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Experiment: 1

Image Sampling and
Quantization

check Appendix AP 1 for dependency:

cameraman. jpeg

Scilab code Solution 1.1 Expla

//Image Quantization

clear;

clc;

I = imread(’C:\ Users\senthilkumar\Desktop\Chaya_Lab\
scilab\cameraman. jpeg’);

quanta = 50;

J = double(I)/255;

J uint8 (J*xquanta) ;

J double (J)/quanta;

figure

ShowImage (I, Original Image’)

figure

ShowImage (J, ’Quantized Image’)




Figure 1.1: Expla
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check Appendix AP 1 for dependency:

cameraman. jpeg

Scilab code Solution 1.2 Explb

//Image Sampling
clear;
clc;

I = imread(’C:\ Users\senthilkumar\Desktop\Chaya_Lab\

scilab\cameraman. jpeg’) ;

J = imresize(I,0.5); //Reducing the sampling rate

K1 = imresize(J,2, 'nearest’); //Increasing the
sampling rate

K2 = imresize(J,2, bilinear ’);

K3 = imresize(J,2, 'bicubic’);

figure

ShowImage (I, Original Image’)

figure

ShowImage (J, "Reducing the Sampling Rate by 27)

figure

ShowImage (K1, 'Increasing the Sampling Rate by 2
nearest neighbour method’)

figure

ShowImage (K2, "Increasing the Sampling Rate by 2
bilinear method’)

figure

ShowImage (K3, 'Increasing the Sampling Rate by 2

bicubic method’)




Figure 1.2: Expla



Figure 1.3: Explb
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Figure 1.4: Explb
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Experiment: 2

Understanding basic
relationship between pixel

check Appendix AP 1 for dependency:
cameraman. jpeg

check Appendix AP 2 for dependency:

rice.jpg

Scilab code Solution 2.1 Exp2a

//Image Arithmetic —division , multiplication ,image
subtraction and image addition

clc;

clear;

close;

I = imread(’C:\ Users\senthilkumar\Desktop\Chaya_Lab
\scilab\cameraman. jpeg’); //SIVP toolbox

J = imread (’C:\ Users\senthilkumar\Desktop\Chaya_Lab\
scilab\rice.jpg’);//SIVP toolbox

IMA = imadd(I,J); //SIVP toolbox

figure

ShowImage (IMA, 'Image Addition’)//IPD toolbox
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IMS = imabsdiff(I,J);//SIVP toolbox

figure

ShowImage (IMS, 'Image Subtraction’);//IPD toolbox

IMD = imdivide(I,J);//SIVP toolbox

IMD = imdivide (IMD,0.01);//SIVP toolbox

figure

ShowImage (uint8 (IMD), 'Image Division ’);//IPD toolbox
IMM = immultiply(I,I);//SIVP toolbox

figure

ShowImage (uint8 (IMM), 'Image Multiply ’);//IPD toolbox

check Appendix AP 1 for dependency:
cameraman. jpeg
check Appendix AP 4 for dependency:

lenna. jpg

Scilab code Solution 2.2 Exp2b

//Image Arithmetic— Distance and Connectivity: To
understand the notion of connectivity

//and neighborhood defined for a point in an image.

clc;

clear;

close;

//function to convert gray to binary

function X = gray2bin(x)

xmean = mean2(x);
[m,n]= size(x);

X = zeros(m,n);
for i = 1:m

14



Figure 2.1: Exp2a
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Figure 2.2: Exp2a
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for j = 1:n
if x(i,j)> xmean then
X(i,j) = 1;
end
end
end
endfunction
//function to find total length of two dimensional
matrix
function n = numdims (X)
n = length(size(X));
endfunction
[T T
//Funtion to pad zeros in columns and rows at both
ends of an binary image
function B = padarray(b)
//pad zeros in columns and rows at both ends of
an binary image

[m,n] = size(b);
num_dims = length(size(b));
B = zeros(m+num_dims ,n+num_dims) ;
for i = num_dims:m+num_dims -1
for j = num_dims:m+num_dims-1
B(i,j) = b(i-1,j-1);
end
end

endfunction

[T T

//[1]. Euclidean Distance between images and their
histograms

I = imread(’C:\ Users\senthilkumar\Desktop\Chaya_Lab\
scilab\lenna.jpg’);

J = imread (’C:\ Users\senthilkumar\Desktop\Chaya_Lab\

scilab\cameraman.jpeg ’)

I = CreateHistogram(I);//IPD toolbox

J = CreateHistogram(J);//IPD toolbox

= double(I);

double (J);

h_
h_
I
J
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E_dist_Hist = sqrt(sum((h_I-h_J)."2));//Euclidean
Distance between histograms of two images

