Scilab Manual for
Signal Processing
by Mrs S. Chaya

Electronics Engineering
AIKTC !

Solutions provided by
Mr R.Senthilkumar- Assistant Professor
Electronics Engineering
Institute of Road and Transport Technology

January 24, 2026

Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the "Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions

1

2

8

9

Image Sampling and Quantization

Understanding basic relationship between pixel
Program for Image sharpening.

Program for lossless Image Compression.

Program for lossy Image Compression.

Program for generation and Manipulation of signal.
Program for Discrete Fourier Transform
Simulation of FIR Filters

Generation and Quantization of Binary Numbers

10 Introduction to Simulink Signal Analysis

11 Design and analysis of Butterworth Filter

12 Impulse response of first order and second order system

13 Circular convolution of two given sequences.

14 Linear convolution of two given sequences.

13

22

30

32

38

50

54

57

60

63

67

70

73

List of Experiments

Solution 1.1
Solution 1.2
Solution 2.1
Solution 2.2
Solution 3.1
Solution 3.2
Solution 4.1
Solution 5.1
Solution 6.1
Solution 6.2
Solution 6.3
Solution 6.4
Solution 7.1
Solution 8.1
Solution 9.1
Solution 10.1
Solution 10.2
Solution 11.1
Solution 12.1
Solution 13.1
Solution 14.1
AP 1

AP 2

AP 3

AP 4

Exp14

Cameraman Image file

Rice Image File .

Hestian Colour Image File

Lenna Image File

13
14
22
23
30
32
38
41
44
47
50
o4
o7
60
60
63
67
70
73
76
77
78
79

List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

4.1

5.1
5.2

6.1
6.2
6.3
6.4
6.5

7.1
8.1

9.1

10
12

15
16
20
21

24
25
27
28

30

36
37

41
42
43
45
48

o1
95
58

10.1 Expl0Oa
10.2 ExplOb

11.1 Expll
12.1 Expl2

13.1 Expl3

61
61

64
68
71

N R

© 0o N O Ot

10

12

Experiment: 1

Image Sampling and
Quantization

check Appendix AP 1 for dependency:

cameraman. jpeg

Scilab code Solution 1.1 Expla

//Image Quantization

clear;

clc;

I = imread(’C:\ Users\senthilkumar\Desktop\Chaya_Lab\
scilab\cameraman. jpeg’);

quanta = 50;

J = double(I)/255;

J uint8 (J*xquanta) ;

J double (J)/quanta;

figure

ShowImage (I, Original Image’)

figure

ShowImage (J, ’Quantized Image’)

Figure 1.1: Expla

ot _wWw N =

D

© 00

10

12
13
14

15
16

17
18

check Appendix AP 1 for dependency:

cameraman. jpeg

Scilab code Solution 1.2 Explb

//Image Sampling
clear;
clc;

I = imread(’C:\ Users\senthilkumar\Desktop\Chaya_Lab\

scilab\cameraman. jpeg’) ;

J = imresize(I,0.5); //Reducing the sampling rate

K1 = imresize(J,2, 'nearest’); //Increasing the
sampling rate

K2 = imresize(J,2, bilinear ’);

K3 = imresize(J,2, 'bicubic’);

figure

ShowImage (I, Original Image’)

figure

ShowImage (J, "Reducing the Sampling Rate by 27)

figure

ShowImage (K1, 'Increasing the Sampling Rate by 2
nearest neighbour method’)

figure

ShowImage (K2, "Increasing the Sampling Rate by 2
bilinear method’)

figure

ShowImage (K3, 'Increasing the Sampling Rate by 2

bicubic method’)

Figure 1.2: Expla

Figure 1.3: Explb

10

11

Figure 1.4: Explb

12

QU = W N

oo

Experiment: 2

Understanding basic
relationship between pixel

check Appendix AP 1 for dependency:
cameraman. jpeg

check Appendix AP 2 for dependency:

rice.jpg

Scilab code Solution 2.1 Exp2a

//Image Arithmetic —division , multiplication ,image
subtraction and image addition

clc;

clear;

close;

