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i Outline

=  Why state estimation?

= Observability

= Recursive Estimators and Luenberger Observer

= Optimal Recursive Estimation and Kalman Filtering

* Properties and Interpretations of Kalman Filtering

= Stationary Kalman Predictor and Time Series
Models

= Extended Kalman Filtering

= Simulation examples and experimental case study
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Motivation

= Quality variables : product concentration, average
molecular weight, melt viscosity etc.
= Costly to measure on-line

= Measured through lab assays: sampled at irregular
intervals

= Measurements available from wireless sensors are
at irregular intervals due to packet losses

= For satisfactory control of such processes:
Quality variable / efficiency parameters should be
estimated at a higher frequency

= Remedy: Soft Sensing and State Estimation
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State Feedback Controller Design
Discrete time State Space Model
x(k +1) = ®x(k) +Tu(k)
y(k)=Cx(k)

State feedback multivariable control law
u(k) = G(x,(k)—x(k))
= Step 1: Assume the states are measurable and design a
stable control law / controller

= Step 2: Design a state estimator which constructs
estimates of states by fusing measurements with model
predictions

= Step 3: Implement the controller using the estimated states

= Separation principle ensures nominal closed loop stability

with state estimator-controller pair
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i Inferential Measurement: Basic Idea

Since fast sampled (primary) variables
(temperatures, pressures, levels, pH) are
correlated with the quality variable, can we
infer values of quality variables from
measurements of primary variables?

On line state estimation:
Feasible after availability of fast Computers
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Model Based Soft Sensing "™

Fast-rate Low-cost Irregularly / Slowly
measurements from sampled Quality variables
Plant (Temperature / from Lab assays

Pressure / Speed)

Dynamic Model
(ODEs/ PDEs)

}

On-line Fast Rate Estimates of
Quality variables

<---

>

Soft Sensing: Cost Effective Solution
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Soft Sensing

IIT Bombay

Techniques
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Example: Quadruple Tank System
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dh _ aq a, nk
A =12 A%

p 4\/ gh +4 gh + A v
dh _ a a, 7.5
Th__ % [ 4 N

a4 g/“/t2 gh+ 4 "

%__& (1_71)/(1
P /,3,/2_9/1;+7A3 v,

dﬁ4 a, (1_72)/‘3
Hh__ % M)
g~ AN T

Manipulated Inputs:v, and v,
Measured Outputs:h, and h,

If model parameters are known accurately,
can we estimate levels in Tanks 3 and 4

State Estimation

from measurements of levels in Tank 1 and 2?
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Example: Continuously Stirred Tank Reactor

Consider non-isothermal CSTR dynamics

dC
th _ fl(CAaTaFaF;aCAoanan)/ feed flow rate

- v

coolant flow rate |

dar -
E:fz(CAaTaFaFca AoaTcin)

States(X)=[¢, T] MeasuredOutput (Y)=[T]

Manipulated Inputs(U) =[F F.] /»

UnmeasuredDisturbances (D,) = [C,,] :
) _ | Cooling water
MeasuredDisturbances (D,,) =[T,;}-~ | Temp.

n

If model parameters are known accurately,
can we estimate C, from measurements of T alone?
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CSTR: Model Parameters and IIT Bombay
Steady state Operating Point

V (Reactor volume )=1m3 ; F (Inlet flow)=1m3/min;

Cao( Inlet concentration of A)=2.0 kmol/m;

To (Inlet temperature) =50 OC; F (Coolant flow) =15 m3/min ;
Co(Specific heat of reacting mixture) =1 cal/(gK)

Tcin (Coolent Inlet Temperature )=92 °cC;

Coc (spacific heat of coolent )=1cal /(gK):

p (Reacting liquid density) =10® g/m3; p.( Coolent density ) =10® g/m3;
- AHupy (Heat of reaction) =130 x 10° cal/kmol

a=1678x10%a/ /min ; b=05; E/R=8330.1K

Ca(Concentration of A) = 0.265kmol/m3 Operating Steady
T (Reactor Temperature) =121°C State
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i State Estimation Problem

It is desired to implement a state feedback
control law. However, all the states are not measured.

Thus, given
Computer control relevant discrete model

x(k +1) = ®x(k)+Tu(k)+ VYd(k)
y(k)=Cx(k)+v(k)

and input -output data
{¥(0),y(1)....y(N)} and {u(0),u(1)....u(N)}

Can we estimate state sequence

{&(0),x(1)....x(k)} ?
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Simplified Problem Statement

onsider ideal situation where
= disturbances and measurement errors are absent

= model is perfect

Problem: Given measurements y(0), y(1),..y(N)
and inputs u(0), u(1), ....,u(N) together
with model

x(k +1) = Dx(k) + Tu(k)
y(k)=Cx(k)
Estimate state sequence x(0),x(1),....

Since we have the model, it is sufficient fo estimate only x(0).
X(1),X(2),....can be estimated through recursive use of the model
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Let x(0) denote initial state estimate
and giveninput sequence

{u(0), u(1), u(2),.....}
we can use model to estimate
x(1) = ®x(0) + I'u(0)
x(2) =ox(1)+Tu(l)
= ®’x(0) + ®T'u(0) + Tu(l)

x(3) = @’x(0) + ®°Tu(0) +....
How to find x(0)?
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Estimation of Initial State

Given measurements y(0),y(1),....,y(n—1)
and inputs {u(0),u(l),u(2)......}
we can write
Cx(0) =y(0)
Cx(1) =y() =CDx(0)+ CI'u(0)
= COx(0)=y(l)-CT'u(0)

CO"'x(0) =y(n-1)—CP"*Tu(0)—...CTu(n-2)

Can we uniquely estimate the initial state by
Solving above set of linear algebraic equations?
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. . oy . IIT Bomba
i Estimation of Initial State '
Combining the equations, we have
[ C ] I y(0) |
Co y(1)—CI'u(0)
co’ | x(0) = y(2) - C®I'u(0)— CT'u(l)
(/7)(1) .........
| CO™ |  y(n—1)—CO"*Tu(0)-...CTu(n-2) |
\q/—J ~
A b T~
<. Known
quantity
A x0)= b
(nryxn (nryx1

A unique solution x(0) can be found only if matrix A has rank equal to 'n'

Automation Lab
IIT Bombay

Observability

bservability: System is said to be observable
if initial state can be uniquely estimated from
output observations

Initial state can be uniquely estimated from
measurements of inputs and outputs if following
rank condition holds

Observability
C Matrix

Co ) .
rank =n =state dimension
co™!

3/3/2017 State Estimation 16
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i CSTR: Continuous Perturbation Model

Continuous time linear state space model

C(H-C, Fih-F ~
— ~/ . — N =C,. -C..
X(f) |: T(f)—r :| s ll(f) |:F;(f)—/:;j| 7d(f) Ai (f) Al

a [-756 -009) [0 17357 A
dt |852.72 577 -6.07 -70.95/"""" |0
y=[0 1k
Discrete time linear state space model
Sampling Time (T) = 0.1 min

k) 085 -001] = [0.005 013 s 0.06 i
X “17349 133 [ 073 -18]" 3.9
y(k)=[0 1]x(4)
3/3/2017 State Estimation 17
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i Observability: CSTR Example

Can we estimate concentrations
from measurements of temperature ?

0.185 -0.008
= c=[0 1]
73.492 1.333

rank C =rank 0 ! =2
Co 73.492 1.333

Linear Perturbation model for CSTR is observable

Let x(0)= (0.1,1) and u(0)=(0,0),
Then we get x(1) = (0.0104, 8.682) and

Temperature measurements are
y(0) =1, y(1) = 8.682.

