

Scilab Manual for
Signals and Systems
by Prof Manisha Joshi
Electronics Engineering
VESIT¹

Solutions provided by
Nandan Hegde
Electronics Engineering
V.E.S.I.T/Mumbai

February 16, 2026

¹Funded by a grant from the National Mission on Education through ICT,
<http://spoken-tutorial.org/NMEICT-Intro>. This Scilab Manual and Scilab codes
written in it can be downloaded from the "Migrated Labs" section at the website
<http://scilab.in>

Contents

List of Scilab Solutions	3
1 To express sum of two complex exponentials as a single sinusoid	5
2 Perform linear convolution sum	9
3 Convolution integral of finite duration signals	12
4 Convolution sum of finite duration sequences	15
5 Frequency Response of Ideal Low pass Filter $X(jW) = 1$	18

List of Experiments

Solution 1.1	To express sum of two complex exponentials as a single sinusoid	5
Solution 2.1	Perform linear convolution sum	9
Solution 3.1	convolution integral of finite duration signals . .	12
Solution 4.1	convolution sum of finite duration sequences . .	15
Solution 5.1	Frequency Response of Ideal Low pass Filter . . .	18

List of Figures

1.1	To express sum of two complex exponentials as a single sinusoid	6
1.2	To express sum of two complex exponentials as a single sinusoid	7
2.1	Perform linear convolution sum	10
2.2	Perform linear convolution sum	11
3.1	convolution integral of finite duration signals	13
3.2	convolution integral of finite duration signals	14
4.1	convolution sum of finite duration sequences	16
4.2	convolution sum of finite duration sequences	17
5.1	Frequency Response of Ideal Low pass Filter	19
5.2	Frequency Response of Ideal Low pass Filter	20

Experiment: 1

To express sum of two complex exponentials as a single sinusoid

Scilab code Solution 1.1 To express sum of two complex exponentials as a single sinusoid

```
1 //To express sum of two complex exponentials as a
  single sinusoid
2 //scilab 5.4.1 ;64 bit(windows 8)
3 clear;
4 clc;
5 close;
6 t = 0:1/100:2*pi;
7 x1 = exp(sqrt(-1)*2*t);
8 x2 = exp(sqrt(-1)*3*t);
9 x = x1+x2;
10 for i = 1:length(x)
11   X(i) = sqrt((real(x(i)).^2)+(imag(x(i)).^2));
12 end
13 plot(t,X);
```