I = imread(’C:\ Users\senthilkumar\Desktop\Chaya_Lab
\scilab\cameraman. jpeg’); //SIVP toolbox

J = imread (’C:\ Users\senthilkumar\Desktop\Chaya_Lab\
scilab\rice.jpg’);//SIVP toolbox

IMA = imadd(I,J); //SIVP toolbox

figure

ShowImage (IMA, 'Image Addition’)//IPD toolbox

13

10
11
12
13
14
15
16
17
18
19

© 00 J O Ut i W N

—_ =
)

IMS = imabsdiff(I,J);//SIVP toolbox

figure

ShowImage (IMS, 'Image Subtraction’);//IPD toolbox

IMD = imdivide(I,J);//SIVP toolbox

IMD = imdivide (IMD,0.01);//SIVP toolbox

figure

ShowImage (uint8 (IMD), 'Image Division ’);//IPD toolbox
IMM = immultiply(I,I);//SIVP toolbox

figure

ShowImage (uint8 (IMM), 'Image Multiply ’);//IPD toolbox

check Appendix AP 1 for dependency:
cameraman. jpeg
check Appendix AP 4 for dependency:

lenna. jpg

Scilab code Solution 2.2 Exp2b

//Image Arithmetic— Distance and Connectivity: To
understand the notion of connectivity

//and neighborhood defined for a point in an image.

clc;

clear;

close;

//function to convert gray to binary

function X = gray2bin(x)

xmean = mean2(x);
[m,n]= size(x);

X = zeros(m,n);
for i = 1:m

14

Figure 2.1: Exp2a

15

Figure 2.2: Exp2a

16

12
13
14
15
16
17
18
19

20
21
22
23
24

25
26

27
28
29
30
31
32
33
34
35
36
37

38
39
40
41

42
43

for j = 1:n
if x(i,j)> xmean then
X(i,j) = 1;
end
end
end
endfunction
//function to find total length of two dimensional
matrix
function n = numdims (X)
n = length(size(X));
endfunction
[T T
//Funtion to pad zeros in columns and rows at both
ends of an binary image
function B = padarray(b)
//pad zeros in columns and rows at both ends of
an binary image

[m,n] = size(b);
num_dims = length(size(b));
B = zeros(m+num_dims ,n+num_dims) ;
for i = num_dims:m+num_dims -1
for j = num_dims:m+num_dims-1
B(i,j) = b(i-1,j-1);
end
end

endfunction

[T T

//[1]. Euclidean Distance between images and their
histograms

I = imread(’C:\ Users\senthilkumar\Desktop\Chaya_Lab\
scilab\lenna.jpg’);

J = imread (’C:\ Users\senthilkumar\Desktop\Chaya_Lab\

scilab\cameraman.jpeg ’)

I = CreateHistogram(I);//IPD toolbox

J = CreateHistogram(J);//IPD toolbox

= double(I);

double (J);

h_
h_
I
J

17

44

45

46

47

48
49
50
51
52
53
o4

55
56

o7
58
59

60

61

62

63
64
65
66
67
68
69
70
71

E_dist_Hist = sqrt(sum((h_I-h_J)."2));//Euclidean
Distance between histograms of two images

E_dist_images = sqrt(sum((I(:)-J(:))."2));//
Euclidean Distance between two images

disp(E_dist_images, 'Euclidean Distance between two
images ') ;

disp(E_dist_Hist, "Euclidean Distance between
histograms of two images’)

//12]. Connectivity — 8 connected to the background

//exec(gray2bin)

Ibin = gray2bin(I);

Jbin = gray2bin(J);

//conversion of gray image into binary image

conn = [1,1,1;1,1,1;1,1,1];//8 connectivity

//exec ('C:\ Users\senthilkumar\Desktop\Gautam_PAL_Lab
\numdims. sci 7)

num_dims = numdims (I);

//exec (’C:\ Users\senthilkumar\Desktop\Gautam_PAL_Lab
\padarray.sci)

B = padarray(Ibin);

global FILTER_ERODE;

StructureElement = CreateStructureElement (’square’,
3);

B_eroded = MorphologicalFilter (B,FILTER_ERODE,
StructureElement .Data);//IPD toolbox