E_dist_images = sqrt(sum((I(:)-J(:))."2));//
Euclidean Distance between two images

disp(E_dist_images, 'Euclidean Distance between two
images ') ;

disp(E_dist_Hist, "Euclidean Distance between
histograms of two images’)

//12]. Connectivity — 8 connected to the background

//exec(gray2bin)

Ibin = gray2bin(I);

Jbin = gray2bin(J);

//conversion of gray image into binary image

conn = [1,1,1;1,1,1;1,1,1];//8 connectivity

//exec ('C:\ Users\senthilkumar\Desktop\Gautam_PAL_Lab
\numdims. sci 7)

num_dims = numdims (I);

//exec (’C:\ Users\senthilkumar\Desktop\Gautam_PAL_Lab
\padarray.sci )

B = padarray(Ibin);

global FILTER_ERODE;

StructureElement = CreateStructureElement (’square’,
3);

B_eroded = MorphologicalFilter (B,FILTER_ERODE,
StructureElement .Data);//IPD toolbox

//note:StructureElement .Data and conn both are same
values

//except that StructureElement.Data is boolean
either true or false

p = B& " B_eroded;

[m,n] = size(p);

for i = num_dims:m+num_dims -2

for j = num_dims:n+num_dims -2
pout (i-1,j-1) = p(i,]j);
end

end

figure

ShowImage (uint8(I), 'Gray Lenna Image’)
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figure

ShowImage (Ibin, 'Binary Lenna Image’)

figure

ShowImage (pout, '8 neighbourhood connectiviy

Image ")

/ /RESULT

//Euclidean Distance between two images

//
//
//

19797.433

in Lenna

// Euclidean Distance between histograms of two

//
//

images

2770.7
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Figure 2.3: Exp2b
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Experiment: 3

Program for Image sharpening.

Scilab code Solution 3.1 Exp3a

//Note: Details of scilab software version and OS
version used:

//OS: Windows 7

//Scilab version: 5.4.1

//IPD Atom version:8.3.1—2
//SIVP Atom version:0.5.3.1 —2
//2.Program to sharpen image
//Read image and display it.
//For Colour Image

clc;

clear all;

close;

a = imread (’C:\ Users\senthilkumar\Desktop)\
signal_processing_lab\hestian.jpg’);

ShowColorImage (a, "Original Image’)

title(’Original Image’);

//Sharpen the image and display it .

//b = imsharpen(a);

//figure , imshow(b), title (’Sharpened Image’);
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radius =1;

amount 0.8000;

threshold = 0;

// Gaussian blurring filter

filtRadius = ceil(radius*2);

filtSize = 2xfiltRadius + 1;

gaussFilt = fspecial(’gaussian’,[filtSize filtSize],
radius) ;

// High—pass filter

sharpFilt = zeros(filtSize,filtSize);

sharpFilt(filtRadius+1,filtRadius+1)

sharpFilt = sharpFilt - gaussFilt;

sharpFilt = amount*sharpFilt;

sharpFilt (filtRadius+1,filtRadius+1)
filtRadius+1,filtRadius+1) + 1;

B = imfilter(a,sharpFilt);

figure

ShowColorImage (B, 'Sharpened Image’);

1;

sharpFilt (

check Appendix AP 3 for dependency:

hestian. jpg

Scilab code Solution 3.2 Exp3b

//Note: Details of scilab software version and OS
version used:

//OS: Windows 7

//Scilab version: 5.4.1

//IPD Atom version:8.3.1—2

//SIVP Atom version:0.5.3.1 —2

//2.b.Program to sharpen image

23



criginal Image

Figure 3.1: Exp3a
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Figure 3.2: Exp3a
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//Read image and display it.

//For Gray Image

clc;

clear all;

close;

a = imread(’C:\ Users\senthilkumar\Desktop\
signal _processing_lab\rice.jpg’);//SIVP toolbox

ShowImage (a, 'Original Image’)//SIVP toolbox

title(’Original Image’);

//Sharpen the image and display it.

//b = imsharpen(a) ;

//figure , imshow(b), title (’Sharpened Image’);

radius =1;

amount = 0.8000;

threshold = 0;

// Gaussian blurring filter

filtRadius = ceil(radiusx*2);
filtSize = 2xfiltRadius + 1;

gaussFilt = fspecial(’gaussian’,[filtSize filtSize],

radius) ;
// High—pass filter
sharpFilt = zeros(filtSize,filtSize);
sharpFilt (filtRadius+1,filtRadius+1)
sharpFilt = sharpFilt - gaussFilt;
sharpFilt = amountx*sharpFilt;
sharpFilt (filtRadius+1,filtRadius+1)
filtRadius+1,filtRadius+1) + 1;
B = imfilter (a,sharpFilt);
figure
ShowImage (B, "Sharpened Image’);//IPD toolbox

1;

sharpFilt (

check Appendix AP 2 for dependency:
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original Image

Figure 3.3: Exp3b
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Figure 3.4: Exp3b
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Experiment: 4

Program for lossless Image
Compression.