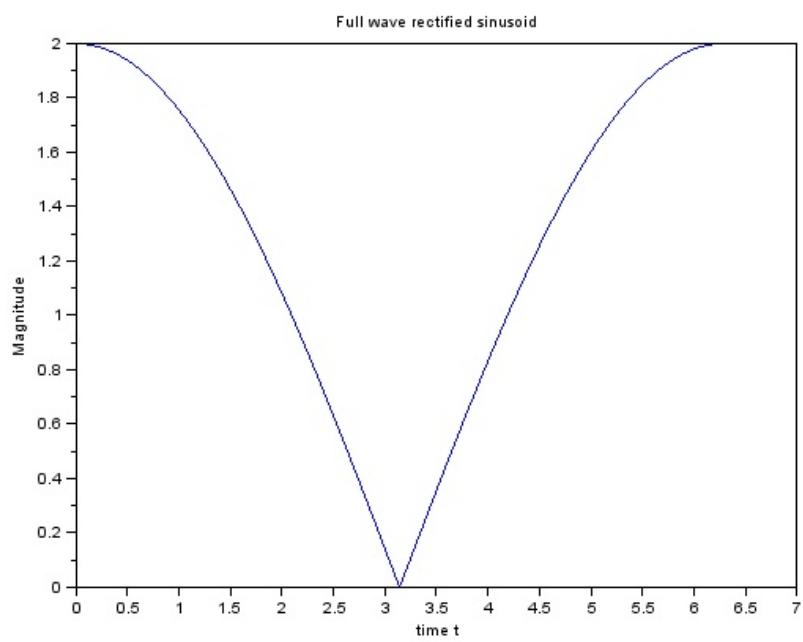


Figure 1.1: To express sum of two complex exponentials as a single sinusoid

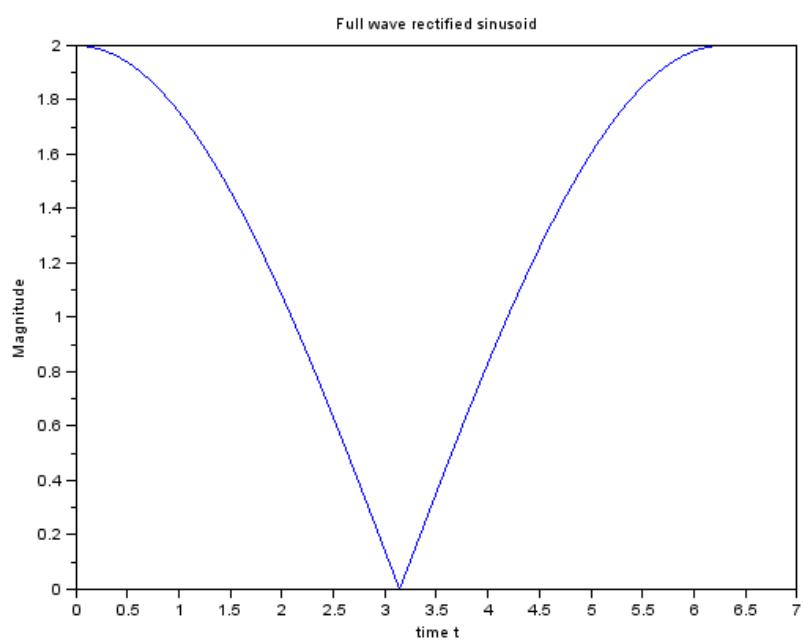


Figure 1.2: To express sum of two complex exponentials as a single sinusoid

```
14 xtitle('Full wave rectified sinusoid','time t','  
Magnitude');
```

Experiment: 2

Perform linear convolution sum

Scilab code Solution 2.1 Perform linear convolution sum

```
1 // To Perform linear convolution sum
2 //scilab 5.4.1 ;64 bit(windows 8)
3 clear;
4 close;
5 clc;
6 h = [0,0,1,1,1,0,0];
7 N1 = -2:4;
8 x = [0,0,0.5,2,0,0,0];
9 N2 = -2:4;
10 y = convol(x,h);
11 for i = 1:length(y)
12     if (y(i)<=0.0001)
13         y(i)=0;
14     end
15 end
16 N = -4:8;
17 subplot(3,1,1)
18 a=gca();
19 plot2d3('gnn',N1,h)
20 xtitle('Impulse Response','n','h[n]');
21 a.thickness = 2;
```

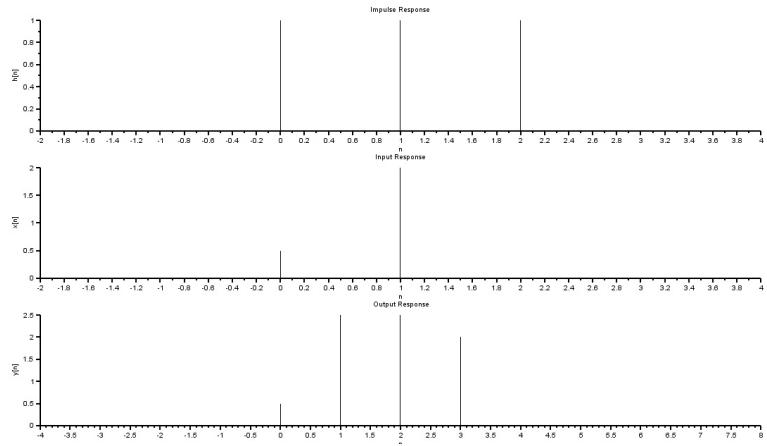


Figure 2.1: Perform linear convolution sum

```

22 subplot(3,1,2)
23 a=gca();
24 plot2d3('gnn',N2,x)
25 xtitle('Input Response','n','x[n]');
26 a.thickness = 2;
27 subplot(3,1,3)
28 a=gca();
29 plot2d3('gnn',N,y)
30 xtitle('Output Response','n','y[n]');
31 a.thickness = 2;