Estimated initial state from measurements: (0.1,1)

3/3/2017 State Estimation 18
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Quadruple Tank System e
Discrete Time State Space Model
Sampling Time T = 5 sec
x(k +1) = ®x(k)+Tu(k)
y(k) = Cx(k)+ v(K)
0.9233 0 0.1813 0]
O 0 0.9462 0 0.1493
0 0 0.8112 0
0 0 0 0.8465
0.4001 0.02276
- 0.01209 0.3055
0 0.2159
0.1438 0
3/3/2017 State Estimation 19
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Measurement Structure Selection

Question: We have only two level sensors and we would
like to place them such that the state is observable from

the level measurements. How to place the sensors?

Observability can be used as a basis for placing the sensors

Structurel:h andh, Structure 2:h; andh,
05 0 0 O 0 0 05 0
C = C =
{ 0 05 0 0} [o 0 0 0.5}
Observability MatrixRank =4  Observability Matrix Rank =2

3/3/2017 State Estimation 20
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Measurement Structure Selection

Structure3:h andh, Structure 4:h, and h,

05 0 0 0 c_|0 0500
C= 0 0 0 05

0 0 05 0
Observability Matrix Rank =2 Observability Matrix Rank =2

Structure5:h andh, Structure 6:h, and h,
[0.5 00 0 } [o 05 0 0}
C= C=
0 0 0 05 0 0 050
Observability MatrixRank =3  Observability Matrix Rank =3

Thus, only structurel,i.e. h, and h, measured,
permits state observability.

3/3/2017 State Estimation 21
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Quadruple Tank System

Rank of observability matrix = 4
only when h; and h, are measured

[ 0.5000 0 0 0
0 05000 0 0
C 0.4617 0 0.0906 0
co | 0 04731 0 00746
co’| | 04263 0 0.1572 0
Cco’ 0 0.4476 0 01338
0.3936 0 0.2048 0
0 04235 0 0.1800]

Levels in Tank 3 and Tank 4 can be estimated
using level measurements of Tank 1 and Tank 2
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i Measurements with errors

What if measurements have errors ?

y(K) = yr (k) +v(k)

Collect larger sample of size N >> n
Perform least square estimation
min o T o
%(0) ;V(k ) Rvik) Measurement
subject to Noise

True Value

V(k)=y(k)— {C(D")‘((OH kiC(D“Fu(k —J)

=1

R: Measurement Noise Covariance
3/3/2017 State Estimation 23
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CSTR Example (Contd.) e

Let the process initial state be (0.1,1) and
input sequence be u(0) = u(1) =..u(5) = (0,0)

Suppose we collect following 6 temperature
measurements corrupted with measurement noise
Ym = (0.957, 8.516, 12.353, 11.498, 6.975, 1.291)

Least square estimate of state vector

0.1003
0.924

Estimate improves if more measurements are added.

x(0)= {

Difficulty in on-line implementation:
Optimization problem size grows with timel

3/3/2017 State Estimation 24
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i On-line State Observer

On-line recursive estimation of states
from measured data and mathematical model

A4

Process — vy(k
u(k) W nore

\ 4

True Process "Open-Loop" State Estimator
X(k+1)=Ox(K)+Tu(k) ..(1)  X(k+1)=O%(K)+Tu(k) ...(2)
y(k) = Cx(k) y(k)=Cx(k)

Difficulty : Initial State x(0)is not know exactly.

3/3/2017 State Estimation 25
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i On-line State Observer

A\ 4

Process —> y(k)

u(k)

A\ 4

Model —— y(k)

Difficulty:
Cannot be used
If process is marginally
Stable or unstable.

Defining Estimation error
g(k) = x(k) - x(k)
Subtracting (2) from (1), we have

g(k +1) = Dg(K) = g(k) = D*£(0) Even when p(®) <1
p(®) decides rate of
If processis stable,i.e., p(®) <1, convergence of £(k)
then (k) > 0ask — o Can we accelerate
the convergence?
3/3/2017 State Estimation 2
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“Closed Loop" State Observer

Open Loop Observer: Difficulties
1. Not applicable to unstable systems

2. Rate of convergence governed by spectral
radius of & matrix

Process +
u(k) Y(k) § e(k)
Model B

y(k)

\ 4

\ 4

Use of output prediction error to
1. Stabilize estimator for unstable processes
2. Improve rate of convergence for stable systems

3/3/2017 State Estimation 27

Automation Lab
IIT Bombay

Recursive Estimation

Recursive On-line State Estimator
X(k +1) = OX(k) + Tu(k) + Le(k)

e(k) = y(K) - CR(K)
=YK

- v

__________________

Estimation error ! Feedback Correction

True process dynamics (deterministic case)
x(k +1) = Dx(k)+Tu(k)
y(K) =Cx(K)

How to choose estimator gain matrix L such that
estimation error reduces to zero as quickly as possible?

3/3/2017 State Estimation 28
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i Estimator Error Dynamics """

Estimation Error e(k)=x(k)-x(k)
g(k +1) = (® -LC)e(k)
or &k)=(®-LC)*&(0)
Choose observer L gain such that

max

A(@-LC) <1

A:():1"th eigenvalue of matrix (®-LC)
The above choice ensure (k)| — 0 as k — o
as (®—-LC)* —» Null Matrix as k — »

irrespective of choice of X(0) i.e.£(0)

3/3/2017 State Estimation 29
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Single Output System (SOS): IIT Bombay
i Luenberger Observer

Deterministic Observer Design:
Choose observer gain matrix L such
that matrix ®-LC has poles at the
desired locations (Pole Placement)

Choice of observer poles: Compromise between
decay of estimation error and sensitivity to
measurement noise/modeling errors

Choice of poles so as to systematically account for
Measurement noise and Unmeasured Disturbances
is difficult

Consequence: sub-optimal performance
in presence of stochastic disturbances

3/3/2017 State Estimation 30
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Pole Placement Design

Consider CSTR model with
3 0185 -0.01
17349 133

Let the observer gain matrix be
L= [a b]T

} and C=[0 1]

0185 -0.01l-a
O-LC=

7349  133-b
The characteristic equation of ®-LCis

det[ A1 — (@ —LC)]= (1 - 0.185)(4 — (1.33-b)) + 73.49(0.01 + a)
= 22 —(1515-b) A +(73.49a — 0.185b + 0.9809)

3/3/2017 State Estimation 31
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Pole Placement Design

Suppose we want to 'place’ poles of ®-LC at
A =051, =025
i.e. desired characteristic polynomial of ® -LCis
(A=0.5)(1—0.25)= A2 —0.751+0.125

Comparing coefficients of characteristic polynomials,
the poles can be placed at the desired location if
(1515-b) =0.75
(73.49a—-0185bh+0.9809) =0.125
i.e.if se set @ =-0.0097 and »=0.765

Difficulty: This 'raw approach’ of placing poles becomes
cumbersome to use for systems of higher dimension.
Remedy: Use variable transformations for pole placement design

3/3/2017 State Estimation 32
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SOS Luenberger Observer B
Coordinate Transformation: 7(k) = Tx(k)
Original Model Observable Cannonical Form
x(k +1) = Ox(k)+ Tu(k) ....(T) n(k +1) = (k) + Lu(K) ......(IT)
y(k) = Cx (k) —> y(k)=Cn(k)
Transfer Fundtion -4 1.0..0 4
bz ' +bz" ...+ b o, =| % 0 10 r,= &
y(k) = 2= 122 ™ u(k)
z"+az" +.. +a, ~aq, 0 .. O b,

Design Procedure
= Transform the model to observable canonical form

= Intransformed coordinates, choose observer vector such
that poles of are placed at desired location

= Express the observer gain matrix in the original co-ordinate
system

3/3/2017 State Estimation 33
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SOS Luenberger Observer