//note:StructureElement .Data and conn both are same
values

//except that StructureElement.Data is boolean
either true or false

p = B& " B_eroded;

[m,n] = size(p);

for i = num_dims:m+num_dims -2

for j = num_dims:n+num_dims -2
pout (i-1,j-1) = p(i,]j);
end

end

figure

ShowImage (uint8(I), 'Gray Lenna Image’)

18

72
73
74
75

76
7
78
79
80
81

82
83

figure

ShowImage (Ibin, 'Binary Lenna Image’)

figure

ShowImage (pout, '8 neighbourhood connectiviy

Image ")

/ /RESULT

//Euclidean Distance between two images

//
//
//

19797.433

in Lenna

// Euclidean Distance between histograms of two

//
//

images

2770.7

19

Figure 2.3: Exp2b

20

"'-"'-‘!‘f-'ﬂ'?:""'l't‘::-' Z'- :

Figure 2.4: Exp2b

21

© 00 J O U i W N

— =
N o= O

13
14
15
16
17
18
19

Experiment: 3

Program for Image sharpening.

Scilab code Solution 3.1 Exp3a

//Note: Details of scilab software version and OS
version used:

//OS: Windows 7

//Scilab version: 5.4.1

//IPD Atom version:8.3.1—2
//SIVP Atom version:0.5.3.1 —2
//2.Program to sharpen image
//Read image and display it.
//For Colour Image

clc;

clear all;

close;

a = imread (’C:\ Users\senthilkumar\Desktop)\
signal_processing_lab\hestian.jpg’);

ShowColorImage (a, "Original Image’)

title(’Original Image’);

//Sharpen the image and display it .

//b = imsharpen(a);

//figure , imshow(b), title (’Sharpened Image’);

22

20
21
22
23
24
25
26

27
28
29
30
31
32

33
34
35

S U = W N

radius =1;

amount 0.8000;

threshold = 0;

// Gaussian blurring filter

filtRadius = ceil(radius*2);

filtSize = 2xfiltRadius + 1;

gaussFilt = fspecial(’gaussian’,[filtSize filtSize],
radius) ;

// High—pass filter

sharpFilt = zeros(filtSize,filtSize);

sharpFilt(filtRadius+1,filtRadius+1)

sharpFilt = sharpFilt - gaussFilt;

sharpFilt = amount*sharpFilt;

sharpFilt (filtRadius+1,filtRadius+1)
filtRadius+1,filtRadius+1) + 1;

B = imfilter(a,sharpFilt);

figure

ShowColorImage (B, 'Sharpened Image’);

1;

sharpFilt (

check Appendix AP 3 for dependency:

hestian. jpg

Scilab code Solution 3.2 Exp3b

//Note: Details of scilab software version and OS
version used:

//OS: Windows 7

//Scilab version: 5.4.1

//IPD Atom version:8.3.1—2

//SIVP Atom version:0.5.3.1 —2

//2.b.Program to sharpen image

23

criginal Image

Figure 3.1: Exp3a

24

Figure 3.2: Exp3a

25

© 00

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32

33
34
35

//Read image and display it.

//For Gray Image

clc;

clear all;

close;

a = imread(’C:\ Users\senthilkumar\Desktop\
signal _processing_lab\rice.jpg’);//SIVP toolbox

ShowImage (a, 'Original Image’)//SIVP toolbox

title(’Original Image’);

//Sharpen the image and display it.

//b = imsharpen(a) ;

//figure , imshow(b), title (’Sharpened Image’);

radius =1;

amount = 0.8000;

threshold = 0;

// Gaussian blurring filter

filtRadius = ceil(radiusx*2);
filtSize = 2xfiltRadius + 1;

gaussFilt = fspecial(’gaussian’,[filtSize filtSize],

radius) ;
// High—pass filter
sharpFilt = zeros(filtSize,filtSize);
sharpFilt (filtRadius+1,filtRadius+1)
sharpFilt = sharpFilt - gaussFilt;
sharpFilt = amountx*sharpFilt;
sharpFilt (filtRadius+1,filtRadius+1)
filtRadius+1,filtRadius+1) + 1;
B = imfilter (a,sharpFilt);
figure
ShowImage (B, "Sharpened Image’);//IPD toolbox

1;

sharpFilt (

check Appendix AP 2 for dependency:

26

original Image

Figure 3.3: Exp3b

27

Figure 3.4: Exp3b

28

rice.jpg

29

[

\V)

- W

Experiment: 4

Program for lossless Image
Compression.