```

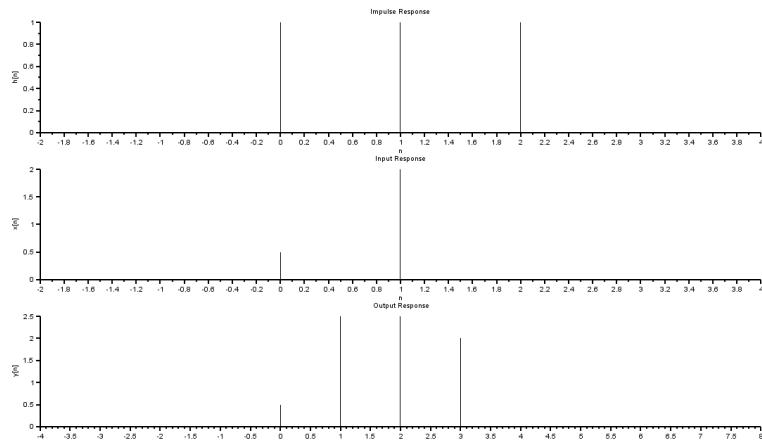


Figure 2.2: Perform linear convolution sum

Experiment: 3

Convolution integral of finite duration signals

Scilab code Solution 3.1 convolution integral of finite duration signals

```
1 //Convolution Integral of fintie duration signals
2 //scilab 5.4.1 ;64 bit(windows 8)
3 clear;
4 close;
5 clc;
6 T = 10;
7 x = ones(1,T); //Input Response
8 for t = 1:2*T
9     h(t) = t-1; //Impulse Response
10 end
11 N1 = 0:length(x)-1;
12 N2 = 0:length(h)-1;
13 y = convol(x,h);
14 N = 0:length(x)+length(h)-2;
15 subplot(3,1,1)
16 a=gca();
17 a.x_location="origin";
18 plot2d(N2,h)
19 xtitle('Impulse Response', 't', 'h(t)');
```

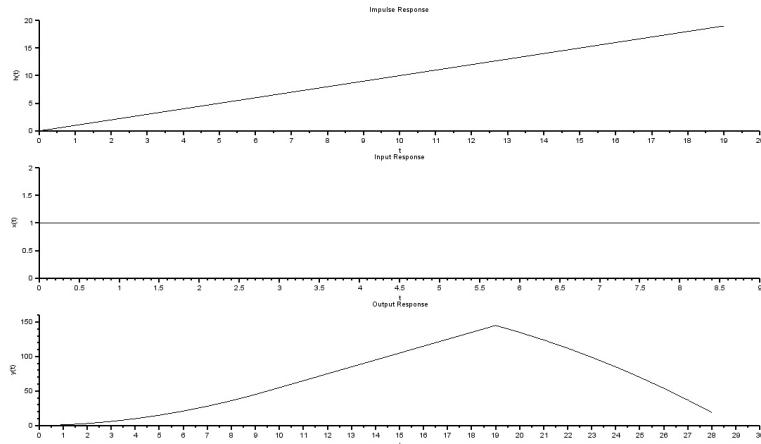


Figure 3.1: convolution integral of finite duration signals

```

20 a.thickness = 2;
21 subplot(3,1,2)
22 a=gca();
23 plot2d(N1,x)
24 xtitle('Input Response', 't', 'x(t)');
25 a.thickness = 2;
26 subplot(3,1,3)
27 a=gca();
28 plot2d(N,y)
29 xtitle('Output Response', 't', 'y(t)');
30 a.thickness = 2;

```

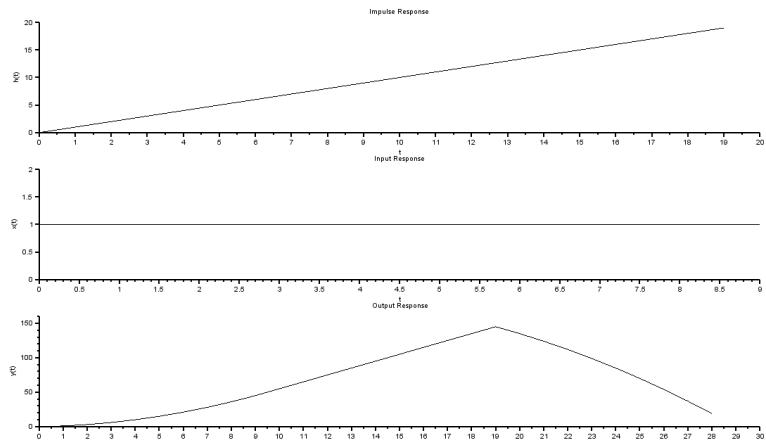


Figure 3.2: convolution integral of finite duration signals

Experiment: 4

Convolution sum of finite duration sequences

Scilab code Solution 4.1 convolution sum of finite duration sequences

```
1 //Convolution Sum of finite duration sequences
2 //scilab 5.4.1 ;64 bit(windows 8)
3 clear;
4 close;
5 clc;
6 x = ones(1,5);
7 N1 =0:length(x)-1;
8 Alpha = 1.4;      //alpha > 1
9 for n = 1:7
10    h(n)= (Alpha^(n-1))*1;
11 end
12 N2 =0:length(h)-1;
13 y = convol(x,h);
14 N = 0:length(x)+length(h)-2;
15 subplot(3,1,1)
16 a=gca();
17 plot2d3('gnn',N2,h)
18 xtitle('Impulse Response','n','h[n]');
19 a.thickness = 2;
```

