
Chapter 2
System Identification Techniques

An intellect knowing at any given instant of time, all forces
acting in nature, as well as the momentary positions of all things
of which the universe consist, would be able to comprehend the
motions of the largest bodies of the world and those of the
smallest atoms in one single formula, provided it were
sufficiently powerful to subject all the data to analysis.

Pierre Simon Laplace (1749–1827)

2.1 Introduction to System Identification

Modeling is the abstraction of a real process to characterize its behavior.
Scientific modeling aims to enhance the investigation of phenomena in order to
reveal and better understand cause-effect relationships [1]. The model definition
given by Eykhoff [2] introduces the concept of “essential aspects”: “... [model] is a
simplified representation of the essential aspects of an existing system (or a system
to be constructed), which presents the knowledge of the system in a usable form”.

The set of processes in a system determines the behavior of the system. Every
process is determined by its physical and chemical properties, which are not always
easily known. A model tries to emulate the ‘essential aspects’ of the system behavior,
simplified by choosing the most significant properties. So, modeling techniques can
be classified as:

• a priori modeling, white-box or morphological modeling, by making simple
experiments to inquire into the physical or chemical laws involved.

• a posteriori modeling or black-box modeling, by building a model based only on
data (data-driven) without having previous knowledge of the system. The model
describes how the outputs depend on the inputs, not how the system actually is,
and characterizes the system dynamics (delays, speed, oscillations, and others),
though the physical interpretation of the results is not straightforward.
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• grey box modeling is an intermediate technique when peculiarities of internal
laws are not entirely known, so it is based on both insight into the system and on
experimental data analysis.

System identification tries to estimate a black or grey model of a dynamic system
based on observing input-output from experimental data. Zadeh (1962) defined sys-
tem identification as: “... the determination on the basis of input and output, of a
system (model) within a specified class systems (models), to which the system under
test is equivalent (in terms of a criterion)”.

The availability and reliability of the design techniques of system identification did
expand the application fields beyond the scope of industrial applications. As a result,
system identification models have been applied in other diverse fields, for example,
economy, environment, biology, psychology, biomedical research, hydrology, and
glaciology. The identification problem requires a set of model structures, a validation
criterion and an aim [3]. Criteria and models will be presented over the course of
this chapter. Some examples of identification aims could be listed here:

• To design control strategies for a particular system (e.g., in optimizing an electrical
microgrid operation).

• To analyze the properties of the system (e.g., quantity rates in a medication reac-
tion).

• To forecast the evolution of the system (e.g., future climate prediction according
a IPCC downscaling model)

• To identify hidden factors influencing a system (e.g., sun spots in the karst spring).
• To improve the internal knowledge of the system (e.g., the delay in the aquifer

discharge with respect to precipitation events).
• To identify the interaction between coupled systems (e.g., climate and glaciers).

The objective of this chapter
This chapter surveys the main approaches to identification and analysis of
systems and their theoretical basis, in order to set the methodological scene
for the study of the experimental cases described in later chapters, especially
highlighting the procedures that mostly have been implemented in natural
systems.

Outline of this chapter
The first Sect. 2.2 of this chapter deals with problems in the acquisition of data
from sensors including the sampling chosen (2.2.1) and treatment of outliers
(2.2.2) to reach a sufficient time series quality for the subsequent treatment of
the information.
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Section 2.3 is a review of the classical time series as the first approach
to understand the underlying mechanism in the system. Two scenarios are
presented: time domain analysis (2.3.1) with autocorrelation structures, and
frequency domain analysis (2.3.2) with an explanation of concepts like Fourier
transform and frequency spectrum.

Although wavelet techniques are included in the frequency domain issues,
a special section is dedicated to wavelet techniques (2.4), because of its promi-
nent application in the practical cases. The section contains a description of
mother wavelets, detailed clarification of wavelet transform (2.4.2), the process
of estimation of the wavelet power spectrum (2.4.3), and some discussions on
using these techniques (2.4.4).

A review of model structures (2.5) is necessary for the identification process
to select suitable, identifiable model structures. Some linear time-invariant
models are described in Sect. 2.5.1. Nonlinear models (2.5.3) go through
Volterra series (2.5.3.1) and Hammerstein-Wiener models (2.5.3.2).

Section 2.6 deals with several identification techniques, starting with the elu-
cidation of the posed problem (2.6.1) and a simple literature overview (2.6.2).

Parametric identification (2.8) relies on a model previously defined by a
set of parameters that must be calculated to accomplish a given quality crite-
ria. Linear techniques are given in (2.8.1) with some advice on selection and
verification criteria of the models (2.8.2).

Nonparametric identification methods are described in 2.7, starting with
methods in the frequency domain (2.7.2), including classical spectral analy-
sis (2.7.2.1), going on to wavelet cross spectrum (2.7.2.2), and finishing with
wavelet coherence fundamentals (2.7.2.3). In the time domain Sect. (2.7.1)
there are methods for system identification, including cross correlation
(2.7.1.1) and impulse response (2.7.1.2).

A final section provides an overview of nonlinear identification tech-
niques (2.9) which serves as a tour of nonlinear parametric identification
(2.9.1) remarking on the main issues of Volterra identification (2.9.1.1) and
Hammerstein-Wiener identification (2.9.1.2). Additionally, methods pertain-
ing to nonlinear nonparametric identification are mentioned (2.9).

Finally, in the conclusion Sect. 2.10, important assertions related to this
chapter are offered.

2.2 Time Series

To capture critical information about the processes to be investigated, field data are
achieved through the sensor network. Process variables should be sampled for a
duration and sampling frequency enough to obtain those quality time series that the



14 2 System Identification Techniques

analysis requires. The sequence of observations on one variable y(t), t ∈ T (T is the
discrete times domain), is called time series. The observation are usually equally
spaced and indexed by integers (t = 1,…,n) where n indicates the number of obser-
vations. The main objective of time series analysis is to get mathematical inferences
from the sample data obtained from field sensors.

A lot of problems can be solved by time series as: prediction (e.g., future weather
precipitation), identification or abnormal peaks (e.g., outbursts in a glacier discharge),
trends (e.g., sea global warming in the last century), etc.

Before performing the analysis of the time series, some issues should be addressed
on the form of achieving raw data, check the integrity and reliability of preparing pro-
cedures; i.e., the sampling method, the outliers detection, and the lost data recovery.

2.2.1 Sampling Period

In many monitoring applications, there are some problem related to sensor devices
to sample environment variables, mainly concerning with computing data as the
memory size, processing capability and power supply. Sampling is the process by
which continuous time signals—such as air temperature or water levels—are turned
into discrete time signals. About batteries, if the sampling frequency is set too high,
then the energy consumption would be so high that the sensor battery would be
depleted too soon. To avoid this problem, the sampling frequency can be reduced,
but this is not always possible. The Nyquist-Shannon sampling theorem states that if
a function y(t) contains no frequencies higher than ωN , it is completely determinable
by a sampling process of frequency 2ω. So, the sampling frequency ωS should be
bounded according the Eq. 2.1:

2ω = ωN < ωS < ωC (2.1)

where ωN is the Nyquist frequency and ωC is the critical frequency for the sensor
battery duration. On this matter, Alippi et al. [4] presented an adaptive sampling algo-
rithm for effective energy management in wireless sensor networks. Some of these
sensors require computing capability to integrate a distributed artificial intelligence
which offers a wide range of possibilities for the operation, automation and control
of different systems [5].

The Nyquist-Shannon criterion provides some clearly stated bounds, but it does
not assure that a system can operate right at the Nyquist rate. So, some practical
caveats should be taken in mind in designing a sampling process. The Nyquist crite-
rion assumes: a sampling is regular (low noise); the value obtained for each sample
should have an infinite precision (issue never happens in sampling natural system);
there can be no component in the original signal higher than those correspond to
half the sampling frequency; and the criterion does not take in account if (so preva-
lent in system identification) the signal is going to be processed (modified) after
sampling [6].
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2.2.2 Outliers

Before performing the analysis of the time series, a preparation phase is carried out
to check the integrity and reliability of measurements. Outliers are the discordant
and unexpected values that can appear in a time series, which Hawkins [7] defined
as: “the observation that deviates so much from other observations as to arouse
suspicion that it was generated by a different mechanism”. Barnett and Lewis [8]
named outliers as the data deviated markedly from other members of the sample in
which it occurs.

Then, the goal of the outliers identification is the location of suspicious values to
removed or recovered by a more suitable value, in order to avoid contamination and
distortion of the underlying probability distribution. Really, it is hard to tell whether
a value is an outlier or true data. So, outliers not always must be considered an
erroneous data to be rejected. Outliers can be values produced by natural dynamics
of the processes to study, but there are outliers that can be due to external factors of
the system, as sensor device failure, mistake in entering data, malfunctioning of the
datalogger, break in the communication, etc. [9].

Statistics can calculate if the probability of the candidate observation is small or is
enough far from the rest, to be considered as an outlier. Among the distinct methods
to detect and correct outliers, the Rosner criterion is well known [10]. A generalized
extreme studentized deviate (ESD) is the fundamentals in Rosner criterion to detect
from 1 to k outliers in a data set that follows an approximately normal distribution.
This procedure handle the error both under the hypothesis of no outliers and under
the alternative hypotheses of 1, 2,…, k−1 outliers. Rosner’s method detects and
removes multiple outliers in a single step.