Design observer in transformed coordinates
Ak +1) =@, fi(k) + Tu(k)+L,C,[n(k) — (k)]
—a-/ 1 0.. 0

0,1

~a,~f,, 0 l.. 0
®,-L,C, = *

-a,-, 0 .. 0
= det A1 —(®, ~L,C)]= 2 +(a +/, ) +....+(/,, +a,)
Let the desired observer characteristic polynomial be

PA)=2+pAl " +....t p,
where polynomial on R.H.S. has poles at the desiredlocation
Equating coefficients of det[AI —(®, - L,C,)]with P(1), we have
p=a+/,, =/ =p-a fori=12.n

3/3/2017 State Estimation 34
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SOS Luenberger Observer

Transform the observer L, back to original state space as

L=T'L,
Coordinate Transformation
n="Tx
~ 1
T= [WogsI Woss
C, C
~ C,o, co
Wogs = Wogs =
(o Ja ol

Note that the above coordinate transformation
is possible only if the original system is
observable, i.e. Rank( Wpgs) = n

3/3/2017 State Estimation 35
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CSTR Example

Linearized (Original) State Space Model

(ks1)_[0185 -001] - (0005 013]
X “17349 133 -073 -18/"

y(k)=[0 1)x(k)

Observable Canonical form
1518 1} {-0.7335 -1.797
nk)+

-0.836 0 0.3256 -10.18
y(k)=[l 0n(k)

[ p+1518
L,=T""
p,—0.836

n(k+1) =[ }u(k)

T—[\Tv}lw—lo_lo 17 o 1
S Lhossl Toss 11518 1| |73.492 1.333| |73.492 -0.185

3/3/2017 State Estimation 36
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Prediction Estimation

The observer we have designed
corresponds to "prediction estimation”
%(k +11k)=®x(k | k—1)+Tu(k) + L, [y(k) - Cx(k | k—1)]

X(k +1] k) :Prediction estimate of state
at time instant (k+1)
based oninformation up o time instant (k)

Can be employedif sampling time is very small and
time for estimator calculations is significant relative to the sampling interval.
X(k | k—1) calculations can be carried out during intersample period
and used for controller implementation at the k'th insiant.
Disadvantage : Unit information delay

3/3/2017 State Estimation 37
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Prediction Estimation and I Sombay
Current State Estimation

Current state estimator
Prediction Step

R(k|k-1)=Dk(k—1|k-1)+Tu(k-1)
Measurement Update
R(k|k)=x(k|k-1)+L.[y(k)-Cx(k| k-1)]

Estimation error dynamics
e(k+1|k)=de(k| k)
g(k|K)=[1-L.Cle(k | &k -1)
=gk+1|Kk) =D -L.Cl(k| k1)
Prediction estimator and Current state estimator

gain matrices are related as

L,=®L, or L.=®'L,
3/3/2017 State Estimation 38
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CSTR: "Open Loop" Observer

"Open Loop” Observer” : no Measurement based Correction
Linear Plant- Linear "Open Loop" Observer

State Estimates: (-) True (+) estimated

04
E 0.35F——*¢
O
o
\E, 031+ 7 +++T +++.
8 / + ¢ + ﬂMWM
8§ 025 \/ *+<f

02

0 1 2 3 4
Time (min)
State Estimates: (-) True (+) estimated

405

400 '+
- +
% + e
= \ + WWW
g 395 V F
g + ++
= 390 +

i
385
0 1 2 3 4
Time (min)

3/3/2017

State Estimation
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CSTR: "Open Loop" Observer

"Open Loop” Observer” : no Measurement based Correction
Linear Plant- Linear "Open Loop” Observer

Open Loop Observer: Error Dynamics

<
N

A~

il \/

Error in Conc. Estimate
o

025 1 2 3 4
Time (min)
o 15
©
£ W
(72}
g0\
s 5
: \ N\
e 0 \
£ 5
g /
1% 1 2 3 4
Time (min)

3/3/2017
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CSTR: Luenberger Observer

Observer poles: Both poles placed at 0.5

Linear Plant- Linear Observer

State Estimates: (-) True (+) estimated

0.4
€ 035
3 A
E 03 ~i
LD S
5 0.25 +
[¢] M’/
0'20 0.5 1 1.5
Time (min)
State Estimates: (-) True (+) estimated
405
< 400 /N
= /\.\
E 395 / \
= T+ + + 4
+ o+
390
0 0.5 1 1.5
Time (min)
3/3/2017 State Estimation
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CSTR: Luenberger Observer
Observer poles: Both poles placed at 0.5
Luenberger Observer (poles at 0.5): Error Dynamics
o 0.15
@
% 0.1
u
2 0.05
AN
'g 0 S— —+—
* O'050 0.5 1 1.5 2
Time (min)
o 10
E gl
VRN
Eal O\
: .
§
00 0.5 1 1.5 2
Time (min)
3/3/2017 State Estimation 42
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CSTR Example: Dead-beat Observer

Linear Plant- Linear Observer
State Estimates: (-) True (+) estimated

0.5
g
0.4}
3
£ 03]
202t
3
0.1 L y L
0 0.5 1 1.5 2
Time (min)
420 T T
- g(0)=[0.1 2]
X at0f
g
g 4007,
390 0.5 1 15 2
Time (min)
3/3/2017 State Estimation 43
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CSTR Example: Dead-beat Observer

\
\

Linear Plant- Linear Observer
Luenberger Observer: Error Dynamics

o
-
o

o
-

o

Error in Conc. Estimate
o
o [=]
(3] o

Error in Temp. Estimate &
o
_—

Time (min)

e
(=]

=

&
o

0.5 1 15 2
Time (min)
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CSTR Example: Dead-beat Observer

Non-Linear Plant- Linear Observer
State Estimates: (-) True (+) estimated

0.5
20.4 £(0)=[0.1 2]
Eo_s A A A " 'h' A
R ATA MR AWAY.
8 ¥
0'10 2 4 6 8 10
Time (min)
420
+
ek i
2400 &
Eagof&wr v + ad's 1‘ T&.T‘AWJ
3800 2 4 6 8 10
Time (min)
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CSTR Example: Dead-beat Observer

Non-Linear Plant- Linear Observer

% 015 Luenberger Observer: Error Dynamics

E .
A o1

§ 0.05
o OAAhA A\ ANA A A[\r’\AAA
£ v/ "V‘\IV“'\.JV \Iv"\/w\l
S.-0.05
5 0 2 4 6 8 10
o Time (min)

(]

£ 10

g s I

S ol M Aa M AM I AA N M AMAA
g Vv\/ RARRAASVA AR QY| \[VW'VVVVV\
F 5

£ '

S -1

= 00 2 4 6 8 10
w Time (min)
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Estimation Error Variances !
Luenberger Conc. Temp.
Linear Plant 3.993x10-° 1.112
Nonlinear Plant |2.534x104 3.3303
Kalman predictor | Conc. Temp.
Linear Plant 3.984x10°° 1.113
Nonlinear Plant |2.547x10-4 3.341
3/3/2017 State Estimation 47
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A Difficulty ey

Consider CSTR model with modified observation matrix
0185 -0.01 1 0
D= and C=
7349 133 0 1
Since two measurements are available, the L is of the form
w7 4]
y 0
0185—a -00 1-/3}

7349-y 133-6
The det[AI - (® - LC)]is function of (a, 8,7,6)

@—LCz{

Comparing coefficients with 2’ + p A+ p, yields only 2 equations
in 4 unonowns. = There is no unique solution to the design problem.