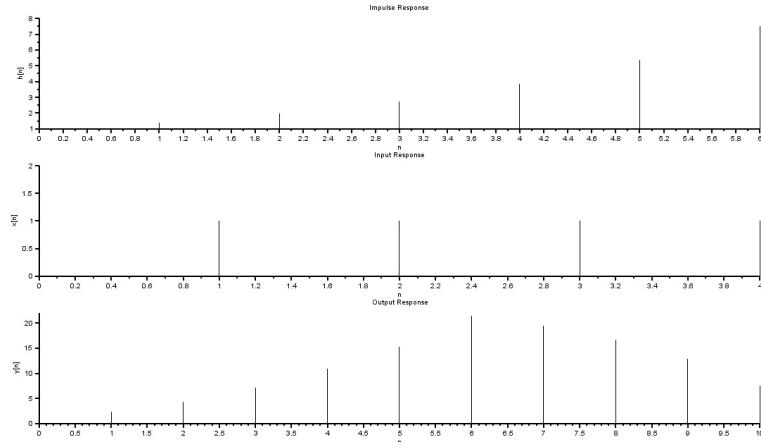


Figure 4.1: convolution sum of finite duration sequences

```

20 subplot(3,1,2)
21 a=gca();
22 plot2d3('gnn',N1,x)
23 xtitle('Input Response','n','x[n]');
24 a.thickness = 2;
25 subplot(3,1,3)
26 a=gca();
27 plot2d3('gnn',N,y)
28 xtitle('Output Response','n','y[n]');
29 a.thickness = 2;

```

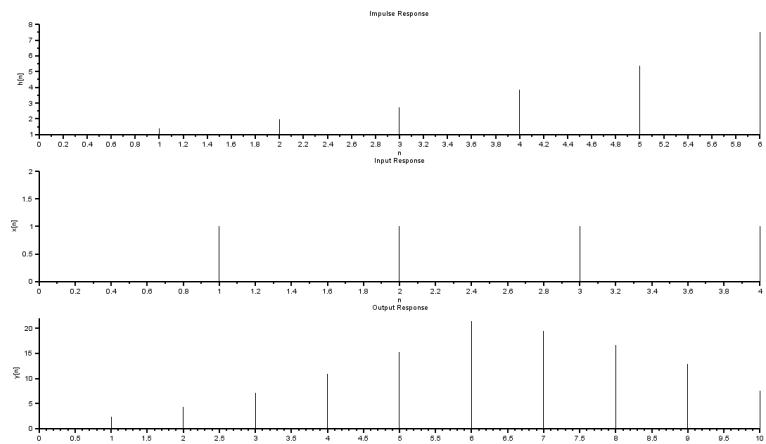


Figure 4.2: convolution sum of finite duration sequences

Experiment: 5

Frequency Response of Ideal Low pass Filter $X(jW) = 1$

Scilab code Solution 5.1 Frequency Response of Ideal Low pass Filter

```
1 //Frequency Response of Ideal Low pass Filter ,X(jW)=  
1  
2 //scilab 5.4.1 ;64 bit (windows 8)  
3 clear;  
4 clc;  
5 close;  
6 Wc = 10; //1 rad/sec  
7 W = -Wc:0.1:Wc; //Passband of filter  
8 HWO = 1; //Magnitude of Filter  
9 HW = HWO*ones(1,length(W));  
10 //Inverse Continuous-time Fourier Transform  
11 t = -%pi:%pi/length(W):%pi;  
12 Dw = 0.1;  
13 ht = (1/(2*%pi))*HW *exp(sqrt(-1)*W'*t)*Dw;  
14 ht = real(ht);
```