Under the hypothesis that an excessive deviation of the expected spectrum of a
signal is interpreted as the possible presence of outliers, a new test of outliers has
been proposed and applied by Chinarro et al. [11] to raw data of Fuenmayor spring.
It is the Wavelet-Rosner test, as an extension of Rosner test in the frequency domain
(Sect. 2.4.2.4).

2.3 Classical Time Series Analysis

Time series analysis definition was given by Tukey [12] : “Time series analysis
consists of all the techniques that, when applied to time series data, yield, at least
sometimes, either insight or knowledge, and everything that helps us choose or under-
stand these procedures”. Thus, a time series can unveil some concealed information
about the system, as periodicity, outliers and trends, using typical statistics estimators.

Univariate analysis methods characterize the structure of an individual time
series—simple analysis—while bivariate methods study the relationship between
two different time series—cross analysis.
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Under the concept “classical time series analysis” two approaches are studied.
One is the analysis in the time domain based on concepts like autocorrelation and
autoregression. Another is the analysis developed in the frequency domain that deals
with spectral analysis.

2.3.1 Time Domain Analysis

The time series y(t) is a discrete signal expressed as {y(kT )} and {x(kT )} that is a
sequence obtained from the output (analogously x(t) for the input) of a system at
sampling instants (tk = kT ; k = 0, 1, 2, . . . , N ), where T is sampling interval and
N the number of samples.

Autocorrelation refers to the correlation of a time series with its own past and
future values. In order to determine the expression for autocorrelation, the following
functions over a discrete time series y(kT ) = {y1, y2, . . . , yN } are defined below.

(a) Variance:

σ 2
y = 1

N

N∑

k=0

(y(kT ) − μ)2 (2.2)

where μ is the mean of N elements in the time series y(kT ).

(b) Autocovariance with lag = τ :

Cτ
y = 1

N

N−τ∑

k=0

[(y(kT ) − μ) (y(k + τ)T − μ)] (2.3)

(c) Autocorrelation as the rate between the variance and the autocovariance:

RN
y = Cτ

y

σ 2
y

; for any τ : RN
y (τ ) = Cy(τ )

σ 2
y

(2.4)

Coefficient RN
y at lag τ given in Eq. 2.4 defines the autocovariance (Eq. 2.3)

normalized by the variance (Eq. 2.2) [13]. Positive autocorrelation might be con-
sidered a specific form of ‘persistence’ of events, and time series is better predictable
because future values depend on current and past values.

2.3.2 Frequency Domain Analysis

A useful tool to characterize signals is the power density spectrum, due to spectral
analysis is concerned with estimating the relative importance of different frequency
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bands in a signal. The spectrum from a finite-length sequence of samples yN (kT ),
with (K = 0,1,…,N), is given by Eq. 2.5:

φN
y (n) = 1

N
|YN (n)|2 (2.5)

where YN (k) is the Discrete Fourier Transform (DFT) of the time series yN (kt) and
calculated by:

F {yN (kT )} = YN (n) =
N−1∑

k=0

yN (kT ) e−(i2πnk/N )

As YN (n) is a discrete time signal, the frequency variable is also discrete ω =
n 2π

N . Each YN (n) is a complex number that encodes both amplitude and phase of
a sinusoidal component of function yN (kT ). The sinusoid frequency is k/N cycles
per sample. φN

y (n) is called the periodogram of yN (kT ). Periodogram analysis was
proposed by Stokes [14] and applied by Schuster [15] to analyze sunspot data.

However, this estimate is very fluctuating and only gives a rough picture of the
power density spectrum. See Wellstead [16] or Ljung and Glad [3] for an explanation
of this problem. A first solution is to average a number of periodograms calculated
over different segments of the full signal sequence. It is called the Welch’s method
[17]. The power density spectrum is the Fourier transform of the autocorrelation, as
expressed in Eq. 2.6. See, for example, Ljung and Glover [18] or Ljung and Glad [3]
for the basis of this estimate.

φN
y (n) =

N−1∑

k=−N+1

RN
y (k)e−(i2πnk/N ) (2.6)

The most extended method to power density spectrum is the Blackman-Tukey
procedure [19]. The idea is to smooth the periodogram by averaging over a number
of neighboring frequencies using a windowed technique. For this last technique,
another estimate of the power density spectrum is normally used:

φN
y (n, W ) =

M−1∑

k=−M+1

W (k)RN
y (k)e−(i2πnk/N ) (2.7)

where W (k) is called the lag window and M is the window size that should be
small compared with N . There are several window functions, but the most common
used in spectral analysis is the Hamming window [3]. In hydrology, it is frequently
necessary to numerically evaluate the real part of the one-sided Fourier transform
of of autocorrelation. The expression of the spectral density function of a signal is
given by:
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S f = 2

[
1 + 2

N∑

k=1

W (k)RN
y (k) cos 2π f k

]
(2.8)

where W(k) is the lag window, commonly a Hamming window in spectral analysis.

2.4 Wavelet Transform Techniques

Wavelet techniques supply solutions to the time-scale analysis by decomposing a
signal into a superposition of scaled and shifted versions of an original wavelet (also
called mother) with specific properties, as a fast-decaying oscillating function. During
the last 15 years, great strides in the development of the theory of wavelets have
made. The search continues in new application areas and theoretical approaches. The
literature devoted to wavelets is very voluminous, so a strict selection of fundamentals
is treated in the next sections.

Wavelet theory emerges in the mid-1980s by Grossman and Morlet [20] who
apply Gabor wavelets to model echo signals for underground oil prospecting. Jean
Morlet was prospecting oil for the Elf-Aquitaine company, sending pulses to under-
ground and analyzing their echoes by Fourier transforms; giving that, the high fre-
quencies of the echoes correspond to thin layers and the low frequencies to the thicker
ones. Nevertheless, he found that a lot of reflected signals corresponding to the dif-
ferent layers, were interfering with each other, and he can not separate the required
ones. If he selects an extremely small windows (Windowed Fourier Transformation
(WFT) [21]) to analyze only signals in high frequencies, all information about low
frequencies would be lost. Morlet had to manage the problem in a different way.
Instead of fixing the size of the window, he kept constant number of oscillations in
the window and varied the width of the window, by stretching or compressing. This
made possible to decompose signals simultaneously by time and frequency, giving
useful information: what frequency and when it is produced. The wavelet engineering
was born [22].

In a historical overview (Table 2.1), the wavelet theory starts from methods that
have been essential in the development of engineering during almost two centuries.
Haar [23] introduced the first compactly supported family of functions. After a long
time elapse without contributions, Gabor [21] introduces a family of non-orthogonal
wavelets with two components, a complex sinusoidal carrier and a Gaussian envelop.
A wavelet filter banks for decomposition and reconstruction of a signal were intro-
duced by Esteban and Galand [24], although Crochiere et al. [25] roughly introduce
the same idea in speech acoustics, called sub-band coding.

The literature rapidly spread out and wavelet analysis is now used extensively
in physics, geophysics [26], economy [27], epidemiology, neuroscience, signal
processing Ricker [28], hydroclimatology [29], oceanography [30], hydrogeology
[31], hydrology [32], electricity demand [11, 33], remote sensing data [34], comput-
ing complex problem as Maxwell’s curl equations [35], and other fields.
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Table 2.1 History of wavelets

Year Authors Facts

1807 J.B. Fourier Any periodic function can be expressed as an infinite sum of sine and
cosine waves of different frequencies. His ideas faced much criticism
from Lagrange, Legendre and Laplace for lack of mathematical rigor
and generality, and his papers were denied to be published, until 15
years later

1909 A. Haar He discovers a “base” of functions that are now recognized as the
first wavelets. They consist of a short positive pulse followed by a
short negative pulse

1930 J. Littlewood and
R. Paley

Local information on a wave, as the duration of a pulse of energy can
be recovered by grouping the terms of its Fourier series in “octaves”

1946 D. Gabor He adapted the Fourier Transform to analyze only a small section of
the signal at a time. Gabor’s adaptation, called Short-Time Fourier
Transform (STFT), decomposes a signal into a two-dimensional
function of time and frequency. The result is a “packets time-
frequency” or “frequency Gabor”

1960 A. Calderon He provides a mathematical formula that allows mathematicians
subsequently recover a signal from its wavelet expansion

1976 D. Esteban and C.
Galand

They recognize the subband coding, a way of encoding digital trans-
missions for telephone

1981 J. Morlet He discovers a way to decompose the seismic signals where called
wavelets of constant shape. Ask for help to Alex Grossmann, quan-
tum physicist, to show that the method works

1982 E. Adelson and P.
Burt

They developed the “pyramidal algorithm” for image compression

1984 Morlet
and Grossmann

They first introduced the term “wavelet” in mathematical language

1985 Y. Meyer Before 1985, a lot of researchers thought that there was no orthogonal
wavelet except Haar wavelet. Yves Meyer constructed the second
orthogonal wavelet called Meyer wavelet (soft orthogonal wavelets)

1986 S. Mallat Shows that the Haar basis, the Littlewood-Paley octaves, frequencies
and filters Gabor, and subband from Galand and Esteban, are all
related to algorithms based on wavelets

1987 I. Daubechies She constructs the first smooth orthogonal wavelets with a solid
foundation and systematical method, to be used as a practical tool
that any scientist can easily program and operate

1988 S. Mallat and Y.
Meyer

Mallat and Meyer proposed the concept of multiresolution

1990 D. Donoho and I.
Johnstone

They used wavelets to “remove noise” of images, making them even
sharper than the originals

1992 T. Hopper,
J. Bradley and C.
Brislawn

They developed a method based on wavelet to compress its huge
database of fingerprints that were applied in Criminal Information
Services of FBI

(continued)
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Table 2.1 continued

Year Authors Facts

1995 Pixar Studios Presentation of film Toy Story 2, where some forms are provided by
subdivision surfaces, a technique mathematically related to wavelets

1996 W. Sweldens He introduced a new technique, the so-called lifting scheme, which
became the basic tool of second generation wavelets

1999 The International
Standards Orga-
nization

Published a new digital image compression called JPEG-2000. The
new standard uses wavelet to compress image files in a ratio of 1:200,
without appreciable loss in image quality

Source Daubechies et al. [36] and information gathered from wavelet literature

2.4.1 Wavelet Function

The wavelet transformation needs a basis function—like Fourier transform requires
sinusoid basis function, though in wavelets, there are a wide range of basis function
families. Principles and conditions of this basic functions are related below.