Scilab code Solution 4.1 Exp4

// Lossless Image Compression— Implementation of
arithmetic coding for images

//Note 1: In order to run this program download
Huffman toolbox from

//scilab atoms

//Note 2: The Huffman atom is used to encode images

Figure 4.1: Exp4

30



© 00 J & Ot

10

12
13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

of small size only
//Software version
//OS Windows7
//Scilabb .4.1
//Image Processing Design Toolbox 8.3.1—1
//Scilab Image and Video Proccessing toolbox

0.5.3.1 -2
clear;
clc;
close;
a = imread (’C:\ Users\senthilkumar\Desktop\Chaya_Lab\
scilab \cameraman. jpeg’) ;

imresize(a,[16 16]); //Only Image of small size
is possible to call huffcode
B = 31ze(A)
A=A(:) .75
A = double(A);
[QT,QM]=huffcode (A); //Huffman Encoding
disp(’compressed Bit sequence:’);
disp (QT);
disp(’Code Table: ) ;
disp (QM) ;
// Now, the reverse operation
C = huffdeco(QT,QM); //Huffman Decoding
for i=1:B(1)
E(i,1:B(2))= C((i-1)*B(2)+1:1*B(2));

A

end

D = E’;

E = imresize (D, [32,32]);

figure

ShowImage (a, 'Original cameraman Image 256x256 )
figure

ShowImage (E, "Reconstructed cameraman Image 32x327);

check Appendix AP 1 for dependency:

cameraman. jpeg
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Experiment: 5

Program for lossy Image
Compression.

Scilab code Solution 5.1 Expb

//Lossy Image Compression—Block Truncation Coding
//Note: Details of scilab software version and OS
version used:
//OS: Windows 7
//Scilab version: 5.4.1
//IPD Atom version:8.3.1—2
//SIVP Atom version:0.5.3.1—2
clc;
clear;
close;
function out_put = btcimage (in_put,block_size)
//Note: Details of scilab software version and
OS version used:
//OS: Windows 7
//Scilab version: 5.4.1
//IPD Atom version:8.3.1 2
//SIVP Atom version:0.5.3.1 —2
X= imread (in_put);
Y=imfinfo (in_put);
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K=block_size;
X1=double (X);
yl=size (X);

n=y1(1);
m=y1(2);
k=1;1=1,;

if (Y.ColorType=='grayscale )

//

//
//
//

IMAGE ENCODING

FOR GRAY SCALE IMAGES

figure (1)
ShowImage (X, "Original 7)
title (’ORIGINAL ") ;
for i=1:K:n
for j=1:K:m
tmp ([1:K],[1:K])=X1([i:i+(K-1)]1,[]:]
+(K-1)1);
mn=mean (mean (tmp) ) ;
tmpl ([i:i+(K-1)],[j:j+(K-1)])=tmp>mn

Lsmat=(tmp<mn) ;

Mrmat=(tmp>=mn) ;

Lsmn=sum (sum(Lsmat)) ;
Mrmn=sum (sum (Mrmat)) ;
Mu(k)=sum(sum(Lsmat .*xtmp))/(Lsmn+.5)

s k=k+1;
Mi(1l)=sum(sum(Mrmat.*xtmp))/Mrmn;1l=1
+1;
end
end
figure (2)

ShowImage (tmpl, "Encoded Image’)
title (’ENCODED’) ;
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// IMAGE DECODING

k=1;1=1;
for i=1:K:n
for j=1:K:m
tmp21 ([1:K]1,[1:K])=tmpl ([i:i+(K-1)
1,0j:3+(K-1)1);
tmp22=(tmp21*round (Mu(k))) ; k=k+1;
tmp21=((tmp21==0) *round (Mi(1)));1=1
+1;
tmp21l=tmp21+tmp22;
out_put ([i:i+(K-1)]1,[j:j+(K-1)]1)=
tmp21;
end
end
figure (3)
ShowImage (uint8 (out_put), 'Decoded Image’)
title (’'DECODED’) ;

//
// FOR COLORED IMAGES
//
elseif (Y.ColorType==’truecolor’)
R=X(:,:,1);
G=X(:,:,2);
B=X(:,:,3);
// IMAGE ENCODING
figure (1)

