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Abstract. We are concerned with model predictive control without stabilizing terminal con-
straints or costs. Here, our goal is to determine a prediction horizon length for which stability or
a desired degree of suboptimality is guaranteed. To be more precise, we extend the methodology
introduced in [7] in order to improve the resulting performance bounds. Furthermore, we carry out a
comparison with other techniques designed for deriving estimates on the required prediction horizon
length.
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1. Introduction. Model predictive control (MPC), also termed receding horizon
control (RHC), is a well established control strategy in order to approximately solve
optimal control problems on an infinite time horizon, e.g. stabilization of a given
control system at a desired set point, cf. [3, 1, 22]. To this end, a sequence of optimal
control problems on a truncated and, thus, finite time horizon is generated in order to
compute a feedback. Since this methodology allows to directly incorporate constraints
and is applicable to nonlinear as well as infinite dimensional systems, cf. [16, 8, 12],
MPC has attracted considerable attention during the last decades, cf. [10]. However,
the stability analysis of MPC is far from being trivial, cf. [21]. Often, additional
(artificial) terminal constraints or costs are used in order to ensure stability and
feasibility of the MPC closed loop, cf. [14, 4]. However, since these stability enforcing
modifications of the underlying optimization problems are seldomly used in practice,
we concentrate on so called unconstrained MPC schemes, cf. [20]. Here, unconstrained
indicates that neither additional terminal constraints nor costs are incorporated in the
formulation of the auxiliary problems of the corresponding MPC schemes.

Stability and feasibility were shown for unconstrained MPC for “sufficiently large”
prediction horizon, cf. [13]. Since the length of the prediction horizon predominantly
determines the numerical effort needed in order to solve the optimal control problem
in each MPC iteration, this result automatically leads to the question of how to
determine this quantity suitably. A technique in order to deal with this issue can be
found in [17]. However, the proposed methodology is only applicable for linear, finite
dimensional systems without control or state constraints. For nonlinear constrained
systems a first approach is given in [6] which was significantly improved in [23]. A
more recent approach, which is also applicable for infinite dimensional systems, was
introduced in [7] and further elaborated in [9]. Both approaches have in common that
a controllability assumption is exploited in order to estimate a prediction horizon
length for which asymptotic stability or even a desired performance in comparison
to the optimal solution on the infinite time horizon is guaranteed. However, the
assumed conditions deviate. Here, we extend the methodology from [7, 9] to the
weaker assumption from [23] which allows to ensure the same performance bounds
for significantly shorter prediction horizons in comparison to [23]. Furthermore, we
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illustrate how this generalization can be employed in order to further tighten the
estimates on the horizon length from [7].

The paper is organized as follows. In Section 2 MPC is introduced and the
methodology proposed in [7, 9] is concisely summarized. In the ensuing section this
technique is adapted to the weaker controllability assumption from [23]. Based on
this result a comparison to the prior approaches stemming back to [23, 7] is drawn.
In order to illustrate our results, the example of the synchronous generator taken
from [5] is considered. Some conclusions are given in Section 5.

2. Model Predictive Control. Let N and R denote the natural and the real
numbers, respectively. Additionally, the definition N0 := N ∪ {0} is used and a
continuous function η : R+

0 → R+
0 which is strictly monotone, unbounded, and satisfies

η(0) = 0 is said to be of class K∞.
Nonlinear discrete time control systems governed by system dynamics

x(n+ 1) = f(x(n), u(n)), x(0) = x0,(2.1)

with state space X and set U of control values are considered. Here, X and U
are normed Banach spaces. For a given sequence of control values u = u(n)n∈N0 ,
xu(n;x0) = x(n;x0, (u(n))n∈N0) denotes the trajectory emanating from the initial
state x0 and evolving according to (2.1). State and control constraints are modeled by
suitably chosen subsets X ⊆ X and U ⊆ U , respectively. A sequence of control values
u = (u(n)), n = 0, 1, 2, . . . , N − 1, is called admissible for x0 ∈ X, i.e. u ∈ UN (x0), if
the conditions

xu(n+ 1;x0) ∈ X and u(n) ∈ U

hold for each n ∈ {0, 1, 2, . . . , N − 1}. Furthermore, u = (u(n))n∈N0 is said to be
admissible if, for each N ∈ N, the restriction to its first N elements is contained in
UN (x0). Then, we write u ∈ U∞(x0). We assume that the set X is control invariant,
i.e. for each x ∈ X a control value u ∈ U exists such that f(x, u) ∈ X holds, cf. [19, 15]
and [8, Sections 8.2 and 8.3]. This is, in turn, equivalent to assuming U1(x) 6= ∅ for
all x ∈ X. Iterative application of this condition allows to infer U∞(x) 6= ∅.