L2(Rd) is a Hilbert space and denotes the set of square integrable functions, i.e.,
the set of functions defined on the real line such that

∫ ∞
−∞ |x(t)|2dt < ∞. Since this

integral is usually referred to as the energy of the function x, this space is also known
as the space of functions with finite energy. Therefore, L2(Rd) has an inner product
〈x, y〉 = ∫ ∞

−∞ x∗(t) · y(t)dt , and an associated norm ‖x‖ = 〈x, y〉1/2.
The term wavelets refers to a set of small waves formed by dilations and translation

of a single function ψ(t) which should be square integrable over the range of real time
of space L2(R). Table 2.2 summarizes the requirements to be met by a wavelet [37].

The function ψ(t) is called “mother wavelet” or “basic wavelet” while the dilated
and translated functions derived from the “mother wavelet” are called “daughter
wavelets” or simply “wavelets” (Fig. 2.1). These daughter wavelets have the same
shape as their mother wavelet. Their amplitude should rapidly decay away from the
center of the wave in both time and frequent domains. The functional relationship
between daughter ψs,τ (t) and mother ψ(t), in the scale s and displacement τ , is

Table 2.2 Requirements of a wavelet function ψ ∈ L2(Rd ) ( ψ̂ is the Fourier transform of the
wavelet function ψ)

Description Condition

a The average value of the wavelet in the time domain should be zero
∞∫

−∞
ψ(t)dt = 0

b The function must have finite energy
∞∫

−∞
|ψ(t)|2dt = 1

c Admissibility . The inverse wavelet transform only exists for
0 < Cψ < ∞. This means that the analyzed signal can be
reconstructed without loss of information. The constant Cψ is
called the admissibility constant

Cψ = 2π
∞∫

−∞

∣∣∣ψ̂(ω)

∣∣∣
2

|ω| dω
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Fig. 2.1 Morlet’s “wavelet daughters” ψs,τ (t), that are dilated and translated functions derived
from the “mother wavelet” ψ(t), according with Eq. 2.9

expressed as (Eq. 2.9):

ψs,τ (t) = 1√
s
ψ(t)

(
t − τ

s

)
(2.9)

where s, τ are real and s>0. Wavelets expressed by (2.9) include an energy nor-
malizatation s−1/2 which keeps the energy of the daughter wavelets the same as the
energy of their mother.

Morlet wavelet is the most popular complex wavelet used in practice, which
mother wavelet is defined as Eq. 2.10 and represented in Fig. 2.1

ψ(t) = 1
4
√

π

(
e jωt − e− ω2

2

)
e− t2

2 (2.10)

where ω is the central frequency of the mother wavelet. Note that the term e− ω2
2

is used for correcting the non-zero mean of the complex sinusoid, and it can be
negligible for ω < 5

For practical purposes, for large ω, e.g., ω > 5, Eq. 2.10 can be simplified [38]
by taking a complex cos wave modulated by a Gaussian envelope (Eq. 2.11):
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ψ(t) = 1
4
√

π
e jωt e− t2

2 (2.11)

Morlet wavelet provides a better energy localizing and higher frequency resolution,
although the frequency-coordinate window shifts along frequency axis as scaling.

2.4.2 Wavelet Transforms

The basic aim of wavelet analysis is both to determine the frequency (or scale) content
of a signal and to assess and determine the temporal variation of this frequency content
[39]. Although wavelet analysis covers a wide range of methods and applications,
fundamental operations are wavelet transforms, which are appropriate for the many
natural phenomena that have the property that high frequency events happen for short
durations.

2.4.2.1 Continuous Wavelet Transform (CWT)

A wavelet transform correlates the signal with a family of waveforms ψs,τ or
wavelets—it is also called time-frequency atoms by Mallat [40] and kernel by
other authors—that meet the conditions of Table 2.2. The corresponding continu-
ous wavelet time-frequency transform of f ∈ L2(R) is expressed by (Eq. 2.12):

Wψ,s,τ { f (t)} =
∫ ∞

−∞
f (t) · ψ∗

s,τ (t)dt = 〈
f, ψs,τ

〉
(2.12)

where Wψ,s,τ { f (t)} is the CWT of f(t) with basis function family ψs,τ .
The wavelet coefficients represent a measure of similarity in the frequency content

between a signal and a chosen wavelet function. These coefficients are computed as
a convolution of the signal and the scaled wavelet function, which can be interpreted
as a dilated band-pass filter because of its band-pass like spectrum.

2.4.2.2 Continuous Wavelet Transform with Discrete Coefficients (CWTDC)

Signals are usually band-limited, which is equivalent to having finite energy, and
therefore just a constrained interval of scales is useful. However, the continuous
wavelet transform produces redundant information when capturing all the character-
istics of the signal. The Discrete Wavelet Transform (CWTDC) has been created to
minimize the redundancies produced by CWT.

It is possible to compute the wavelet transform for just a proper selection of values
of the frequency and time parameters and still not loose any information as recovering
the original time series from its transform. The continuous wavelet transform with
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discrete coefficients is very similar to the continuous wavelet transform, but the
parameters s and τ are fixed to the power of 2, following these expressions:

τ = 2−jn, s = 2−j, for m ≥ 0 and n ∈ (−∞,∞) (2.13)

The functional relationship between daughter ψk, j (t) and mother ψ(t), in the scale
k and displacement j, is expressed as:

ψk, j (t) = 2 j/2ψ(2 j − k) (2.14)

So, Eq. 2.14 is a special case of Eq. 2.9. From the continuous wavelet function
(Eq. 2.12) and the new values of s and τ from Eq. 2.13, CWTDC takes the form
of Eq. 2.15.

Wψ,k, j { f (t)} =
√

2 j

∞∫

−∞
f (t) · ψ∗

k, j (2
j t − k)dt (2.15)

2.4.2.3 Discrete Wavelet Transform (DWT)

Although the output of the continuous wavelet transform contains discrete coeffi-
cients, its implementation could be hard, since the input signal is continuous. Discrete
wavelet transform is the alternative.

If f ∈ L2(R) and h ∈ L1(R), the convolution between the two signals: g(x) =
( f ⊗ h)(x) = ∫ ∞

−∞ f (t)h(x − t)dt . The continuous wavelet transform of a f(t)
signal, given at Eq. 2.12, yields a infinite set of wavelet coefficients. In a discrete
form, where a time series u is a discrete sequence values of (u1, u2, . . . , un) separated
in time by a constant time interval δt , the expression for the wavelet coefficient is
given at time index j and scale s in the expression 2.16.

Wψ,s, j (un) =
N−1∑

n=0

unψ∗
[
(n − j)δt

s

]
(2.16)

where un is the discrete sequence, N denotes the length of the studied time series,
ψ∗ is the wavelet complex conjugated, and δt denotes the sampling period.

The algorithm to calculate the wavelet transform from Eq. 2.16, is a loop of
convolutions performed N times for each scale, where N is the number of elements
in the time series.

The convolution theorem states that the Fourier transform of the convolution of two
functions is the product of Fourier transforms of each function F {u(t) ⊗ y(t)} =
F {u(t)}⊗F {y(t)}. Performing the Fourier transform in both sides of the Eq. 2.16,
the inverse of wavelet transform can be expressed as Eq. 2.17. Applying the Fourier
inverse transform to F

{
Wψ,s, j (un)

}
, and following the work of Grinsted et al. [26],
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an efficient algorithm has been created to compute the discrete wavelet transform
for the natural time series of this dissertation. This DWT can be computed by the
inverse Fourier transform, as the Eq. 2.17 states.

F
{
Wψ,s, j (un)

} =
N−1∑

k=0

ûk · ψ̂∗(sωk)e
iωk nδt (2.17)

where k = 0 …N−1 is the frequency index, the Fourier transform of the function
ψ(s, t) is ψ̂(sωk). The angular frequency ωk admits the following values:

ωk = (2πk)/(Nδt) for k ≤ N/2

ωk = −(2πk)/(Nδt) for k > N/2

2.4.2.4 Ouliers Detection in the Frequency Domain

Since outlier is an observation with characteristics of high-frequency phenomena,
then wavelet technique is an excellent tool as outlier detector because of good location
of frequencies. Most of energy and information of the data are usually concentrated
in the first few coefficients. The outliers, as the noise, are on high frequency bands
and reside in high-order coefficients. Therefore, the true data and outliers can be
separated in the wavelet space (frequency domain).