Scilab code Solution 4.1 Exp4

// Lossless Image Compression— Implementation of
arithmetic coding for images

//Note 1: In order to run this program download
Huffman toolbox from

//scilab atoms

//Note 2: The Huffman atom is used to encode images

Figure 4.1: Exp4

30

© 00 J & Ot

10

12
13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

of small size only
//Software version
//OS Windows7
//Scilabb .4.1
//Image Processing Design Toolbox 8.3.1—1
//Scilab Image and Video Proccessing toolbox

0.5.3.1 -2
clear;
clc;
close;
a = imread (’C:\ Users\senthilkumar\Desktop\Chaya_Lab\
scilab \cameraman. jpeg’) ;

imresize(a,[16 16]); //Only Image of small size
is possible to call huffcode
B = 31ze(A)
A=A(:) .75
A = double(A);
[QT,QM]=huffcode (A); //Huffman Encoding
disp(’compressed Bit sequence:’);
disp (QT);
disp(’Code Table:) ;
disp (QM) ;
// Now, the reverse operation
C = huffdeco(QT,QM); //Huffman Decoding
for i=1:B(1)
E(i,1:B(2))= C((i-1)*B(2)+1:1*B(2));

A

end

D = E’;

E = imresize (D, [32,32]);

figure

ShowImage (a, 'Original cameraman Image 256x256)
figure

ShowImage (E, "Reconstructed cameraman Image 32x327);

check Appendix AP 1 for dependency:

cameraman. jpeg

31

[\)

© 00 N O U = W

10

12
13
14
15
16
17

Experiment: 5

Program for lossy Image
Compression.

Scilab code Solution 5.1 Expb

//Lossy Image Compression—Block Truncation Coding
//Note: Details of scilab software version and OS
version used:
//OS: Windows 7
//Scilab version: 5.4.1
//IPD Atom version:8.3.1—2
//SIVP Atom version:0.5.3.1—2
clc;
clear;
close;
function out_put = btcimage (in_put,block_size)
//Note: Details of scilab software version and
OS version used:
//OS: Windows 7
//Scilab version: 5.4.1
//IPD Atom version:8.3.1 2
//SIVP Atom version:0.5.3.1 —2
X= imread (in_put);
Y=imfinfo (in_put);

32

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40

41
42
43
44
45

46

47
48
49
50
51

K=block_size;
X1=double (X);
yl=size (X);

n=y1(1);
m=y1(2);
k=1;1=1,;

if (Y.ColorType=='grayscale)

//

//
//
//

IMAGE ENCODING

FOR GRAY SCALE IMAGES

figure (1)
ShowImage (X, "Original 7)
title (’ORIGINAL ") ;
for i=1:K:n
for j=1:K:m
tmp ([1:K],[1:K])=X1([i:i+(K-1)]1,[]:]
+(K-1)1);
mn=mean (mean (tmp)) ;
tmpl ([i:i+(K-1)],[j:j+(K-1)])=tmp>mn

Lsmat=(tmp<mn) ;

Mrmat=(tmp>=mn) ;

Lsmn=sum (sum(Lsmat)) ;
Mrmn=sum (sum (Mrmat)) ;
Mu(k)=sum(sum(Lsmat .*xtmp))/(Lsmn+.5)

s k=k+1;
Mi(1l)=sum(sum(Mrmat.*xtmp))/Mrmn;1l=1
+1;
end
end
figure (2)

ShowImage (tmpl, "Encoded Image’)
title (’ENCODED’) ;

