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Chapter 2

Thermometry

Scilab code Exa 2.1 Temperature

clc
clear

//INPUT

1i=1.23; //length of melting ice in mm

1£=18.56; //length of melting ice reading in pressure
of 74.24cm of mercury in mm

1=10.75; //length of melting ice at which temperature
to be calculated

mp=0; // melting point in deg.C

T=50; //temperature of melting ice at which length to
be calculated in deg.C

//boiling point of water changes by 1 deg.C for
change of pressure of 27mm of mercury

/ /CALCULATIONS

sp=100-(76-74.24)/(2.7);//76cm of mercury steam
point is 100 deg.C so at 74.24cm of mercury the
steam point in deg.C

t=(1-1i)*(sp-mp)/(1f-1i); //temperature at 10.75mm of
melting ice in deg.C
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1t=((T*(1£f-1i))/(sp-mp))+1li;//length of ice at 50
deg .C

//OUTPUT

mprintf ("the temperature of melting ice at 10.75mm
of hg is %3.2f deg.C \n the length of ice
corresponding to 50 deg.C is %3.2f mm’,t,1t)

Scilab code Exa 2.2 Temperature of the liquid air

clc
clear

//INPUT

p1=23.5;//pressure when immersed in liquid air in cm
p2=75; //pressure when immersed in ice in cm
p3=102.4; //pressure when immersed in steam in cm
T=100; //boiling point of temperature in deg.C

/ JCALCULATIONS
t=(pl-p2)*T/(p3-p2);//temperature of the liquid air
in deg.C

//OUTPUT
mprintf (’the temperature of liquid of air is %3.2f
deg.C’,t)

Scilab code Exa 2.3 Height of the barometer

clc
clear

/JINPUT

10
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t1=283; //temperature of bulb when
of hg in k
t2=546; //temperature of bulb when
of hg in k
h1=2; //differnce of mercury level

pressure is h—2cm
pressure is h—22cm

at 283k in cm

h2=22; //differnce of mercury level at 546k in cm
//let h is the barometer height ,then h—2cm at 283k

and h—22 at 546k

/ /CALCULATIONS

h=((h2xt1)+(h1*t2))/(t2-t1);//height of the

barometer in cm

//OUTPUT
mprintf ("height of the barometer

is %3.2f cm’,h)

Scilab code Exa 2.4 Temperature of the furnace

clc
clear

//INPUT
p0=76; //pressure at 0 deg.C in cm

of hg

p1=228; //pressure (76+152) at T deg.C in cm of hg

t0=273; //temperature of bulb in K

/ /CALCULATIONS

T=p1*t0/p0;//temperature at 228 cm of hg pressure in

K

//OUTPUT
mprintf ("the temperature of bulb

is %3.2f K’,T)

11



© 00 J O U i W N

T e T e T o S = S S G SRt
N O T = W N = O

18

19

20

21

22
23

Scilab code Exa 2.5 The temperature of the bath

clc
clear

//INPUT

t1=0; //temperature in deg.C
t2=100; //temperature in deg.C
t3=208; //temperature in deg.C
r1=3.5;//resistance in ohms
r2=5.2; //resistance in ohms
r3=6.9; //resistance in ohms
r4=9.4; //resistance in ohms

/ /CALCULATIONS

t4=(r3-r1)*100/(r2-r1);//temperature in deg.C

d=(t3-t4)/(2.08%1.08);//deflection

t5=(rd4-r1)*100/(r2-r1);//temperature in deg.C

t6=(d*(((t5/100) "2)-t5/100))+t5; //temperature

C

t7=kd*(((t6/100)A2)—t6/100))+t5;//tenuxﬂature

C

t8=(d*(((t7/100) "2)-t7/100))+t5;//temperature

C

t9=kd*(((t8/100)‘2)—t8/100))+t5;//ten3perature

.C

/ /CALCULATIONS
mprintf ("the temperature of the bath
,t9)

is %3.2f1

in

in

in

in

deg
deg
deg

deg

deg .C’

12



© 00 N O U b W N -

= T
B~ w NN~ O

—_
ot

16

Chapter 3

The mechanical equivalent of
heat

Scilab code Exa 3.1 Rise in temperature

clc
clear

//INPUT DATA

m=20; //calorimeter of water equivalent in gm
n=1030; //weight of water in gm

p=2;//no.of paddles

a=10; //weight of each paddle in kg

s=80; //distance between paddles in m

g=980; //accelaration due to gravity in cm/sec 2

/ JCALCULATIONS

E=(p*a*1000*g*s*100);//potential energy in dyne cm

T=(E)/(1050%4.18%10"7);//rise in temperature in deg.
C

//if the rise in temp be T,then heat gained by the
calorimeter and its contets is 1050T so J=(E)
/(1050%T) where (j=4.18%x10"T7erg/cal)

13
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/ JOUTPUT

mprintf (’the rise in temperature of water is %3.2f

deg.C’,T)

Scilab code Exa 3.2 The mechanical equivalent of heat

clc
clear

//INPUT DATA

cp=0.1;//specific heat of copper in kj/kg-K
w=120; //weight of copper calorimeter in gm
a=1400; //weight of paraffin oil in gm
cpl=0.6;//specific of parafin oil in kj/kg-K
b=10"8; //force to rotate the paddle in dynes
T=16; //rise in temperature in deg.C

n=900; //no.of revolutions stirred

pi=3.14; //value of pi

/ /CALCULATIONS

c=2*pixb;//work done by a rotating paddle per
rotation in dyne cm per rotation

d=c*n;//total work done in dyne cm

hc=wxcp*16; //heat gained by calorimeter in calories

hp=a*cpl*16; //heat gaained by paraffin oil in
calories

J=d/(hc+hp);//mecanical equivalent of heat in erg/

cal

/ JOUTPUT

mprintf ('mecanical equivalent of heat is %3.0f erg/

cal ’,J)

14
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Scilab code Exa 3.3 The mechanical equivalent of heat

clc
clear

//INPUT DATA

cp=0.12; //specific heat of iron in kj/kg—K

m=25; //mass of iron in 1b

h=0.4; //horse power developed in 3 min

t=3;//time taken to develop the horse power in min
T=17;//raise in temp in deg.C

/ /CALCULATIONS

w=h*33000%*t;//total work done in ft—Ib

H=m*cp*T; //aount of heat developed in B.Th.U
J=(w)/H;//the value of mechanical equivalent of heat

//OUTPUT
mprintf (’the mechanical equivalent of water is %3.1f
ft—1b/B.Th.U’,J)

Scilab code Exa 3.4 Kinetic energy of each block and Mean rise of temperature

clc
clear

//INPUT DATA

n=2; //no.of lead blocks

m=210; //mass of each lead block in gm

v=20000; //velocity of block relative to earth in cm/
sec

J=4.2%10"7; //mechanical equivalent of heat in ergs/
calorie

cp=0.03;//specific heat of lead in kj/kg—K

15
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/ /CALCULATIONS

E=(m*v~2)/2;//kinetic energy of each block in ergs
E2=n*E; //total kinetic energy in ergs
T=E2/(J*m*n*cp);//mean rise in temperature in T

//OUTPUT
mprintf (’the mean rise in temperature is %3.1f deg.C
J,T)

Scilab code Exa 3.5 Rise of temperature

clc
clear

//INPUT DATA

h=150; //height froom which ball fallen in ft

cp=0.03;//specific heat of lead in kj/kg—-K

J=778; //mechanical equivalent of heat in ft 1b/B.Th.
U

/ /CALCULATIONS

//assume m be the mass of the lead

//work done in falling through 160 feet in ft—lb w
=160+m

//heat absorbed by the ball in B.Th.U h=m*cpx*T

//work done in falling is equal to heat absorbed by
the ball

T=160/(J*cp)*(5/9);//the raise in temperature in T

//OUTPUT
mprintf (’the raise in temperature is %3.1f deg.C’,T)

Scilab code Exa 3.6 The rate at which the horse worked

16
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clc
clear

//INPUT DATA

w=26.6; //work done one horse in to raise the
temperature in 1b

T1=32; //temperature at initial in deg.F

T2=212; //temperature at final in deg.F

t=2.5;//time to raise the tmperature in hrs

p=25; //percentage of heat lossed

/ /CALCULATIONS

//let x ft—lb per min be the rate at which horse
worked //total work done in ft—I1b wt W=xx*150

//amount of heat generated in lb deg.F H=W/778

//only 75% of heat is wutillised

x=w*x180%100%778/((100-p)*150) ; //the rate at which
horse worked

//OUTPUT
mprintf ('the rate at which horse worked is %3.0f ft—
Ib wt/min’,x)

Scilab code Exa 3.7 The rise in temperature

clc
clear

//INPUT DATA

1=100; //length of glass tube in cm

m=500; //mass of mercury in glass tube in gm

n=20; //number of times inverted i succession
cp=0.03; //specific heat of mercury in cal/gm/deg.C
J=4.2;//joule s equivalent in j/cal

g=981; //accelaration due to gravity in cm/s"2

17
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/ /CALCULATIONS

PE=mx*gx1;//potential energy for each time in ergs

TE=PE*n;//total loss in ergs

T=TE/(m*cp*J*10°7);//rise in temperature in deg.C

//if T is the rise in temperature ,then heat
devoloped is mxcpx*T

/ /OUTPUT
mprintf (’the rise in temperature is %3.2f deg.C’,T)

Scilab code Exa 3.8 Calories emitted per second

clc
clear

//INPUT DATA

d=0.02; //diameter of the copper wire in cm
i=1;//current in amp

T=100; //maximum steady temperature in deg.C
r=2.1;//resistance of the wire in ohm cm

J=4.2; //mechanical equivalent of heat in j/cal
a=3.14xd"2/4; //area of the copper wire in sq.cm
a2=1; //area of the copper surface in sq.cm

/ /CALCULATIONS

//we know that if r is the resistance of the wire
through which current i flows ,then the electrical

energy spent =i 2xr j/sec

1=1/(2%3.14%d/2);//length corresponding to the area
In cm

R=rx*1l/a;//resistance of the copper wirein ohm

w=R*a2"2; //work done in joule

h=w/J;//heat devoleped in cal

18
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//OUTPUT
mprintf (’the heat developed is %3f calories ’,h)