In a discrete wavelet analysis, a signal u(t) can be represented by a decomposition
of the signal into approximations A j and detailed coefficients D j . This is accom-
plished using shifted and scaled versions of the original (mother) wavelet as given
in Eq. 2.16. In practice, the wavelet coefficients are computed efficiently using the
pyramid algorithm, introduced in the context of multiresolution analysis by Mal-
lat [40], that is based on a pair of high and low pass filters. The DWT in Eq. 2.16
produces a matrix of coefficients [ci,k]. Then, the function can be represented by:

u(t) =
j∑

i=−∞

∑

k

ci,kψi,k(t) =
j−1∑

i=−∞

∑

k

Di,kψi,k(t)+
∑

j

A j,kψ j,k(t) (2.18)

Ai is the approximation component set of the time series, and represents the low-
frequency content. This low pass filter is like to continuously calculate a moving
average of weighted data. Di is the detailed component set of the time series, and
represents the high-frequency content. This high pass filter consists on a moving
difference of the data. These two sets of wavelet coefficients facilitate the recursive
form of the pyramid algorithm [40].

Struzik and Siebes [41] propose a methodology capable of determining the statis-
tical nature of the non-stationary process. The method checks the internal consistency
of the scaling behavior of the process within the paradigm of the multifractal spec-
trum. Deviation from the expected spectrum is interpreted as the potential presence
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of outliers. Chinarro et al. [11] proposed a wavelet-rosner test and applied it to the
time series of a karst aquifer. The method also stems from the wavelet based mul-
tiresolution analysis. After checking the Ai and Di coefficients (Eq. 2.18) to detect
outliers, Rosner’s test is applied to remove or replace the abnormal values. A brief
description of method in steps is:

1. Firstly, to avoid null values, a temporary shrunk series has been created with all
elements from the raw data except null elements.

2. Transform the time series to the wavelet domain. DWT decomposes the time series
and computes the approximation coefficients vector Ai and detailed coefficients
vector Di , at level 1, following (2.18).

3. Apply the Rosner test on the Ai coefficients to get outliers in the frequency
domain. On this step, another method to remove outliers can be used, but Rosner’s
test has been weel tested in hydrological series.

4. Eliminates all outliers from the Ai and from analogous index in Di , then two
shrunk vector Ar and Dr are created.

5. To restore the time series, use Ar and Dr to compute the inverse wavelet transform.

2.4.3 Wavelet Power Spectrum (WPS)

The wavelet power spectrum helps to estimate the repartition of energy in the signal
to determine the concentration of a signal in singular instants and frequencies. Tem-
poral variation in the distribution of energy across scales is one of the most usual
applications of the wavelet transform.

The Wiener-Khinchin theorem states that energy spectral density of a function
is the Fourier transform of the corresponding autocorrelation sequence [28]. Analo-
gously, wavelet power spectrum (Pψ,s,τ ) of signal u(t) is defined as autocorrelation
function of the wavelet transformation (Wψ,s,τ ) of u(t), and describes the power of
the signal u(t) at a certain time τ on a scale s:

Pψ,s,τ {u(t)} = Wψ,s,τ {u(t)} ∗ W ∗
ψ,s,τ {u(t)} = ∣∣Wψ,s,τ {u(t)}∣∣2 (2.19)

Because the wavelet function ψ(τ) is in general complex, the wavelet transform
Wψ,s,τ is also complex, with a real part, �(Wψ,s,τ ), an imaginary part, (Wψ,s,τ ),
an amplitude

∣∣Wψ,s,τ
∣∣, and a phase, �(Wψ,s,τ )/(Wψ,s,τ ). Analogously, WPS can

be expressed in the same components.
Wavelets add a new dimension in the spectral analysis to work simultaneously

with time and frequency. Wavelet power spectrum is, in fact, a three-dimensional
depiction, with time on the x-axis, frequency or scale on the y-axis, and the z-axis is
to render the power magnitude at a particular time and frequency. This is a suitable
tool for the spectral analysis of a non-linear system.
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2.4.4 Wavelet Transformation Caveats

2.4.4.1 Cone of Influence (COI)

When applying the CWT to a finite length time series, the scalogram inevitably
suffers from border distortions. The cause is that the values of the transform at the
ends of the series cannot be accurately calculated because the transform calculus
takes values outside the series range. These hedge effects also increase with s in a
rate that depends on the mother function. The region in which the transform suffers
from these edge effects is called the cone of influence (COI) and should be marked
to take care in interpreting the belonged values [42]. One solution is to pad the end of
the time series with zeroes before applying the wavelet transform and then remove
them afterward. The padding is an extension of time series should be sufficient to
spread out the time series to the next power of two. The zero padding reduces the
variance, but introduces discontinuities at the endpoints and decreases the amplitude
near the edges as going to larger scales [43].

As wavelet coefficients at COI suffer the same input discontinuity, the solution
may be to rescale the remaining wavelet with choosing the e-folding time, i.e., as
the distance at which the wavelet power drops by a factor e−2. Larger e-folding time
implies more expansion of the wavelet spectrum, The e-folding time is a measure of
the wavelet width, relative to the wavelet scale s and ensures that the edge effects are
negligible above a threshold for a given signal u(t) [26].

2.4.4.2 Choosing Wavelet Function

One singular characteristic of wavelet analysis is the arbitrary choice of the wavelet
function. The below list is based on factors given by Torrence and Compo [43], in
order to select a suitable wavelet to get best performance, and has been completed
with other considerations by the author of the thesis:

(a) Discrete or continuous. DWT provides a more compact representation of data.
So, DWT is rather suited for image processing, signal coding, noise reduction
and computer vision. Nevertheless, CWT (also CWTDC) is a transformation
that provides a high redundancy of data, and is suitable for time series analysis
and feature extraction purposes.

(b) Orthogonal or nonorthogonal. The use of an orthogonal basis implies the use
of DWT while a non-orthogonal wavelet function can be used with either the
discrete or the continuous wavelet transform. Orthogonal wavelet functions have
a zero correlation each other while non-orthogonal wavelets have a nonzero
correlation. Using an orthogonal wavelet, the signal can be transformed to the
frequency domain and then return to the time domain with a negligible loss of
information. Orthogonal wavelet analysis is useful for signal processing because
it gives the most compact representation of the signal. Non-orthogonal wavelets
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tend to surplus energy, because of overlapping, and require a normalization to
optimize the acquisition of information. They are useful for time series analysis.

(c) Complex or real. A complex wavelet function will return information about both
amplitude and phase and is better adapted for capturing oscillatory behavior.
A real wavelet function returns only power, but is useful in location of peak
frequency.

(d) Width. A wide wavelet function will give good frequency resolution and a loss of
time resolution while a narrow wavelet function will yield good time resolution
but a poor frequency resolutions.

(e) Shape. The wavelet function should reflect the type of features to be presented.
For time series with sharp jumps or steps, a box-like function would be better
such as Harr’s wavelet proposed by Haar [23]. Nevertheless, for smoothly varying
time series, the recommendable wavelet is a smooth function such as a damped
cosine. If a wavelet power spectra has to be performed, then “the choice of
wavelet function is not critical, and any function will give the same qualitative
results as another” [43].

(f) Choice of scales. In orthogonal wavelet analysis, the set of scales s is limited
[44]. In non-orthogonal wavelet analysis, an arbitrary set of scales can be built
up for a more complete plotting.

To analyze natural systems, this dissertation has chosen the Morlet wavelet in
most cases, because of five interesting properties:

• The peak frequency, the energy frequency and the central instantaneous frequency
of the Morlet wavelet are all equal facilitating the conversion from scales to
frequencies.

• Heisenberg Box area has a reduced size with this wavelet, i.e., the uncertainty
reaches a minimum value. Then Morlet wavelet has an optimal joint time-
frequency concentration.

• The time radius and the frequency radius are equal; therefore, this wavelet
represents the best compromise between time and frequency concentration.

• Finally, Morlet is a wavelet transformation that yields complex coefficients, with
information on both the amplitude and phase. This facilitates the study of gaps
and delays between two time series.

2.4.4.3 Advantages of Wavelet Transform

Some features can be observed in the application of wavelet transform and according
to Strang [45] and Perrier et al. [46].

Nonlinearity. Analysis with Fourier transform is not completely successful in
all types of problems. Exceptions are nonlinear systems, with very brief signals
or sudden changes, as the typical time series given in a karst system and glacier
discharge; hence, the study of their behavior should be carried out with different
tools.
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Stationarity. Most traditional mathematical methods that examine periodicities
in the frequency domain, such as Fourier analysis, have implicitly assumed that the
underlying processes are stationary. The wavelet transform is suitable for the analysis
of non-stationary signals because it provides a better time and frequency localization
properties, expanding time series into time frequency space, such that the intermittent
periodicities can better be localized [46].

Global properties. A Fourier transform hides information about time. It proclaims
unequivocally how much of each frequency a signal contains, but is unknowable
about when these frequencies were emitted. Therefore, in Fourier transform, any
instant of a signal is similar to any other, even if the signal is as complex as public
clap echoes in a theater, or changes as radically as the runoff through a river after a
severe rainstorm. For an application, wavelets only capture the local time-dependent
properties of data; whereas Fourier transforms, due to space-filling nature of the
trigonometric functions, can only capture global properties [47].

Computational efficiency Using the big O notation [48], the computational
complexity of the discrete Fourier transform is O(n2), where n is a number of time
samples. Fourier transform is overtaken by the Fast Fourier transform (FFT) with a
complexity O(nlogn) which takes less steps to solve an instance of the same problem.
However, this is still under the complexity function O(kn) for discrete wavelet trans-
form in decomposition and reconstruction processes (Fig. 2.2). The transform upshot
with wavelets can be implemented in a computer by a quicker and more efficient
algorithm.