3/3/2017 State Estimation 48
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Difficulty with Multiple Output  uTeombay
Systems

In general, for a system with r measurements, the

observer gain matrix is a matrix with (r x n) unknowns

Comparison of the characteristic equation of the
observer error dynamics with desired characteristic

polynomial yields only n equations in (r x n) unknowns

Thus, (r-1) x n unknowns have to be determined by
some other means. Also, for a large dimensional
system it is difficult to place poles optimally.

3/3/2017 State Estimation 49
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Unmeasured Disturbances

What if there are unknown disturbances
influencing state dynamics?

What if the measurements are corrupted with
measurement noise?
Suppose we have stochastic models for time
evolution of these unmeasured disturbances and
measurement noise, then

can we use these models to design a state estimator,
which filters out the measurement noise but
compensates for the unmeasured disturbances?

It is difficult to carry out pole placement based on these
noise models such that the desired goal is achieved.
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Unmeasured Disturbances

Consider Continuous Time Linear Perturbation Model
obtained through linearization of a mechanistic model

& _ Ax(#)+Bu(#)+ Hd(#)

dt
y(#) = Cx(#)
Perturbation variables Computer Controlled Systems
XA =X(*)-X ; y*)=Y(F#)-Y Manipulated inputs are piecewise constant
u#=U#-U ; d(*)=D(*)-D u(t) =u(k)
*=0) ") =D& for t=KkT <t<(k+DT

Difficulty
Disturbance inputs d(t+) are NOT piecewise constant functions!
How to develop a discrete time model?
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Unmeasured Disturbances

Simplifying Assumption 1:
Sampling interval (T)is small enough
so that disturbance inputs can be
approximated as piecewise constant functions
during the sampling interval
d(t)=d(k) for t=kT <t<(k+DT

Under the simplifying assumption 1, we can write
x(k +1) = dx(k) + Tu(k) + Pd(k)
y(k) = Cx(k) + v(k)
where © =exp(AT)

T T

r= j exp(A7)Bdr and W = Jexp(Az')Hdr
0 0
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i Unmeasured Disturbances

Simplifying Assumption 2:
d(k):zero mean white noise process
with Covw(k)]=EWkw(k) |=Q,

Simplifying Assumption 3:
Measurements are corrupted
with zero mean white noise process
(k) }with Cov[v(K)]=E[v(K)v(k) ]=R

Define w(k) = Wd(k)
E{w(k)}=PE{d(k)}=0
Coviw(k)} = E{w(yw(k)” |=WEfd(b)d(k) }¥7 = ¥Q, %"
LetQ=vQ,¥"
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i Unmeasured Disturbances

Thus, we consider a general model of the form
x(k +1) = dx(k) + Tu(k) + w(k)
y(k) = Cx(k) + v(k)
where
{w(k)}is a zero mean white noise with Cov(w(k)) = Q
{v(k)}is a zero mean white noise with Cov(w(k)) = R

Additional source of uncertainty: unknown initial state

Simplifying Assumption 4
Initial State at k = 0is aRandom Variable such that
E[x(0)] = E[x(0 | 0)] Cov[x(0)] = P(0)
= E[x(0) — %(0 | 0)] = E[e(0 | 0)] =0
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i CSTR: Continuous Perturbation Model

0185 -0.01 0.005 0.3 0.06
x(k+1) = x(k)+ u(k)+ d(k)
7349 133 073 -18 3.9

v =[0 1)
State Noise
E[d(k)]=0 and Cov[d (k)] = (0.05)*

0.06 ,[0.06]
= 0 =Cov[w(k)]=YQ,¥’ =[ }(0.05) [ }

3.9 3.9
_ (0.05) 0.0036 0.234
N 0234 1521

Measurement Noise
E[v(k)]=0 and Cov{v(k)} = R =(0.5)
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i Optimal State Estimation

Thus, given stochastic state space model

x(k +1) = dx(k) + Tu(k) + w(k)
y(k) = Cx(k) + v(k)
where w(k) and v(k) are uncorrelated (in time

and with each other) random sequences with
zero mean and know variances

Eww@) |=Q ; E[vkyvi)"|=R

Q quantify uncertainties in state dynamics
and/or due to modeling errors/unmeasured disturbances
R quantifies variability of measurement errors

Given measurements {y(k)}, inputs (u(k)} and the model,
how fo construct optimal state estimate?
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Optimal State Estimation

= Since {w(k)} and {v(k)} are stochastic processes, the state
sequence {x(k)} is also a stochastic process

= Notice that through the difference equation, x(k) and x(k-j)
are correlated. Thus, even when the sequences {w(k)} and
{v(k)} are white noise processes, {x(k)} is a correlated
stochastic variable.

= Two important statistical measures that can be used to
characterize the stochastic process {x(k)} are its mean and

covariance functions, which are related to characteristics of

{w(k)} and {v(k}}.
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Preliminaries

Define set
Y* = {(y(0),u(0),(y(),u(V))......,(y(k),u(k))}

= Under weak conditions, the best (i.e. optimal)
estimate is the conditional (or a posteriori) mean
%(k| k) = E|[x(k) | Y*]

Prediction Step
E[x(k) | Y |= E[@x(k - 1)+ Tuk - 1)+ w(k -1) | Y*"] Y0
= OE|x(k 1) | Y*' |+ Tu(k - 1) + E[w(k~1)]
OR &(k|k—1)=®k(k—1|k—1)+Tu(k-1)
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Preliminaries

Cov|x(k) | Y |=E|(x(k) —x(k) \x (k) —x (k)Y | Y]
X(k) = E[x(k)| Y*]

Subtracting the equation governing the mean

X(k|k-1)=Dx(k—1|k-1)+Tu(k-1)
from the equation governing the system dynamics
x(k) = Dx(k —1)+Tu(k —1) + w(k —1)
we have
gk |k—1)=De(k -1 k-1)+w(k-1)

~
~

A

Prediction Error “* Estimation Error
gkl k-D=x(k)-x(k| k-1 s(h—1k-1)=x(k-1)—k(k—1| k-1
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Preliminaries

Update Step
(k| k)=x(k|k-1)+L(k)e(k)
e(k) =[y(k) -3 (k| k-1)]
(with an arbitrary gain matrix L(k))
where "innovation" e(k)
is related to state estimation error as follows
e(k)=y(k)-y(k|k-1)

= Cx(k) +v(k)-Ci(k | k-1)
=Ce(k|k-1)+v(k)

Prediction and estimation errors are related as follows

(k| k)=3%(k|k-1)+L(k)e(k)
= [x(k) - %(k | k)= [x(k) - (k| k- D)]-L(k)e(k)
= g(k| k) =[I-L(k)Cle(k| k1) - L(k)v(k)
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i Mean Values of Estimation Errors

Error Dynamics
g(k|k-1)=De(k—1|k-1)+w(k-1)
g(k| k) =[I-L(k)Cle(k | k —1)-L(k)v(k)

Combining
g(k | k) =[I-L(k)C][@e(k —1] k —1)+ w(k —1)]- L(k)v(k)

Simplifying Assumption 4
Initial State at k = 0is a Random Variable such that
E[x(0)] = E[%(0 | 0)] ~Cov[x(0)] = P(0)
= E[x(0) — (0 | 0)] = E[(0 | 0)]=10
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‘ Mean Values of Estimation Errors
E[e(1|1)] = [1- L()C]E[@£(0 | 0) + w(0) |- L(DE[v(1)] = 0

E[e(2]2)]=[1-LQ)CJE[®e(1]1) + w(1)]-L(2)E[v(2)]= 0

Ele(k | k)] = [I- L(k)CJE[®e(k 1|k —1)+ w(k —1)]- L(k)E[v(k)]= 0
= Ele(k | k—1)]= E[®e(k—1k-1)+w(k-1)]=0
Thus, the proposed linear observer is unbiased
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Estimation Errors: Covariance Matrices

