
Scilab Manual for
Signal Processing
by Mrs S. Chaya

Electronics Engineering
AIKTC 1

Solutions provided by
Mr R.Senthilkumar- Assistant Professor

Electronics Engineering
Institute of Road and Transport Technology

January 24, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 3

1 Image Sampling and Quantization 6

2 Understanding basic relationship between pixel 13

3 Program for Image sharpening. 22

4 Program for lossless Image Compression. 30

5 Program for lossy Image Compression. 32

6 Program for generation and Manipulation of signal. 38

7 Program for Discrete Fourier Transform 50

8 Simulation of FIR Filters 54

9 Generation and Quantization of Binary Numbers 57

10 Introduction to Simulink Signal Analysis 60

11 Design and analysis of Butterworth Filter 63

12 Impulse response of first order and second order system 67

13 Circular convolution of two given sequences. 70

14 Linear convolution of two given sequences. 73

2

List of Experiments

Solution 1.1 Exp1a . 6
Solution 1.2 Exp1b . 8
Solution 2.1 Exp2a . 13
Solution 2.2 Exp2b . 14
Solution 3.1 Exp3a . 22
Solution 3.2 Exp3b . 23
Solution 4.1 Exp4 . 30
Solution 5.1 Exp5 . 32
Solution 6.1 Exp6a . 38
Solution 6.2 Exp6b . 41
Solution 6.3 Exp6c . 44
Solution 6.4 Exp6d . 47
Solution 7.1 Exp7 . 50
Solution 8.1 Exp8 . 54
Solution 9.1 Exp9 . 57
Solution 10.1 Exp10a . 60
Solution 10.2 Exp10b . 60
Solution 11.1 Exp11 . 63
Solution 12.1 Exp12 . 67
Solution 13.1 Exp13 . 70
Solution 14.1 Exp14 . 73
AP 1 Cameraman Image file 76
AP 2 Rice Image File 77
AP 3 Hestian Colour Image File 78
AP 4 Lenna Image File 79

3

List of Figures

1.1 Exp1a . 7
1.2 Exp1a . 9
1.3 Exp1b . 10
1.4 Exp1b . 12

2.1 Exp2a . 15
2.2 Exp2a . 16
2.3 Exp2b . 20
2.4 Exp2b . 21

3.1 Exp3a . 24
3.2 Exp3a . 25
3.3 Exp3b . 27
3.4 Exp3b . 28

4.1 Exp4 . 30

5.1 Exp5 . 36
5.2 Exp5 . 37

6.1 Exp6a . 41
6.2 Exp6a . 42
6.3 Exp6b . 43
6.4 Exp6c . 45
6.5 Exp6d . 48

7.1 Exp7 . 51

8.1 Exp8 . 55

9.1 Exp9 . 58

4

10.1 Exp10a . 61
10.2 Exp10b . 61

11.1 Exp11 . 64

12.1 Exp12 . 68

13.1 Exp13 . 71

5

Experiment: 1

Image Sampling and
Quantization

check Appendix AP 1 for dependency:

cameraman.jpeg

Scilab code Solution 1.1 Exp1a

1 // Image Quan t i z a t i on
2 clear;

3 clc;

4 I = imread(’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\
s c i l a b \cameraman . j p e g ’);

5 quanta = 50;

6 J = double(I)/255;

7 J = uint8(J*quanta);

8 J = double(J)/quanta;

9 figure

10 ShowImage(I, ’ O r i g i n a l Image ’)
11 figure

12 ShowImage(J, ’ Quant ized Image ’)

6

Figure 1.1: Exp1a

7

check Appendix AP 1 for dependency:

cameraman.jpeg

Scilab code Solution 1.2 Exp1b

1 // Image Sampl ing
2 clear;

3 clc;

4 I = imread(’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\
s c i l a b \cameraman . j p e g ’);

5 J = imresize(I,0.5); // Reducing the sampl ing r a t e
6 K1 = imresize(J,2, ’ n e a r e s t ’); // I n c r e a s i n g the

sampl ing r a t e
7 K2 = imresize(J,2, ’ b i l i n e a r ’);
8 K3 = imresize(J,2, ’ b i c u b i c ’);
9 figure

10 ShowImage(I, ’ O r i g i n a l Image ’)
11 figure

12 ShowImage(J, ’ Reducing the Sampl ing Rate by 2 ’)
13 figure

14 ShowImage(K1 , ’ I n c r e a s i n g the Sampl ing Rate by 2
n e a r e s t ne i ghbour method ’)

15 figure

16 ShowImage(K2 , ’ I n c r e a s i n g the Sampl ing Rate by 2
b i l i n e a r method ’)

17 figure

18 ShowImage(K3 , ’ I n c r e a s i n g the Sampl ing Rate by 2
b i c u b i c method ’)

8

Figure 1.2: Exp1a

9

Figure 1.3: Exp1b

10

11

Figure 1.4: Exp1b

12

Experiment: 2

Understanding basic
relationship between pixel

check Appendix AP 1 for dependency:

cameraman.jpeg

check Appendix AP 2 for dependency:

rice.jpg

Scilab code Solution 2.1 Exp2a

1 // Image Ar i t hme t i c −d i v i s i o n , mu l t i p l i c a t i o n , image
s u b t r a c t i o n and image a dd i t i o n

2 clc;

3 clear;

4 close;

5 I = imread(’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab
\ s c i l a b \cameraman . j p e g ’); //SIVP too l b ox

6 J = imread(’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\
s c i l a b \ r i c e . j pg ’);//SIVP too l b ox

7 IMA = imadd(I,J); //SIVP too l b ox
8 figure

9 ShowImage(IMA , ’ Image Add i t i on ’)//IPD too l box

13

10 IMS = imabsdiff(I,J);//SIVP too l b ox
11 figure

12 ShowImage(IMS , ’ Image Sub t r a c t i o n ’);//IPD too l box
13 IMD = imdivide(I,J);//SIVP too l b ox
14 IMD = imdivide(IMD ,0.01);//SIVP too l b ox
15 figure