33

52
53
54
95
56
o7
58

59
60

61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

85

// IMAGE DECODING

k=1;1=1;
for i=1:K:n
for j=1:K:m
tmp21 ([1:K]1,[1:K])=tmpl ([i:i+(K-1)
1,0j:3+(K-1)1);
tmp22=(tmp21*round (Mu(k))) ; k=k+1;
tmp21=((tmp21==0) *round (Mi(1)));1=1
+1;
tmp21l=tmp21+tmp22;
out_put ([i:i+(K-1)]1,[j:j+(K-1)]1)=
tmp21;
end
end
figure (3)
ShowImage (uint8 (out_put), 'Decoded Image’)
title (’'DECODED’) ;

//
// FOR COLORED IMAGES
//
elseif (Y.ColorType==’truecolor’)
R=X(:,:,1);
G=X(:,:,2);
B=X(:,:,3);
// IMAGE ENCODING
figure (1)

ShowColorImage (X, "Original 7)

title (’ORIGINAL’) ;

for b=1:3

for i=1:K:n
for j=1:K:m
tmp ([1:K],[1:K])=X1([i:i+(K-1)
1,0j:j+(K-1)]1,b);

mn=mean (mean (tmp)) ;

34

86

87
88
89
90
91

92

93
94
95
96
97
98
99
100

101
102
103

104

tmpl ([i:1+(K-1)1,[j:j+(XK-1)1,b)=
tmp >mn ;
Lsmat=(tmp<mn) ;
Mrmat=(tmp>=mn) ;
Lsmn=sum (sum(Lsmat)) ;
Mrmn=sum (sum (Mrmat)) ;
Mu(b,k)=sum(sum(Lsmat .*tmp)) /(
Lsmn+.5) ; k=k+1;
Mi(b,l)=sum(sum(Mrmat.*tmp))/
Mrmn;1=1+1;
end
end
end
end
endfunction

//MAIN PROGRAM

I = 'C:\Users\senthilkumar\Desktop\Chaya_Lab\scilab\
cameraman . jpeg ’;

block_size = 2;

//exec(’btcimage.sci)

//exec (’C:\ Users\senthilkumar\Desktop\Chaya_Lab\
scilab\btcimage.sci 7)

out_put = btcimage(I,block_size);

check Appendix AP 1 for dependency:

cameraman. jpeg

35

ENCODED

i

o —

Figure 5.1: Exp)

36

DECODED

Figure 5.2: Expbd

37

© 00 J O U = W N

e e e e
U= W N = O

—_ =
N O

Experiment: 6

Program for generation and
Manipulation of signal.

Scilab code Solution 6.1 Exp6a

//Caption: Program to generate and plot different
basic sequences

clear all;

clc;

close;

// Generation of Unit Impulse signal

L = 4; //Upperlimit

n = -L:L;

x = [zeros(1,L),1,zeros(1,L)];
b = gca();

b.y_location = "middle”;
plot2d3(’gnn’,n,x)

a=gce () ;

a.children (1) .thickness =4;

xtitle(’Graphical Representation of Unit Sample
Sequence’, 'n’,’'x[n] ") ;

// Generation of Unit Step Signal

L = 10; //Upperlimit

38

18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48

49
50
o1
52

t = -L:L;

x = [zeros(1,L),ones(1,L+1)];

figure (1)

subplot(2,1,1)

a=gca();

a.thickness =2;

a.y_location = "middle”;

plot2d2(t,x)

xtitle ('’ Graphical Representation of Unit Step Signal
Lt x ())

// Generation of Unit Step Sequence

L = 4; //Upperlimit

n = -L:L;

X [zeros(1,L),ones(1,L+1)1];

subplot(2,1,2)

a=gca();

a.thickness = 2;

a.y_location = "middle”;

plot2d3(’gnn’,n,x)

xtitle ('’ Graphical Representation of Unit Step
Sequence’,’'n’, ’x[n] ") ;

// Generation of Ramp Sequence

L = 4; //Upperlimit

n = -L:L;

X [zeros(1,L),0:L];

figure (2)

subplot(2,1,1)

b = gca();

b.y_location = ’'middle’;

plot2d3(’gnn’,n,x)

a=gce () ;

a.children (1) .thickness =2;

xtitle ("’ Graphical Representation of Discrete Unit
Ramp Sequence’,’n’,’x[n]’);

//Generation of Ramp Signal

L = 4; //Upperlimit

t = -L:L;