Scilab code Exa 3.9 The quantity of heat produced and The rise in temperature of w

clc
clear

//INPUT DATA

h=10000; //vertical height of water fall in cm
v=5; //volume disharged per sec in litres
J=4.18; //joule ’s constant in j/cal

g=981; //accelaration due to gravity in cm/sec 2

/ /CALCULATIONS

m=v*1000; //mass of water disharged per sec in gm
w=m*h*g; //work done in falling through 100m in erg
H=w/(J*10°7);//quantity of heat produced in cal
T=H/m;//rise in temperature in deg.C

//OUTPUT
mprintf ("the quantity of heat produced is %3f cal \n
the rise in temperature is %3.2f deg.C’,H,T)

Scilab code Exa 3.10 The rise in temperature

clc
clear

//INPUT DATA

cp=0.03;//specific heat of lead in kj/kg.k
v=10000; //initial velocity of bullet in cm/sec
J=4.2%x10"7; //joules constant in ergs/cal

19
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/ /CALCULATIONS

//let mass of the bullet in gm

ke=(v~2)/2;//kinetic energy of the bullet per unit
mass in (cm/sec) 2

//T is the rise in temperature ,then heat produced is
mxcp T

//95% of kinetic energy 1is converted to heat

T=ke*95/(cp*xJ*100);//rise in temperature in deg.C

mprintf ('the rise in temperature is %3.1f deg.C’,T)

Scilab code Exa 3.11 The difference in temperature

clc
clear

//INPUT DATA

h=5000; //height of the niagara falls in cm
J=4.2%¥10"7; //joules constant in ergs per cal
g=981; //accelaration due to gravity in cm/sec”2

/] CALCULATIIONS
w=h*g; //work done per unit mass in ergs/gn
T=w/J;//rise in temperature in deg.C

/ JOUTPUT
mprintf (’the rise in temperature is %3.2f deg.C’,T)

Scilab code Exa 3.12 The value of J

clc
clear

20
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//INPUT DATA

//callender and barnes continous flow method

Vi=3;//potential difference in v

V2=3.75; //potential differnce in v

i1=2; //current in amp

i2=2.5; //current in amp

T=2.7;//the rise in temperature of the water in deg.
C

m1=30; //water flow rate at 3 volts in gm/min

m2=48; //water flow rate at 3.75volts in gm/min

s=1;//specific heat of the water kj/kg—K

/ /CALCULATIONS
J=(V1*i1-V2*i2)/(s*T*(m1-m2)/60);//the mechanical
equivalent in j/cal

/ JOUTPUT
mprintf (’the mechanical equivalent is %3.3f j/cal’,J
)

Scilab code Exa 3.13 The rise in temperature

clc
clear

//INPUT DATA

R=64%10"7; //mean radius of the earth in cm
cp=0.15; //specific heat of earth in kj/kg—K
J=4.2%10"7;//joules constant in erg/cal

/ /CALCULATIONS

i=2/5%R"2; //moment of inertia of the earth per unit
mass in joules

w=(2%3.14) /(24%60%60) ; //angular velocity of the

21
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T=(i*w"~2)/(2xJ*cp);//rise in temperature in deg.C

//OUTPUT
mprintf (’the rise in the temperature is %3.1f deg,C’

,T)

Scilab code Exa 3.14 The mechanical equivalent of heat

clc
clear

//INPUT DATA

cp=1.25;//specific heat of helium inkj/kg—K

v=1000; //volume of the gas in ml

w=0.1785; //mass of the gas at N.T.P in gm

p=76%13.6%981; //pressure of the gas at N.T.P in
dynes

T=273; //temperature at N.T.P in K

/ /CALCULATIONS

V=1000/w; //volume occupied by the lgm of helium gas
in cc

cv=cp/1.66;//specific heat at constant volume it is
monatomuc gas kj/kg—K

r=p*V/T;//gas constant in cm 3.atm./K.mol

J=r/(cp-cv);//mechanical equivalent of heat in erg/
cal

//OUTPUT
mprintf (’the mechanical equivalent of heat is %3.2f
ergs/calories ’,J)
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Scilab code Exa 3.15 The mechanical equivalent of heat

clc
clear

//INPUT DATA

n=1/273;//coefficent of expaaansion of air

a=0.001293; //density of air in gm/cc

cp=0.2389; //specific heat at constant pressure in Kkj
/kg . K

p=76%13.6%981; //pressure at 0 deg.C in dynes

/ JCALCULATIONS
J=(p*n)/(a*(cp-(cp/1.405)));//mechanical equivalent
of heat

//OUTPUT
mprintf ('mechanical equivalent of heat is %3.2f ergs
/cal’,J)

Scilab code Exa 3.16 The value of J

clc
clear

//INPUT DATA

//continous flow calorimeter

r=120/60; //rate of flow of water in gm/sec
T1=27.30; //temperature at initial in deg.C
T2=33.75; //temperature at final in deg.C

v=12.64; //potential drop in volts

s=1;//specific heat of water in kj/kg—K

i=4.35; //current through the heating element in amp

/ /CALCULATIONS
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J=(v*i)/(r*s*x(T2-T1));//the mechanical equivalent of
heat in joule/calorie

/ JOUTPUT

mprintf ('the mechanical equivalent of heat is %3.2f
j/cal’,J)

Scilab code Exa 3.17 the value of J

clc
clear

//INPUT DATA

cp=6.865; //molar specific heat of hydrogen at
constant pressure in kj/kg—K

cv=4.880; //molar specific heat of hydrogen at
constant volume in kj/kg—K

p=1.013*10"6; //atmospheric pressure in dynes/cm"2

v=22.4%10"3; //gram molar volume in ml

T=273; //temperature at N.T.P in kelvins

/ /CALCULATIONS
J=(p*v)/(T*(cp-cv));//mechanical equivalent of heat

/ JOUTPUT
mprintf (’the mechanical equivalent of heat is %3.2f
j/cal’,J)

Scilab code Exa 3.18 The value of J

clc
clear
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//INPUT DATA

v=1000; //volume of hydrogen in ml

t=273; //tempature of hydrogen in kelvin

p=760; //pressure of hydrogen in mm of hg
w=0.0896; //weigh of hydrogen in gm

cp=3.409; //specific heat of hydogen in kj/kg—K
cv=2.411; //specific heat of hydrogen in kj/kg—K
g=981; //accelaration due to gravity in cm/sec”2
a=13.6; //density of mercury in gm/cm”2

/ /CALCULATIONS

J=(p*v*g*a)/(wxt*x(cp-cv));//mechanical equivalent of
heat in ergs/cals

//OUTPUT

printf (’mechanical equivalent of heat is %3.2f ergs/
calorie’,J)

Scilab code Exa 3.19 The specific heat at constant volume

clc
clear

//INPUT DATA

cp=0.23;//specific heat at constant pressure in kj/
kg—K

a=1.18; //density of air in gm/lit

J=4.2%10"7; //mechanical equivalent of heat in ergs/
cal

t=300; //temperature of air in kelvin

p=73%13.6%981; //pressure of air in dynes

//ecp—cv=(r/J)=pv/(t])

/ /CALCULATON
cv=cp-(p*x1000/(a*xtxJ));//specific heat at constant
volume in calories
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/ /OUTPUT

mprintf ('the specific heat at constant volume is %3
.5bf calories’,cv)

Scilab code Exa 3.20 The height from which it fallen

clc

clear

//INPUT

t1=0; //temperature of water in deg.C

t2=0; //temperature of ice in deg.C

J=4.18%10"7; //the joules thomson coefficent in erg/

cal

1=80; //latent heat og fusion kj/kg
g=981; //accelaration due to gravity in cm/sec”2

/ /CALCULATIONS

h=1%J/(15%g);//height from which ice has fallen

//1/15 ice has been melted

/ JOUTPUT

mprintf ("the height from which ice has

.2f em’,h)

fallen

is %3

Scilab code Exa 3.21 The velocity of bullet

clc
clear

//INPUT DATA
T=80; //temperature of bullet
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cp=0.03;//specific heat of lead in kj/kg—K
J=4.2; //mechanical equivalent of heat in j/cal

/ /CALCULATIONS

//90 percent of kinetic energy is converted to heat

h=T*cp;//heat developed per unit mass in calorie

v=(J*10"7xh*2/0.9) ~0.5; //velocity of bullet in cm/
sec

/ /OUTPUT
mprintf ('the velocity of bullet is %3.2f cm/sec’,v)

Scilab code Exa 3.22 The rise in temperature

clc
clear

//INPUT DATA

w=5.0; //weight of lead ball in Ib

cp=0.032; //specific heat of lead in Btu/lbdeg.F
h=50; //height at which ball thrown in feets
v=20; //vertical speed in ft/sec

g=32; //accelararion due to gravity in ft/sec 2

/ /CALCULATIONS

//half the kinetic energy is converted into heat
after instant impact with ground

u=(v~"2) +2*gxh

ke=(w/2*(u));//kinetic energy of the ball at ground

T=ke/(2*32*778*w*xcp);//rise of temperature in deg.F

//OUTPUT
mprintf (’the rise in temperature is %3.2f deg.F’,T)
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Chapter 4

Kinetic theory of gases

Scilab code Exa 4.1 The temperature

clc

clear

//INPUT

t=273; //temperture of the oxygen molecule in K
m=32; //molecular mass of the gas in gm

r=8.32%10"7; //molar gas constant in ergs per mole
v2=33200; //velocity of the gas in cm/sec

/ JCALCULATIONS

vi=((3*rxt)/m) " (1/2);//rms velocity of the molecule

in cm/s
T=((v2*v2*m) /(3*r));//temperature of the molecule
with sound has velocity in K

//OUTPUT

mprintf ('the rms velocity of the molecule is %3.2fcm
/s \n the temperature of the molecule is %3.0fK’,
vi,T)
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Scilab code Exa 4.2 The temperature

clc
clear

//INPUT

t1=308; //temperature of the nitrogen molecule in K
m1=28; //molecular mass of the nitrogen in gm

m2=2; //molecular mass of the hydrogen molecule in gm

© 00 J O T = W N+

—_
(es)