ShowColorImage (X, "Original 7)

title (’ORIGINAL’) ;

for b=1:3

for i=1:K:n
for j=1:K:m
tmp ([1:K],[1:K])=X1([i:i+(K-1)
1,0j:j+(K-1)]1,b);

mn=mean (mean (tmp) ) ;
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tmpl ([i:1+(K-1)1,[j:j+(XK-1)1,b)=
tmp >mn ;
Lsmat=(tmp<mn) ;
Mrmat=(tmp>=mn) ;
Lsmn=sum (sum(Lsmat)) ;
Mrmn=sum (sum (Mrmat)) ;
Mu(b,k)=sum(sum(Lsmat .*tmp)) /(
Lsmn+.5) ; k=k+1;
Mi(b,l)=sum(sum(Mrmat.*tmp))/
Mrmn;1=1+1;
end
end
end
end
endfunction

//MAIN PROGRAM

I = 'C:\Users\senthilkumar\Desktop\Chaya_Lab\scilab\
cameraman . jpeg ’;

block_size = 2;

//exec(’btcimage.sci )

//exec (’C:\ Users\senthilkumar\Desktop\Chaya_Lab\
scilab\btcimage.sci 7)

out_put = btcimage(I,block_size);

check Appendix AP 1 for dependency:

cameraman. jpeg
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Experiment: 6

Program for generation and
Manipulation of signal.

Scilab code Solution 6.1 Exp6a

//Caption: Program to generate and plot different
basic sequences

clear all;

clc;

close;

// Generation of Unit Impulse signal

L = 4; //Upperlimit

n = -L:L;

x = [zeros(1,L),1,zeros(1,L)];
b = gca();

b.y_location = "middle”;
plot2d3(’gnn’,n,x)

a=gce () ;

a.children (1) .thickness =4;

xtitle(’Graphical Representation of Unit Sample
Sequence’, 'n’,’'x[n] ") ;

// Generation of Unit Step Signal

L = 10; //Upperlimit
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t = -L:L;

x = [zeros(1,L),ones(1,L+1)];

figure (1)

subplot(2,1,1)

a=gca();

a.thickness =2;

a.y_location = "middle”;

plot2d2(t,x)

xtitle ('’ Graphical Representation of Unit Step Signal
Lt x () )

// Generation of Unit Step Sequence

L = 4; //Upperlimit

n = -L:L;

X [zeros(1,L),ones(1,L+1)1];

subplot(2,1,2)

a=gca();

a.thickness = 2;

a.y_location = "middle”;

plot2d3(’gnn’,n,x)

xtitle ('’ Graphical Representation of Unit Step
Sequence’,’'n’, ’x[n] ") ;

// Generation of Ramp Sequence

L = 4; //Upperlimit

n = -L:L;

X [zeros(1,L),0:L];

figure (2)

subplot(2,1,1)

b = gca();

b.y_location = ’'middle’;

plot2d3(’gnn’,n,x)

a=gce () ;

a.children (1) .thickness =2;

xtitle ("’ Graphical Representation of Discrete Unit
Ramp Sequence’,’n’,’x[n]’);

//Generation of Ramp Signal

L = 4; //Upperlimit

t = -L:L;

[zeros(1,L),0:L];

X
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subplot(2,1,2)

b = gca();

b.y_location = ’'middle’;
plot2d(n,x)

a=gce () ;
a.children (1) .thickness =2;

xtitle (" Graphical Representation of Discrete Unit

Ramp Sequence’,’t’, x(t)’);

//Generation of Exponentially Increasing signal

a =1.5;

n = 0:10;

(a)"n;

figure (3)

subplot(2,1,1)

a=gca();

a.thickness = 2;

a.x_location = "origin”;

a.y_location = "origin”;

plot2d3(’gnn’,n,x)

xtitle ('’ Graphical Representation of Exponential
Increasing Signal’,’'n’,’ ’x[n]’);

// Generation of Exponentailly Decreasing Signal

a =0.5;

n = 0:10;

x = (a)°n;

subplot(2,1,2)

a=gca();

a.thickness = 2;

a.x_location “origin”;

a.y_location “origin”;

plot2d3(’gnn’,n,x)

xtitle (" Graphical Representation of Exponential
Decreasing Signal’,’'n’, ’x[n]’);

X
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Figure 6.1: Exp6a

Scilab code Solution 6.2 Exp6b

//Caption: Program to Demonstrate the signal Folding
clc;

clear;

x = input(’Enter the input sequence:=");

m = length(x);