Fig. 2.2 Big-O complexity for Fourier Transform, FFT and DWT
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2.5 Models

2.5.1 Linear Time-invariant (LTI) models

Most of the properties of linear time-invariant (LTI) systems are due to the fact that
the system can be represented by linear differential (or difference) equations. Such
properties include impulse response, convolution, duality, stability, scaling, etc. The
properties of linear, time-invariant system should not in general apply to nonlinear
systems. Nevertheless, LTI could be a first approach to identify the non-linear system.

The effect of any invariant linear system (LTI) on an arbitrary input signal is
obtained by convolution of the input signal with the system’s impulse response
function. In a LTI system, the output of the system y(t) for an input x(t) can be
obtained by the convolution integral:

y(t) = g(t) 	 x(t) =
∫ t

0
g(t − τ)x(τ )dτ (2.20)

where g(t) is the impulse response of the system. That is, g(t) is the output of the
system with an input x(t) = δ(t), where δ(t) is the Dirac delta. The impulse response
completely characterizes the dynamic behavior of the system.

Applying the Laplace transform to the convolution integral (Eq. 2.20) we obtain
Eq. 2.22 :

L [y(t)] = L [g(t) ∗ x(t)] = L [g(t)]L [x(t)] (2.21)

or in simple expression:
Y (s) = G(s)X (s) (2.22)

where Y(s), G(s) and X(s) are the Laplace transforms of y(t), g(t) and x(t) respectively.
A Transfer Function (TF) is the mathematical representation of the relation

between the input and output of a system. In a LTI system, TF can be expressed as
the ratio of the Laplace transform of the output and the input, and corresponds to the
Laplace transform of the impulse response G(s).

G(s) = Y (s)

X (s)
(2.23)

The transfer function of a system is rational fraction with numerator and denominator
polynomials of the complex variable s:

G(s) = bmsm + · · · + b0

ansn + · · · + a0
= N (s)

D(s)
(2.24)
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The roots of N(s) are called zeros of the system and roots of D(s) are called poles
of the system. Poles and zeros are complex numbers that determine the dynamic
behavior of the system. The real part of the poles defines the temporal prevalence of
the term and the imaginary part its oscillatory behavior. The Transfer Function also
characterizes the frequential behavior of a system, that is, how it responds to signals
with different frequency components.

Most technological or natural systems are continuous and the signals are involved
in dense time. However, when signals have to be processed by a computer in order
to monitor, communicate or control a given system, they must be sampled at discrete
points in time. The time interval between two sampling instants is the sampling
interval or period (T). The models describing the behavior become discrete in time,
and the discrete transfer function can be expressed by the Z transform.

Z {x[n]} =
∞∑

n=−∞
x[n]z−n (2.25)

The concept of Z transform plays the same role for discrete time or sampled
systems as the Laplace transform does for continuous time systems. Let x∗(t) =
{x(kT )} and y∗(t) = {y(kT )} be the sequences obtained from the input and the
output of the system at sampling instants (tk = kT ; k = 0, 1, 2, . . .). The relationship
between both data sequences is the convolution sum.

y∗(t)
∞∑

k=0

x(kT )g∗
T (t − kT ) =

∞∑

k=0

gT (kT )x∗(t − kT ) = x∗(t) 	 g∗
T (t) (2.26)

where g∗(t) = {gT (kT )} is called the discrete impulse response of the system with
sampling interval T. The sequence g∗(t) is related with the impulse response of the
continuous system g(t), but it is not the result of their sampling.

Linear systems are also modelled by discrete LTI Transfer Function, defined as the
ratio of the Z transform of the output and the Z transform of the input. This function
is rational with numerator and denominator polynomials of the complex variable z:

GT (z) = Y (z)

X (z)
= b0 + · · · + bm z−m

a0 + · · · + anz−n
(2.27)

Thus, the activity of the system can be described as a set of parameters ai , bi of
Eq. 2.27.

A useful format for the discrete LTI transfer function is to describe it in terms of
z−1 because this is the unit delay operator. Roots of N(z) are called zeros and roots
of D(z) are called poles of the system. As in time-continuous systems, the poles and
zeros determine the dynamic behavior of the system.
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2.5.2 Frequential Transfer Function Model

Let the input of a LTI system be of the form x = x0cos(ωt), it is well known that the
response y(t) of the system in steady state is also sinusoidal y(t) = y0cos(ωt + φ).
If G(s) is the transfer function of the system then:

y0 = x0|G( jω)|
φ = arg[G( jω)]

G( jω), that is the transfer function evaluated in jω, is called the frequential transfer
function of the system and the following holds:

G( jω) = Y (ω)

X (ω)
(2.28)

where X (ω) and Y (ω) are the Fourier transforms of input and output, respectively.
The frequential transfer function characterizes the frequential behavior of the system,
that is, how the frequential components of the input are modified (amplitude change
and phase delay) to compose the output. There are some graphical representations of
G( jω) such as the Bode and Nyquist diagrams that allow a straightforward analysis
of the system in function of frequency. Another expression of frequential components
of a signal, similar to the Fourier transform, is the power density spectrum, φx (ω),
(signal energy/frequency unit). Equation 2.29 depicts the power density spectrum as
the square of the absolute value of its Fourier transform.

φx (ω) = |X (ω)|2 (2.29)

2.5.3 Nonlinear Models

Nonlinear system identification from input-output data can be performed using
general types of nonlinear models such as neuro-fuzzy networks, neural networks,
Volterra series or other various orthogonal series to describe nonlinear dynamics.

Non-linear relationships between input and output data provide much flexibility
to describe a system. Models to identify nonlinear systems are discussed in Haber
[49], and an extensive bibliography classified by nonlinear identification techniques
can be found in Giannakis and Serpedin [50]. The use of functional analysis as a tool
for the study of nonlinear systems was initially conceived by Wiener [51]. Following
this work, Singleton [52] and Bose [53] made pioneering efforts toward engineer-
ing applications who left a firm foundation in the theory of functional analysis for
both discrete and continuous systems. Other interesting works studied the theory of
nonlinear continuous systems using power series Volterra functional [54] and orthog-
onal expansion of the functional-G Weiner [55]. Many efforts to develop analysis
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techniques are related to nonlinear systems, with significant number of people from
the Russian school: Liapounoff, Andronov, Chaikin, Kryloff, Bogoliuboff, men-
tioned by Minorsky [56].

2.5.3.1 Volterra Series

The Volterra series, a discrete version of Kolmogorov-Gabor polynomial, was orig-
inally developed to describe the nonlinearity of a very general class of nonlinear
time-invariant process. Although the Volterra series representation of nonlinearity
provides theoretical understanding of nonlinearity, the number of coefficients in this
model is excessive and needs enormous requirements on the identification proce-
dure (quality and quantity of data). A large class of nonlinear functionals can be
represented in the form of a Volterra series, which maps input signals u to output
signals. A nonlinear system can be modeled as an infinite sum of multidimensional
convolution integrals of increasing order (2.30).

y(t) =
n∑

i=1

∣∣∣∣∣∣

∞∫

0

∣∣∣∣∣∣
i

hi (τ1, . . . , τn)

n∏

i=1

[x(t − τi )dτi ] (2.30)

where h(τ ) is the kernel of convolution. Identifying the nuclei of the Volterra series is
the essential problem. In the case n = 1 (a unique term in the development), Volterra
series is a first order and corresponds to linear modeling. So, Volterra theory is a
generalization of the linear convolution integral approach often applied to linear,
time-invariant systems. The behavior of the model depends on the kernels of the
integral functionals, and it is these functions that are to be identified. A closely
related model was introduced by Wiener, with the form:

y(t) =
∞∑

n=0

[Gn(kn, u)] (t) (2.31)

where the functionals Gn are also integral equations in (2.30), with kernels kn =
τ1, . . . , τn (these were used by Wiener as a sort of orthogonalized version of the
Volterra kernels, via a Gram-Schmidt procedure). In discrete-time models, the inte-
grals are replaced by sums.

Nonlinear Volterra theory is widely developed and applied in several fields of
science and technology, as an approach to the modeling of nonlinear system behav-
ior. Schetzen [57] goes into more depth about the theory of Volterra and Wiener
functionals. Leontaritis and Billings [58] discuss available identification methods
for the kernels.
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Fig. 2.3 Hammerstein-Wiener model

2.5.3.2 Hammerstein-Wiener Models

An alternative to drive problems of identifying a nonlinear model from input-output
data is to use block-oriented nonlinear models consisting of static nonlinear function
and linear dynamics subsystem such as Hammerstein model, Wiener model and
feedback block-oriented model [59]. When the nonlinear function precedes the linear
dynamic subsystem, it is called the Hammerstein model, whereas if it follows the
linear dynamic subsystem, it is called the Wiener model.

Block-oriented models can be a flexible alternative in system identification tasks,
due to they behold both linear and nonlinear features. Block-oriented models provide
structures to study non-linear systems, under the hypothesis of LTI systems with static
(no memory) non-linearity.

The model described by Eskinat et al. [60] is an interconnected model in cascade.
Wiener model is similar [61], but the order of linear and non-linear blocks are inverted.
The feedback block-oriented model consists of a static nonlinearity in the feedback
loop of an LTI system [59].

In the Hammerstein-Wiener (HW) model (Fig. 2.3), a linear block model is the
central block, represents the system dynamics and can be expressed by an output
error polynomial model as Fig. 2.6. The first and last blocks are two nonlinear blocks
w(t) = f(u(t)) and y(t) = h(x(t)). Where u(t) and y(t) are the inputs and outputs of the
system and w(t) and x(t) are the input and output of the internal linear block. Ham-
merstein is a submodel with a nonlinear component followed by a linear component.
Reversely, Wiener is a submodel with a linear component followed by a nonlinear
component (Fig. 2.3). Nonlinear block models represent the static nonlinearities in
the system [60] and can be identified following the parametrization given in (2.32).