11
12
13
14

/ /JCALCULATIONS

t2=(t1*m2/m1);//temperature of the hydrogen molecule

in K

//GIVEN avg.speed of both the molecules are same

//OUTPUT
mprintf ("the temperature of the hydrogen molecule is
%3.0fK 7 ,t2)
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Scilab code Exa 4.3 The RMS velocity at NTP

clc
clear

//INPUT

y=0.00129; //density of the air in gm/cc
p=76;//pressure of the nitrogen molecule in cm
g=981; //accelaration due to gravity in cm/sec 2
m=13.6; //density of the mercury in gm/cc

/ /CALCULATIONS
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v=((3*p*g*m)/y) ~(1/2);//rms velocity of air at ntp
in cm/sec

//OUTPUT
mprintf (’the rms velocity of the air is %3.2fcm/sec’
V)

Scilab code Exa 4.4 The rms velocity

clc
clear

//INPUT

d=16%0.000089; //density of the oxygen molecule in gm
/cc

p=76;//pressure of the air in cm

g=981; //gravitaitonal accelaration in cm/sec "2

m=13.6; //density of the mercury in gm/cc

/ JCALCULATIONS
v=((3*p*g*m)/d) ~(1/2);//velocuty of the oxygen
molecule in cm/sec

//OUTPUT
mprintf ('velocity of oxygen molecule is %3.2fcm/sec
V)

Y

Scilab code Exa 4.5 The kinetic energy of hydrogen molecule

clc
clear

/JINPUT
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t=273; //temperature of the hydrogen molecule in K
n=6.03%x10"23; //1 mole of hydrogen molecules
r=8.31%10"7; //universal gas constant in erg/K/mole

/ /CALCULATIONS
e=(1.5%r*t)/n;//kinetic energy of the hydrogen
molecule in erg

/ /OUTPUT
mprintf ("the kinetic energy of the hydrogen molecule
is %3.16ferg’,e)

Scilab code Exa 4.6 The kinetic energy

clc
clear

//INPUT

m=1; //mass of the oxygen in gm

r=8.31%10"7; //universal gas constant in erg/K/mole
t=320; //temperature of the oxygen in K

//for 1lgm mole k.e is 1.5rt then for 1 gm oxygen

(1/32) (k.e)

/ JCALCULATIONS
e=(m/32) *x(3*r*t/2);//kinetic energy of the oxygen in
erg

//OUTPUT
mprintf (’the kinetic energy of the oxygen is %3.2
ferg’,e)

Scilab code Exa 4.7 The temperature
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clc
clear

/JINPUT

t=273; //temperature at ntp in K
//rms velocity of oxygen is 3/2 times its rms
velocity at ntp then el=(3/2)xe

/ /CALCULATIONS

t1=(9%t/4);//temperature of the oxygen molecule in K

/ JOUTPUT

mprintf ('temperature of the oxygen in %3.2fK’,t1)

Scilab code Exa 4.8 The kinetic energy

clc
clear

/JINPUT

p=10;//pressure of the gas in atm
v=5000; //volume of the gas in ml

1=76;//length of the mercury in barometer in cm
g=981; //accelaration due to gravity in cm/sec”2
d=13.6; //density of the mercury in gm/cc

/ /CALCULATIONS

e=3*p*xv*xlx*xgxd;//kinetic energy of the molecule in

ergs

//OUTPUT
mprintf ("the kinetic
fergs’,e)

energy of the molecule

is %3.2
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Scilab code Exa 4.9 The molecular energy

clc
clear

/JINPUT

t=323; //temperature of the hydrogen molecule in K
mi=1; //mass of the hydrogen molecule in gm

m2=2; //molecular weight of the hydrogen in gm
r=8.3%x10"7; //universal gas constant in erg/K/mole

/ /CALCULATIONS
e=(ml*r*t*3/(m2%2));//kinetic enrgy of the hydrogen
molecule in ergs

//OUTPUT
mprintf (’the kinetic energy of the molecule is %3.2
fergs’,e)

Scilab code Exa 4.10 The temperature

clc
clear

//INPUT

t1=273; //temperature of the hydrogen molecule at n.t
.p in K

//rms value of hydrogen molecule is double to its
rms value at n.t.p, so 3rt/m=4(3rt/m)

/ /CALCULATIONS
t2=4*t1;//temperature of the hydrogen molecule in K
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/ /OUTPUT
mprintf ("the temperature of the hydrogen molecule is
%3f7,t2)

Scilab code Exa 4.11 The RMS velocity

clc
clear

//INPUT

t1=273; //temperature of the hydrogen molecule in K

t2=373; //temperature of the hydrogen molecule in K

d=0.0000896; //density of the hydrogen molecule in gm
/cc

p=76x13.6%981; //pressure of the hydrogen molecule in
gm/cm/sec "2

/ /CALCULATIONS
v0=(3*p/d) " (0.5);//rms velocity at Odeg.C
v100=vO*(t2/t1) "~ (0.5);//rms velocity at 100deg.C

/ JOUTPUT
mprintf ('the rms velocity at Odeg.C is %3f cm/sec \n
the rms velocity at 100deg.C is %3f cm/sec’,vO0,
v100)

Scilab code Exa 4.12 The RMS velocity

clc
clear

/JINPUT
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cp=6.84;//specific heat at constant pressure in cal/
gm mole/deg.C

r=8.31%10"7; //universal gas constant in ergs/gm mole
/deg.C

v=130000; //velocity of sound in cm/sec

j=4.2%10"7; //joules constant in ergs/cal

/ JCALCULATION

cv=cp-(r/j);//specific heat at constant volume in gm
—mole/deg.C

y=(cp/cv);//index of co—efficient

v1i=(3/y) " (0.5)*v;//rms velocity in cm/sec

//OUTPUT
mprintf ("the rms velocity of gas molecule is %3fcm/
sec’,v1l)

Scilab code Exa 4.13 The average velocity of the molecule

clc
clear

//INPUT

t=300; //temperature of the oxygen molecule in K
n=6.02%10"23; //avagdrao’s number

m=32/n;//mass of each molecule in oxygen
k=1.38%10"(-16);//boltzmann constant in erg/deg

//OUTPUT

v=(8*k*t/(3.14*m)) ~(0.5);//average velocity of
oxygen molecule in cm/sec

v2=v*0.022384; //velocity in miles/hrs

mprintf ('the avg velocity of oxygen molecule is %3
.1f miles/hour’,v2)

35



© 00 J O U i W N

—_
)

—_
—_

12
13
14

S U W N =

Scilab code Exa 4.14 The ratio of RMS velocity to average velocity

clc
clear

/JINPUT

vi=2.4;//velocity of first particle in km/sec

v2=2.6; //velocity of second particle in km/sec
v3=3.7;//velocity of third particle in km/sec

/ JCALCULATIONS

rv=((v1°2+v2°2+v3°2)/(3))"(0.5);//rms velocity of
the particles in km/sec

mv=(v1+v2+v3)/(3);//mean velocity of the particles
in km/sec

r=rv/mv;//ratio of the rms to mean velocity

mprintf ('the ratio of rms to mean velocity is %3.3f’
,T)

Scilab code Exa 4.15 The mean free path

clc
clear

//INPUT

n=2.76%10"19; //no.of molecules per cc

d=3.36*%10"(-8);//diameter of the helium molecule in
cm

/ /JCALCULATIONS
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mf=1/((27(0.5))*3.14x(d"2) *n)

/ JOUTPUT

mprintf ("the mean free path of the hydrogen molecue

is %3.8f cm’ ,mf)

Scilab code Exa 4.16 The mean free path collision rate molecular diameter

clc
clear

/JINPUT

n=85*10"(-6);//coefficent of viscosity in dynes/cm

"2/velocity gradient
c=16%10"4; //velocity in cm/sec
p=0.000089; //density in gm/cc
N=6.06%10"23/22400; //avagadro number
a=(2)"(0.5)*(22/7);//constant

/ /CALCULATIONS

mf=(3*n/(p*c));//mean free path in cm

cr=c/mf;//collision

d=(1/(a*N*mf))~(0.5);//molecular diameter of

rate

hydrogen gas in cm

mprintf ('the mean free path is %3.6fcm \n hte
collision rate is %3.2f \n the molecular diameter

of hydrogen gas

is %3.10fcm’ ,mf,cr,d)

Scilab code Exa 4.17 The mean free path

clc
clear
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//INPUT

d=2%10"(-8);//diameter of the molecule in cm
k=1.38%10"(-6);//boltzmann constant in ergs/deg
t=273; //temperature at ntp in K

p=76%x13.6%981; //pressure at ntp in gm/cm/sec 2

/ /CALCULATIONS

mf=((k*t)/(2°(0.5)*3.14%(d"2)*p));//mean free path
In cm

//since p=nkt

/ JOUTPUT
mprintf ('mean free path at ntp is %3.6fcm’,mf)

Scilab code Exa 4.18 The diameter

clc
clear

//INPUT

t=288; //temperature in K

k=1.38%10"(-16); //boltzmann constant in erg/deg
N=6.02%¥10"23; //avagadro number

m=32/N; //mass of each oxygen molecule in gm
v=196*10"-6; //viscosity in poise

/ /CALCULATIONS

av=((8*k*t/(3.14%m))~0.5);//average velocity in cm/
sec

d=(m*av/(3%3.14*%2°(0.5)*v))"0.5; //diameter of the
molecule in cm

mprintf (’diameter of the molecule is %3.10f cm’,d)
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Scilab code Exa 4.19 The pressure

clc
clear

//INPUT
mf=15; //mean free path in cm

t=300; //temperature of oxygen molecule in K

d=3%10"(-8);//diameter of the molecule in cm

N=6.02%10"23; //avagadro number

r=8.32%10"7; //universal gas constant
deg

a=(27(0.5))*(22/7) ;

/ /CSLCULATIONS

in ergs/mole/

p=(r*t)/(N*xa*x(d"2)*mf);//pressure of the oxygen

molecule in dynes/sq.cm

/ JOUTPUT

mprintf ("the pressure of the oxygen molecule

f dynes/sq.cm’,p)

is %3.3

Scilab code Exa 4.20 The avagadro number

clc
clear

//INPUT

k=5.64%10"-14; //kinetic energy of the hydrogen

molecule ergs

t=273; //temperature of the oxygen molecule in K

r=8.32%10"7; //universal gas constant
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/ JCALCULATIONS
N=(3/2)*(r*t/k);//avagadro number