16 ShowImage(uint8(IMD), ’ Image D i v i s i o n ’);//IPD too l box
17 IMM = immultiply(I,I);//SIVP too l b ox
18 figure

19 ShowImage(uint8(IMM), ’ Image Mu l t i p l y ’);//IPD too l box

check Appendix AP 1 for dependency:

cameraman.jpeg

check Appendix AP 4 for dependency:

lenna.jpg

Scilab code Solution 2.2 Exp2b

1 // Image Ar i thmet i c− Di s t anc e and Conne c t i v i t y : To
under s tand the no t i on o f c o n n e c t i v i t y

2 // and ne ighborhood d e f i n e d f o r a po i n t i n an image .
3 clc;

4 clear;

5 close;

6 // f u n c t i o n to c onv e r t gray to b ina ry
7 function X = gray2bin(x)

8 xmean = mean2(x);

9 [m,n]= size(x);

10 X = zeros(m,n);

11 for i = 1:m

14

Figure 2.1: Exp2a

15

Figure 2.2: Exp2a

16

12 for j = 1:n

13 if x(i,j)> xmean then

14 X(i,j) = 1;

15 end

16 end

17 end

18 endfunction

19 // f u n c t i o n to f i n d t o t a l l e n g t h o f two d imen s i ona l
matr ix

20 function n = numdims(X)

21 n = length(size(X));

22 endfunction

23 // //////////////////////////////////
24 // Funt ion to pad z e r o s i n columns and rows at both

ends o f an b ina ry image
25 function B = padarray(b)

26 //pad z e r o s i n columns and rows at both ends o f
an b ina ry image

27 [m,n] = size(b);

28 num_dims = length(size(b));

29 B = zeros(m+num_dims ,n+num_dims);

30 for i = num_dims:m+num_dims -1

31 for j = num_dims:m+num_dims -1

32 B(i,j) = b(i-1,j-1);

33 end

34 end

35 endfunction

36 // ///////////////////////////////////
37 // [1] . Euc l i d ean D i s t anc e between images and t h e i r

h i s t o g r ams
38 I = imread(’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\

s c i l a b \ l enna . jpg ’);
39 J = imread(’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\

s c i l a b \cameraman . j p e g ’)
40 h_I = CreateHistogram(I);//IPD too l box
41 h_J = CreateHistogram(J);//IPD too l box
42 I = double(I);

43 J = double(J);

17

44 E_dist_Hist = sqrt(sum((h_I -h_J).^2));// Euc l i d ean
D i s t anc e between h i s t o g r ams o f two images

45 E_dist_images = sqrt(sum((I(:)-J(:)).^2));//
Euc l i d ean D i s t anc e between two images

46 disp(E_dist_images , ’ Euc l i d ean D i s t anc e between two
images ’);

47 disp(E_dist_Hist , ’ Euc l i d ean D i s t anc e between
h i s t o g r ams o f two images ’)

48 // [2] . Conn e c t i v i t y − 8 connec t ed to the background
49 // exec (g ray2b in)
50 Ibin = gray2bin(I);

51 Jbin = gray2bin(J);

52 // c onv e r s i o n o f gray image i n t o b ina ry image
53 conn = [1,1,1;1,1,1;1,1,1]; //8− c o n n e c t i v i t y
54 // exec (’C: \ User s \ s en th i l kumar \Desktop \Gautam PAL Lab

\numdims . s c i ’)
55 num_dims = numdims(I);

56 // exec (’C: \ User s \ s en th i l kumar \Desktop \Gautam PAL Lab
\ padarray . s c i ’)

57 B = padarray(Ibin);

58 global FILTER_ERODE;

59 StructureElement = CreateStructureElement(’ s qua r e ’ ,
3);

60 B_eroded = MorphologicalFilter(B,FILTER_ERODE ,

StructureElement.Data);//IPD too l box
61 // note : S t ruc tu r eE l ement . Data and conn both a r e same

va l u e s
62 // exc ep t tha t S t ruc tu r eE l ement . Data i s boo l ean

e i t h e r t r u e or f a l s e
63 p = B&~ B_eroded;

64 [m,n] = size(p);

65 for i = num_dims:m+num_dims -2

66 for j = num_dims:n+num_dims -2

67 pout(i-1,j-1) = p(i,j);

68 end

69 end

70 figure

71 ShowImage(uint8(I), ’ Gray Lenna Image ’)

18

72 figure

73 ShowImage(Ibin , ’ B inary Lenna Image ’)
74 figure

75 ShowImage(pout , ’ 8 ne ighbourhood c o n n e c t i v i y i n Lenna
Image ’)

76 //RESULT
77 // Euc l i d ean D i s t anc e between two images
78 //
79 // 19797 . 433
80 //
81 // Euc l i d ean D i s t anc e between h i s t o g r ams o f two

images
82 //
83 // 5770 . 7

19

Figure 2.3: Exp2b

20

Figure 2.4: Exp2b

21

Experiment: 3

Program for Image sharpening.

Scilab code Solution 3.1 Exp3a

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 // 2 . Program to sharpen image
7 //Read image and d i s p l a y i t .
8 // For Colour Image
9 clc;

10 clear all;

11 close;

12 a = imread(’C: \ User s \ s en th i l kumar \Desktop \
s i g n a l p r o c e s s i n g l a b \ h e s t i a n . jpg ’);

13 ShowColorImage(a, ’ O r i g i n a l Image ’)
14 title(’ O r i g i n a l Image ’);
15 // Sharpen the image and d i s p l a y i t .
16 //b = imsharpen (a) ;
17 // f i g u r e , imshow (b) , t i t l e (’ Sharpened Image ’) ;
18

19

22

20 radius =1;

21 amount = 0.8000;

22 threshold = 0;

23 // Gauss ian b l u r r i n g f i l t e r
24 filtRadius = ceil(radius *2);

25 filtSize = 2* filtRadius + 1;

26 gaussFilt = fspecial(’ g a u s s i a n ’ ,[filtSize filtSize],

radius);

27 // High−pas s f i l t e r
28 sharpFilt = zeros(filtSize ,filtSize);

29 sharpFilt(filtRadius +1, filtRadius +1) = 1;

30 sharpFilt = sharpFilt - gaussFilt;

31 sharpFilt = amount*sharpFilt;

32 sharpFilt(filtRadius +1, filtRadius +1) = sharpFilt(

filtRadius +1, filtRadius +1) + 1;