Let a desired set point x? ∈ X and a control value u? ∈ U satisfying f(x?, u?) = x?

be given. Furthermore, let running costs ` : X × U → R+
0 be defined such that

`(x?, u?) = 0 and `(x, u) ≥ η(‖x− x?‖) ∀ x ∈ X(2.2)

hold for some η ∈ K∞. Our goal is to minimize the cost functional J∞(x0, u) :=∑∞
n=0 `(xu(n;x0), u(n)) with respect to u = (u(n))n∈N0 ∈ U∞(x0). Since optimal

control problems on an infinite time horizon are, in general, computationally in-
tractable, MPC is employed in order to approximate the solution or, at least, to
stabilize the considered system at x?. To this end, the optimization problem is solved
on a truncated and, thus, finite horizon:

Minimize JN (x̄, u) :=
N−1∑
n=0

`(xu(n; x̄), u(n))(2.3)

with respect to u ∈ UN (x̄) and x̄ = x0. The corresponding optimal value function
VN (·) is given by VN (x̄) := infu∈UN (x̄) JN (x̄, u). In order to keep the presentation
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technically simple, this infimum is assumed to be a minimum. Computing an optimal
sequence of control values

u?x̄ = (u?x̄(0), u?x̄(1), u?x̄(2), . . . , u?x̄(N − 1)) ∈ UN (x̄)

satisfying JN (x̄, u?x̄) = VN (x̄) allows us to define a feedback map µN : X → U by
setting µN (x̄) := u?x̄(0) ∈ U which yields the successor state

x1 := f(x0, µN (x0)) = f(x̄, µN (x̄)) = f(x̄, u?x̄(0)) ∈ X.

Then, the optimization horizon is shifted forward in time and the optimization Prob-
lem (2.3) is solved for the new initial state x̄ = x1. Iterative application of this
procedure generates a closed loop control on the infinite time horizon. The corre-
sponding trajectory is denoted by xµN

(n;x0), n ∈ N0.
Stability of such MPC schemes can be ensured by a sufficiently large prediction

horizon N , cf. [13]. In order to estimate the required horizon length, we suppose that
the following controllability condition introduced in [7] holds.

Assumption 2.1 (Grüne). Let a sequence (cn)n∈N0 ⊂ R+
0 satisfying the submul-

tiplicativity condition cncm ≥ cn+m for n,m ∈ N0 and
∑∞
n=0 cn < ∞ be given such

that, for each x̄ ∈ X, a sequence ux̄ ∈ U∞(x̄) of control values exists which satisfies

`(xux̄
(n; x̄), ux̄(n)) ≤ cn min

u∈U1(x̄)
`(x̄, u) =: cn`?(x̄).(2.4)

For instance, such a sequence may be defined by cn := Cσn with overshoot C ≥ 1
and decay rate σ ∈ (0, 1) for systems which are exponentially controllable in terms
of their stage costs, cf. [2] for an example. Based on Assumption 2.1 the following
Theorem can be deduced.

Theorem 2.2. Let Assumption 2.1 be satisfied. Then, for each α ∈ [0, 1), a
prediction horizon N can be chosen such that the condition

αN := 1−
(γN − 1)

∏N
i=2(γi − 1)∏N

i=2 γi −
∏N
i=2(γi − 1)

> α with γi :=
i−1∑
n=0

cn(2.5)

is satisfied. Furthermore, for all x ∈ X, the relaxed Lyapunov inequality

VN (f(x, µN (x))) ≤ VN (x)− αN `(x, µN (x)) ≤ VN (x)− α`(x, µN (x))(2.6)

holds for the MPC feedback µN with prediction horizon N . If, in addition to (2.2),
% ∈ K∞ exists such that VN (x) ≤ %(‖x − x?‖) is satisfied on X, asymptotic stability
of the MPC closed loop and the following performance bound is guaranteed