Define
P(k | k—1)=Covle(k | k—1)]=Ele(k | k—D)e(k | k-1) |
P(k—1|k-1)=Cov]e(k —1| k—1)]=E[e(k— 1| k-D)e(k —1| k—1) |
Now
e(k|k-De(k| k-1 =[De(k -1 k-1)+w(k-D)]De(k—-11k-1)+wk-D]

Taking expectation on both the sides and noting
e(k-1|k-1)and w(k-1) are uncorrelated
ie.Ele(k—11k-Dw(k—1)|=0
it follows that

Pk k-1)=DP(k-1|k-1)D” +Q
(Recursive equation for update of prediction covariance)
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Prediction Error

The innovation
e(k)=y(k)-y(k|k-1)
=Ce(k | k-1)+ v(k)
=ClDe(k—1| k-1)+w(k-1)]+v(k)
contains information about w(4 —1) and v(k)

It is desired to compensate the state estimate for w(k)
while filtering v(k) out

Update Step can be viewed as
R(k | k)=x(k|k-1)+W(k-1|k)
W(k —1| k)= L(k)e(k)
L(k):decides the "portion of e(k)"
used for disturbance compensation.
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‘ Means and Covariance of Errors

Mean of the innovation
Ele(k)]=CE[e(k | k—1)]+ E[v(k)]=0

Covariance of Innovations
P (k) = Ele(t)e(k) | = E[(Cak | k 1)+ v(b)Cetk | k-1) + v(b)) |
=CCoV[e(k | k—D)]C" +Cov[v(k)}
_CP(k|k-1)CT +R

Estimation Error

g(k | k) =g(k | k—1)—L(k)e(k)
= Ele(k | k)]= E[g(k | k=1)~L(k)e(k)]=0
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‘ Means and Covariance of Errors

Estimation Error
Covle(k | k)] = Covle(k | k—1)]+ L(k)Cov]e(k)JL(k)"
—Efetk | k- 1e(k) JL(k)" —L(k)E[eth)ek | k-1)" ]

Defining
P, (k) =Ele(k | k- 1)e(k)’ ]
P, (k) = Efek |k~ 1)(Ce(k | k-1) + v(k)) |= P(k | k-1)C”

we have
P(k|k)="P(k|k—1)+L(k)P,(k)L(k)" —L(k)P, (k)" —P,(k)L(k)"
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Minimum Variance Design

Find gain matrix L(k) such that
estimation error variance in minimum
Minimum Variance Design

Min
L(k)
Necessary Condition for Optimality
otr[Pk k)] _ (o]
OL(k)

tr[P(k| k)]

Note :Properties of Trace of a Matrix
tr(C + D) = 1r(C) + fr(D)
tr(C) = tr(C")
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Matrix Calculus

Consider X (m x 7 matrix)andy = f(X), ascalar function of X

% oy |
ox, ox,  ox,
oy | >y X
X | OXu  OXy, 0X,,
S h Ty

Rules of Dif ferentaition
orr[AX]  otr[XA]
X X
Let B represent a symmetric matrix
otr[XBX’ |
oX

= AT

= 2XB
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Minimum Variance Observer

otr[L(K)P,(K)L(K)T |
OL(k)

= 2L(K)P,(K)

otr{LkIP, k) + R, (LK) otrlLkop, (k)]
AL(k) - OL(K)

Thus, it follows that
otr[P(k | k)]
OL(k)

= L'(k) = [L(K)]er = PL(KP.(K)"

=2P, (k)

= 2L(K)P,(K) - 2P, (k) = [0]

= [P(k | K)],py =Pk | k=)= L' (k)P (k) 'L (k)"
=i wclpk k-1
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‘ Kalman Filter: Summary '
Prediction
X(k|k-1)=Dx(k-1|k-1)+Tutk-1)
Pk | k-1) =Pk -1]| k-1DD" +Q
Kalman Gain Computation
L'(k)=P,_(k)P, (k)"
=P(k|k-1)CT|[CP(k | k-1)CT +R]"
Update
e(k) = [y(k) - Cx(k | k - 1)]
Xk | k) = x(k | kK - 1) + L' (k)e(k)
Pk | k) = [I - L'(k)CP(k | k& - 1)
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Interpretations
Covariance matrix quantifies uncertainty
associated with the estimated state

e, P(k|k—1)>P(k|k) T X2

. N
L X > Xy

“  Prediction Update

"”-"E.f."ﬁ” step step

[Pk | K)l-P(k | k=1)=-L (k)P (k) "L (k)
L'(k)P,(k)'L' (k)" is +ve definite matrix
=Pk k)<Pk|k-1)
Update step reduces covariance associated with the estimate
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Gaussian Distributions

hy study multivariate Gaussian distribution?

= From Central Limit Theorem, it follows that sum of many
independent and equally distributed random variables can be
well approximated by Gaussian distribution. If unknown
disturbances are assumed to be arising from many independent
physical sources, then Gaussian distribution is appropriate for
modeling their behavior

= Attractive mathematical properties: linear transformations of

Gaussian distributions are still Gaussian distributed.

= For Gaussian distributed random variables, optimal estimated

have a simple form.
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Multivariate Gaussian Distribution

Consider random variable x € R”
Let X e R” represent mean of x and
P represent + ve definite covarince matrix

_ 1 N o -
=NEXP)=—— exp|-(x—x) P (x -
p(x) (x,P) )" JaeP) exp[ (x x) (x x)]
Characterized completely by mean (x) and covariance (P)

If x ~N(x,P)is arandom vector and A is a (rxn) matrix of rank r
andbis a(rx1)vector, then
z=Ax+b
is also a Gaussian distributed z ~ N(AX + +b, APA”)

Consequence: Linear filtering of a Gaussian distributed
Inputs will generate a Gaussian distributed output
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Multivariate Gaussian Distribution

Consider two random variable x and z
Let X and Z represent means of x and z, respectively

Random vector x and z are said to be uncorrelated if

Elx—x)z—2) =101

Random vector x and z are said to be independent if
p(x.z) = p(x)p(2)
If vectors x and z are independent

= x and z are uncorrelated

If vectors x and z are uncorrelated and Gaussian
= x and z are independent
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Gaussian Noise and KF

et the processnoise, the measurement noise and the initial state
have Gaussian normal distributions, i.e.
w ~N(0,Q),v~N(0,R) and x(0)~ N(x(0|0),P(0))

then, from the properties of Gaussian distributions it follows that
pIx(k)| Y"‘l]'" N(X(k|k=1),P(k| k1))
and
plx(k)| Y"]" N(X(k | k), P(k | k))
Also, the innovation sequence is a Gaussian stochastic process

plett) | Y* |~ N0, P, (k)
P, (k)=CP(k|k-1)C" +R
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Gaussian Noise and KF

When the processnoise, the measurement noise and the initial state
have Gaussian hormal distributions, it can be shown that

x(k | k) generated using Kalman filter maximizes p[x(k) | Yk]
i.e.itis a"maximum a posteriori" or MAP estimate

k(k | k) generated using Kalman filter maximizes
log likelihood functioni.e.

loglpls(k) | Y*) = loglplx(k), ¥*-loglp[¥*)
Inother words, KF generates solution that minimizes

Min
ol 0-Cx

Thus, Kalman Filter is a "Maximum Likelihood" (ML) Estimator

2

x(k k)= - +[x(k)-x(k | k-1)

‘P(k\k—l)"
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Kalman Filter: Advantages

Generates the maximum likelihood (ML) and maximum a
posteriori (MAP) estimates of the states when noises

are Gaussian
= Kalman filter is the minimum variance estimator

= Requires only first and second moments of conditional

densities of the states and the innovations
= Relatively easy to adapt to multi-rate and irregular
sampling scenario