33 B = imfilter(a,sharpFilt);

34 figure

35 ShowColorImage(B, ’ Sharpened Image ’);

check Appendix AP 3 for dependency:

hestian.jpg

Scilab code Solution 3.2 Exp3b

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 // 2 . b . Program to sharpen image

23

Figure 3.1: Exp3a

24

Figure 3.2: Exp3a

25

7 //Read image and d i s p l a y i t .
8 // For Gray Image
9 clc;

10 clear all;

11 close;

12 a = imread(’C: \ User s \ s en th i l kumar \Desktop \
s i g n a l p r o c e s s i n g l a b \ r i c e . j pg ’);//SIVP too l b ox

13 ShowImage(a, ’ O r i g i n a l Image ’)//SIVP too l b ox
14 title(’ O r i g i n a l Image ’);
15 // Sharpen the image and d i s p l a y i t .
16 //b = imsharpen (a) ;
17 // f i g u r e , imshow (b) , t i t l e (’ Sharpened Image ’) ;
18

19

20 radius =1;

21 amount = 0.8000;

22 threshold = 0;

23 // Gauss ian b l u r r i n g f i l t e r
24 filtRadius = ceil(radius *2);

25 filtSize = 2* filtRadius + 1;

26 gaussFilt = fspecial(’ g a u s s i a n ’ ,[filtSize filtSize],

radius);

27 // High−pas s f i l t e r
28 sharpFilt = zeros(filtSize ,filtSize);

29 sharpFilt(filtRadius +1, filtRadius +1) = 1;

30 sharpFilt = sharpFilt - gaussFilt;

31 sharpFilt = amount*sharpFilt;

32 sharpFilt(filtRadius +1, filtRadius +1) = sharpFilt(

filtRadius +1, filtRadius +1) + 1;

33 B = imfilter(a,sharpFilt);

34 figure

35 ShowImage(B, ’ Sharpened Image ’);//IPD too l box

check Appendix AP 2 for dependency:

26

Figure 3.3: Exp3b

27

Figure 3.4: Exp3b

28

rice.jpg

29

Experiment: 4

Program for lossless Image
Compression.

Scilab code Solution 4.1 Exp4

1 // L o s s l e s s Image Compress ion− Implementat ion o f
a r i t hm e t i c cod ing f o r images

2 //Note 1 : In o rd e r to run t h i s program download
Huffman t oo l b ox from

3 // s c i l a b atoms
4 //Note 2 : The Huffman atom i s used to encode images

Figure 4.1: Exp4

30

o f sma l l s i z e on ly
5 // So f twar e v e r s i o n
6 //OS Windows7
7 // S c i l a b 5 . 4 . 1
8 // Image P r o c e s s i n g Des ign Toolbox 8 .3 .1 −1
9 // S c i l a b Image and Video P r o c c e s s i n g t o o l box

0 . 5 . 3 . 1 −2
10 clear;

11 clc;

12 close;

13 a = imread(’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\
s c i l a b \cameraman . j p e g ’);

14 A = imresize(a,[16 16]); //Only Image o f sma l l s i z e
i s p o s s i b l e to c a l l h u f f c o d e

15 B = size(A);

16 A=A(:).’;

17 A = double(A);

18 [QT ,QM]= huffcode(A); //Huffman Encoding
19 disp(’ compressed Bi t s equence : ’);
20 disp(QT);

21 disp(’ Code Table : ’);
22 disp(QM);

23 // Now , the r e v e r s e o p e r a t i o n
24 C = huffdeco(QT ,QM); //Huffman Decoding
25 for i=1:B(1)

26 E(i,1:B(2))= C((i-1)*B(2)+1:i*B(2));

27 end

28 D = E’;

29 E = imresize(D,[32 ,32]);

30 figure

31 ShowImage(a, ’ O r i g i n a l cameraman Image 256 x256 ’)
32 figure

33 ShowImage(E, ’ Re con s t ru c t ed cameraman Image 32 x32 ’);

check Appendix AP 1 for dependency:

cameraman.jpeg

31

Experiment: 5

Program for lossy Image
Compression.

Scilab code Solution 5.1 Exp5

1 // Lossy Image Compress ion−Block Truncat ion Coding
2 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS

v e r s i o n used :
3 //OS : Windows 7
4 // S c i l a b v e r s i o n : 5 . 4 . 1
5 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
6 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
7 clc;

8 clear;

9 close;

10 function out_put = btcimage(in_put ,block_size)

11 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and
OS v e r s i o n used :

12 //OS : Windows 7
13 // S c i l a b v e r s i o n : 5 . 4 . 1
14 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
15 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
16 X= imread(in_put);

17 Y=imfinfo(in_put);

32

18 K=block_size;

19 X1=double(X);

20 y1=size(X);

21 n=y1(1);

22 m=y1(2);

23 k=1;l=1;

24

25

26 if (Y.ColorType == ’ g r a y s c a l e ’)
27

28 // IMAGE ENCODING
29

30 //
31 // FOR GRAY SCALE IMAGES
32 //
33 figure (1)

34 ShowImage(X, ’ O r i g i n a l ’)
35 title(’ORIGINAL ’);
36 for i=1:K:n

37 for j=1:K:m

38 tmp ([1:K],[1:K])=X1([i:i+(K-1)],[j:j

+(K-1)]);

39 mn=mean(mean(tmp));

40 tmp1([i:i+(K-1)],[j:j+(K-1)])=tmp >mn

;

41 Lsmat=(tmp <mn);

42 Mrmat=(tmp >=mn);

43 Lsmn=sum(sum(Lsmat));

44 Mrmn=sum(sum(Mrmat));

45 Mu(k)=sum(sum(Lsmat.*tmp))/(Lsmn +.5)

;k=k+1;

46 Mi(l)=sum(sum(Mrmat.*tmp))/Mrmn;l=l

+1;

47 end

48 end

49 figure (2)

50 ShowImage(tmp1 , ’ Encoded Image ’)
51 title(’ENCODED’);

33

52

53 // IMAGE DECODING
54

55 k=1;l=1;

56 for i=1:K:n

57 for j=1:K:m

58 tmp21 ([1:K],[1:K])=tmp1([i:i+(K-1)

],[j:j+(K-1)]);

59 tmp22=(tmp21*round(Mu(k)));k=k+1;

60 tmp21 =((tmp21 ==0)*round(Mi(l)));l=l

+1;