JµN
∞ (x0) :=

∞∑
n=0

`(xµN
(n;x0), µN (xµN

(n;x0))) ≤ α−1
N V∞(x0).(2.7)

Proof. [9, Corollary 6.1] ensures the existence of N ∈ N≥2 such that Condition
(2.5) holds. Then, [9, Theorem 5.4] yields Inequality (2.6). As a consequence, [7,
Theorem 5.2 and Proposition 2.4] can be applied in order to conclude asymptotic
stability of the MPC closed loop with prediction horizon N .

Summarizing Theorem 2.2 allows to easily compute a prediction horizon N for
which stability or a certain degree of suboptimality of the introduced MPC scheme
is guaranteed supposing Assumption 2.1. Note that Theorem 2.2 only requires ux0 ∈
UN (x0) satisfying Inequality (2.4) for n = 0, 1, 2, . . . , N − 1, cf. [11].
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3. Main Results. In this section we show that Theorem 2.2 and, thus, the
methodology proposed in [7, 9] can also be applied supposing the following control-
lability assumption introduced in [23]. Then, the resulting suboptimality estimate is
compared with its counterpart from [23].

Assumption 3.1 (Tuna, Messina, and Teel). Let a monotone sequence (Mi)i∈N ⊂
[1,M ], M <∞, be given such that, for each x ∈ X, the following inequality holds

Vi(x) ≤Mi min
u∈U1(x)

`(x, u) =: Mi`
?(x) = MiV1(x).(3.1)

Note that Assumption 3.1 is weaker than Assumption 2.1. In order to substantiate
this claim, suppose that Inequality (2.4) holds which immediately implies

Vi(x̄) ≤
i−1∑
n=0

`(xux̄
(n; x̄), ux̄(n)) ≤

i−1∑
n=0

cn`
?(x̄) = γi`

?(x̄)

and, thus, Condition (3.1) with Mi = γi. The other way round, such a conclusion is,
in general, not possible. We want to replace the definition of γi, i = 2, 3, 4, . . . , N ,
and, thus, αN in Theorem 2.2 by γi = Mi with Mi from Inequality (3.1).

Theorem 3.2. Suppose that Assumption 3.1 is satisfied. Then, the assertions of
Theorem 2.2 still hold based on Formula (2.5) applied with γi := Mi, i ∈ N≥2.

Proof. Without loss of generality M1 = 1 is assumed. Otherwise the sequence
(Mi)i∈N from Inequality (3.1) may be suitably adapted. Then, a so called equivalent
sequence (cn)n∈N0 can be defined by c0 = 1 and ci := Mi+1 −Mi. If the submul-
tiplicativity condition cncm ≥ cn+m holds for this equivalent sequence, the proof of
Theorem 2.2 does not need to be changed because neither [9, Theorem 5.4] nor [9,
Corollary 6.1] require the exact shape of the involved sequence (cn)n∈N0 but rather
the accumulated bounds (γi)i∈N≥2 , which are given by the sequence (Mi)i∈N.

If the submultiplicativity condition is violated, Theorem 2.2 still provides a lower
bound according to [9, Remark 5.5]. Indeed, the estimate may even be tightened by
solving the corresponding linear program given in [7].

We point out that the proof of Theorem 3.2 is mainly based on an observation.
However, the concluded assertion allows to significantly tighten our performance es-
timates as will be shown in the ensuing section. Note that the used concept of an
equivalent sequence does, in general, not take account of Condition (2.4).