= Stability can be established using Lyapunov's 2'nd
method (see Appendix)
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Stationary Kalman Filter

Thus, as k — oo,
P(k|k-1)>P,, P(k|k)>P, andL (k) > L

Stationary Kalman Gain Computation using
Algebraic Riccati Equation (ARE)

P, =0P ®" +Q
L, =P.C[cP.c" +R]
P, =[I-L Cp,
Prediction and Update
(k| k-1)=DX(k—-1|k-1)+Tu(k-1)
x(k|k)=x(k|k-1)+L [y(k)-Cx(k| k-1)]
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Example: Quadruple Tank System

True Initial State
x(0)=[2 -2 2 -2
Kalman Filter Parameters

00l 0 0 0
0 001 O 0

0 0 001 O
0 0 0 0.01

%0]0)=[0 0 0 0] and P(0]|0)=Q

Cov[w(k)|=Q =

Cm/[v(k)]zn{o'o1 0 }

0 0.01

Stationary Kalman Filter Gain

0.7825 0 0.6337

L, = 0 o079 Eigen values of 1-L,C) = 0.7195
” 102212 0 ” 0.6196
0 0.2365 0.7806
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Example: Quadruple Tank System

Quadruple Tank: State Estimation using Kalman Filter

4 T
—+—True State
- A —Estimated State |1
2
S0 T
2 1 1 1
0 100 200 300 400
Time (sec)
2
~ 0
2
3.4 —+—True State
— Estimated State
-4 L L "
0 100 200 300 400
Time (sec)
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Example: Quadruple Tank System

Quadruple Tank: State Estimation using Kalman Filter

—+—True State
® 1}t —Estimated State |
2
Q
-
o 100 200 300 400
Time (sec)
1
< 0 I
©
3
= -1} —+—True State
—Measured State
“0 100 200 300 400
Time (sec)
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Example: Quadruple Tank System

Spectral Radius

plP(k | k-D)]> p[P(k| k)]

Kalman Filter: Predicted and Updated Covariance

0.1 —+—Predicted Covariance P(k+1|k)
’ —-©—Updated Covariance P(k|k)

0.08

0.07}|

0.06

0.05

0.04

0.03; 100 200 300 200

Time (sec)
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Kalman Predictor: Summary

Initailization Step : Initail mean, X(0 | -1),
Initial Covariance P(0|-1)

At Instant ' k'
Stepl : Compute Kalman Gain L, (k)
L,(k) = ®P(k | k - )C"[R + CP(k | k - 1)CT |
Step 2:Recursive Prediction Estimator
e(k) =[y(k)-Ci(k | k-1)]
X(Kk+1| k)= Ox(k | k—1)+Tu(k)+ L, (k)e(k)

Step 3 :Update Covariance matrix
Pk +1| k) = ®P(k | k — 1) + Q — L(K)CP(k | kK — 1)D
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Kalman Predictor: CSTR EXampleHT Bombay

2k +1) = [0.185 - 0.0l}x(k) N [0.005 0.13}4(]() N [0.06}1(10

7349 133 -0.73 -18 3.9
yky=[0 (k) +v(k)
0, =(0.05)

. ,/0.0036 0.234
0=Y0,¥" =(0.05) [ }

0.234 15.21
Coviv(k)} = R = (0.5)*
Apriori estimate of initial state
x(0]-D=[0 o]
Initial State Covariance Estimate (selected arbitrarily large)

10
1= 3
P(0|-1)=1x10 [o J

After about 20 iterations, Kalman (Predictor) Gain settles to following steady State Values
L,, =[-0.00516 0.696]

3/3/2017 State Estimation 84

42



CSTR Example: Kalman Predictor

Linear Plant- Linear Observer
State Estimates: (-) True (+) estimated

0.5
2oa g(0)=]0.112]
3 +
50.3__.\ '
S
50.2 \_ﬁﬁyf}‘\ ‘J =+
o
A
0 0 0.5 1 15 2 25 3 35 4
Time (min)
430
420 *
3
S410 /\1\
& 400 NN AT AT
I+ \H’)Vr e R
3900 0.5 1 15 2 25 3 3.5 4
Time (min)
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CSTR Example: Kalman Predictor
Linear Plant- Linear Observer
o Kalman Predictor: Error Dynamics
g 02
E 0.1
o
c 0
o
o
Sail\/
5-0.2
= 0 0.5 1 15 2 25 3 35 4
g Time (min)
£ 20
Iﬂ 10/\
iy
(]
';-10 V
S 20
s 0 0.5 1 15 2 25 3 35 4
w Time (min)
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CSTR Example: Kalman Predictor
Non-Linear Plant- Linear Observer
State Estimates: (-) True (+) estimated
_04rr
b yi!
Eo3 A
3.0 2% A A}&\’”"‘w 94
MY Y ¥
o1}
o
© 0
0 2 4 6 8 10
Time (min)
460
2440 . £(0) = [0.1 2]
8420
£
o A FS -
= 400_+ ¥ g ey ‘%ﬂ ¥
3800 2 4 6 8 10
Time (min)
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CSTR Example: Kalman Predictor
Non-Linear Plant- Linear Observer
2 Kalman Predictor: Error Dynamics
g 04
& 02
2 o N AL
3
=02
§'°'4o 2 8 10
I-Ii, 4‘ime (min?
g 20
z |
w o AN~ IWANASAANANAAL VU
[
Al
2 20
£
§ -400 2 8 10
W %ime (min}
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“Steady State" Kalman Predictor

As k — o, under weak conditions
the optimal estimator will be time invariant
Theorem
Assume pair (®,4/Q) s stabilizable and the pair (®,C)is detectable
Then the solution of the Riccati equation P(k|A—1) > P, >0
where P, denotes solution of the Algebraic Riccati Equation
P, =®P 0" +Q-L, CP 0"

*

L, =oP,C"[R+CP.CT["

Lemma
Assume pair (©,+/Q) is controllable and R is non - singular
Then all eigen values of (®-L, ,C) are inside the unit circle.
(Dynamics governing the estimation error g(k | k-1) is asymptotically stable)
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"Steady State” Kalman Predictor

Ask >, P(k|k-1)—>P,
where P, denotes solution of the Algebraic Riccati Equation
P, =0P d" +Q-L, CPO"

*

L, =oP,C [R+CPCT]"

Recursive Prediction Estimator
e(k)=y(k)-Cx(k| k-1)
X(k+1| k)= Ox(k| k-1)+Tu(k)+L), (k)

The above "steady state observer" can be written as
X(k+1| k)= Ox(k| k-1)+Tu(k)+L), e(k)
y(k)=Cx(k | k—1)+e(k)
Ele(k)]= 0 and Cov[e(k)]=R +CP,C"
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Connection with Time Series Models

Stationary form of Kalman predictor
is also known as Innovation form of State Space Model

x(k +1) = Ox(k)+Tu(k)+Le(k)
y(k)=Cx(k)+e(k)
Ele(k)]=0 and Covle(k)]=P,
Taking q-ftransform, we can write

y(k) = G(g)u(k) + H(g)e(k)
G(q)=ClgI-@]'T ; H(q)=1+C[gI-®]'L

Thus, stationary form of Kalman predictor is equivalent to
ARMAX type time series model
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Connection with Time Series Models

Conversely, a time series model (ARX/ARMAX/BJ)
estimated from the input output data
y(k) = G(q)u(k) + H(g)e(k)
through a cannonical state space realization,
can be expressed as an innovation form of
the state space model
x(k+1)=Dx(k)+Tu(k)+Le(k)
y(k)=Cx(k)+e(k)
Ele(k)]=0 and Covle(k)]=P,

Thus, identifying an ARX/ARMAX/BJ model is equivalent to
identifying Stationary form of Kalman predictor
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Connection with Time Series Models

s Thus, stationary form of Kalman predictor can be
identified directly from input output data using ARX /
ARMAX / Box-Jenkins parameterization and converting
into state space realization.