//OUTPUT
mprintf ('the avagadro number is %3.2f’,N)

Scilab code Exa 4.21 The number which will be travelling undeflected

clc
clear

//INPUT

q=5000; //total number of molecules

e=2.7183; //constant value

t1=0.5; //distance travled to the mean free path
t2=1; //distance travelled to the mean free path

/ /CALCULATONS

pl=gq*(e~-t1);//n0.0of molecules having no collision
in traversing a distance tl1

p2=q*(e~-t2);//n0.0of molecules having no collision
in traversing a distance t2

//OUPUT

mprintf (’the no. of molecules having no collision in
traversing a distance 0.5 is %3f \n the no. of
molecules having no collision in traversing a
distance 1 is %3f’,pl,p2)

Scilab code Exa 4.22 The mean kinetic energy
clc
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clear

//INPUT

t=38380; //temperature of the molecule in K

k=1.38%10"-16; //boltzman constant of one electron in
ergs /K

e=1.6%x10"-12; //charge of one electron volts

/ /CALCULATIOS

mk=1.5%xk*t/e; //mean kinetic energy per atom in ev

//OUTPUT
mprintf (’the mean kinetic energy of the molecule is
%3.31f ev’,mk)

Scilab code Exa 4.23 The mean free path and the collision frequency

clc
clear

//INPUT

v=1.7%10"-4; //viscosity of the air molecule in cgs

d=0.00129; //density of the molecule in gm/ml

p=76%x13.6%981; //pressure of the molecule in gm/cm/
sec 2

/ /CALCULATIONS

r=(3*p/d) "~ (0.5);//rms velocity of the molecule in cm
/sec

mf=(3*v/(d*r));//mean free path in cm

cf=r/mf;//collision frequency

//OUTPUT
mprintf (’the mean free path is %3.7f cm \n the
collision frequency is %3f’ ,mf,cf)
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Scilab code Exa 4.24 The pressure of the gas

clc
clear

/JINPUT

t2=296.4; //temperature of the first plate in K
t1=304.7; //temperature of the second plate in K
f=1.6%10"-2; //force repelled cold is dynes/sq.cm

/ /CALCULATIONS
p=(4*xf*t2/(t1-t2));//pressure of the gas in dynes/sq
.cm

//OUTPUT
mprintf ("the pressure of the gas is %3.3f dynes/sq.
cm’,p)

Scilab code Exa 4.25 The size of helium atom

clc
clear

//INPUT

mf=28.5%10"-6; //mean free path in cm
d=0.000178; //density of helium in gm/ml
m=6*10"-24; //mass of the helium atom in gm
a=(2"(0.5))*3.14; //constant

/ JCALCULATIONS
d=(m/(a*d*mf))~(0.5);//diameter of the size in cm
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//OUTPUT
mprintf (’the size of the helium atom is %3.10f cm’,d
)

Scilab code Exa 4.26 The value avagadro number

clc
clear

//INPUT
al=0%10"-4;//first horizontal displacement in cm
a2=5.6%10"-4; //second horizontal displacement in cm
a3=-4.7%10"-4; //third horzontal displacement in cm
ad=-10.8*%10"-4; //fourth horizontal displacement in
cm
ab=6.6%10"-4; //fifth horizontal displacement
displacement in cm
a6=-9.8%10"-4; //sixth horizontal displacement in cm
a7=-11.2%10"-4; //7th horizontal displacement in cm
a8=-4.0%10"-4; //8th horizontal displacement in cm
a9=15.0%10"-4; //9thhorizontal displacement in cm
al0=19.1%10"-4; //10th horizontal displacement in cm
all=16.0%10"-4; //11ht horizontal displacement in cm
T=293; //temperature of the particle in K
v=0.01;//viscosity in cgs
r=1.15%x10"-5; //radius of the particle in cm
R=8.32%10"7; //universal gas constant in kj/kg mole
t=30; //time for observation of each in sec

/ /CALCULATIONS

x=(al"2+a2"2+a3"2+a4"2+ab"2+a6"2+a7"2+a8"2+a9"2+al0
"2+al1°2)/11

n=R*T*t/(x*3*3.14xv*r);//no.of molecules in the
observation
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//OUTPUT
mprintf ('the value of n is %3f’,n)

Scilab code Exa 4.27 The fractional change in the number of helium atoms

clc
clear

//INPUT

m=6x10"-24; //mass of the helium atom in gm
k= 1.38*%10"-16; //boltzmann constant in erg
t1=100; //temperature in K

t2=900; //temperature in K

/ JCALCULATIONS
r=(t1/t2)"(3/2)*(2.7183" (m*x(1/(2xk))*10"8*x(1-(1/9)))
);//fractional change in the no.of helium atoms

//OUPUT
mprintf ("the fractional change in the no.of helium
atoms %3.4f°,r)
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Chapter 5

Equations of state

Scilab code Exa 5.1 The values of constant a and b in vanderwaal equation

clc
clear

//INPUT

t=304; //temperature of the gas in k
p=73;//pressure of the gas in atm

r=0.00366; //universal gas constant in j/K/mole
//ct=8a/27br;cp=a/27b"2

/ /CALCULATIONS
b=(t*xr/(8*p));
a=p*27*b~2;

//OUTPUT
mprintf ('the value of the constant b is %3.7f \n the
value of the constant a is %3.5f’,b,a)

Scilab code Exa 5.4 Vanderwaal constants
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clc

clear

/JINPUT

tc=132; //critical temperature in K

pc=37.2;//critical pressure in atm

r=82.07; //universal gas constant in cm 3atm/mole/K

/ /CALCULATIONS

a=27*(r"2)*(tc"2)/(64*pc);//value of a in atm/cm"6/
mol "2

b=r*tc/(8*pc);//value of b in cm”3/mol

//OUTPUT
mprintf ("the value of is %3.2f atm/cm”6/mol”"2 \n the
value of b is %3.2f ecm”"3/mol’,a,b)

Scilab code Exa 5.5 Temperature of the gas

clc
clear

//INPUT

p=2.26%1.013%10"5; //critical pressure in N/m"2
v=4/69; //critical volume in m"3/kmol
r=8.31%10"3; //universal gas constant in J/kmol.K

/ JCALCULATIONS
t=(8*p*v/(3*r));//critical temperature in K

//OUTPUT
mprintf (’critical temperature of the given problem
is %3.2f K’ ,t)
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Chapter 6

Change of state

Scilab code Exa 6.1 The change in melting point

clc
clear

//INPUT

vl=1; //volume of water in cc

vs=1.0908; //volume of ice in cc
t=273;//temperature in k

p=76%x13.6%981; //pressure in dynes/sq.cm
1=80; //latent heat of fusion in cal
j=4.2%10°7; //joules constant in erg/cal

/ /CALCULATIONS
v=vl-vs;//change in volume
T=(vxt*p)/(j*1);//change in melting point of water

//OUTPUT
mprintf ('the change in melting point of water is %3
A1f7,T)
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Scilab code Exa 6.2 The latent heat of vapourisation

clc
clear

//INPUT

vv=1674; //volume of vapour in cc

vl=1; //volume of liquid in cc

p=760; //pressure of steam and water in mm
t=373; //temperature in K

pl1=27.12; //superincumbent pressure in mm

/ /CALCULATIONS

v=vv-vl;//change in volume

1=(v*pl*t=*0.024203/(p));//latent heat of
vapourisation in cal

//OUTPUT
mprintf ('the latent heat of vapourisation is %3.1f
cal ’,1)

Scilab code Exa 6.3 The value of K

clc
clear

//INPUT

m=1/(342%100) ; //molar concentration of water
t=289; //temperature in K

p=53.5%13.6%981; //pressure in dynes/sq.cm

/ JCALCULATIONS
k=p/(t*m);//the value of k in ergs/mol.deg

/ JOUTPUT
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mprintf ('the value of k is %3.2f ergs/mol.deg’,k)

Scilab code Exa 6.4 The temperature for the triple point

clc
clear

//INPUT

p1=4.60; //presure at Odeg.C in mm per deg.C

p2=4.94; //pressure at ldeg.C in mm per deg.C

t=0.0072; //lowering the melting point in deg.C

t1=7.1563979%x10°(-3);//rise in melting point in deg.
C

p=760; //atmospheric pressure in mm hg

/ /CALCULATIONS

dp=p2-pl;//rate of increase of pressure in mm per
deg .C

p3=(tl*p)/t;//pressure in mm

dt=(755.4-p3)/dp;//tmperature for the triple point
in deg.C

//OUTPUT
mprintf ('temperature for the triple point is %3.6f
deg.C’7,dt)

Scilab code Exa 6.5 The slopes of vapourisation

clc
clear

/JINPUT
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v=21%10"4; //change in volume from vapour to liquid

in cc

Ls=687;//latent heat of sublimation in cal

1lv=607; //latent heat of vapourisation in cal
t=273; //temperature of water in deg.C

j=4.2%10"

7;//joules constant in ergs/cal

/ /CALCULATIONS
sv=1lv*j/(t*(v));//slope of vapourisation curve at 0
deg.C in dyne/sq.cm/deg.C
ss=Lsx*xj/(t*(v));//slope of sublimation curve at 0
deg.C in dyne/sq.cm/deg.C

/ JOUTPUT

mprintf (’

the slope of vapourisation curve

is %3.2f

dyne/sq.cm/deg.C \n the slope of sublimation

curve

is %3.2f dyne/sq.cm/deg.C’,sv,ss)
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Chapter 7