1x = input (’Enter the starting point of original

signal=");
hx = 1x+m-1;
n = 1x:1:hx;
subplot(2,1,1)
a = gca();
a.x_location = "origin”;
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Figure 6.2: Exp6a

42



Original Sequence
5_

4 -

o
L |-

L8]
|

Amplitude--=

n===x
Folded Sequence
5_

24—

[
L 1

L]
1

Amplitude---=

Figure 6.3: Exp6b
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a.y_location = "origin”;
a.data_bounds = [-5,0;5,5];
plot2d3(’gnn’,n,x)
xlabel ( 'n==>")
ylabel (" Amplitude——>")
title(’Original Sequence’)
subplot (2,1,2)

a = gca(Q);
a.x_location = "origin”;
a.y_location = "origin”;

a.data_bounds = [-5,0;5,5];
plot2d3(-n,x)
xlabel ( 'n=—=>")

ylabel (’Amplitude—>")
title(’Folded Sequence’)

// Example

//Enter the input sequence:=[1,2,3,2,5]

//

//Enter the starting point of original signal=-1

Scilab code Solution 6.3 Exp6e

//Caption: Program to demonstrate the Amplitude &
Time Scaling of a signal

clc;

clear;

x = input (’Enter input Sequence:=");

m = length(x);

1x = input(’Enter starting point of original signal
=)

hx = 1x+m-1;

n = 1lx:1:hx;
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Figure 6.4: Exp6c
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subplot (2,2,1)

a = gca();

a.x_location = "origin”;
a.y_location = "origin”;
a.data_bounds = [-10,0;10,10];

plot2d3(’gnn’,n,x)

xlabel ( 'n=—=>")

ylabel (" Amplitude >7)

title(’orginal sequence’)

//Amplitude Scaling

a = input (’Amplitude Scaling Factor:=")

y =a*x;

subplot(2,2,2)

a = gca();

a.x_location = "origin”;
a.y_location = "origin”;

a.data_bounds = [-10,0;10,10];

plot2d3(’gnn’,n,y)

xlabel ('n >7)

ylabel (" Amplitdue >")

title(’Amplitude Scaled Sequence’)

//Time Scaling —Compression

C = input(’Enter Compression factor —Time Scaling
factor )

n = 1x/C:1/C:hx/C;

subplot(2,2,3)

a = gca();

a.x_location “origin”;

a.y_location “origin”;

a.data_bounds = [-10,0;10,10];

plot2d3(’gnn’,n,x)

xlabel ('n=—=>")

ylabel ("Amplitude——>")

title ('Compressed Sequence’)

//Time Scaling —Expansion

d = input(’Enter Extension factor —Time Scaling
factor )

n = lx*xd:d:hxx*d;
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subplot (2,2,4)

a = gca(Q);
a.x_location = "origin”;
a.y_location = "origin”;

a.data_bounds = [-10,0;10,10];
plot2d3(’gnn’,n,x)

xlabel ( 'n=—=—=>")

ylabel (' Amplitude—>")

title (’Extended Sequence’)
//Example

//Enter input Sequence:=[1,2,3,4.,5]
//

//Enter starting point of original signal:= 2

//

//Amplitude Scaling Factor:= 2

//

//Enter Compression factor —Time Scaling factor 2

//

//Enter Extension factor—Time Scaling factor 2

Scilab code Solution 6.4 Exp6d

//Caption:Program to demonstrate the shifting of the
discrete time signal

clc;

clear;

close;

x = input (' Enter the input sequence:=")

m = length(x);

1x = input(’Enter the starting point of original
signal:=")

hx = 1x+m-1;

n = 1lx:1:hx;
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subplot (3,1,1)
a = gca();
a.x_location =

a.y_location
a.data_bounds =
plot2d3(’gnn’,n
xlabel ( 'n=—=>")

ylabel (" Amplitdue

title(’Original

//
d

n 1x+d:1:hx+d
subplot (3,1,2)
a = gca(Q);
a.x_location =
a.y_location
a.data_bounds =
plot2d3(’gnn’,n
xlabel ('n=—=>")

Figure 6.5: Exp6d

“origin”;
“origin”;

[-10,0;10,10];
XD

>7)
Sequence )

input (’Enter the delay:=")

b

“origin”;
“origin”;

[-10,0;10,10];
, %)

48



29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

ylabel (" Amplitude
title (’Delayed Sequence’)

//

a = input(’Enter the advance:=")
n = lx-a:1:hx-a;

subplot (3,1,3)

a = gca();

a.x_location = "origin”;
a.y_location = "origin”;

a.data_bounds = [-10,0;10,10];