= Advantage: No need to model the state noise, w(k), and the
measurement noise, v(k)

= Disadvantage: states do not have physical meaning

State realization of a ARMAX/BJ model
x(k+1)=Ox(k)+Tu(k)+w(k)
y(k) =Cx(k)+v(k)
w(k)=Le(k) and v(k)=e(k) E[w(k)]=E[e(k)]=0
Cov[w(k)]=LP,L” and Cov[v(k)]=P,
Cov[w(k). v(k)]=E[w(k)v(k) |=LP,
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Connection with Time Series Models

Thus, given a state realization of a ARMAX/BJ model
x(k +1) = dx(k) + Tu(k) + Le(k)
y(k) = Cx(k) +e(k)
we directly can develop a state estimator as follows
e(k) =y(k)—-Cx(k)
%(k +1) = (k) + Tu(k) + Le(k)
and further use for implementing
a state feedback control law
u(k) = G(x, (k) - (k))

Note: The states are observable by construction
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. . . Automation Lab
Dealing with Non-stationary 1T Bombay
Disturbances

Augment state space model with extra artificial
states (equal to no. of outputs), which behave as
integrated white noise sequence and can capture drifting

X(k +1) = @x(k) +Tu(k)+ T (k) +w(Kk)
nk+D)=nk)+w, (k)
y(k)=Cx(k)+v(k)

. Q [0]
State N C :
ate Noise Covarance L 0] QJ

Choice of T, matrix ~._ Tuning

Bias in Input Model: T, =T Parameter
Mean shift in diaturbance : T, =¥

Design Kalman Filter / Predictor using augmented model
Fast changing disturbance: use high values of co-variance Q,
3/3/2017
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. IIT Bombay
Notation
Mechanistic Model Assumptions
. Manipulated inputs and piecewise constant
State Dynamics P P P
ut)=u(k) for ¢t <t<t_
dx
7 =f(x,u,d,d) Unmeasured disturbances are random fluctuations
t

in the neighborhood of mean value
Measurement Model

d(t) = d +w(k)
y = H|x] /]
\ /
N >
x(t,,) = x(t,) + j £(x(2), u(k),d + w(k),0)dr Cg?;‘g:ézeﬁ;‘;‘*
t,=kT t,=Gk+D)T T:Sampling Time ~ =~~~ >  Representation

kgl

x(k+1) = x(k) + [£(x(z),u(k),d +w(k),0)dz x(k +1) = F[x(k),u(k), w(k),0]

= F[x(k),u(k), w(k),0] y(k) = H[x(k)]
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Extended Kalman Filter: Summary

Successive Local Linearization

1. Compute local Jacobian matrices

of of
Aty = |:&:| and B,(t,_) = [%}
(*) (*)

at (o) = [R(k—1] k- 1), u(k —1),0]
2.Compute matrices ®(k,k-1) = exp[A(tk_l 7T ] and
T, (k,k-1)=[®Kkk-1)-1JA¢,_)]'B, ()
Prediction Step
(k| k—1)=F[R(k—1| k1), u(k —1),0]
P(k|k—1)=D(k,k-D)P(k-1|k-1)D(k,k-1)" +Fd(k,k—l)QdFd(k,k—1)T
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Extended Kalman Filter: Summary

Kalman Gain Computation

Compute C(k) = {%—H} atX(k | k—1)and
X d@

L(k) =P, (k)P (k)"
= P(k | k—1)C(k) [C(k)P(k | k-1)C (k) +R]"

Update Step
e(k) = [y(k) - H(k(k | k-1))]
R(k | k) =%(k | k—1)+L(k)e(k)

P(k | k) =[1 = L(k)C(k)[P(k | k—1)

Approach originally derived for state estimation of a discrete
linear system used for state estimation of a nonlinear system
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EKF : CSTR Example e

State Estimates: (-) True (+) estimated

05
(5]
£ 0.4t
ENE A A S
Soalt] A VP A\ T
S 74 W Y
019 2 4 6 8 10
Time (min)

»
N
o

o

420 "

o

E oo P A P

20 LY Aa A N

380 2 4 6 8 10
Time (min)

Automation Lab

EKF : CSTR Example

Estimation Error Dynamics

Extended Kalman Predictor: Error Dynamics

[4]

T

E

B 02

§o1 A

o 0 /\ AN\ J/\M FPANV.VY A
£ \/ WV WV W WY VWY

S -

201y 2 4 6 8 10
"'iz Time (min)

g 10

i I\ N

N TR AN AN A A AN A
SR IS
£

= 10—

[=

S 20

£ o 2 4 6 8 10
w Time (min)
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IIT Bombay
EKF : Plug Flow (Tubular) Reactor (PFR)
Trl, Teel T2, Tye2 Steam, T,
______________ , T;5, TS
CA(1,), Cy(Lt)

CAo’ TR‘, CC(I,t)’ TR(I,t)

) A —*B —»C )

(Endothermic Reaction)

T;(0,0)

State Estimation Problem
Estimate concentration profile inside the reactor using
few temperature measurements along the length

Automation Lab
IIT Bombay

Fixed Bed Reactor

Material Balances (Distributed Parameter System)

823: = v, oC, _ kwe*E‘ /RT, c,
GCB a& +kloe—El/RT,CA _kzoe—Ez/RT,CB

a oz
= Energy Balances

—-AH
TG e e

ot oz p,C,,

(AHa)y g +—Dv(1-1)
mePm pm pmVr

+

J —

oT.  oT, U,
DowB P (1)
ot 0z PnComV
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IIT Bombay

PDE To ODE Model (Finite Differencing)

01 2 NN+1

“ Plant

Model
No. of internal discretization points 19 4
No. of states 80 20
No. of jacket side temp. measurements 3 3
No. of reactor side temp. measurements |3 3

State Estimation using EKF

Simulation Parameters

Automation Lab

IIT Bombay

Variable Nominal Value | Fluctuations added
Feed Flow 1 m/min 0.01 m/min

Feed Concentration 4 mol/lit 0.14 mol/lit
Temperature measurements | - 0.4K

Steam flow rate 1 m/min

Performance of EKF under the effect of feed flow and

feed concentration fluctuations was studied

The estimated concentration approaches the true

concentration within 5 minutes
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Fluctuations in Feed Flow and Feed
Concentration

1.05

Automation Lab
IIT Bombay

Feed Flow (m/min)
T

&
T

Feed Conc. of A (molflit)
5
T

w
)
o

Time (min)

150

Actual and Estimated Exit
Concentration of B

Automation Lab
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Exit Conc. of B (mol/lit)

—&— True Conc.
-+- Estimated Conc.
L15ph =

L 1 1 L 1 L 1 1 L
10 20 30 40 50 60 70 30 90
Time (min)

100
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. . . . IIT Bombay
Simulation Result: Concentration profiles
of product B at different time instants
14
12 1
—e— True Conc. (1 min) -
-4- Esti. Conc. (1 min)
—e— True Conc. (5 min)
r -4- Esti. Conc. (5 min) )
. — Tm_e Conc. (10 m_in) ;
g --- Esti. Conc. (10 min) s
%o.s .
3
0.4
0.2
0:1 0:2 0:3 0:4 0:6 0:7 0:8 0:9 1

0.5
Length (m)

Automation Lab

State and Parameter Estimation =

Estimation of deterministic changes in
unmeasured disturbances / model parameters