61 tmp21=tmp21+tmp22;

62 out_put ([i:i+(K-1)],[j:j+(K-1)])=

tmp21;

63 end

64 end

65 figure (3)

66 ShowImage(uint8(out_put), ’ Decoded Image ’)
67 title(’DECODED’);
68

69 //
70 // FOR COLORED IMAGES
71 //
72

73 elseif (Y.ColorType == ’ t r u e c o l o r ’)
74 R=X(:,:,1);

75 G=X(:,:,2);

76 B=X(:,:,3);

77 // IMAGE ENCODING
78 figure (1)

79 ShowColorImage(X, ’ O r i g i n a l ’)
80 title(’ORIGINAL ’);
81 for b=1:3

82 for i=1:K:n

83 for j=1:K:m

84 tmp ([1:K],[1:K])=X1([i:i+(K-1)

],[j:j+(K-1)],b);

85 mn=mean(mean(tmp));

34

86 tmp1([i:i+(K-1)],[j:j+(K-1)],b)=

tmp >mn;

87 Lsmat=(tmp <mn);

88 Mrmat=(tmp >=mn);

89 Lsmn=sum(sum(Lsmat));

90 Mrmn=sum(sum(Mrmat));

91 Mu(b,k)=sum(sum(Lsmat.*tmp))/(

Lsmn +.5);k=k+1;

92 Mi(b,l)=sum(sum(Mrmat.*tmp))/

Mrmn;l=l+1;

93 end

94 end

95 end

96 end

97 endfunction

98

99 //MAIN PROGRAM
100 I = ’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\ s c i l a b \

cameraman . j p e g ’ ;
101 block_size = 2;

102 // exec (’ btc image . s c i ’)
103 // exec (’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\

s c i l a b \ btc image . s c i ’) ;
104 out_put = btcimage(I,block_size);

check Appendix AP 1 for dependency:

cameraman.jpeg

35

Figure 5.1: Exp5

36

Figure 5.2: Exp5

37

Experiment: 6

Program for generation and
Manipulation of signal.

Scilab code Solution 6.1 Exp6a

1 // Capt ion : Program to g en e r a t e and p l o t d i f f e r e n t
b a s i c s e qu en c e s

2 clear all;

3 clc;

4 close;

5 // Genera t i on o f Unit Impul se s i g n a l
6 L = 4; // Uppe r l im i t
7 n = -L:L;

8 x = [zeros(1,L),1,zeros(1,L)];

9

10 b = gca();

11 b.y_location = ”middle ”;
12 plot2d3(’ gnn ’ ,n,x)
13 a=gce();

14 a.children (1).thickness =4;

15 xtitle(’ G raph i c a l R ep r e s e n t a t i o n o f Unit Sample
Sequence ’ , ’ n ’ , ’ x [n] ’);

16 // Genera t i on o f Unit Step S i g n a l
17 L = 10; // Uppe r l im i t

38

18 t = -L:L;

19 x = [zeros(1,L),ones(1,L+1)];

20 figure (1)

21 subplot (2,1,1)

22 a=gca();

23 a.thickness =2;

24 a.y_location = ”middle ”;
25 plot2d2(t,x)

26 xtitle(’ G raph i c a l R ep r e s e n t a t i o n o f Unit Step S i g n a l
’ , ’ t ’ , ’ x (t) ’);

27 // Genera t i on o f Unit Step Sequence
28 L = 4; // Uppe r l im i t
29 n = -L:L;

30 x = [zeros(1,L),ones(1,L+1)];

31 subplot (2,1,2)

32 a=gca();

33 a.thickness = 2;

34 a.y_location = ”middle ”;
35 plot2d3(’ gnn ’ ,n,x)
36 xtitle(’ G raph i c a l R ep r e s e n t a t i o n o f Unit Step

Sequence ’ , ’ n ’ , ’ x [n] ’);
37 // Genera t i on o f Ramp Sequence
38 L = 4; // Uppe r l im i t
39 n = -L:L;

40 x = [zeros(1,L) ,0:L];

41 figure (2)

42 subplot (2,1,1)

43 b = gca();

44 b.y_location = ’ middle ’ ;
45 plot2d3(’ gnn ’ ,n,x)
46 a=gce();

47 a.children (1).thickness =2;

48 xtitle(’ G raph i c a l R ep r e s e n t a t i o n o f D i s c r e t e Unit
Ramp Sequence ’ , ’ n ’ , ’ x [n] ’);

49 // Genera t i on o f Ramp S i g n a l
50 L = 4; // Uppe r l im i t
51 t = -L:L;

52 x = [zeros(1,L) ,0:L];

39

53 subplot (2,1,2)

54 b = gca();

55 b.y_location = ’ middle ’ ;
56 plot2d(n,x)

57 a=gce();

58 a.children (1).thickness =2;

59 xtitle(’ G raph i c a l R ep r e s e n t a t i o n o f D i s c r e t e Unit
Ramp Sequence ’ , ’ t ’ , ’ x (t) ’);

60 // Genera t i on o f Expon en t i a l l y I n c r e a s i n g s i g n a l
61 a =1.5;

62 n = 0:10;

63 x = (a)^n;

64 figure (3)

65 subplot (2,1,1)

66 a=gca();

67 a.thickness = 2;

68 a.x_location = ” o r i g i n ”;
69 a.y_location = ” o r i g i n ”;
70 plot2d3(’ gnn ’ ,n,x)
71 xtitle(’ G raph i c a l R ep r e s e n t a t i o n o f Exponen t i a l

I n c r e a s i n g S i g n a l ’ , ’ n ’ , ’ x [n] ’);
72 // Genera t i on o f Expon en t a i l l y De c r e a s i n g S i g n a l
73 a =0.5;

74 n = 0:10;

75 x = (a)^n;

76 subplot (2,1,2)

77 a=gca();

78 a.thickness = 2;

79 a.x_location = ” o r i g i n ”;
80 a.y_location = ” o r i g i n ”;
81 plot2d3(’ gnn ’ ,n,x)
82 xtitle(’ G raph i c a l R ep r e s e n t a t i o n o f Exponen t i a l

De c r e a s i n g S i g n a l ’ , ’ n ’ , ’ x [n] ’);

