69.950; //kJ/K
14 sf2=130.678; //kJ/K
15 sf3=205.148; //kJ/K
16 dH=2*hf1-2*hf2-hf3;//change in enthalpy in kJ
17 dS=2*sf1-2*sf2-sf3;//change in entropy in kJ/K
18 T=298.15; //temperature in K
19 dG=dH-T*dS/1000;//change in gibbs free energy in kJ
20 E = -dG * 1000 / (96485 * 4); //emf in V
21 printf('Reversible electromotive Force = \%.3 f V', E);
```

Scilab code Exa 15.17 efficiency of generator and plant

```
1 //ques17
2 //efficiency of generator and plant
3 clear
4 clc
5 q=325000*(3398.3-856.0);//heat transferred to H2O/kg
fuel in kJ/kg
```

- 6 qv=26700*33250;//higher heating value in kJ/kg
- 7 nst=q/qv*100;//efficiency of steam generator
- 8 w=81000*3600;//net work done in kJ/kg
- 9 nth=w/qv*100;//thermal efficiency
- 11 printf(' Thermal Efficiency = %.1 f percent $\langle n', nth \rangle$;

Phase and Chemical Equilbrium

Scilab code Exa 16.2 to determine change in gibbs free energy

```
1 //ques2
2 //to determine change in gibbs free energy
3 clear
4 clc
5 / / 1 - H2
6 //2-O2
7 //3-H2O
8
9 // at T=298 K
10 T1=298; //K
11 Hf1=0;//Enthalpy of formation of H2 at 298 K
12 Hf2=0;//Enthalpy of formation of O2 at 298 K
13 Hf3=-241.826; //enthalpy of formation of H2O at 298 K
      in kJ
14 dH=2*Hf1+Hf2-2*Hf3;//Change in enthalpy in kJ
15 Sf1=130.678; //Entropy of H2 at 298 K n J/K
16 Sf2=205.148; //Entropy of O2 at 298 K in J/K
17 Sf3=188.834; //entropy of H2O at 298 K in J/K
18 dS=2*Sf1+Sf2-2*Sf3; //Change in entropy in J/K
```

```
19 dG1=dH-T1*dS/1000; //change n gibbs free energy in kJ
20 printf(' Change in gibbs free energy at \%.0 f K = \%.3
      f kJ \langle n', T1, dG1 \rangle;
21
22 //at T=2000 K
23 T2=2000; //K
24 Hf1=52.942-0; //Enthalpy of formation of H2 at 2000 K
25 Hf2=59.176-0; //Enthalpy of formation of O2 at 2000 K
26 Hf3=-241.826+72.788; //enthalpy of formation of H2O
      at 2000 K in kJ
27 dH=2*Hf1+Hf2-2*Hf3;//Change in enthalpy in kJ
28 Sf1=188.419; //Entropy of H2 at 2000 K n J/K
29 Sf2=268.748; //Entropy of O2 at 2000 K in J/K
30 Sf3=264.769; //entropy of H2O at 2000 K in J/K
31 dS=2*Sf1+Sf2-2*Sf3; //Change in entropy in J/K
32 dG2=dH-T2*dS/1000; //change n gibbs free energy in kJ
33 printf(' Change in gibbs free energy at \%.0 \text{ f K} = \%
      .3 f kJ ',T2,dG2);
```

Scilab code Exa 16.3 calculating equilibrium constant

	,K1);							
13	<pre>printf('</pre>	Equilibrium	constant	at	$\%.0~{\rm f}$	$\mathrm{K}=\%$.3 f	\n',
T2,K2);								

Compressible Flow

Scilab code Exa 17.1 to determine isentropic stagnation pressure and temperature

```
1 //ques1
2 //to determine isentropic stagnation pressure and
    temperature
3 clear
4 clc
5 T=300;//Temperature of air in K
6 P=150;//Pressure of air in kPa
7 v=200;//velocity of air flow n m/s
8 Cp=1.004;//specific heat at constant pressure in kJ/
    kg
9 To=v^2/(2000*Cp)+T;//stagnation temperature in K
10 k=1.4;//constant
11 Po=P*(To/T)^(k/(k-1));//stagnation pressure in kPa
12 printf('Stagnation Temperature = %.1f K \n',To);
13 printf(' Stagnation Pressure = %.1f kPa \n',Po);
```

Scilab code Exa 17.3 determining the thrust acting on a control surface