>7)

plot2d3(’gnn’,n,x)
xlabel ('n=——=>")

ylabel (' Amplitude—>")
title ("Advanced Sequence’)
//Example

//Enter

//
//Enter

//
//Enter

//
//Enter

the

the

the

the

input sequence:=[1,2,3,4 5]

starting point of original

delay:=2

advance:=3

signal :=0
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Experiment: 7

Program for Discrete Fourier
Transform

Scilab code Solution 7.1 Exp7

//Note: Details of scilab software version and OS
version used:
//OS: Windows 7
//Scilab version: 5.4.1
//IPD Atom version:8.3.1 2
//SIVP Atom version:0.5.3.1—2
//5.PROGRAM TO IMPLEMENT DISCRETE FOURIER TRANSFORM
//DET
clc;
close;
clear all;
N=input ("Howmany point DFT do you want?’);
x2=input ("Enter the sequence=’);
n2=length(x2) ;
c= zeros (N);
x2=[x2 zeros(1,N-n2)];
for k=1:N
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Figure 7.1: Exp7
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for n=1:N
w=exp ((-2*xYpi*x%ix(k-1)*(n-1))/N);
x(n)=w;
c(k,n)=x(n);

end

end

r=x2%cC;

//plotting magnitude and angle
subplot (2,1,1)
plot2d3(’gnn’,0:N-1,abs(r) ,2);
title ('DFT-absolute value’);
subplot(2,1,2)

a = gca()
plot2d3(’gnn’,0:N-1,atan(imag(r)./(real(r)+0.0001))
»5);

a.x_location="origin”;

title ('DFT—angle ’);

disp(r, "'Discrete Fourier Transform Result’)
//RESULT

//Example 1

//Howmany point DFT do you want? 4

//Enter the sequence=[1,2,3 4]

//Discrete Fourier Transform Result

// 10. — 2. + 2.i — 2. — 9.797D—-161 — 2. — 2.i
//

//Example 2

//Howmany point DFT do you want?8

//Enter the sequence=[1,1,1,1,1,1,1,1]
//Discrete Fourier Transform Result

// column 1 to 5

//

// 8. — 5.551D—-16 + 2.220D—-161 — 4.286D—16 —
4.441D-161 — 2.220D-16 + 8.882D—-161 — 4.899D—-16
i

//

// column 6 to 8

//
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// — 2.109D-15 — 1.221D-15i — 2.933D-15 — 6.661D

—161 3.553D—15 + 1.110D—151
//
//Example 3
//Howmany point DFT do you want? 8
//Enter the sequence= [0,1,2,3,4,5,6,7]
//Discrete Fourier Transform Result

//

//

// column 1 to 7

//

// 28. — 4. + 9.65685421i — 4. + 4.
1.65685421 — 4. — 3.429D—-151 — 4.
— 4., — 4.1

//

// column 8

//

/] — 4. — 9.65685421i

//

i — 4. +
— 1.65685421
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Experiment: 8

Simulation of FIR Filters

Scilab code Solution 8.1 Exp8

//Caption: To Design an Low Pass FIR Filter

//Filter Length =5, Order = 4

//Window = Rectangular Window

clc;

clear;

xdel (winsid ());

fc = input (" Enter Analog cutoff freq. in Hz=")

fs = input (" Enter Analog sampling freq. in Hz=")

M = input(”Enter order of filter =")

w = (2*x%pi)*(fc/fs);

disp(w, 'Digital cutoff frequency in radians.cycles/
samples ’) ;

wec = w/%pi;

disp(wc, "Normalized digital cutoff frequency in
cycles/samples’);

[wft ,wfm,fr]=wfir(’lp ’,M+1, [wc/2,0], 're’,[0,0]);

disp(wft, 'Impulse Response of LPF FIR Filter:h[n]=")

//Plotting the Magnitude Response of LPF FIR Filter
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Figure 8.1: Exp8

subplot(2,1,1)
plot (2%fr,wfm)

xlabel ('Normalized Digital Frequency w—>7)

ylabel (’Magnitude |H(w)|=")

title (’Magnitude Response of FIR LPF’)
xgrid (1)

subplot(2,1,2)

plot (frxfs,wfm)

xlabel (’Analog Frequency in Hz f ——>7)
ylabel (’Magnitude |H(w)|=")

title (’Magnitude Response of FIR LPF’)
xgrid (1)

//Example

//Enter Analog cutoff freq. in Hz= 250

//

//Enter Analog sampling freq. in Hz= 2000

//
//Enter order of filter = 4

//
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Digital cutoff frequency in radians.cycles/

samples

0.7853982

Normalized digital

samples

0.25

cutoff frequency in cycles/

Impulse Response of LPF FIR Filter :h[n]|=

0.1591549
0.1591549

0.2250791

0.25

0.2250791
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Experiment: 9

Generation and Quantization of
Binary Numbers

Scilab code Solution 9.1 Exp9

//Note: Details of scilab software version and OS
version used:

//OS: Windows 7

//Scilab version: 5.4.1

//IPD Atom version:8.3.1 2

//SIVP Atom version:0.5.3.1—2

//1.Quantization and sampling

//Quantize a signal to n bits. This code assumes
the signal is between —1

//and +1.

clc;

clear all;

close;

n=8; //Number of bits;

m= 120; //Number of samples;

t = 2%Y%pi*x[0:(m-1)]1/m;
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Figure 9.1: Exp9

x=sin(t) ; //signal between —1 and 1.
//Trying 7sin ()”
instead of 7
sawtooth”
//results in more
interesting error
(to the
//extent that error
is interesting).
x(find (x>=1))=(1-%eps); //Make signal from —1
to just less than 1.
xq=floor ((x+1)*2~(n-1)); //Signal is one of 2°n
int values (0 to 2'n—1)

xq=xq/ (27 (n-1)); //Signal is from 0 to 2 (
quantized)
xq=xq-(2"(n)-1) /2" (n); //Shift signal down (

rounding )

Xe=X-X(q; //Error
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subplot (3,1,1)

plot2d3(’gnn’,1:1length(x) ,x);

title(sprintf (’Signal , Quantized signal and Error
for %g bits, %g quantization levels’,n,2°n));

disp(x, "exact value’)

subplot (3,1,2)

plot2d3(’gnn’,1:1length(xq) ,xq,2);

title (’Quantized Value’)

disp(xq, 'Quantized value’)

subplot (3,1,3)

plot2d3(’gnn’,1:1length(xe) ,xe,5);

title(’Quantization Error or Quantization Noise’)

disp(xe, "Quantization error or noise’)
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Experiment: 10

Introduction to Simulink Signal
Analysis

Scilab code Solution 10.1 Expl0a

1 //Step response of discrete time systems
2 //Refer ExplOa.xcos file for simulink analysis

This code can be downloaded from the website wwww.scilab.in

Scilab code Solution 10.2 Expl0b

1 //Step response of Continuous time systems
2 //Refer ExplOb.xcos file for simulink analysis
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Figure 10.2: Expl0b



This code can be downloaded from the website wwww.scilab.in
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Experiment: 11

Design and analysis of
Butterworth Filter

Scilab code Solution 11.1 Expll

//Note: Details of scilab software version and OS
version used:

//OS: Windows 7

//Scilab version: 5.4.1

//IPD Atom version:8.3.1 2

//SIVP Atom version:0.5.3.1 —2

clc;

clear all;

close;

n =6; //filter order

Wn = [2.5e6,29e6]1/500e6; //normalized cutoff
frequencies [lower ,upper]

ftype = ’bp’; //bandpass filter
fdesign = ’butt’; //Butterworth Filter
delta =[];

hz=iir(n,ftype,fdesign,Wn/2,delta)
[p,z,gl=iir(n,ftype,fdesign,Wn/2,delta)
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Figure 11.1: Expll
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[hzm,frl=frmag (hz,256) ;

plot2d (fr’,hzm’) ;
xtitle(’Discrete IIR filter

0.058 7,

) Y b

xgrid (1)
// Result

//—>hz(2)

// ans

//

) 7),
b )

band pass

2

0.006 < fr <

0.0000002 — 0.0000015z + 0.0000037z

//—>hz(3)

// ans
//
//
//
//

6

— 0.0000049z + 0.0000037z

10

— 0.0000015z + 0.0000002z

8

12

0.5250468 — 6.6287407z + 38.377802z

— 134.73451z +

3

5

319.45814z2

— 538.91189z + 663.25134z

— 600.03003z + 396.0233z

7

9

8

— 185.96443z + 58.974503z

11

12

— 11.340535z + z

dt
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Experiment: 12

Impulse response of first order
and second order system

Scilab code Solution 12.1 Expl2

//Note: Details of scilab software version and OS
version used:

//OS: Windows 7

//Scilab version: 5.4.1

//IPD Atom version:8.3.1 2

//SIVP Atom version:0.5.3.1 —2

clc;

clear all;

close;

s=poly (0, 's’);

//The parameters 1.Angular Position 2. Angular
Velocity of DC Motors

//are obtained from MATLAB demos file .