40

Figure 6.1: Exp6a

Scilab code Solution 6.2 Exp6b

1 // Capt ion : Program to Demonstrate the s i g n a l Fo ld ing
2 clc;

3 clear;

4 x = input(’ Enter the input s equence := ’);
5 m = length(x);

6 lx = input(’ Enter the s t a r t i n g po i n t o f o r i g i n a l
s i g n a l= ’);

7 hx = lx+m-1;

8 n = lx:1:hx;

9 subplot (2,1,1)

10 a = gca();

11 a.x_location = ” o r i g i n ”;

41

Figure 6.2: Exp6a

42

Figure 6.3: Exp6b

43

12 a.y_location = ” o r i g i n ”;
13 a.data_bounds = [-5,0;5,5];

14 plot2d3(’ gnn ’ ,n,x)
15 xlabel(’ n===> ’)
16 ylabel(’ Amplitude−−−> ’)
17 title(’ O r i g i n a l Sequence ’)
18 subplot (2,1,2)

19 a = gca();

20 a.x_location = ” o r i g i n ”;
21 a.y_location = ” o r i g i n ”;
22 a.data_bounds = [-5,0;5,5];

23 plot2d3(-n,x)

24 xlabel(’ n===> ’)
25 ylabel(’ Amplitude−−−> ’)
26 title(’ Fo lded Sequence ’)
27 //Example
28

29 // Enter the input s equence := [1 , 2 , 3 , 2 , 5]
30 //
31 // Enter the s t a r t i n g po i n t o f o r i g i n a l s i g n a l=−1

Scilab code Solution 6.3 Exp6c

1 // Capt ion : Program to demonst ra te the Amplitude &
Time S c a l i n g o f a s i g n a l

2 clc;

3 clear;

4 x = input(’ Enter i nput Sequence := ’);
5 m = length(x);

6 lx = input(’ Enter s t a r t i n g po i n t o f o r i g i n a l s i g n a l
:= ’)

7 hx = lx+m-1;

8 n = lx:1:hx;

44

Figure 6.4: Exp6c

45

9 subplot (2,2,1)

10 a = gca();

11 a.x_location = ” o r i g i n ”;
12 a.y_location = ” o r i g i n ”;
13 a.data_bounds = [-10 ,0;10 ,10];

14 plot2d3(’ gnn ’ ,n,x)
15 xlabel(’ n====> ’)
16 ylabel(’ Amplitude−−−−> ’)
17 title(’ o r g i n a l s equence ’)
18 // Amplitude S c a l i n g
19 a = input(’ Amplitude S c a l i n g Facto r := ’)
20 y =a*x;

21 subplot (2,2,2)

22 a = gca();

23 a.x_location = ” o r i g i n ”;
24 a.y_location = ” o r i g i n ”;
25 a.data_bounds = [-10 ,0;10 ,10];

26 plot2d3(’ gnn ’ ,n,y)
27 xlabel(’ n====> ’)
28 ylabel(’ Amplitdue−−−−> ’)
29 title(’ Amplitude Sca l ed Sequence ’)
30 //Time Sca l i n g −Compress ion
31 C = input(’ Enter Compress ion f a c t o r −Time S c a l i n g

f a c t o r ’)
32 n = lx/C:1/C:hx/C;

33 subplot (2,2,3)

34 a = gca();

35 a.x_location = ” o r i g i n ”;
36 a.y_location = ” o r i g i n ”;
37 a.data_bounds = [-10 ,0;10 ,10];

38 plot2d3(’ gnn ’ ,n,x)
39 xlabel(’ n===> ’)
40 ylabel(’ Amplitude−−−> ’)
41 title(’ Compressed Sequence ’)
42 //Time Sca l i n g −Expans ion
43 d = input(’ Enter Extens i on f a c t o r −Time S c a l i n g

f a c t o r ’)
44 n = lx*d:d:hx*d;

46

45 subplot (2,2,4)

46 a = gca();

47 a.x_location = ” o r i g i n ”;
48 a.y_location = ” o r i g i n ”;
49 a.data_bounds = [-10 ,0;10 ,10];

50 plot2d3(’ gnn ’ ,n,x)
51 xlabel(’ n===> ’)
52 ylabel(’ Amplitude−−−> ’)
53 title(’ Extended Sequence ’)
54 //Example
55 // Enter i nput Sequence := [1 , 2 , 3 , 4 , 5]
56 //
57 // Enter s t a r t i n g po i n t o f o r i g i n a l s i g n a l := 2
58 //
59 // Amplitude S c a l i n g Facto r := 2
60 //
61 // Enter Compress ion f a c t o r −Time S c a l i n g f a c t o r 2
62 //
63 // Enter Extens i on f a c t o r −Time S c a l i n g f a c t o r 2

Scilab code Solution 6.4 Exp6d

1 // Capt ion : Program to demonst ra te the s h i f t i n g o f the
d i s c r e t e t ime s i g n a l

2 clc;

3 clear;

4 close;

5 x = input(’ Enter the input s equence := ’)
6 m = length(x);

7 lx = input(’ Enter the s t a r t i n g po i n t o f o r i g i n a l
s i g n a l := ’)

8 hx = lx+m-1;

9 n = lx:1:hx;

47

Figure 6.5: Exp6d

10 subplot (3,1,1)

11 a = gca();

12 a.x_location = ” o r i g i n ”;
13 a.y_location = ” o r i g i n ”;
14 a.data_bounds = [-10 ,0;10 ,10];

15 plot2d3(’ gnn ’ ,n,x);
16 xlabel(’ n===> ’)
17 ylabel(’ Amplitdue−−−> ’)
18 title(’ O r i g i n a l Sequence ’)
19 //
20 d = input(’ Enter the de l ay := ’)
21 n = lx+d:1:hx+d;

22 subplot (3,1,2)

23 a = gca();

24 a.x_location = ” o r i g i n ”;
25 a.y_location = ” o r i g i n ”;
26 a.data_bounds = [-10 ,0;10 ,10];

27 plot2d3(’ gnn ’ ,n,x)
28 xlabel(’ n===> ’)

48

29 ylabel(’ Amplitude−−−> ’)
30 title(’ Delayed Sequence ’)
31 //
32 a = input(’ Enter the advance := ’)
33 n = lx -a:1:hx-a;

34 subplot (3,1,3)

35 a = gca();