[zeros(1,L),0:L];

X

39

53
54
55
56
o7
58
59

60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
7
78
79
80
81
82

subplot(2,1,2)

b = gca();

b.y_location = ’'middle’;
plot2d(n,x)

a=gce () ;
a.children (1) .thickness =2;

xtitle (" Graphical Representation of Discrete Unit

Ramp Sequence’,’t’, x(t)’);

//Generation of Exponentially Increasing signal

a =1.5;

n = 0:10;

(a)"n;

figure (3)

subplot(2,1,1)

a=gca();

a.thickness = 2;

a.x_location = "origin”;

a.y_location = "origin”;

plot2d3(’gnn’,n,x)

xtitle ('’ Graphical Representation of Exponential
Increasing Signal’,’'n’,’ ’x[n]’);

// Generation of Exponentailly Decreasing Signal

a =0.5;

n = 0:10;

x = (a)°n;

subplot(2,1,2)

a=gca();

a.thickness = 2;

a.x_location “origin”;

a.y_location “origin”;

plot2d3(’gnn’,n,x)

xtitle (" Graphical Representation of Exponential
Decreasing Signal’,’'n’, ’x[n]’);

X

40

S U W N

© 00

10

arginal sequence Amplitude Scaled Sequence

104 104
o o
e e
7 7
' e ' e
s 3]
£ 4 [
< ¢ < ¢
ER| ER|
2 2
1 ‘ ‘ 1
1 T T T ——1
0 8] 4 2 0 2 4 & 8 1 0 & & 4 2 0 2 4 & 8 10
> nm===>
Compressed Sequence Extended Sequence
104 10
a- a+
R 8-
7 7
1 e R
EREE 2 5
[£ 4]
< 4 € 4
LR R
2 24
P\‘] |
T r t
0 e 8 4 2 0 2 4 8 8 mw 0 8 6 4 2 0 2 4 & 8 10 12
>

Figure 6.1: Exp6a

Scilab code Solution 6.2 Exp6b

//Caption: Program to Demonstrate the signal Folding
clc;

clear;

x = input(’Enter the input sequence:=");

m = length(x);

1x = input (’Enter the starting point of original

signal=");
hx = 1x+m-1;
n = 1x:1:hx;
subplot(2,1,1)
a = gca();
a.x_location = "origin”;

41

Figure 6.2: Exp6a

42

Original Sequence
5_

4 -

o
L |-

L8]
|

Amplitude--=

n===x
Folded Sequence
5_

24—

[
L 1

L]
1

Amplitude---=

Figure 6.3: Exp6b

43

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

S U = W N

a.y_location = "origin”;
a.data_bounds = [-5,0;5,5];
plot2d3(’gnn’,n,x)
xlabel ('n==>")
ylabel (" Amplitude——>")
title(’Original Sequence’)
subplot (2,1,2)

a = gca(Q);
a.x_location = "origin”;
a.y_location = "origin”;

a.data_bounds = [-5,0;5,5];
plot2d3(-n,x)
xlabel ('n=—=>")

ylabel (’Amplitude—>")
title(’Folded Sequence’)

// Example

//Enter the input sequence:=[1,2,3,2,5]

//

//Enter the starting point of original signal=-1

Scilab code Solution 6.3 Exp6e

//Caption: Program to demonstrate the Amplitude &
Time Scaling of a signal

clc;

clear;

x = input (’Enter input Sequence:=");

m = length(x);

1x = input(’Enter starting point of original signal
=)

hx = 1x+m-1;

n = 1lx:1:hx;

44

orginal sequence
10 4

=

Amplitude----

-10

n -

o 5 10
n====3

Compressed Sequence
10 5

a -

Amplitude---=

-10

-5 o

4
g ‘
L)
T
al

10

n===>

Amplitude Scaled Sequence

104

=

Amplitdug----

-10

nE===3
Extended Sequence
10 o

=

Amplitude---=

10

Figure 6.4: Exp6c

45

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43

44

subplot (2,2,1)

a = gca();

a.x_location = "origin”;
a.y_location = "origin”;
a.data_bounds = [-10,0;10,10];

plot2d3(’gnn’,n,x)

xlabel ('n=—=>")

ylabel (" Amplitude >7)

title(’orginal sequence’)