N (q) =
n∑

i=1

pi gi (x), p = [p1, . . . , pn]T (2.32)

where gi are a set of specified basis functions such as polynomial expressions, dead-
zone, saturation, piecewise, sigmoidnet or wavenet, look-up tables and fuzzy models
[62]; and the pi are the weights.
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HW model provides a flexible parameterization for nonlinear models. E.g., a
linear model can be estimated, and its quality can be improved, by adding an input
or output nonlinearity to the model. On the other hand, HW is easier to implement
than others such as neural networks and Volterra models.

2.6 System Identification Problem

The prior sections deal with preparation data (Sect. 2.2), time series analysis (Sect. 2.3),
and review of model structures (Sect. 2.5), that are necessary in the identification
process.

2.6.1 Posed Issue

The general problem of the system identification is to determine the most suitable
model for the system, such as the problem graphically posed in the Fig. 2.4.

The model g(u(t), ϑ) maps the input u(t) to the output y(t) which is corrupted by
perturbations ε(t). The verification of the model consists of finding the vector ϑ that
minimizes the error between real data and predicted data: e(t)= y(t)-ŷ(t).

The searching of a model of a system from observed input-output data, implies
the input-output data in the preparation stage, a set of candidate model structures,
and some criteria to select a particular model in the set (Fig. 2.5).

System identification is carried out through stages of preparation, analysis and
the identification as such (selection and optimization). The analysis procedures try
to obtain the most possible details inside the system and take useful information
from the time series. E.g., the elucidation if it is a linear system or a nonlinear
system, a time-invariant system or a time-variant system a continuous system or a
discontinuous system, a single input system or a multi input-multi output system, an
open-loop system or a closed-loop system, etc (Fig. 2.5).

The selection stage is the identification of a suitable, identifiable model struc-
ture. The final identification stage—with the most critical procedures of

Fig. 2.4 Identification
problem
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Fig. 2.5 Stages and components in the system identification problem

estimation—computes the best model according to the data and a given criterion.
The validation of model measures the ability of the model to explain the observed
data different to those used in the model identification and estimation stages, as the
general prediction error (maximum likelihood) and efficiency criterion for paramet-
ric models; and basic correlation and spectral analysis in nonparametric structures
[62]. As each system requires a different model to be chosen among those explained
in Sect. 2.5, the process has to be necessary iterative and sometimes applying an ad
hoc method.

2.6.2 The Literature Highlights

This section can not describe all historical processes on the system identification,
only some highlights are mentioned from the engineering views. A further purpose
can be found in the work of Deistler [63], with an excellent review of the history of
system identification and time series analysis.

Spectrum analysis of time series might have commenced in 1664, when Isaac
Newton decomposed a light signal into frequency components as passing the light
through a glass prism. In 1800, Herschel measured the average energy in various
frequency bands of the spectrum by placing thermometers along each band.

The first foundations on identification processes were set by mathematicians—
Gauss (1809) and Fisher (1912)—although with subsequent important contributions
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from engineering and statistics. Aström and Bohlin [64] introduced the Maximum
Likelihood framework, based on projection techniques in Euclidean space, which
have been used extensively on the estimation of the parameters of difference—also
known ARMA (AutoRegressive Moving Average) or ARMAX model (AutoRegres-
sive Moving Average with eXogeneous inputs).

Among contributions of Ljung and Glover [18], there is one to clearly separate
two independent concepts: the choice of a parametric model structure and the choice
of an identification criterion.

In system identification, there are two approaches: parametric and nonparametric
identification. In the parametric identification problem, a mathematical structure
is assumed to govern the system, and the identification processes is focused only
on the determination of unknown parameters for this structure that optimize the
representation of the system. Nonetheless, in a non-parametric identification the
structure of these equations is also unknown. Nonparametric regression and spectral
techniques correspond to this kind of techniques [13, 62].

2.7 Non-parametric Identification

Nonparametric identification techniques provide a very effective and simple way
of finding model structure in data sets without the imposition of a parametric one.
Commonly, the initial process to carry out is the nonparametric identification, and
then, if it were suitable, the parametric identification should be performed. The next
sections review the non-parametric identification methods from time domain and
frequency domain perspectives.

2.7.1 Non-parametric Identification in the Time Domain

2.7.1.1 Cross-Correlation

Cross-covariance is a non-parametric identification technique and is related with the
impulse response g(t) (Eq. 2.20) of a system and thus with its behavior [62, 65].
Assuming that the signals have zero mean, if y	(t) and x	(t) are uncorrelated, the
correlation between the input and the output is:

y	(t) =
∞∑

k=0

g(kT )x	(t − kT ) + v	(t) (2.33)

where v	(t) is the noise in the system. The signals involved can be regarded as
the realization of stochastic processes. We can define the following coefficients and
functions: If v	(t) and x	(t) are uncorrelated, the (cross) covariance function between
the input and the output is:
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Rxy(τ ) =
∞∑

k=0

g(kT )Rx (τ − kT ) = g	(τ )	R	
x (τ )

That is, the cross correlation is the convolution between the impulse response and
the autocorrelation of the input. Thus, the impulse response can be estimated from
the covariance (correlation if both signals have zero mean) if the input is a white
noise. However, this is not a common case. For example, in hydrological systems,
we have no control over the time series that always differs from the white noise. This
problem is solved by the use of a whitening filter over the input and the output [62,
65].

The so-called cross correlation coefficient (Eq. 2.34) [65] has been widely used
to characterize karst systems:

rxy(k) = C N
xy(k)

√
θ2

x θ2
y

(2.34)

where C N
xy(k) is an estimate of RN

xy(k) for a finite number of samples. Supposing
that the input is white noise, the impulsional response of the system can be estimated
(Eq. 2.35) as:

g(k) =
rxy(k)

√
θ2

y
√

θ2
x

(2.35)

g(k) is a good estimator only if the input behaves as white noise.

2.7.1.2 The Impulse Response

When the system has a finite impulse response, the non-parametric identification
is performed by an intermediate approach between non-parametric and parametric
identifications, and corresponds with a representation of the system by a FIR struc-
ture. Two methods have been proposed to calculate the coefficients of the impulse
response:

Method 1 is based on the Wiener-Hopf summation equation [66, 67]. The
estimator of cross-correlation between the input x(t) and output y(t) of the system
for an infinite time series, is given by:

RN
xy(i) =

M−1∑

k=0

g(k)Rx (i − k) with i = 0 . . . M − 1 (2.36)

Deploying the Eq. 2.36 in a matrix form [67]:
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⎛

⎜⎜⎝

Rx (0) Rx (−1) · · · Rx (1 − M)

Rx (1) Rx (0) Rx (−1) · · ·
· · · Rx (1) Rx (0) Rx (−1)

Rx (M − 1) · · · Rx (1) Rx (0)

⎞

⎟⎟⎠ ·

⎛

⎜⎜⎝

g(0)

g(1)

· · ·
g(M − 1)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

Rxy(0)

Rxy(1)

· · ·
Rxy(M − 1)

⎞

⎟⎟⎠

(2.37)
Thus, the impulse response can be calculated as:

Rx · g = Rxy ⇔ g = R−1
x · Rxy (2.38)

Method 2 is based on a minimization process. The most commonly used are linear
programming [68, 69] and least squares [70–72]. To identify the impulse response
is to minimize the prediction error. Considering a FIR model of length M:

Q	(t) =
M−1∑

k=0

g(kT )x	(t − kT ) + ε(t) = Q̂	(t) + ε(t) (2.39)

The minimization of ε(t) can be done by several methods. In karst hydrology, least
squares, linear programming over the slack variables have been used.

The minimization of prediction error of a FIR model is a case included in the so
called parametric identification methods [62]. However, the parametric identification
considers also several model structures with infinite impulse response and several
models for error behavior.

2.7.2 Non-parametric Identification in Frequency Domain

2.7.2.1 Spectral Analysis

Frequency response can be derived from Fourier transform of the impulse response
signal. It provides information about the gain and phase of the system for different
input frequencies. The cross spectrum can be calculated in the form:

φN
xy(n) =

M−1∑

k=−M+1

w(k)RN
xy(k)e− jn 2π

N k (2.40)

Let g	
T (t) the impulse response of a sampled system. Then, as it has been stated, the

output y	(t) from an input x	(t), follows:

y	(t) =
∞∑

k=0

gT (kT )x	(t − kT ) + v	(t) (2.41)
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where v	(t) is the noise in the system. If v	(t) and x	(t) are uncorrelated, the (cross)
covariance function between the input and the output is given by Eq. 2.34. Supposing
the sequences of finite length N , applying the Fourier transform and the equations
Eq. 2.34 the result is:

φN
xy(ω) = G N ( jω)φN

x (ω) (2.42)

So, the cross-spectrum is defined as the Fourier transform of the cross-covariance.
Thus, an estimate of the frequential transfer function can be obtained as

G N
xy( jω) = φN

xy(ω)

φN
x (ω)

(2.43)

However, the result is a plot which is not useful directly for simulation purposes [3].
Another useful function derived from the cross spectrum is the Coherence Func-

tion, which is calculated by the following expression:

γ 2
xy(ω) = |φN

xy(ω)|2
φN

x (ω)φN
y (ω)

(2.44)

It measures the linear correlation between the input and the output of the system at
each frequency ω. Notice also that the Coherence Function is dimensionless and can
be shown that 0 ≤ γ 2

xy(ω) ≤ 1.
G N

xy( jω) characterizes the frequential behavior and the coherence γ 2
xy(ω) char-

acterizes the linearity of a system.