The joule thomson cooling efect

Scilab code Exa 7.1 The temperature of inversion

clc
clear

//INPUT

t=33.18; //critical temperature in K

pc=12.80%76%x981%13.6; //critical pressure in dynes/sq
.cm

r=83.15; //universal gas constant in kj/kg.K

d=0.08987; //density of hydrogen in gm/lit

v=2000/0.08987; //gram molecular volune of hydrogen
in cc

/ JCALCULATIONS

b=r*10"6*t/(8*pc);//vanderwaal constant in cm”3/mol

to=2%27xt*(1-(b/v))/8;//inversion temperature of the
hydrogen in K

//OUTPUT
mprintf ('the inversion temperature of hydrogen is %3
2f K7, to)
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Scilab code Exa 7.2 The change of temperature

clc
clear

/JINPUT

b=0.00136; //vanderwaal constant in suv/gm

a=0.011; //vanderwaal constant in atm(suv) 2/gm"2

r=0.003696; //universal gas constant in atm(suv)/gm.
deg

t=423; //temperature of steam in K

cp=-0.674/0.024205; //specific heat at 423K in atm(cc

Jem (deg)

/ /CALCULATIONS
dt=(-b+(2*a/(rxt)))/cp;//change of temperature per
atm drop of pressure in deg/atm

//OUTPUT
mprintf ("the change of temperature per atmosphere
drop of pressure is %3.7f deg/atm’,dt)

Scilab code Exa 7.3 The change in temperature

clc
clear

//INPUT
r=8.3%x10"7; //universal gas constant in ergs/deg.C
a=1.36%10"6*76*13.6%981; //vanderwaal constant in atm

(suv’™2)/(gm"2)
b=32; //vanderwaal constant in cc

52



10
11
12
13

14
15
16

© 00 J O U b W N

e T = T
U s WO NN = O

cp=7.03;//specific heat at constant pressure in cal
j=4.18%x10"7; //joules constant in ergs/cal
t=273; //temperature of the gas in K

/ /CALCULATIONS

dt=((2*a/(r*t))-b)*10°6/(cp*j);//change of
temperature in atmosphere drop of pressure in deg
/atm /cm”3

//OUTPUT
mprintf ("the change of temperature in atmosphere
drop of pressure is %3.2f deg/atm/cm”3’,dt)

Scilab code Exa 7.4 The change in enthalpy

clc
clear

//INPUT

u=1.08;

cp=8.6;//specific heat in kj/kg.K
j=4.2;//joules constant in j/cal
pl1=1%1.013*%10"6; //pressure at intial in N/sq.m
p2=20%1.013%10"6; //pressure at final in N/sq.m

/ /CALCULATIONS
dh=-u*xcp*j*(pl-p2);//change in enthalpy in joules

//OUTPUT
mprintf (’the change in enthalpy is %3.2fjoules ’,dh)

Scilab code Exa 7.5 The inversion temperature
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clc
clear

//INPUT
tc=5.26;//critical temperature of the helium in K

/ JCALCULATIONS
ti=27*tc/4;//inversion temperature of the helium in
K

//OUTPUT
mprintf ("the inversion temperature of the helium is
%3.21 K’,t1i)

Scilab code Exa 7.6 The temperature of inversion

clc
clear

/JINPUT

a=0.245%10"6x10"6; //vanderwaal constant in cm 4.dyne
/mole "2

b=2.67%10; //vanderwaal constant in cc/mole

r=2%4.2%10°7; //universal gas constant in ergs/mole.K

/ JCALCULATIONS
ti=2xa/(b*r);//inversion temperature in K

//OUTPUT
mprintf (’inversion temperature of hydrogen is %3.2f
K’,ti)

Scilab code Exa 7.7 The drop in temperature
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clc
clear

//INPUT

dp=50%10"6; //change in pressure in dynes/sq.cm

cp=7%4.2%10°7; //specific heat constant pressure in
ergs /mole . K

a=1.32%10"12; //vanderwaal constant in cm 4.dyne/mole
"2

b=31.2; //vanderwaal constant in cm”2/mole

t=300;//inital temperature in K

r=2%4.2%10"7; //ergs /mole .K

/ JCALCULATIONS
dt=((2*a/(r*t))-b)*dp/cp;//change in temperature in
K

/ JOUTPUT
mprintf (’the change in temperature is %3.2f K’,dt)

Scilab code Exa 7.8 The drop in temperature

clc
clear

//INPUT

pl=1;//inital pressure in atm
p2=51;//final pressure in atm
t1=300;//inital temperature in K
y=1.4;//coefficient of expansion

/ /CALCULATIONS

t2=t1x(p2/p1) " ((1-y)/y);//final temperature in K
dt=t1-t2;//drop in temperature in K

95



14 mprintf (’the drop in temperature is %3.2f K’,dt)
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Chapter 8

First law of thermodynamics

Scilab code Exa 8.1 The change in internal energy

clc
clear

//INPUT

1=80; //latent heat of fusion in cal

j=4.2%10"7; //joules constant in ergs/cal

w=-0.092%10"6; //work done in changing phase change
in ergs

/ JCALCULATIONS
q=1*j;//heat added in ergs
du=q-w;//internal energy in ergs

//OUTPUT
mprintf ('the change in internal energy is %3.2f ergs
7, du)

Scilab code Exa 8.2 The change in internal energy
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clc
clear

/JINPUT

m=1; //mass in gm

1=536; //latent heat in cal/gm

j=4.2%10"7; //joules constant in ergs/cal

v=1649; //volume of water in cc

p=76%x13.6%981; //pressure of water in dynes/sq.cm

/ /CALCULATIONS

dgq=m*1xj;//heat supplied in ergs
dw=p*v;//work done in ergs

du=dq-dw; //internal energy developed in ergs

//OUTPUT
mprintf (’internal energy of water is %3.2f ergs’,du)

Scilab code Exa 8.3 The temperature immediately after the compression

clc
clear

//INPUT
dv=10; //ratio of original volume to final volume

t1=293;//inital temperature in K
y=1.41;//coefficent of expansion

/ JCALCULATIONS
t2=t1*(dv) " (y-1);//final temperature in K

//OUTPUT
mprintf ('the final temperature is %3.2f K’,t2)
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Scilab code Exa 8.4 The change in temperature

clc
clear

/JINPUT

t=273; //temperature of earth at height h in K
p=760; //pressure in mm of hg

dp=1;//change in pressure in mm of hg
y=1.418; //coefficient of expansion

/ JCALCULATIONS
dt=((y-1)/y)*dp*t/p;//change in temperature in deg.C

//OUTPUT
mprintf (’the change in temperature is %3.3f deg.C’,

dt)

Scilab code Exa 8.5 The resulting drop in temperature

clc
clear

//INPUT

pl=2;//pressure initial in atm
p2=1;//pressure final in atm
t1=288;//inital temperature in K
y=1.4;//coefficent of expansion

/ /CALCULATIONS

t2=t1*(p2/pl1) " ((y-1)/y);//final temperature in K
dt=t1-t2;//drop in temperature in K
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//OUTPUT
mprintf (’drop in temperature is %3.2f K’,dt)

Scilab code Exa 8.6 The resultant temperature

clc
clear

//INPUT

t1=288; //inital temperature in K
dv=1/2;//ratio of inital to final volume
y=1.4;//coefficient of expansion

/ JCALCULATIONS
t2=t1*(dv) " (y-1);//final temperature in K

//OUTPUT
mprintf (’the final temperature is %3.1f K’,t2)

Scilab code Exa 8.7 The resultant rise in temperatures in both the cases

clc
clear

/JINPUT

y=1.4;//coefficent of exapnsion

pl=1;//standard pressure in atm

dv=50; //ratio of initial volume to final volume
t1=273; //standard temperature in K

/ /CALCULATIONS
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p2=pl*dv;//final pressure when slowly compressed in
atm

p3=pl1*(dv) "(y);//final pressure when suddenly
compressed in atm

t2=t1*(dv) " (y-1);//rise in temperature when it is
suddenly compressed in K

//OUTPUT

mprintf ("the final pressure when it is compressed
slowly is %3fatm \n the final pressure when it is
compressed suddenly is %3.2fatm \n the rise in

temperature when it is suddenly compressed is %3
.O0fK’,p2,p3,t2)

Scilab code Exa 8.8 The rise in temperature

clc
clear

//INPUT

y=1.5;//coefficient of expansion

dp=1/8;//ratio of inital pressure to final pressure
t1=300; //inital tempreature in K

/ /CALCULATIONS
t2=t1*(dp) " ((1-y)/y);//change in temperature in K
t3=t2-t1;//rise in temperature in K

//OUTPUT
mprintf (’the rise in temperature is %3.2f K’,t3)

Scilab code Exa 8.9 The amount of work done
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clc
clear

//INPUT
t1=400; //inital temperature in K
dv=2; //ratio of volumes final and inital

r=8.31%10"7; //universal gas constant in ergs/kg.K

/ /CALCULATIONS

w=r*tlxlog(2);//work done in expanding isothermally

in ergs

//OUTPUT
mprintf ("the work done in expanding isothermally
%3.2f ergs’,w)

1S

Scilab code Exa 8.10 The final temperature and pressure

clc
clear

//INPUT

pl1=76;//inital pressure in cm

t1=290; //inital temperature in K

y=1.4;//coefficent of expansion

dv=2; //ratio of inital to fianl volume when air
expands isothermally

dvi=2; //ratio of inital to final volume when air
expands adiabatically

/ /CALCULATIONS

p2=pl/dv;//final pressure when air expands
isothermally in cm of hg

t2=t1;//final temperature when air expands
isothermally in K
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t3=t2x(1/dvl) " (y-1);//temprature when air expands
adiabatically in K

p3=p2*(1/dvl)~(y);//final pressure when air expands
adiabatically in mm of hg

//OUTPUT

mprintf (’final pressure when air expands
isothermally in cm of hg %3.2f mm of hg \n final
temperature when air expands isothermally is %3.2
f K \n temprature when air expands adiabatically
is %3.2f K \n final pressure when air expands
adiabatically is %3.2f mm of hg’,p2,t2,t3,p3)

Scilab code Exa 8.11 The work done

clc
clear

//INPUT

p=76%x13.6%981; //pressure of air in dynes/sq.cm
v=11100; //volume expanded in ml

t1=273;//inital temperature in K

t2=274; //final temperature in K

cv=2.411; //specific heat at constant volume in cal/K
j=4.2%10°7; //joules constant in ergs/cal