```
1 //ques3
2 //determining the thrust acting on a control surface
3 clear
4 clc
5 //i-inlet
6 //e-exit
7 //using momentum equation on control surface in x
      direction
8 me=20.4; //mass exiting in kg
9 mi=20; //mass entering in kg
10 ve=450; // exit velocity in m/s
11 vi=100; //exit velocity in m/s
12 Pi=95; // Pressure at inlet in kPa
13 Pe=125;//Pressure at exit in kPa
14 Po=100; //surrounding pressure in kPa
15 Ai=0.2; //inlet area in m^2
16 Ae=0.1; // exit area in m<sup>2</sup>
17 Rx=(me*ve-mi*vi)/1000-(Pi-Po)*Ai+(Pe-Po)*Ae;//thrust
       in x direction in kN
18 printf('Thrust acting in x direction = \%.2 \text{ f kN', Rx});
```

Scilab code Exa 17.5 determining velocity of sound in air

```
12 1000,//1
```

Scilab code Exa 17.6 determining mass flow rate through control volume

```
1 //ques6
2 //determining mass flow rate through control volume
3 clear
4 clc
5 k=1.4; //constant
6 R=0.287; //gas constant
7 To=360;//stagnation Temperature in K
8 T=To*0.8333; // Temperature of air in K, 0.8333
      stagnation ratio from table
9 v=sqrt(k*R*T*1000);//velocity in m/s
10 P=528; // stagnation pressure in kPa
11 d=P/(R*T);//stagnation density in kg/m<sup>3</sup>
12 A=500*10^{-6}; // area in m<sup>2</sup>
13 ms=d*A*v;//mass flow rate in kg/s
14 printf('Mass flow rate at the throat section = \%.4 f
      kg/s \langle n', ms \rangle;
15 //e-exit state
16 Te=To*0.9381; // exit temperature in K, ratio from
      table
17 ce=sqrt(k*R*Te*1000);//exit velocity of sound in m/s
18 Me=0.573; //Mach number
19 ve=Me*ce;
20 Pe=800;//exit pressure in kPa
21 de=Pe/R/Te;
22 mse=de*A*ve;
23 printf(' Mass flow rate at the exit section = %.4 f
      kg/s \setminus n', mse);
```

Scilab code Exa 17.7 determining exit properties in a control volume

```
1 //ques7
2 //determining exit properties in a control volume
3 clear
4 clc
5 Po=1000;//stagnation pressure in kPa
6 To=360; // stagnation temperature in K
7
8 //when diverging section acting as nozzle
9 Pe1=0.0939*Po;//exit pressure of air in kPa
10 Te1=0.5089*To;//exit temperature in K
11 k=1.4; //constant
12 R=0.287; //gas constant for air
13 ce=sqrt(k*R*Te1*1000);//velocity of sound in exit
     section in m/s
14 Me=2.197; //mach number from table
15 vel=Me*ce;//velocity of air at exit section in m/s
16 disp(" When diverging section act as a nozzle :-");
17 printf('Exit pressure = \%.1 f kPa \n', Pe1);
18 printf ('Exit Temperature = \%.1 f K \n', Te1);
19 printf('Exit velocity = \%.1 f m/s \n', ve1);
20
21 //when diverging section act as diffuser
22 \text{ Me}=0.308;
23 Pe2=0.0936*Po;//exit pressure of air in kPa
24 Te2=0.9812*To;//exit temperature in K
25 ce=sqrt(k*R*Te2*1000);//velocity of sound in exit
     section in m/s
26 ve2=Me*ce;
27 disp(" When diverging section act as a diffuser :-")
28 printf('Exit pressure = \%.1 f kPa \n', Pe2);
29 printf('Exit Temperature = \%.1 f K \n', Te2);
```

Scilab code Exa 17.9 determining exit plane properties in control volume

```
1 //ques9
2 //determining exit plane properties in control
     volume
3 clear
4 clc
5 / x - inlet
6 //y - exit
7 Mx=1.5; //mach number for inlet
8 My=0.7011; //mach number for exit
9 Px=272.4;//inlet pressure in kPa
10 Tx=248.3; //inlet temperature in K
11 Pox=1000; // stagnation pressure for inlet
12 Py=2.4583*Px;//Exit Pressure in kPa
13 Ty=1.320*Tx; //Exit temperature in K
14 Poy=0.9298*Pox;//Exit pressure in kPa
15
16 printf('Exit pressure = \%.1 f kPa \n', Py);
17 printf(' Exit temperature = \%.1 f K \n',Ty);
18 printf(' Exit stagnation pressure = \%.1 f kPa n', Poy
     );
```