2.7.2.2 The Cross Wavelet Spectrum (XWS)

The bivariate extension of wavelet analysis is recommended when the system
involves two time series, instead of only one, to assess time-varying spectral relations
between two signals which are often non-stationary.

Cross-wavelet transform (XWS)—also called wavelet cross-scalogram or
coscalogram—gives information on the dependence between two signals, u(ti ) and
y(ti ), as a function of time, similar to cross-correlogram (or the cross-spectrogram).
XWS, a bivariate extension of WPS, is commonly applied in earth sciences, e.g., in
the experimental cases of this document, the air temperature and glacier discharge
or rainfall and conductivity in an aquifer system. The cross wavelet spectrum, intro-
duced by Hudgins et al. [73] to study the atmosphere turbulence, reveals how regions
in the time frequency space with large common power have a consistent relationship.
This fact suggests a causality between both time series, and the expectation value of
the correlation of two signals u(t) and y(t) is:

Xψ,s,τ {u(t), y(t)} = W ∗
ψ,s,τ {u(t)} ∗ Wψ,s,τ {y(t)} (2.45)
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Since the wavelet function ψ(τ) is in general complex, Xψ,s,τ {u(t), y(t)} is also
complex.

The cross wavelet power of two signals describes the covariance between these
times series at each scale of frequency. Cross wavelet spectrum illustrates quan-
titatively the similarity of power between two times. It has already been applied
to rainfall-runoff cross analysis by Labat et al. [74], and was briefly discussed by
Maraun and Kurths [75].

If complex wavelets are used, such as the Morlet wavelet, its squared absolute
value |Xψ,s,τ {u(t), y(t)} |2 or simply its absolute value |Xψ,s,τ {u(t), y(t)} | is
often gotten for better plotting. The value of |Xψ,s,τ {u(t), y(t)} |2 is large when
|Pψ,s,τ {u(t)} | and |Pψ,s,τ {y(t)} | are big at the closeness of scales (frequencies)
and around the same time, regardless of the local phase difference. When the phase
information is required, the Eq. (2.45) should be expressed in terms of its module
and phase angle:

Xψ,s,τ {u(t), y(t)} = |u(s, τ )| e−iθu(s,τ ) |y(s, τ )| eiθy(s,τ )

= ∣∣Xψ,s,τ {u(t), y(t)}∣∣ eiθy(s,τ )−iθu(s,τ ) (2.46)

This means that the phase angle iθy(s, τ )− iθu(s, τ ) reflects the phase difference by
which y(t) leads u(t) at the given scale and time. Van Milligen et al. [76] introduced
delayed wavelet cross spectrum, a useful quantity to detect structures from two
separated observation points.

In hydrology, wavelet cross-correlation should sometimes be preferred to classical
cross-correlation, because this method provides new insights into the scale depending
on the degree of correlation between two given signals [77, 78].

2.7.2.3 Wavelet Coherence Spectrum (CWS)

An extension to Fourier analysis, to allow for non-stationarity, is windowed Fourier
analysis, but this overcomes the assumption of global stationarity within each seg-
ment. In the time-scale domain, cross-spectrum cannot be normalized locally assum-
ing stationarity to have a value bounded by, for example, zero and one, because
multiple points should be involved for some degree of smoothing.

Coherence in signal processing consists of a measure of the correlation between
two signals. Power Spectrum represents the power carried by each frequency in a
signal. The similarity of two signals can be checked by estimating CWS. Two exam-
ples coherence application are: the wavelet local correlation coefficients introduced
by Buresti and Lombardi [79] to measure the phase coherence of the signals; and
cross wavelet coherence function introduced by Sello and Bellazzini [80] to assess
the intensity coherence of turbulent signals. In practice, to calculate the coherence
of two signals, we calculate the cross-power spectrum, because the coherence is the
normalized measurement of the cross-power spectrum and can be calculated dividing
cross-power spectrum by the squared root of the product of the spectra of the signals
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(Eq. 2.47). The expression of wavelet coherence is [81]:

Cψ,s,τ {u(t), y(t)} =
〈∣∣Xψ,s,τ {u(t), y(t)}∣∣〉

(〈
Pψ,s,τ {u(t)}〉 · 〈

Pψ,s,τ {y(t)}〉)1/2 (2.47)

The 〈.〉 operator was suggested by Torrence and Compo [43] as the best compromise
solution, providing the minimum amount of smoothing necessary to include two
independent points in time and scale. Polar expression is a useful form of wavelet
coherence with modulus ρψ,s,τ and phase φψ,s,τ , such as:

Cψ,s,τ {u(t), y(t)} = ρψ,s,τ {u(t), y(t)} · eiφψ,s,τ (u(t),y(t))

φψ,s,τ = tan−1 [
Im

(
Cψ,s,τ

)
/Re

(
Cψ,s,τ

)]
(2.48)

A value of 1 means a perfect coupling between u(t) and y(t) around time τ on a
scale s for the wavelet ψ . For a zero or negative value the variations of two signals
are not correlated, and for positive value between zero and one the variations are cor-
related in a certain degree. This value meaning is similar to a traditional correlation
coefficient as defined by Barret [82], and it is useful to think of the wavelet coherence
as a localized correlation coefficient in time frequency space. Due to these proper-
ties, wavelet coherence is an increasingly popular method in analyzing hydrological
correlated events.

The fact a signal is correlated with other, not only means that some energy in a
frequency is present in both signals, but that plus the frequency which is present in
both signals is also related by phase.

The magnitude squared coherence is also used, which is the squared value of the
cross-power spectrum divided by the product of the power of the spectra of both
signals. The measure of coupling average in the scale (frequency) domain between
input and output signals u(t) and y(t) would provide information about the relation-
ship of the signals. This can be got by the wavelet cross spectrum coefficient or
simply wavelet coherence spectrum (CWS), obtained from the normalized wavelet
cross-spectrum (to have values between zero and one).

2.8 Parametric Identification

Parametric identification relies on a model previously defined by a set of parameters
that must be calculated to accomplish a given quality criteria. E.g., the system char-
acteristics can have a parametric representation through a polynomial of a finite and
known degree. The model structure can be obtained by physical modeling (grey box)
or it may be a standard one (black box). In the latter case, a set of generic standard
structures must be taken into account (OE, FIR, ARX, ARMAX and BJ).
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OE :Y(z)= N(z)
D(z)X(z)+E(z)

FIR : when D (z)=1

ARX:Y(z)= N(z)
D(z)X(z)+ 1

D(z)E(z)

ARMAX : Y (z) = N(z)
D(z)X(z)+ A(z)

D(z)E(z) BJ :Y(z)= N(z)
D(z)X(z)+ A(z)

B(z)E(z)

Fig. 2.6 System model structures

2.8.1 Linear Parametric Identification

Parametric identification techniques depend mostly on Prediction-Error Methods
(PEM) [62]. The output of system y	(t) can be expressed as Eq. 2.33. A more useful
expression is based on the Z transform:

Y (z) = G(z)X (z) + W (z) (2.49)

This expression can be rewritten as:

Y (z) = G(z)X (z) + H(z)E(z) = N (z)

D(z)
X (z) + A(z)

B(z)
E(z) (2.50)

where E(z) is the transform of a white noise, ε(t). G(z), the transfer function of
the system, and H(z), the stochastic behavior of noise. G(z) and H(z) are ratio-
nal functions whose numerator and denominator are polynomials of the z variable.
The relationship between both functions defines several model structures. Figure 2.6
shows the most common ones: AutoRegressive eXogeneous (ARX) model, AutoRe-
gressive Moving Average eXogeneous (ARMAX) model, Box-Jenkins (BJ) model
and Output Error (OE) models. The features and advantages of each structure have
been studied in several works, see for example Ljung [62].

The ARX model D(z)Y(z) = N(z)X(z) + E(z) is the easiest to estimate since
the corresponding estimation problem is of a linear regression type. The foremost
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disadvantage is that the disturbance model 1/N(z) comes along with the system’s
poles. It is, therefore, easy to get an incorrect estimate of the system dynamics
because the A (Eq. 2.50) polynomial can also include the disturbance properties.
So, higher orders in A and B coefficients in the Eq. 2.50 may be required. If the
signal-to-noise ratio is good, this disadvantage is less important.

The ARMAX model D(z)Y(z) = N(z)X(z) + A(z)E(z) has more flexibility in the
handling of disturbance modeling than the ARX model. For this reason, ARMAX is
a widespread used model and performs well in many engineering applications.

The OE model Y(z) = [N(z)/D(z)]u(z) + E(z) has the advantage that the system
dynamics can be described separately and that no parameters are wasted on a distur-
bance model. If the system operates without feedback during the data collecting, a
correct description of the transfer function G(z) = N(z)/D(z) can be obtained regard-
less of the nature of the disturbance.

In the BJ model Y(z) = [N(z)/D(z)]u(z) + [A(z)/B(z)]E(z) the disturbance
properties are modeled separately from the system dynamics.

2.8.2 Selection and Verification Criteria

To get a model reliable, the results and predictions inferred from model should
be verified and validated. Model validation is carried out by comparing the model
behavior with the system’s one and evaluating the difference. All models have a
certain domain of validity. This may determine how exactly they are able to describe
the system behavior.