(k+1)T

x(k+1)=x(k)+ [f[x(z).u(k),d+w(k).00) iz

0(k +1)=0(k) +w, (k)
o7y =Hx®)]+ v(k)

e

7
7

Augment the model with fictitious discrete
evolution equation

0(k) : Vector containing slow drifting model parameters

/ unmeasured disturbances to be estimated with states
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i State and Parameter Estimation

Prediction step for augmented model

F(klk—l)}: FlR(k—1|k-1),u(k—1),0,0(k —1| k—1)
0k | k—1) 0(k—1|k-1)

Update Step for augmented model

X(k k)| [x(k|k=1) o
{é(k | k)} R _1)} +L, (k)y(k) - Cx(k | k-1)]

Predicted Covariance Update step
of | _lof| . _|of
A(tk—l) _|:8X_(.), Be(tk_])_[aﬂ:l(,) > Bd(tk—l) _[Odl,)
()= (x(k 1| k—1),u(k —1),d,0(k —1| k —1))
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i State and Parameter Estimation

Predicted Covariance Update : using augmented matrices
T

T,k k=1) = [expl(t, )7]B, (1, )dz

0

) -1 T -1 ) -1
@ (k,k—1) =[ (k=) Ty (kK )} and T,(k,k—1) { J(k.k )}
(0] I I
State Noise Covarance: Q= [Qd [0]
101 Q,y
Fast changing parameter/disturbance : n Tuning
use high values of covariance Parameter
P (k|k-1)=® (k,k—1)P, (k—1|k-1)D (k,k—1)"
+T, (k,k—=1)Q,T, (k,k—1)
3/3/2017 Nonlinear Estimation 110
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Extended Kalman Filter: Summary IIT Bombay

Kalman Gain Computation

Compute C(k) = H‘Z—H} [0]} at X(k |k—1)and 0(k | k—1)
X Je

L, (k) =P, (k)P, (k)"
=P, (k| k-)C, (k)" [C, k)P, (k| k-1C, (k) +R]'

Updated Covariance

P, (k| k) =[1-L(k)C, (k)P (k [k -1)

Simultaneous state and parameter estimation can be used for
* Soft sensor for slowly changing parameters / unmeasured

disturbances
* Faults in system, which are viewed as changing parameters
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Experiment: Combined State and IIT Bombay

Parameter Estimation on Heater-Mixer Setup

3-15 psi
Cold Water Flow Input

V-1 & ) :

1
v
Cv2®
| Cold Water Flow
]
--- Tank-1
===
1

_____ N Thyrister
4-20mA Control

Input Unit

Signal .
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Example: Stirred Tank Heater-Mixer

ar, ( )+ QL)

ar vt WpC,

ah, _ 1 _

g—AZ[/‘HFz(Iz) F]

a7, 1 VAT, = Torm)
Gt haA AT -T)+R(T,-T,) oC,

Q(I)=7.9791I, + 0.989I7 - 0.0073I;
£(I,)=3.9+271I,-0.711} +0.0093Z;
U=13957/m*ks ; F(h)=kh-h

I, : % current input to thyrister power controller
I, :% current input to control valve

) ) Automation Lab
Estimation of states and heat loss IIT Bombay

parameter using EKF - Experimental Conditions

Tank 1 temperature and heat loss parameter are to be
estimated

Tank 2 temperature and level are measured

The system is kept in perturbed state by perturbing the
inputs (heater input and tank 2 inlet flow)

The flow to tank 1 is kept constant. This implies that
overflow to tank 2 is also constant

The parameter is initialized with a value of 0.8

No. of states estimated 3
No. of parameters estimated 1
No. of measurements 2

Measurement noise covariance | 0.01zeye(2,2)

State noise covariance 01

Initial guess for error covariance | 1
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Experimental result: Tank 1 temperature T Bombay
and heat loss parameter estimates

Tank-1 Temp
T T

335

3301

T
— Measured
— Estimated
€ s j AR il
A

o 3201
[t

3151

L 1 1 L 1 1 1 1 L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (sec)

Heat loss parameter

L 1 1 L 1 1 1 1 L
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (sec)

Automation Lab
IIT Bombay

Issues in State Estimation

Robustness to plant-model mismatch: Model
accuracy is critical to state estimation

Noise Model Parameters: Measurement and state
noise co-variances are difficult to estimate.
These matrices are often treated as tuning
parameters

Number of extra states (unmeasured disturbances
/ parameters) estimated cannot exceed number of
measurements

Modifications necessary for multi-rate sampled
data systems
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Summary

Dynamic model based state observers can be
used to reconstruct unmeasured states from
frequently measured outputs

= Kalman filters generate state estimates with
minimum estimation error variance, provided state
and measurement noise models are known
accurately

= Extended Kalman filtering can be used for
estimating states of nonlinear systems

= Note: KF and EKF belong to a class of filters
called Bayesian estimators, which are used in wide
range of engineering applications (roboftics,
process control, farget tracking, speech
recognition, image reconstruction)
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E

Appendix:
Nominal Stability of Kalman Filter
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i Convergence of Estimation Errors

Consider a KF as implemented on a linear
deterministic system of the form

x(k +1) = Dx(k) + Tu(k)
y(k) = Cx(k)
which is free of the state uncertainty and measurement noise
Kalman Gain Computation using Riccati Equations
Pk | k-1)=0Pk -1]| k-1DD" +Q
L'(k)=P(k | k-1)CT[CP(k| k-DCT +R]"

P(k | k) = I - L'¢k)ClP(k | k- 1)

where Q >0;R > O are tuning matrices

60



Automation Lab
IIT Bombay

i Convergence of Estimation Errors

Kalman Filter
X(k +1| k)= Dx(k | k) +Tu(k)
(k| k)=%(k|k-1)+L (k)y(k)—Ci(k | k)]

Under the nominal conditions, the only source
of estimation erroris theinitial state x(0|0)
Error Dynamics
s(hk+1|k)=De(k| k)
e(k | k) =[1-L (k)CEk | k-1)
Combining
e(k +1| k)= [l -L' (F)Ck(k | k-1)......(3)

Equation (3) is a Linear Time Varying System
Stability Analysis cannot be carried out using eigenvalues

Automation Lab
IIT Bombay

‘ Convergence of Estimation Errors
Define matrices
(k| k-1)=[P(k|k-D]' and Ti(k|k)=[P(k| k)]
Using matrix inversion lemma
[A'+B]'=A-A[a+B]'A
and Riccati equations, the following inequality can be proved
Nk +11k) < [0 (0] (k| k~D[@, (k)]

~[o. ] am)|®, K)]........... (4)
®, (k) = D[I-L (k)C]

Q(k) = [n(k | k=1)([T(k | )+ D" Q'®) ' TI(k |k — 1)]
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i Convergence of Estimation Errors

Define Lyapunov function
Vk)=e(k|k-1)TI(k | k-De(k|k-1)
Combining equation (3) with inequality (4)

Vk+D) =V (k)< —elk |k —1)" Qk)e(k | k—1)

Q(k) = [H(k | k=1)(I1(k [ )+ DQ D ) ' TI(k | k —1)]

Since Q(k)is always +ve definite
sk k-1 Qk)e(k | k-1) >0
and error dynamics given by equation (3)is Lyapunov stable

Automation Lab
IIT Bombay

i Convergence of Estimation Errors

Assumption: There exists p,, p, >0 such that
pI<Pk|k-)<p,d and pI<P(k|k)<p,I

l

1 1
— etk 1 A-D)| <V (k) <—]etk | k-1)|
Pu P

1
pilpe + (o o)

k)| = H[n(k | k=D(MI(k | k)+TQ D) Ti(k| k —1)]‘ <
. 1 -
pilp +lof 7]

Thus, estimation error dynamics is asymptotically stable

Vik+1)-V (k)< - leCk | & )|