/ /CALCULATIONS

w=p*v*log(t2/t1);//work done in ergs
h=cvx(t2-t1)+w/j;//heat supplied in cal

/ /OUTPUT
mprintf ("the work done is %3.2f erg \n the heat
supplied is %3.3f cal’,w,h)
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Scilab code Exa 8.12 The work done

clc
clear

//INPUT

p=10"6;//pressure of air in dynes
d=0.0001293; //density of air in gm/cc
t1=273;//inital temperature in K

dv=2; //ratio of inital volume to final volume
y=1.4;//coefficient of expansion

/ /CALCULATIONS

r=p/(d*t1);//universal gas constant in dynes.cc/gm.K

t2=t1*(dv) " (y-1);//final temperature in K

w=rx(t2-t1)/(y-1);//work done in adiabatic
compression in ergs

/ /OUTPUT
mprintf ('work done in adiabatic compression is %3.2f
ergs ,w)

Scilab code Exa 8.13 The change in internal energy

clc
clear

//INPUT

m=5; //mass of air in gm

cv=0.172; //specific heat at constant volume cal/gm
dt=10; //changi in temperature in K

/ JCALCULATIONS
ie=m*cvxdt;//change in internal energy in cal
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//OUTPUT
mprintf (’change in internal energy is %3.2f cal’,ie)

Scilab code Exa 8.14 The heat supplied

clc
clear

/JINPUT

v1=10"3; //inital volume in cc

v2=2*v1; //final volume in cc

pl=76%13.6%981; //pressure in dyne/sq.cm

t1=273;//intial temperature in K

d=1.29; //density of the gas gm/lit

cv=0.168; //specific heat at constant volume in cal/
gm

/ /CALCULATIONS

t2=(v2/v1)*tl;//final temperature in K

r=0.068; //universal gas constant in cal
cp=cv+r;//specific heat at constant pressure in cal
q=d*cp*(t2-t1);//heat supplied in cal

//OUTPUT
mprintf (’the heat supplied to the gas is %3.2f cal’,

q)

Scilab code Exa 8.15 The maximum work done

clc
clear

/JINPUT
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t=303; //temperature of
K

the one mole of the argon in

vi=1;//intial volume in litres

v2=10; //final volume in litres

r=8.31%10"7; //universal gas constant in ergs/K.mol

/ /CALCULATIONS

w=rxt*log(v2/vl);//work done in isothermal expansion
in ergs

//OUTPUT

mprintf (’the work done in isothermal expansion is %3
2f ergs’,w)

Scilab code Exa 8.16 The amount of heat absorbed

clc

clear

/JINPUT

dv=4;//final volume of neon in 1lit

t=273; //temperature of the gas in K

n=2.6/22.4;//the no.of moles of neon

r=1.98; //universal gas constant in cal/K.mol

/ /CALCULATIONS

w=n*t*r*xlog(dv);//work done by gas in ergs

//OUTPUT

mprintf ("the work done by 2.61it of neon is %3.2f
ergs’ ,w)

Scilab code Exa 8.18 The temperature
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clc
clear

/JINPUT

dv=10"(-3);//ratio of initial and final volume
t1=10"5;//initial temperature in K
y=1.66;//coefficient of expansion

/ /CALCULATIONS
t2=t1*(dv) " (y-1);//final temperature in K

/ JOUTPUT

mprintf (’final temperature of the gas is %3.2f K’,t2

)

Scilab code Exa 8.19 The value coefficient of expansion

clc
clear

//INPUT

p1=8;//intial pressure in cm of hg
p2=6;//final pressure in cm of hg
v1=1000; //intial volume in cc
v2=1190; //final volume in cc

/ JCALCULATIONS
y=log(pl/p2)/log(v2/vl);//coefficient of expansion

/ /OUTPUT
mprintf (’the coefficent of expansion is %3.2f7,y)
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Chapter 9

Second law of thermodynamics

Scilab code Exa 9.1 The temperature

clc
clear

//INPUT

t2=300; //temperature of the sink in K
n1=0.4; //efficiency of the engine
n2=0.6; //efficiency of the engine

/ JCALCULATIONS
t1=t2/(1-n1);//temperature of the source in K
t3=t2/(1-n2);//temperature of the source in K

//OUTPUT

mprintf ("the temperature of the source when 0.4
efficiency is %3.2f K \n the temperature of the
source when 0.6 efficiency is %3.2f K’,t1,t3)

Scilab code Exa 9.2 The work done heat rejected and efficiency
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clc
clear

/JINPUT

t2=273; //temperature of the sink in K
t1=373; //temperature of the source in K
q1=840; //heat supplied in joules
j=4.2;//joukes constant in erg/cal

/ JCALCULATIONS

w=(ql/t1)*(t1-t2);//work done in joules
q2=(q1/j)*(t2/t1);//heat rejected in calories
n=1-(t2/t1);//efficiency of the engine

/ JOUTPUT

mprintf ("work done is %3.2f j \n heat rejected is %3
.2f cal \n the efficiency of the engine is %3.2f’
,W,gq2,n)

Scilab code Exa 9.3 The temperature of the source

clc
clear

//INPUT

t1=90; //temperature of the oxygen boils in K
t2=20; //temperature of the liquid hydrogen in K
t3=300; //temperature of the sink in K

/ /CALCULATIONS
n=(t1-t2)/t1;//efficiency of the engine
t4=t3/(1-n);//temperature of the source in K

/ JOUTPUT
mprintf ("the efficiency of the engine is %3.2f \n
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the temperature of the source is %3.2f K’,n,t4)

Scilab code Exa 9.4 The quantity of heat

clc
clear

//INPUT

t1=373; //temperature of the source in K
t2=273; //temperature of the sink in K
w=1200%10"5%980; //work done in ergs
j=4.18%10"°7; //joules constant in ergs/cal

/ JCALCULATIONS
q=(w/j)*(t1/(t1-t2));//heat added in cal

/ /OUTPUT
mprintf (’the heat added is %3.2f cal’,q)

Scilab code Exa 9.5 The efficiency and energy to be supplied

clc
clear

//INPUT

t1=273; //temperature of the source in K
t2=290; //temperature of the sink in K
1=8x10"11; //latent of fusion in ergs/cal

/ /CALCULATIONS

n=(t2-t1)/t1;//efficiency of the engine
w=n*1; //energy to be supplied in ergs

70



13
14

© 00 J O Ut i W N

I = T
B~ w N = O

© 00 J O U i W N

—
)

//OUTPUT
mprintf ("efficiency of the engine is %3.2f \n energy
to be supplied is %3.2f ergs’,n,w)

Scilab code Exa 9.6 The work done

clc
clear

//INPUT

t1=373; //temperature in K

t2=273; //temperature of sink in K

q=10"4; //heat taken at higher temperature in cal
j=4.2%10"7; //joules constant in ergs/cal

/ JCALCULATIONS
w=q*j*(t1-t2)/t1l;//work done in ergs

//OUTPUT
mprintf ('work done is %3.2f ergs

7’w)

Scilab code Exa 9.7 The heat supplied rejected and efficiency

clc
clear

//INPUT

p=100%746/4.2; //power developed in cal/sec
t1=300; //temperature of the sink in K
t2=500; //temperature of the source in K

/ JCALCULATIONS
n=1-(t1/t2);//efficiency of the engine
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ql=p/n;//heat supplied in cal/sec
q2=ql*(1-n);//heat rejected to the sink in cal/sec

//OUTPUT

mprintf ('the efficiency of the engine is %3.2f \n
the heat supplied is %3.2f cal/sec \n the heat
rejected is %3.2f cal/sec’,n,ql,q2)

Scilab code Exa 9.8 The lowest temperature work done and efficiency

clc
clear

//INPUT

y=1.4;//coefficent of expansion

t1=600; //intial temperature in K
dv=1/6;//ratio of intial to final volume
p=12%1.013%10"6; //pressure in dyne/sq.cm
v=1000; //intial voluume in cc

/ /CALCULATIONS

t2=t1*(dv) " (y-1);//final temperature in K
r=(p*v)/tl;//universal gas constant in ergs/kg.K
w=r*(tl-t2)*log(1/dv);//work done in ergs
n=1-(t2/t1);//efficiency of the engine

//OUTPUT

mprintf ('the lowest temperature is %3.2f K \n work
done is %3.2f ergs \n the efficiency of the
engine is %3.2f7,t2,w,n)

Scilab code Exa 9.9 Percentage of heat produced wasted
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clc

clear

/JINPUT

1=964.8; //latent heat of steam in B.Th.U per 1b
q=4%15x1%778; //heat developed in ft lbs
w=30000%60; //work done is ft lbs

/ /CALCULATIONS

n=(w/q)*100; //efficiency of the engine

p=100-n; //percentage of heat wasted

//OUTPUT
mprintf ('the percentage of the heat wasted is %3.2f’

,P)

Scilab code Exa 9.10 The indicated thermal efficiency

clc
clear

//INPUT

ip=16.3%500%778/33000; //input power of the engine in
HP

me=0.72; //mechanical efficiency of the engine

bhp=31; //brake horse power in b.h.p

ihp=bhp/me; //indicated horse power in HP

/ JCALCULATIONS
i=ihp/ip;//indicated thermal efficiency

//OUTPUT
mprintf ('the indicted thermal efficiency is %3.3f7,1
)
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Scilab code Exa 9.11 The horse power of the steam engine

clc
clear

//INPUT

p=200; //horse power of steam engine in lbs coal per
hour

j=770;//joules constant in ft lbs per B.Th.U

/ JCALCULATIONS
w=12500*p*j;//equivalent work in ft.lb.per.hr
hp=w/(60%x33000) ; //horse power

//OUTPUT
mprintf ("hoose power of the engine is %3.2f’,hp)

Scilab code Exa 9.12 The maximum pressure

clc
clear

/JINPUT

t1=340; //temperature of the atmosphere in K

t2=612; //temperature of the compression stroke in K

y=1.39; //adiabatic expansion

t3=2040; //temperature after constant volume ignition
in K

/ /CALCULATIONS

d=(t2/t1)"(1/(y-1));//density in gm/cc

n=1-(1/d) " (y-1);//efficiency of the engine
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p=((d) " (y))*(t3/t2);//maximum temperature of the

temperature

/ JOUTPUT

in atm

mprintf (’the maximum pressure of the engine is %3.2f

atm’,p)