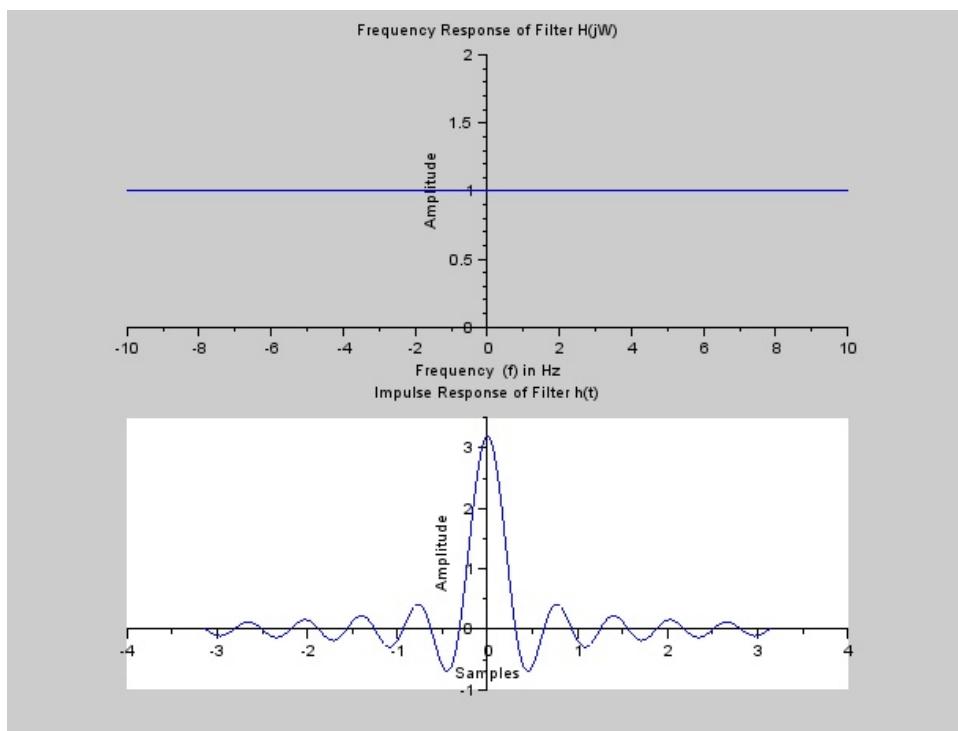


Figure 5.1: Frequency Response of Ideal Low pass Filter

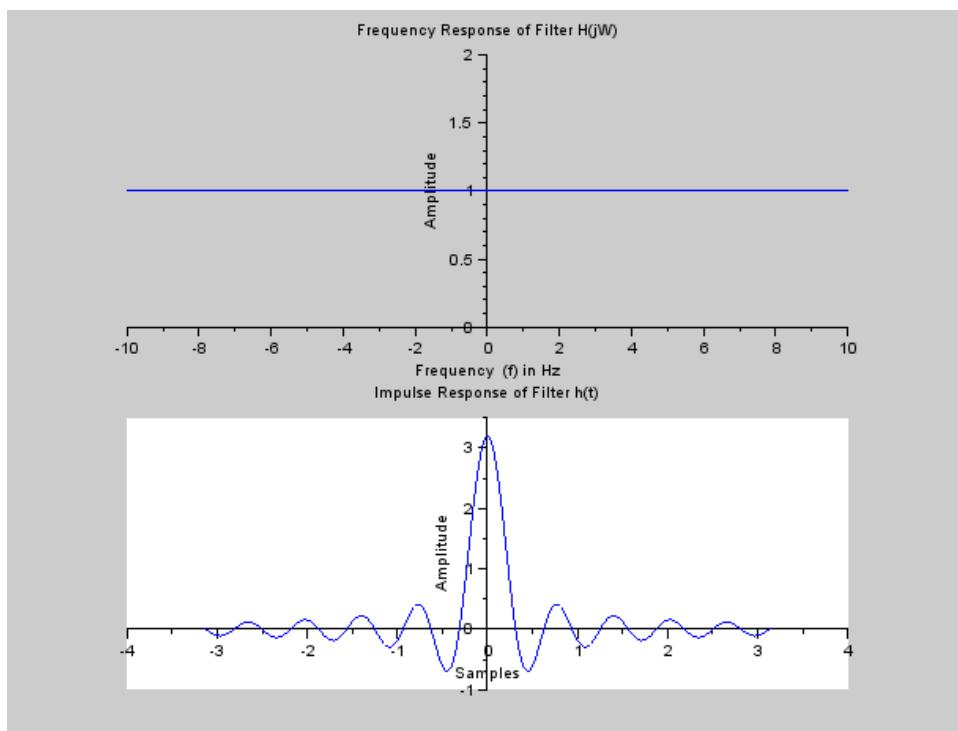


Figure 5.2: Frequency Response of Ideal Low pass Filter

```
15 subplot(2,1,1)
16 a = gca();
17 a.y_location = "origin";
18 a.x_location = "origin";
19 plot(W,HW);
20 xtitle('Frequency Response of Filter H(jW)')
21 xlabel('Frequency (f) in Hz');
22 ylabel('Amplitude');
23 subplot(2,1,2)
24 a = gca();
25 a.y_location = "origin";
26 a.x_location = "origin";
27 plot(t,ht);
28 xtitle('Impulse Response of Filter h(t)')
29 xlabel('Samples');
30 ylabel('Amplitude');
```