36 a.x_location = ” o r i g i n ”;
37 a.y_location = ” o r i g i n ”;
38 a.data_bounds = [-10 ,0;10 ,10];

39 plot2d3(’ gnn ’ ,n,x)
40 xlabel(’ n===> ’)
41 ylabel(’ Amplitude−−−> ’)
42 title(’ Advanced Sequence ’)
43 //Example
44 // Enter the input s equence := [1 , 2 , 3 , 4 , 5]
45 //
46 // Enter the s t a r t i n g po i n t o f o r i g i n a l s i g n a l :=0
47 //
48 // Enter the de l ay :=2
49 //
50 // Enter the advance :=3

49

Experiment: 7

Program for Discrete Fourier
Transform

Scilab code Solution 7.1 Exp7

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 // 5 .PROGRAM TO IMPLEMENT DISCRETE FOURIER TRANSFORM
7 //DFT
8 clc;

9 close;

10 clear all;

11 N=input(’Howmany po i n t DFT do you want ? ’);
12 x2=input(’ Enter the s equence= ’);
13 n2=length(x2);

14 c= zeros(N);

15 x2=[x2 zeros(1,N-n2)];

16 for k=1:N

50

Figure 7.1: Exp7

51

17 for n=1:N

18 w=exp((-2*%pi*%i*(k-1)*(n-1))/N);

19 x(n)=w;

20 c(k,n)=x(n);

21 end

22

23 end

24 r=x2*c;

25 // p l o t t i n g magnitude and ang l e
26 subplot (2,1,1)

27 plot2d3(’ gnn ’ ,0:N-1,abs(r) ,2);
28 title(’DFT−ab s o l u t e va lu e ’);
29 subplot (2,1,2)

30 a = gca()

31 plot2d3(’ gnn ’ ,0:N-1,atan(imag(r)./(real(r)+0.0001))
,5);

32 a.x_location=” o r i g i n ”;
33 title(’DFT−ang l e ’);
34 disp(r, ’ D i s c r e t e Fou r i e r Transform Resu l t ’)
35 //RESULT
36 //Example 1
37 //Howmany po i n t DFT do you want ? 4
38 // Enter the s equence = [1 , 2 , 3 , 4]
39 // D i s c r e t e Fou r i e r Transform Resu l t
40 // 1 0 . − 2 . + 2 . i − 2 . − 9 . 7 97D−16 i − 2 . − 2 . i
41 //
42 //Example 2
43 //Howmany po i n t DFT do you want ?8
44 // Enter the s equence = [1 , 1 , 1 , 1 , 1 , 1 , 1 , 1]
45 // D i s c r e t e Fou r i e r Transform Resu l t
46 // column 1 to 5
47 //
48 // 8 . − 5 . 5 51D−16 + 2 . 2 20D−16 i − 4 . 2 86D−16 −

4 . 4 41D−16 i − 2 . 2 20D−16 + 8 . 8 82D−16 i − 4 . 8 99D−16
i

49 //
50 // column 6 to 8
51 //

52

52 // − 2 . 1 09D−15 − 1 . 2 21D−15 i − 2 . 9 33D−15 − 6 . 6 61D
−16 i 3 . 5 5 3D−15 + 1 . 1 10D−15 i

53 //
54 //Example 3
55 //Howmany po i n t DFT do you want ? 8
56 // Enter the s equence= [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7]
57 // D i s c r e t e Fou r i e r Transform Resu l t
58 //
59 //
60 // column 1 to 7
61 //
62 // 2 8 . − 4 . + 9 . 6568542 i − 4 . + 4 . i − 4 . +

1 . 6568542 i − 4 . − 3 . 4 29D−15 i − 4 . − 1 . 6568542 i
− 4 . − 4 . i

63 //
64 // column 8
65 //
66 // − 4 . − 9 . 6568542 i
67 //

53

Experiment: 8

Simulation of FIR Filters

Scilab code Solution 8.1 Exp8

1 // Capt ion : To Des ign an Low Pass FIR F i l t e r
2 // F i l t e r Length =5 , Order = 4
3 //Window = Rec tangu l a r Window
4 clc;

5 clear;

6 xdel(winsid ());

7 fc = input(” Enter Analog c u t o f f f r e q . i n Hz=”)
8 fs = input(” Enter Analog sampl ing f r e q . i n Hz=”)
9 M = input(” Enter o rd e r o f f i l t e r =”)
10 w = (2*%pi)*(fc/fs);

11 disp(w, ’ D i g i t a l c u t o f f f r e qu en cy i n r a d i a n s . c y c l e s /
sample s ’);

12 wc = w/%pi;

13 disp(wc, ’ Normal i zed d i g i t a l c u t o f f f r e qu en cy i n
c y c l e s / sample s ’);

14 [wft ,wfm ,fr]=wfir(’ l p ’ ,M+1,[wc/2,0], ’ r e ’ ,[0,0]);
15 disp(wft , ’ Impul se Response o f LPF FIR F i l t e r : h [n]= ’)

;

16 // P l o t t i n g the Magnitude Response o f LPF FIR F i l t e r

54

Figure 8.1: Exp8

17 subplot (2,1,1)

18 plot (2*fr,wfm)

19 xlabel(’ Normal i zed D i g i t a l Frequency w−−−> ’)
20 ylabel(’ Magnitude |H(w) |= ’)
21 title(’ Magnitude Response o f FIR LPF ’)
22 xgrid (1)

23 subplot (2,1,2)

24 plot(fr*fs,wfm)

25 xlabel(’ Analog Frequency in Hz f −−−> ’)
26 ylabel(’ Magnitude |H(w) |= ’)
27 title(’ Magnitude Response o f FIR LPF ’)
28 xgrid (1)

29 //Example
30 // Enter Analog c u t o f f f r e q . i n Hz= 250
31 //
32 // Enter Analog sampl ing f r e q . i n Hz= 2000
33 //
34 // Enter o rd e r o f f i l t e r = 4
35 //

55

36 // D i g i t a l c u t o f f f r e qu en cy i n r a d i a n s . c y c l e s /
sample s

37 //
38 // 0 . 7853982
39 //
40 // Normal i zed d i g i t a l c u t o f f f r e qu en cy i n c y c l e s /

sample s
41 //
42 // 0 . 2 5
43 //
44 // Impul se Response o f LPF FIR F i l t e r : h [n]=
45 //
46 // 0 . 1591549 0 . 2250791 0 . 2 5 0 . 2250791