Scilab code Exa 9.13 The efficiency of the engine

clc
clear

/JINPUT

t1=915; //temperature at the beggining in K

t2=2040; //temperature at the end in K

d=12.6; //adiabatic expansion ratio
y=1.39;//coefficent of expansion

/ /CALCULATIONS

x=t2/tl;//ratio temparatures
n=1-(1/d) " (y-1) *((x"y)-1)/(y*(x-1)); //efficiency of

the engine

/ JOUTPUT

mprintf ("the efficiency of the engine

is %3.3f7,n)

Scilab code Exa 9.14 The pressure and temperature

clc
clear

//INPUT
pl=15;//intial

pressure in lb/sq.inch
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dv=15; //ratio of intial to final volume

t1=520; //temperature at

intial in K

y=1.4;//coefficient of expansion

/ /CALCULATIONS

p2=pl*(dv) "~ (y);//final pressure in 1b/sq.inch
t2=t1x(dv) " (y-1);//final temperatire in K

/ JOUTPUT

mprintf ('the final pressure is %3.2f lb/sq.inch \n

the final temperature

is %3.2f K’,p2,t2)
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Chapter 10

Thermodynamic relations

Scilab code Exa 10.1 The latent heat of fusion

clc
clear

//INPUT

t=289.6; //temperature in K

dt=0.0244; //raise in temperature in deg.C

v1=0.00095; //volume occupied in liquid state in
litres

v2=0.00079; //volume occupied in solid state in
litres

/ JCALCULATIONS
1=t*(v1-v2)/dt;//latent heat of fusion in 1lit.atm

//OUTPUT
mprintf (’the latent heat of fusion is %3.2f lit.atm’
1)

Scilab code Exa 10.2 The value of specific heat
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clc
clear

//INPUT

t=295; //temperature of water in K

dp=10"6; //cahnge in pressure in dyne/sq.cm
j=4.2%10"7; //joules constant in ergs/cal

/ /CALCULATIONS
dc=-t*10"-5*dp/j;//change in specific heat

/ JOUTPUT
mprintf ("the change in specific heat is %3.7f cal/
degree’,dc)

Scilab code Exa 10.3 The specific heat of copper

clc
clear

//INPUT

cp=0.0909; //specific heat at constant pressure in
cal /degree

t=273; //temperature in K

v=0.112; //specific volume in lit/deg.C

a=5.01*10"(-6);//coefficient of linear expansion

k=8*%10"-7; //compressibility of copper in per atoms

/ JCALCULATIONS
cv=cp+(9*xa~2*v*t*0.024142%10°3/k);//specific heat at
constant volume in cal/deg.C

mprintf (’specific heat at constant volume is %3.2f
cal /deg.C’,cv)
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Scilab code Exa 10.5 The latent heat of fusion

clc
clear

/JINPUT

t=289.6; //temperature in K

dt=0.0244; //raise in temperature in deg.C

v1=0.00095; //volume occupied in liquid state in
litres

v2=0.00079; //volume occupied in solid state in
litres

/ /CALCULATIONS
1=t*(v1-v2)/dt;//latent heat of fusion in lit.atm

//OUTPUT
mprintf ('the latent heat of fusion is %3.2f lit.atm’
1)

Scilab code Exa 10.6 The rate of change of saturation pressure

clc
clear

//INPUT

1=539; //latent heat of water at 100deg.C in cal
j=4.2%10"7; //joules constant in ergs/cal

t=373; //temperature of water in K

v2=1670; //volume of steam formed in cc
vi=1;//intial volume in cc

g=981; //acceleration due to gravity in cm/sec 2
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d=13.6;//specific gravity

/ /CALCULATIONS

dp=1*j/(t*(v2-v1)*g*d);//rate of change of
cm of mercury

saturation pressure in

/ JOUTPUT

mprintf ("the rate of change of saturation pressure

is %3.2f ¢cm of hg’,dp)

of hg

Scilab code Exa 10.7 The volume

clc
clear

/JINPUT

of gram of steam

p1=77.371; //pressure at 100.5deg.C in cm of hg
p2=74.650; //pressure at 99.5deg.C in cm of hg
g=981; //universal gas constant in cm/sec 2

© 00 N O O i W N

= = e s e
U i W N = O

16
17
18

d=13.6; //specific gravity

1=537; //latent heat of vapourisation in cal/gm
t=373; //temperature of water in K
j=4.2%10"7; //joules constant in ergs/cal

vi=1;//intial volume in cc

/ /CALCULATIONS

v2=v1+(1xj/(t*x(pl-p2)*g*d));//volume of gram of

steam at 100deg.C in cc

/ JOUTPUT

mprintf (’volume of gram of steam at 100deg.C is %3.2

f cc’,v2)
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Scilab code Exa 10.8 The specific volume

clc
clear

//INPUT

t=350;//boiling point temperature in K

1=46; //latent heat of vapourisation in cal/gm

vi=1/1.6;//intial volume in cc

dp=2.3;//change in pressure with temperature in cm
of hg/deg.C

d=13.6;//specific gravity of mercury

g=981; //acceleration due to gravity in cm/sec”2

j=4.2%10"7; //joukes constant in ergs/cal

/ /CALCULTIONS
v2=v1+(1l*xj)/(t*dp*d*g);//specific volume in cc

//OUTPUT
mprintf (’specific volume of vapour of carbon is %3.3
f cc’,v2)

Scilab code Exa 10.9 The change in temperature

clc
clear

//INPUT

1=536; //latent heat of vapourisation in cal/gm
vi=1;//volume of 1 gm of water in cc

v2=1600; //volume of steam in cc

t=373;//boiling point of water in K
p=1;//pressure in cm of hg

d=13.6;//specific gravity of mercury

g=981; //gravitational constant in cm/sec 2s/cal
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j=4.2%10"7;//joules constant in erg/cal

/ JCALCULATIONS
dt=(t*x(v2-v1)*d*g)/(1*j);//change in temperature in
deg .C

//OUTPUT
mprintf (’change in temperature is %3.2f deg.C’,dt)

Scilab code Exa 10.10 The change in melting point

clc
clear

//INPUT

t=353; //temperature in K

p=76%x13.6%981; //pressure in dynes/sq.cm
v=0.146; //specific volume in cc/kg
1=35.6;//latent heat of fusion in cal/gm
j=4.18%x10"7; //joules constant in ergs/cal

/ /CALCULATIONS
dt=t*pxv/(1*j);//change in melting point per
atmosphere

//OUTPUT
mprintf ('the rate of change in melting point is %3.3
f per atmosphere’,dt)

Scilab code Exa 10.11 The change in freezing point of water

clc
clear
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//INPUT

1=79.6%4.18%10°7; //latent heat of water in ergs/gm
t=273.16; //temperature of water in K

v1=1.0001; //specific volume of water at Odeg.C in cc
v2=1.0908; //specific volume of ice at Odeg.C in cc
p=1.013%10"6; //pressure of atmosphere in dyne/sq.cm

/ /CALCULATIONS
dt=t*(v1i-v2)*p/1l;//change in freezing point of water
in deg.C

/ JOUTPUT
mprintf (’change inn freezing point of water is %3.4f
deg.C’,dt)

83



© 00 J O U i W N

o T e S e S G S Gy SO
S U WO NN = O

Chapter 11

Conduction of heat

Scilab code Exa 11.1 The amount of heat conducted

clc
clear

//INPUT

k=0.12; //thermal conductivity in cgs unit

t1=200; //temperature at one side in deg.C

t2=50; //temperature at other side in deg.C
t=3600; //time in sec

a=1;//area in sq.cm

t3=3;//thickness of the plate in cm

/ JCALCULATIONS
q=k*ax(t1-t2)*t/t3;//amount of heat conducted in cal

//OUTPUT
mprintf ('the amount of heat conducted is %3.2f cal’,

q)

Scilab code Exa 11.2 The rate of flow of water
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clc
clear

/JINPUT

k=0.9; //thermal conductivity in cgs unit

a=10; //area of the copper bar in sq.cm

t1=100; //hot side temperature in deg.C

t2=20; //cool side temperature in deg.C

d=25; //thickness of the bar in cm

t3=14; //temperature of water when entering in deg.C

/ JCALCULATIONS
m=k*ax(t1-t2)/(d*(t2-t3));//rate flow of water in gm
/sec

/ /OUTPUT
mprintf ('rate flow of water is %3.2f gm/sec’,m)

Scilab code Exa 11.3 The thermal conductivity of cork

clc
clear

//INPUT

i=1.18; //current in amperes

e=20; //potential difference across its ends in volts
j=4.2;//joules constant in joule/cal

a=2%10"4; //area of the slab in sq.cm

t=5;//thickness of the plate in cm

t1=12.5; //temperature at hot side in K

t2=0; //temperature at cold side in k

/ /CALCULATIONS

k=exi*t/(j*a*(t1-t2));//thermal conductivity in cgs
unit
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/ /OUTPUT
mprintf (’thermal conductivity of slab is %3.5f cgs

unit ’,k)

Scilab code Exa 11.4 The thermal conductivity of glass

clc
clear

//INPUT

1=30; //length of the tube in cm

t=100; //temperature at outside in deg.C

t1=40; //tempertaure of water when leaving tube in
deg .C

t2=20; //temperature of water when entering tube in
deg.C

m=165/60; //mass flow rete of water in cc/sec

r1=6;//internal radii in mm

r2=8;//external radii in mm

/ /CALCULATIONS
k=m*(t1-t2)*log(r2/r1)/(2%3.14%x1x(t-((t1+t2)/2)));//
thermal conductivity in cgs unit

/ JOUTPUT
mprintf (’thermal conductivity of the tube is %3.4f
cgs unit’,k)

Scilab code Exa 11.5 The thermal conductivity of nickel

clc
clear
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//INPUT

11=1.9; //length of the first bar in cm
12=5; //length of the second bar in cm
k2=0.92; //thermal conductivity in cgs unit

/ /CALCULATIONS
k1=k2%(11/12)"2; //thermal conductivity if first bar
in cgs unit

//OUTPUT
mprintf (’thermal conductivity of first bar is %3.3f
cgs unit’,k1)