Efficiency criteria can be defined as mathematical measures of how well a model
simulation fits the available observations [83]. A number of different methods to
set a criterion have been suggested in the literature, e.g., least squares, generalized
least squares, maximum likelihood or instrumental variables. Krause et al. [84] have
studied the utility of several efficiency criteria in three examples using a simple
observed streamflow hydrograph, declaring that: “The selection and use of a specific
efficiency criteria and the interpretation of the results can be a challenge for even the
most experienced hydrologist, since each criterion may place different emphasis on
different types of simulated and observed behaviors”.

Nash-Sutcliffe efficiency, coefficient of determination, and index of agreement,
are frequently applied to verify hydrologic models. The efficiency value E proposed
by Nash and Sutcliffe [85] is defined as one minus the sum of the absolute squared
differences between the predicted and observed values normalized by the variance
of the observed values during the period (Eq. 2.51).

E = 1 −
∑N

k=1

[
y(kT ) − ŷ(kt)

]2

∑N
k=1 [y(kT ) − y]

2 (2.51)
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where y(kT ) is observed data in the sampling interval T (with k = 0, 1, 2, . . . , N),
ŷ(kt) is modeled output, and y is mean of observed data. Nash-Sutcliffe efficiencies
can range from −∞ to 1. An efficiency value of 1 (E = 1) corresponds to a perfect
match of model output to the measured data. An efficiency value of 0 (E = 0)
indicates that the model is as accurate as the mean of the observed data, whereas an
efficiency less than zero (E < 0) occurs when the observed mean is a better predictor
than the model or, in other words, when the residual variance (described by the
numerator in the expression above), is larger than the data variance (described by
the denominator). Essentially, the closer the model efficiency value is to 1, the more
accurate the model is.

According to Legates and McCabe [86], the disadvantage of the Nash-Sutcliffe
efficiency is the fact that the differences between the observed and predicted values
are calculated as squared values. As a result, larger values in a time series are strongly
overestimated, whereas lower values are neglected. E.g., in the quantification of
an aquifer discharge, this criterion could lead to an overestimation of the model
performance during peak flows and an underestimation during low flow conditions.
Nevertheless, Nash-Sutcliffe efficiency, expressed frequently as 0–1 coefficient (E),
is the unique criterion used in the experimental cases of this thesis, in order to
standardize the comparison between models.

2.9 Nonlinear Identification

It is difficult to establish a clear identification methodology of nonlinear systems,
since analysis is usually more intricate than in the identification of linear models,
because of the variety of nonlinear model structures and nonlinear behaviors.

Donoho and Johnstone [87], and Donoho [88] introduced nonlinear wavelet
estimators in nonparametric regression through thresholding, i.e., the term-by-term
assessment of coefficients in the wavelet expansion. Only coefficients that exceed a
predetermined threshold are taken in account. This produces the wavelet shrinkage.
Bendat [89] describes procedures to identify and analyze the properties of many
types of nonlinear systems as Zero-Memory Nonlinear Systems and Parallel Nonlin-
ear System, with analysis of Nonlinear System Input/Output Relationships. Zhang
[90] applied wavelet theory for nonlinear system identification, with a wavelet basis
as a universal function approximator, with a neural network used to determine the
resolution, and the translation coefficients of the wavelet. This nonparametric esti-
mator named wavelet network has a neural network like structure that makes use of
techniques of regressor selection completed with backpropagation procedure.

This section is going to focus only on nonlinear parametric identification, and,
inside this type, Volterra series and Hammerstein- Wiener methods.
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2.9.1 Nonlinear Parametric Identification

2.9.1.1 Volterra Identification

Volterra series have been widely applied as nonlinear system modeling technique.
These Volterra representations lead to very complicated identification algorithms
since evaluation of higher order Volterra kernel often require very large amounts
of data for even low order nonlinearities. However, kernels can be calculated for
systems whose order is known and finite.

Some identification procedures to calculate higher-order kernels have given by
[91], but the proposed solutions reduce their practical application only to model
system of low non-linearity. Mirri et al. [92] suggested three different models for
Volterra series, in order to reduce the number of kernels that are considered in the
identification process of a non-linear system. The reduced number of mathematical
operators involved, simplifies the experimental procedures, but it needs a somehow
information about the system behavior.

2.9.1.2 Hammerstein-Wiener Identification

The literature about the Hammerstein-Wiener model identification is ample [93,
94]. Most important methods try to reduce the parameter redundancy by using linear
and nonlinear structures. Other methods use optimized algorithms to decrease the
computation complexity.

• The iterative algorithm, a classical method proposed by Narendra and Gallman
[95], parametrizes the system for the linear prediction error. In the most common
version of this method, the parameter set is usually divided into two subsets. One set
is fixed while the other searches the optimal values. Then, both sets are switched
to perform the reverse operation. The estimation is carried out by minimizing
alternatively with respect to each set of parameters, a quadratic criterion on the
prediction errors. A main problem of the iterative algorithm is the convergence.

• Bai et al. [96] studied the convergence properties of iterative algorithm from Naren-
dra and Gallman [95] They show that the iterative algorithm with normalization is
convergent in general, and for finite-impulse response, the convergence is reached
in one step.

• A noniterative method was proposed by Chang and Luus [97] and show through
numerical examples that the computation time by this method is considerably less
than by the iterative, while the accuracy of the estimates is comparable.

• Bai [98] presented an optimal two stage identification algorithm for Hammerstein-
Wiener model. The first step is the recursive least squares. The second one is the
singular value decomposition of two matrices with fixed dimensions and do not
increase as the number of the data point increases.

• Reference [99] described a blind approach, where the linear part is only using the
output measurements, i.e., no information on the input.
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• Geothals et al. [100] extend the unifying theorem for three subspace system iden-
tification algorithms by using Least Squares Support Vector Machines component
to identify Hammerstein-Wiener structure.

• Wills et al. [94] illustrates a new maximum-likelihood based method for the iden-
tification of Hammerstein-Wiener model structures.

2.10 Conclusion

To study system dynamics, some stages are recommended: Preparation, analysis,
model structures preselection and identification.

Raw data need refining and adjustment before time series analysis because of
outliers or abnormal values in the readings. Among other criteria, Wavelet-Rosner
is an efficient test for outlier detection in the frequency domain. Also, the selection
of the proper sampling frequency is discussed.

In analysis under the scenario of the time domain, autocorrelation is a lag
correlation of a given time series within itself, lagged by a number of times units.
Positive autocorrelation is a specific form of ‘persistence’ of events, and time series
is more predictable. The wavelet transform calculates the correlation between the
signal and a wavelet function ψ(t), the mother wavelet, parametrized by location
and scale. The similarity between the signal and the wavelet function is computed
separately for different time intervals, resulting in a three dimensional representation.
In the frequency domain analysis, the power density spectrum assesses the energy
level of the signal in different frequency bands.

Linear time-invariant models provide structures for systems. Although in nature
all systems are nonlinear, in practical cases the use of linear models is justified in
order to simplify the study or as a reference for other more exhaustive models. The
effect of any invariant linear system (LTI) on an arbitrary input signal is obtained
by convolution of the input signal with the system’s impulse response function. A
Transfer Function in LTI can be expressed as the ratio of the Laplace transform of
the output and the input, and corresponds to the Laplace transform of the impulse
response. The frequential transfer function characterizes the frequential behavior
of the system, that is, how the frequential components of the input are modified
(amplitude change and phase delay) to compose the output.

The non-linear models by Volterra equations are not suitable in the case of long
uninterrupted records at a finer sampling rate, because Volterra models have a sta-
tionary or time invariant kernel. Nevertheless, block-oriented models have emerged
as an appealing proposal due to their simplicity and their property of being valid
over a larger operating region than a LTI model and are easier to implement than
heavy-duty nonlinear models, such as neural networks and Volterra models.

Nonparametric identification techniques provide a very effective and simple way
of finding model structure in data sets without the imposition of setting required
parameters. Cross correlation is the convolution between the impulse response and
the autocorrelation of the input. Thus, the impulse response can be estimated from the
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covariance if the input is a white noise. When the system has a finite impulse response,
the non-parametric identification is performed by an intermediate approach between
non-parametric and parametric identifications, and corresponds with a representation
of the system by a FIR structure. A nonparametric identification in the frequency
domain can be carried out by cross wavelet spectrum. This reveals how regions in
the time frequency space with large common power spectrum suggest a causality
between both time series. The coherence is the normalized version of cross wavelet
spectrum.

Characterizing all the input-output properties of a system through exhaustive
measurements is usually impossible. Instead, parametric identification is a way to
make that a finite number of measurements help infer the system response to specified
inputs. Parametric identification techniques, which depend mostly on Prediction-
Error Methods (t), can be expressed by Z transform. Model validation is carried out
by comparing the data generated by the model with those observed in the system.
Nash-Sutcliffe efficiency, coefficient of determination, and index of agreement, are
frequently applied to verify hydrologic models.

It is difficult to establish a clear identification methodology of nonlinear system
identification, because of the variety of nonlinear model structures and nonlinear
behaviors. These Volterra representations lead to very complicated identification
algorithms since evaluation of higher order Volterra kernels often requires very large
amounts of data for even low order nonlinearities. However, kernels can be cal-
culated for systems whose order is known and finite. Most important methods in
Hammerstein-Wiener model identification try to reduce the parameter redundancy
by using linear and nonlinear structures. Other methods use optimized algorithms to
decrease the computation complexity.
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