0 . 1591549

56

Experiment: 9

Generation and Quantization of
Binary Numbers

Scilab code Solution 9.1 Exp9

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 // 1 . Quan t i z a t i on and sampl ing
7

8 // Quant ize a s i g n a l to n b i t s . This code assumes
the s i g n a l i s between −1

9 // and +1.
10 clc;

11 clear all;

12 close;

13 n=8; //Number o f b i t s ;
14 m= 120; //Number o f sample s ;
15 t = 2*%pi *[0:(m-1)]/m;

57

Figure 9.1: Exp9

16 x=sin(t); // s i g n a l between −1 and 1 .
17 // Trying ” s i n () ”

i n s t e a d o f ”
sawtooth ”

18 // r e s u l t s i n more
i n t e r e s t i n g e r r o r
(to the

19 // ex t en t tha t e r r o r
i s i n t e r e s t i n g) .

20 x(find(x>=1))=(1-%eps); //Make s i g n a l from −1
to j u s t l e s s than 1 .

21 xq=floor((x+1) *2^(n-1)); // S i g n a l i s one o f 2ˆn
i n t v a l u e s (0 to 2ˆn−1)

22 xq=xq /(2^(n-1)); // S i g n a l i s from 0 to 2 (
quan t i z ed)

23 xq=xq -(2^(n) -1)/2^(n); // S h i f t s i g n a l down (
round ing)

24

25 xe=x-xq; // Er ro r

58

26 subplot (3,1,1)

27 plot2d3(’ gnn ’ ,1:length(x),x);
28 title(sprintf(’ S i gna l , Quant ized s i g n a l and Er ro r

f o r %g b i t s , %g qu an t i z a t i o n l e v e l s ’ ,n,2^n));
29 disp(x, ’ e xa c t va l u e ’)
30 subplot (3,1,2)

31 plot2d3(’ gnn ’ ,1:length(xq),xq ,2);
32 title(’ Quant ized Value ’)
33 disp(xq, ’ Quant ized va lu e ’)
34 subplot (3,1,3)

35 plot2d3(’ gnn ’ ,1:length(xe),xe ,5);
36 title(’ Quan t i z a t i on Er ro r or Quan t i z a t i on No i s e ’)
37 disp(xe, ’ Quan t i z a t i on e r r o r or n o i s e ’)

59

Experiment: 10

Introduction to Simulink Signal
Analysis

Scilab code Solution 10.1 Exp10a

1 // Step r e s p on s e o f d i s c r e t e t ime sys t ems
2 // Re f e r Exp10a . xco s f i l e f o r s imu l i n k a n a l y s i s

This code can be downloaded from the website wwww.scilab.in

Scilab code Solution 10.2 Exp10b

1 // Step r e s p on s e o f Cont inuous t ime sys t ems
2 // Re f e r Exp10b . xco s f i l e f o r s imu l i n k a n a l y s i s

60

Figure 10.1: Exp10a

Figure 10.2: Exp10b

61

This code can be downloaded from the website wwww.scilab.in

62

Experiment: 11

Design and analysis of
Butterworth Filter

Scilab code Solution 11.1 Exp11

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 clc;

7 clear all;

8 close;

9 n = 6; // f i l t e r o r d e r
10 Wn = [2.5e6 ,29e6]/500e6; // no rma l i z ed c u t o f f

f r e q u e n c i e s [lower , upper]
11 ftype = ’ bp ’ ; // bandpass f i l t e r
12 fdesign = ’ but t ’ ; // Butte rworth F i l t e r
13 delta =[];

14 hz=iir(n,ftype ,fdesign ,Wn/2,delta)

15 [p,z,g]=iir(n,ftype ,fdesign ,Wn/2,delta)

63

Figure 11.1: Exp11

64

16 [hzm ,fr]=frmag(hz ,256);

17 plot2d(fr’,hzm ’);

18 xtitle(’ D i s c r e t e IIR f i l t e r band pas s 0 . 0 0 5 < f r <
0 . 0 58 ’ , ’ ’ , ’ ’);

19 xgrid (1)

20 // Re su l t
21

22 //−−>hz (2)
23 // ans =
24 //
25 // 2 4
26 // 0 . 0000002 − 0 . 0000015 z + 0 . 0000037 z
27 // 6 8
28 // − 0 . 0000049 z + 0 . 0000037 z
29 // 10 12
30 // − 0 . 0000015 z + 0 . 0000002 z
31 //
32 //−−>hz (3)
33 // ans =
34 //
35 // 2
36 // 0 . 5250468 − 6 . 6287407 z + 38 . 377802 z
37 // 3 4
38 // − 134 . 73451 z + 319 . 45814 z
39 // 5 6
40 // − 538 . 91189 z + 663 . 25134 z
41 // 7 8
42 // − 600 . 03003 z + 396 . 0233 z
43 // 9 10
44 // − 185 . 96443 z + 58 . 974503 z
45 // 11 12
46 // − 11 . 340535 z + z
47 //
48 //−−>hz (1)
49 // ans =
50 //
51 // ! r num den dt !
52 //

65

53 //−−>p
54 // p =
55 //
56 // 0 . 9964120 − 0 . 0154005 i
57 // 0 . 9892502 − 0 . 0129619 i
58 // 0 . 9822499 − 0 . 0060512 i
59 // 0 . 9822499 + 0 . 0060512 i
60 // 0 . 9892502 + 0 . 0129619 i
61 // 0 . 9964120 + 0 . 0154005 i
62 // 0 . 9464056 + 0 . 1686845 i
63 // 0 . 8907712 + 0 . 1177110 i
64 // 0 . 8651786 + 0 . 0429743 i
65 // 0 . 8651786 − 0 . 0429743 i
66 // 0 . 8907712 − 0 . 1177110 i
67 // 0 . 9464056 − 0 . 1686845 i
68 //
69 //−−>z
70 // z =
71 //
72 // 1 .
73 // 1 .
74 // 1 .
75 // 1 .
76 // 1 .
77 // 1 .
78 // − 1 .
79 // − 1 .
80 // − 1 .
81 // − 1 .
82 // − 1 .
83 // − 1 .
84 //
85 //−−>g
86 // g =
87 //
88 // 0 . 0000002
89 //