Scilab code Exa 11.6 The temperature of the welded interface

clc
clear

/JINPUT

k1=0.92; //thermal conductivity of copper in cgs unit

k2=0.5; //thermal conductivity of alluminium in cgs
unit

t1=100; //temperature of copper in deg.C

t2=0; //temperature of alluminium in deg.C

/ /CALCULATIONS
t=k1*t1/(k1+k2);//welded teperature in deg.C

//OUTPUT
mprintf ('welded temperature is %3.2f deg.C’,t)

Scilab code Exa 11.7 The conductivity of rubber
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clc
clear

/JINPUT

w=23; //thermal capacity of calorimeter in cal

m=440; //mass of water in gm

1=14.6; //lenght of the rubber tube in cm

dt=0.019; //rate of change in temperature in deg.C/
sec

t=100; //temperature of steam in deg.C

t1=22; //temperature of the water in deg.C

t2=t1;//temperature of calorimeter in deg.C

ri=1;//external radii in cm

r2=0.75; //internal radii in cm

/ /CALCULATIONS
k=(w+m)*dt*log (r1/r2) /(2%3.14%x1x(t-((t1+t2)/2)));//
thermal conductivity in cgs unit

//OUTPUT
mprintf ("thermal cnductivity of rubber tube is %3.5f
cgs unit’,k)

Scilab code Exa 11.8 Heat lost per hour

clc
clear

//INPUT

ti=18; //inside temperature in deg.C

to=4;//outside temperature in deg.C

k1=0.008; //thermal conductivity of stone in cgs unit
k2=0.12; //thermal conductivity of steel in cgs unit
t=3600; //time in sec

t1=25; //thickness of the stone in cm
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t2=2; //thickness of the steel in cm
a=10"4; //area of the cottage in sq.cm

/ /CALCULATIONS
ql=ki*a*(ti-to)*t/(t1);//heat lost by stone per hour
in cal
q2=k2*a*(ti-to)*t/t2;//heat lost by steel per hour
in cal

//OUTPUT
mprintf ("heat lost by stone is %3.2f cal \n heat
lost by steel is %3.2f cal’,ql,q2)

Scilab code Exa 11.9 The temperature of the surface

clc
clear

//INPUT

11=4; //length of the slabl in cm

12=2; //length of the slab2 in cm

k1=0.5; //thermal conductivity in cgs unit
k2=0.36; //thermal conductivity in cgs unit
t1=100; //temperature of the slabl in deg.C
t2=0; //temperature of the slab2 in deg.C

/ /CALCULATIONS
t=k1*12*t1/((k2*11)+(k1*12));//temperature of the
commaon surface in deg.C

//OUTPUT
mprintf ('the temperature of the common surface is %3

0f deg.C7,t)
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Scilab code Exa 11.10 The distance

clc
clear

//INPUT

t1=15; //temperature of the one end of the slab in
deg .C

t2=45; //temperature of the other end of the slab in
deg.C

k=0.3; //thermal conductivity in cgs unit

d=7;//density of the material in gm/cc

cp=1;//specific heat of the material in kj/kg.K

t=5%3600; //time in sec

dt=1/10; //thermometer reading in deg.C

/ /CALCULATIONS

b=(3.14*d*cp/(t*k)) " (0.5);

x=(log ((t2-t1)/dt))/b;//distance from which
temparature variation can be detected in cm

//OUTPUT
mprintf ("the distance from which temparature
variation can be detected is %3.1f cm’,x)
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Chapter 12

Radiation

Scilab code Exa 12.1 The ratio of rates at which heat lost

clc
clear

//INPUT

t1=300; //temperature of the surroundings in K

t2=900; //temperature of the hot body p in K

t3=500; //temperature of the hot body q in K

a=5.67x10"-8; //stefan boltzmann constant in W/m"2.K
"4

/ /CALCULATIONS

ql=a*(t2°4-t1°4);//heat lost from hot body p in w/m
q2=;i(t3“4—t1‘4);//heat lost from hot body q in w/m
q=q13q2;//ratio of heat lost from two substances
//OUTPUT

mprintf (’ratio of heat lost from two substances is

%3.2f7,q)
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Scilab code Exa 12.2 The stefan constant

clc
clear

/JINPUT

t1=573; //temperature of the hot side in K

t2=273; //temperature of the coll side in K

m=82; //mass of the black body in gm

cp=0.1;//specific heat of the black body kj/kg.K

dt=0.35;//ice melting at a rate of temperature in
deg.C/sec

a=8; //area of black body in sq.cm

/ JCALCULATIONS
s=mxcpxdt/(a*(t17°4-t274));//boltzmann constant in
cal/sq.cm/sec/deg 4

/ /OUTPUT
mprintf ('boltzmann constant is %3.13f cal/sq.cm/sec/
deg™4’,s)

Scilab code Exa 12.3 The ratio of intensities

clc
clear

//INPUT

r1=60; //distance of first black body in cm

r2=30; //distance of second black body in cm
t1=873; //temperature of first black body in K
t2=573; //temperature of the second black body in K
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/ /CALCULATIONS
i=(t274/t1°4)*(r1°2/r2°2);//ratio of intensity of
radition

//OUTPUT
mprintf ('ratio of intensity of radition is %3.2f7,1i)

Scilab code Exa 12.4 The heat radiated per second

clc
clear

//INPUT

t1=1373; //temperature of the sphere in K

t2=283; //temperature of the black body in K
r=4.17%10"5; //rate of heat radiate in ergs/sq.cm/sec
a=4%3.14%(6°2);//surface area of the sphere in sq.cm

/ /CALCULATIONS
tr=r+a*(t1°4/t2°4)*(2.39005736%10~(-8));//total heat
radiated in cal/sec

/ JOUTPUT
mprintf (’total heat radiated is %3.2f cal/sec’,tr)

Scilab code Exa 12.5 The time for sun rays to fall

clc
clear

/JINPUT
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h=2%3.14%100; //heat received by the lens per min in
cal

m=25; //mass of the ice in gm

1=80; //latent heat of ice in cal/gm

/ JCALCULATIONS

t=m*1/h;//time for which the sun rays falls in min

/ /OUTPUT

mprintf ('time for which the sun rays falls is %3.2f
min’,t)

Scilab code Exa 12.6 The amount of heat reeived

clc
clear

//INPUT

d=0.35; //diameter of the mirror in m

t=5;//time in min

T=16; //temperature of water found to be in deg.C
m=60; //mass of water in gm

mc=30; //mass of calorimeter in gm
cp=0.1;//specific heat of copper in cal/gm/deg.C

/ JCALCULATIONS
q=(m+cp*mc) *T*4/(5*%3.14xd"2); //amount of heat
received by earth in cal

/ /OUTPUT
mprintf (’amount of heat received by earth is %3.2f
cal’,q)
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Scilab code Exa 12.7 Rate of heat lost

clc
clear

//INPUT

r1=5;//radius of first sphere in cm

r2=10; //radius of second sphere in cm

t1=700; //temperature of the first sphere in K
t2=500; //temperature of the second sphere in K
t=300; //temperature of the enclousure in K

/ /CALCULATIONSI
dc=(r2/r1)*(t1°4-t"4)/(t274-t"4);//ratio of cl/c2
r=r1°3xdc/r2°3;//rate of heat loss

/ JOUTPUT
mprintf ('rate of loss of heat is %3.2f°,r)

Scilab code Exa 12.8 The temperature

clc
clear

//INPUT

t1=600; //temperature of the black body in K
t0=300; //temperature of the surroundings in K
d=6;//deflections in galvanometer

d1=400; //deflection in divisions

/ /CALCULATIONS
dt=(d1/d)*(t1°4-t0"4);//change of temperature
t2=(dt+t0°4) ~(1/4);//end temperature in K

/ JOUTPUT
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mprintf (’end temperature of the temperature is %3.2f

K’,t2)

Scilab code Exa 12.9 The temperature of the regel

clc
clear

//INPUT
n=17000; //luminosity of star compared to sun
t=6000; //temperature of the sun in K

/ JCALCULATIONS
tl=(n*t~4) "~ (1/4);//temperature of the star in K

/ JOUTPUT

mprintf (’the temperature of the star is %3.2f K’,t1)
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Chapter 13

Introduction to statistical

thermodynamics

Scilab code Exa 13.1 The probability

clc
clear

//INPUT

pl=1/6;//probability for
p2=1/6;//probability for
n=2; //the no.of dice are

/ /CALCULATIONS
p=pl*p2*n;//the required

/ JOUTPUT

mprintf (’the required probability

the first throw gives 6
the first throw gives 5

two

probability

18

is %3.2f",p)

Scilab code Exa 13.2 The probability of drawing four aces
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clc
clear

/JINPUT

pl=4/52; //the probability for getting ace in first
draw is

p2=3/51; //the probability for getting ace in second
draw is

p3=2/50; //the probability for getting ace in third
draw 1is

p4=1/49; //the probability for getting ace in fourth
draw is

/ /CALCULATIONS
p=pl*p2*p3*p4;//total probability is

/ JOUTPUT
mprintf ('total probability is %3.7f7,p)

Scilab code Exa 13.3 The probability of distribution

clc
clear

//INPUT

n=12; //no.of particles
nl=§8,;

n2=4;

/ /CALCULATIONS
p=n*(n-1)*(n-2) *(n-3) /(n2*(n2-1) *(n2-2)*(2°n)); //
probability of distribution (8,4)

/ JOUTPUT
mprintf (’probability of distribution (8,4) is %3.5f’
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Scilab code Exa 13.4 The probability

clc
clear

//INPUT

m=32; //mass of the oxygen molecule in gm

n=1.67%10"-27; //mass of one electron

k=1.38%x10"-23; //boltzzmann constant in ergs/cal

t=200; //temperature of the oxygen in K

c=(100+101) /2; //average speed of the oxygen molecule
in m/s

/ /CALCULATIONS

a=m*n/(2*3.14%xkx*t) ;

p=4*3.14x(a"(3/2))*(c"2)*(2.303"(-a));//probability
that the oxygen speed is lies between in m/sec

//OUTPUT
mprintf ("probability that the oxygen speed is lies
between is %3.16f m/sec’,p)
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