Angular_Position =(0.003127*xs+0.9815)/(s"2+3.929%*s
+6.343e-05) ;

Angular_velocity = (1.04*s+0.2756)/(s"2+4.461%s
+1.096) ;
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Impulse Response - Angular Position

Impulse response-Angular velocity

Figure 12.1: Expl2
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model = [Angular_Position,Angular_velocity];
H1 = model(:,1); //Angular Position

H2 = model(:,2); //Angular velocity

np=20; //number of points

t = 0:0.02:20;

ysdl = csim(’impulse’,t,model (:,1));

ysd2 = csim(’impulse’,t,model (:,2));
subplot(2,1,1)

plot(t,ysdl,’ .—b ")

title(’Impulse Response — Angular Position ’)
xgrid (1)

subplot(2,1,2)

plot(t,ysd2,’ .—1r ")

title(’Impulse response—Angular velocity ’)
xgrid (1)

disp (model, "Model System KEquations =)

disp(ysdl, "Impulse Resposne of Angular Position
disp(ysd2, 'Impulse Response of Angular velocity=")

//RESULT
//Model System Equations =

//

// 0.9815 + 0.003127s 0.2756 + 1.04s

// 2

// 0.0000634 + 3.929s + s 1.096 + 4.461s + s
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Experiment: 13

Circular convolution of two

given sequences.

Scilab code Solution 13.1 Expl3

//Note: Details
version used

//OS: Windows 7

of scilab software version and OS

//Scilab version: 5.4.1
//IPD Atom version:8.3.1 2

//SIVP Atom ver

// 3.CIRCULAR CONVOLUTION OF TWO SEQUENCES

clc;

close;

clear all;

al= input(’1st
bl= input (’2nd
ax=length (al);
bx=length(bl);
n=max (ax,bx) ;
n3=ax-bx;

if (n3<=0)

sion:0.5.3.1 -2

Sequence x:7)
Sequence h:’)
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Figure 13.1: Expl3

al=[al,zeros(1,-n3)];
else
bl=[bl,zeros(1,n3)];
end
for r = 1:n
y(r)=0;
for i=1:n
j=r-i+1;
if (j<=0)
Jj=jtn;
end

y(r)=y(r)+b1(j)*al(j);

end
end

disp(y, 'circular convloution

subplot (3,1,1);
plot2d3(’gnn’,al);
xlabel('n’);
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ylabel(’a(n)’);

title(’'first

sequence )

subplot (3,1,2);
plot2d3(’gnn’,bl);

xlabel('n’);

ylabel (’'b(n) ’);
title(’'second sequence ') ;
subplot (3,1,3);

plot2d3(’gnn’,y);

xlabel('n’);

ylabel('y(n)’);

title(’circular

/ /RESULT

//Example 1

//1st Sequence x:[1,2,3
//2nd Sequence h:[1,1,1, 1]

//

// circular

//
//
//

//Example 2

10.

convloution

10. 10.

3

convolution sequence’);

4]

result

10.

//1st Sequence x:[1,2,3 4]

//2nd Sequence h:[1,1,1]

//

// circular

//
//

6.

convloution

result
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Experiment: 14

Linear convolution of two given
sequences.

Scilab code Solution 14.1 Expl4

//Note: Details of scilab software version and OS
version used:
//OS: Windows 7
//Scilab version: 5.4.1
//IPD Atom version:8.3.1—2
//SIVP Atom version:0.5.3.1 —2
//4.program for linear convolution of to sequence
clc;
clear all;
close;
x = input(’enter the first sequence’);
= input (’enter the second sequence’);
= length(x);
= length(y);
= m+n-1;
or i=1:p
q=1i;
k=0;
for j=1:1

H'T B B <
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end

disp(z, "convolution of two sequence

/ /RESULT

end

if g>m
qQ=9-1;
elseif j>n
k=k;
else k=x(q)*y(j)+k;
qQ=q9-1;
end

z (i) =k;

//enter the first sequence
//enter the second sequence

//
//
//
//
//
//
//
//
//
//

convolution of two sequence

W ot oY O W

[1,2,3]
[1,1,1,1]

is:

74



Appendix

75



Cameraman Image file
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tian Colour Image File
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Lenna Image File

79



	
	Image Sampling and Quantization
	Understanding basic relationship between pixel
	Program for Image sharpening.
	Program for lossless Image Compression.
	Program for lossy Image Compression.
	Program for generation and Manipulation of signal.
	Program for Discrete Fourier Transform
	Simulation of FIR Filters
	Generation and Quantization of Binary Numbers
	Introduction to Simulink Signal Analysis
	Design and analysis of Butterworth Filter
	Impulse response of first order and second order system
	Circular convolution of two given sequences.
	Linear convolution of two given sequences.