66

Experiment: 12

Impulse response of first order
and second order system

Scilab code Solution 12.1 Exp12

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 clc;

7 clear all;

8 close;

9 s=poly(0, ’ s ’);
10 //The paramete r s 1 . Angular P o s i t i o n 2 . Angular

V e l o c i t y o f DC Motors
11 // a r e ob ta i n ed from MATLAB demos f i l e .
12 Angular_Position =(0.003127*s+0.9815) /(s^2+3.929*s

+6.343e-05);

13 Angular_velocity = (1.04*s+0.2756) /(s^2+4.461*s

+1.096);

67

Figure 12.1: Exp12

68

14 model = [Angular_Position ,Angular_velocity];

15 H1 = model (:,1); // Angular P o s i t i o n
16 H2 = model (:,2); // Angular v e l o c i t y
17 np=20; //number o f p o i n t s
18 t = 0:0.02:20;

19 ysd1 = csim(’ impu l s e ’ ,t,model (:,1));
20 ysd2 = csim(’ impu l s e ’ ,t,model (:,2));
21 subplot (2,1,1)

22 plot(t,ysd1 , ’ .−b ’)
23 title(’ Impul se Response − Angular P o s i t i o n ’)
24 xgrid (1)

25 subplot (2,1,2)

26 plot(t,ysd2 , ’ .− r ’)
27 title(’ Impul se r e spons e−Angular v e l o c i t y ’)
28 xgrid (1)

29 disp(model , ’ Model System Equat ions = ’)
30 disp(ysd1 , ’ Impul se Resposne o f Angular P o s i t i o n = ’)
31 disp(ysd2 , ’ Impul se Response o f Angular v e l o c i t y= ’)
32

33 //RESULT
34 //Model System Equat ions =
35 //
36 // 0 . 9 815 + 0 . 003127 s 0 . 2 756 + 1 . 0 4 s
37 // −−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−
38 // 2 2
39 // 0 . 0000634 + 3 . 9 29 s + s 1 . 0 9 6 + 4 . 4 61 s + s

69

Experiment: 13

Circular convolution of two
given sequences.

Scilab code Solution 13.1 Exp13

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 // 3 .CIRCULAR CONVOLUTION OF TWO SEQUENCES
7 clc;

8 close;

9 clear all;

10 a1= input(’ 1 s t Sequence x : ’)
11 b1= input(’ 2nd Sequence h : ’)
12 ax=length(a1);

13 bx=length(b1);

14 n=max(ax,bx);

15 n3=ax-bx;

16 if(n3 <=0)

70

Figure 13.1: Exp13

17 a1=[a1,zeros(1,-n3)];

18 else

19 b1=[b1,zeros(1,n3)];

20 end

21 for r = 1:n

22 y(r)=0;

23 for i=1:n

24 j=r-i+1;

25 if (j<=0)

26 j=j+n;

27 end

28 y(r)=y(r)+b1(j)*a1(j);

29 end

30 end

31 disp(y, ’ c i r c u l a r c o nv l o u t i o n r e s u l t ’)
32

33 subplot (3,1,1);

34 plot2d3(’ gnn ’ ,a1);
35 xlabel(’ n ’);

71

36 ylabel(’ a (n) ’);
37 title(’ f i r s t s equence ’);
38 subplot (3,1,2);

39 plot2d3(’ gnn ’ ,b1);
40 xlabel(’ n ’);
41 ylabel(’ b (n) ’);
42 title(’ s e cond s equence ’);
43 subplot (3,1,3);

44 plot2d3(’ gnn ’ ,y);
45 xlabel(’ n ’);
46 ylabel(’ y (n) ’);
47 title(’ c i r c u l a r c o nv o l u t i o n s equence ’);
48

49 //RESULT
50 //Example 1
51 // 1 s t Sequence x : [1 , 2 , 3 , 4]
52 // 2nd Sequence h : [1 , 1 , 1 , 1]
53 //
54 // c i r c u l a r c o nv l o u t i o n r e s u l t
55 //
56 // 1 0 . 1 0 . 1 0 . 1 0 .
57 //
58 //Example 2
59 // 1 s t Sequence x : [1 , 2 , 3 , 4]
60 // 2nd Sequence h : [1 , 1 , 1]
61 //
62 // c i r c u l a r c o nv l o u t i o n r e s u l t
63 //
64 // 6 . 6 . 6 . 6 .

72

Experiment: 14

Linear convolution of two given
sequences.

Scilab code Solution 14.1 Exp14

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 // 4 . program f o r l i n e a r c o nv o l u t i o n o f to s equence
7 clc;

8 clear all;

9 close;

10 x = input(’ e n t e r the f i r s t s equence ’);
11 y = input(’ e n t e r the second s equence ’);
12 m = length(x);

13 n = length(y);

14 p = m+n-1;

15 for i=1:p

16 q=i;

17 k=0;

18 for j=1:i

73

19 if q>m

20 q=q-1;

21 elseif j>n

22 k=k;

23 else k=x(q)*y(j)+k;

24 q=q-1;

25 end

26 end

27 z(i)=k;

28 end

29 disp(z, ’ c o n v o l u t i o n o f two s equence i s : ’)
30

31 //RESULT
32 // e n t e r the f i r s t s equence [1 , 2 , 3]
33 // e n t e r the second s equence [1 , 1 , 1 , 1]
34 //
35 // c onv o l u t i o n o f two s equence i s :
36 //
37 // 1 .
38 // 3 .
39 // 6 .
40 // 6 .
41 // 5 .
42 // 3 .
43 //

74

Appendix

75

Cameraman Image file

76

Rice
Image File

77

Hes-
tian Colour Image File

78

Lenna Image File

79

	
	Image Sampling and Quantization
	Understanding basic relationship between pixel
	Program for Image sharpening.
	Program for lossless Image Compression.
	Program for lossy Image Compression.
	Program for generation and Manipulation of signal.
	Program for Discrete Fourier Transform
	Simulation of FIR Filters
	Generation and Quantization of Binary Numbers
	Introduction to Simulink Signal Analysis
	Design and analysis of Butterworth Filter
	Impulse response of first order and second order system
	Circular convolution of two given sequences.
	Linear convolution of two given sequences.