Next, we compare the presented technique with the methodology introduced
in [23]. Note that this approach allows to incorporate a (control) Lyapunov function
as a terminal weight in the MPC cost functional JN (·). However, since constructing
a suitable terminal cost is, in general, a challenging task for nonlinear, constrained
systems, we do not want to make use of this option. Hence, the additional condition
`?(f(x, u)) + `(x, u) ≤ (1 +κ)`?(x) is automatically satisfied with κ := M2− 1. Then,
the suboptimality degree in the relaxed Lyapunov Inequality (2.6) is given by

α̃N := 1− κ · (MN − 1)
N−1∏
i=2

Mi − 1
Mi

,(3.2)

cf. [23, Theorem 1]. Proposition 3.3 shows that the obtained performance bounds from
Theorem 3.2 are tighter than those resulting from (3.2). The reason is the deduction
of the respective formulas. In order to derive (2.5) additional inequalities were taken
into account, cf. [24, Section 5.5]. This indicates that the assertion of Proposition
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3.3 also holds without the assumed submultiplicativity condition. However, then the
linear program proposed in [7] has to be solved instead of using Formula (2.5).

Proposition 3.3. Let a monotone bounded sequence (Mi)i∈N≥2 = (γi)i∈N≥2 be
given such that the equivalent sequence (cn)n∈N0 constructed analogously to the proof
of Theorem 3.2 satisfies the submultiplicativity condition cncm ≥ cn+m, n,m ∈ N0.
Then, the inequality αN ≥ α̃N holds for αN from Formula (2.5) and α̃N from Formula
(3.2) with κ = γ2 − 1 for all N ∈ N≥2.

Proof. The assertion αN ≥ α̃N is equivalent to

(γN − 1)
N−1∏
i=2

γi ≤ (γ2 − 1)

[
N∏
i=2

γi −
N∏
i=2

(γi − 1)

]
,(3.3)

an inequality which we show by induction with respect to N ∈ N≥2. For N = 2, (3.3)
holds with equality, i.e. the induction start. Next, we carry out the induction step
from N  N + 1. For N + 1, the right hand side of (3.3) can be rewritten as

γN+1(γ2 − 1)

[
N∏
i=2

γi −
N∏
i=2

(γi − 1)

]
+ (γ2 − 1)

N∏
i=2

(γi − 1)

which allows to use the induction assumption. Hence, ensuring the inequality

(γ2 − 1)︸ ︷︷ ︸
=c1+c0−1≥c1

(γ2 − 1)(γN − 1)
N−1∏
i=3

(γi − 1)− (γN+1 − γN )︸ ︷︷ ︸
=cN≤c1cN−1

N−1∏
i=2

γi ≥ 0(3.4)

is sufficient in order to prove (3.3). Factoring c1 out and applying [9, Lemma 10.1]
with j = k = m = ω = 1 yields (3.4) and, thus, completes the proof.

In both settings [23] and [7, 9] terminal weights can be taken into account. Theo-
rem 3.2 and Proposition 3.3 remain valid for this setting. However, the interpretation
of the suboptimality degrees αN and α̃, respectively, via Estimate (2.7) does not re-
main valid since VN (·) may not be monotone with respect to the prediction horizon N
in this setting. Furthermore, note that the approach from [7, 9] is designed such that
time varying control horizons are allowed which can lead to further sharpening the
horizon estimates. This is particularly interesting, since the algorithmically based ap-
proach presented in [18] allows to carry out “classical” MPC safeguarded by enhanced
stability estimates obtained for longer control horizons.

4. Numerical example. The proposed approach is applicable for systems gov-
erned by ordinary and partial differential equations, cf. [2]. Here, Condition (2.4) is
numerically verified for the example of the synchronous generator given by

ẋ1(t) = x2(t)
ẋ2(t) = −b1x3(t) sinx1(t)− b2x2(t) + P(4.1)
ẋ3(t) = b3 cosx1(t)− b4x3(t) + E + u(t)

with parameters b1 = 34.29, b2 = 0.0, b3 = 0.149, b4 = 0.3341, P = 28.22, and
E = 0.2405, cf. [5]. Then, choosing a discretization parameter T > 0, the discrete
time dynamics (2.1) may be defined by f(x, u) = Φ(T ;x, ũ(·)) with ũ(t) = u for all
t ∈ [0, T ). Φ(T ;x, ũ(·)) stands for the solution of the differential equation (4.1) at
time T emanating from initial value x which is manipulated by the constant control
function ũ(·). This construction represents a sampled-data system with zero order
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hold (ZOH) with sampling period T . For our numerical experiments T is set equal to
0.05.

Our goal is to stabilize this sampled-data system (4.1) at the equilibrium x? ≈
(1.124603730, 0, 0.9122974248)T . The running costs

`(x, u) =
∫ T

0

‖Φ(t;x, ũ(·))− x?‖2 + λ‖ũ(t)‖2dt =
∫ T

0

‖Φ(t;x, ũ(·))− x?‖2dt+ λT‖u‖2

are used where ‖ · ‖ denotes the Euclidean norm on R3 and R, respectively. For the
considered example the physically motivated state constraints 0 ≤ x1 < π/2 and x3 ≥
0 have to be taken into account. To this end, X is chosen to be a level set of V6(·) which
is located in the interior of the cube [x?1−0.25, x?1 +0.25]×[−1, 1]×[x?3−0.75, x?3 +0.75]
and is control invariant according to our numerical experiments. This set is discretized
with accuracy ∆xi = 0.05, i ∈ {1, 2, 3}, in each coordinate direction and consists, thus,
of 3091 points, cf. [24, Subsection 4.4.1] for details.

Our first goal in this section is to determine a sequence (cn)n∈N0 satisfying As-
sumption 2.1. To this end, we compute, for each x̄ ∈ X, an admissible control sequence
ux̄ and define cn(x̄) by

`(xux0
(n;x0), ux0(n)) = cn(x0)`?(x0),

cf. [24, Subsection 5.4.2] for details. We point out that this sequence does not have
to be optimal which, on the one hand, eases the computations to be carried out but,
on the other hand, may also lead to more conservative horizon estimates. In order to
construct a suitable sequence which satisfies Inequality (2.4) independently of x̄, the
supremum has to be taken, i.e. cn := supx̄∈X cn(x̄). Hence, the γi, i = 2, 3, . . . , N ,
involved in Theorem 2.2 are given by γi =

∑i−1
n=0 supx̄∈X cn(x̄). On the contrary,

tighter bounds can be deduced by using Assumption 3.1 instead:

Mi := sup
x0∈X

i−1∑
n=0

cn(x0) ≤
i−1∑
n=0

sup
x0∈X

cn(x0) = γi.

The estimates on the minimal stabilizing horizon decreases by 9 from N = 41 to
N = 32, cf. Figure 4.1. Similar results are obtained for performance bounds α > 0.

Applying (3.2) with κ ≈ 1.29963597 yields N = 51 as minimal stabilizing pre-
diction horizon and requires, thus, an increment of 10 in contrast to the technique
presented in [7, 9] and of 19 in comparison to the methodology introduced in this
paper which consists of Assumption 3.1 from [23] in combination with Theorem
2.2 from [7, 9], cf. Figure 4.1. Clearly, directly determining the bounds γi, i ∈
{2, 3, . . . , N}, further improves the horizon estimates for this example. Here, how-
ever, we do not pursue this approach in order to indicate differences of the considered
approaches.

Summarizing, deducing estimates based on Theorem 3.2 instead of Theorem 2.2
leads to a considerable reduction of the required prediction horizon length needed
in order to guarantee asymptotic stability of the MPC closed loop. In conclusion,
Assumption 3.1 allows to deduce each Mi separately for each index i. This additional
flexibility can be exploited in order to derive better bounds and, thus, tighter horizon
estimates in comparison to [7, 9]. A similar impact can be observed for many pde
examples for which exponential controllability in terms of the stage cost is verified
and, thus, constants C ≥ 1 and σ ∈ (0, 1) are computed which typically depend on
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Fig. 4.1. Comparison of the performance estimates resulting from Theorem 2.2, Theorem 3.2,
and Formula 3.2.

a parameter p. The presented methodology allows to individually optimize each γi,
i = 2, 3, . . . , N , with respect to this parameter instead of optimizing Formula (2.5),
cf. [24, Chapter 5.4] for a pde example of a reaction diffusion equation.

5. Conclusions. We combined Assumption 3.1 from [23] with the technique
proposed in [7, 9] in order to deduce tighter estimates on the required prediction
horizon length in model predictive control without terminal constraints or costs. In
addition, we showed that the assumption made in [7, 9] implies this assumption.
Furthermore, we proved that the corresponding performance bound is tighter than its
counterpart from 3.1 which was illustrated by a numerical example.
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