//Amplitude Scaling

a = input (’Amplitude Scaling Factor:=")

y =a*x;

subplot(2,2,2)

a = gca();

a.x_location = "origin”;
a.y_location = "origin”;

a.data_bounds = [-10,0;10,10];

plot2d3(’gnn’,n,y)

xlabel ('n >7)

ylabel (" Amplitdue >")

title(’Amplitude Scaled Sequence’)

//Time Scaling —Compression

C = input(’Enter Compression factor —Time Scaling
factor)

n = 1x/C:1/C:hx/C;

subplot(2,2,3)

a = gca();

a.x_location “origin”;

a.y_location “origin”;

a.data_bounds = [-10,0;10,10];

plot2d3(’gnn’,n,x)

xlabel ('n=—=>")

ylabel ("Amplitude——>")

title ('Compressed Sequence’)

//Time Scaling —Expansion

d = input(’Enter Extension factor —Time Scaling
factor)

n = lx*xd:d:hxx*d;

46

N O O e W N

subplot (2,2,4)

a = gca(Q);
a.x_location = "origin”;
a.y_location = "origin”;

a.data_bounds = [-10,0;10,10];
plot2d3(’gnn’,n,x)

xlabel ('n=—=—=>")

ylabel (' Amplitude—>")

title (’Extended Sequence’)
//Example

//Enter input Sequence:=[1,2,3,4.,5]
//

//Enter starting point of original signal:= 2

//

//Amplitude Scaling Factor:= 2

//

//Enter Compression factor —Time Scaling factor 2

//

//Enter Extension factor—Time Scaling factor 2

Scilab code Solution 6.4 Exp6d

//Caption:Program to demonstrate the shifting of the
discrete time signal

clc;

clear;

close;

x = input (' Enter the input sequence:=")

m = length(x);

1x = input(’Enter the starting point of original
signal:=")

hx = 1x+m-1;

n = 1lx:1:hx;

47

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Amplitdue--»
Noox @ ow

subplot (3,1,1)
a = gca();
a.x_location =

a.y_location
a.data_bounds =
plot2d3(’gnn’,n
xlabel ('n=—=>")

ylabel (" Amplitdue

title(’Original

//
d

n 1x+d:1:hx+d
subplot (3,1,2)
a = gca(Q);
a.x_location =
a.y_location
a.data_bounds =
plot2d3(’gnn’,n
xlabel ('n=—=>")

Figure 6.5: Exp6d

“origin”;
“origin”;

[-10,0;10,10];
XD

>7)
Sequence)

input (’Enter the delay:=")

b

“origin”;
“origin”;

[-10,0;10,10];
, %)

48

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

ylabel (" Amplitude
title (’Delayed Sequence’)

//

a = input(’Enter the advance:=")
n = lx-a:1:hx-a;

subplot (3,1,3)

a = gca();

a.x_location = "origin”;
a.y_location = "origin”;

a.data_bounds = [-10,0;10,10];

>7)

plot2d3(’gnn’,n,x)
xlabel ('n=——=>")

ylabel (' Amplitude—>")
title ("Advanced Sequence’)
//Example

//Enter

//
//Enter

//
//Enter

//
//Enter

the

the

the

the

input sequence:=[1,2,3,4 5]

starting point of original

delay:=2

advance:=3

signal :=0

49

© 00 J O U i W N

o S e S S S S G G S
S U W NN = O

Experiment: 7

Program for Discrete Fourier
Transform

Scilab code Solution 7.1 Exp7

//Note: Details of scilab software version and OS
version used:
//OS: Windows 7
//Scilab version: 5.4.1
//IPD Atom version:8.3.1 2
//SIVP Atom version:0.5.3.1—2
//5.PROGRAM TO IMPLEMENT DISCRETE FOURIER TRANSFORM
//DET
clc;
close;
clear all;
N=input ("Howmany point DFT do you want?’);
x2=input ("Enter the sequence=’);
n2=length(x2) ;
c= zeros (N);
x2=[x2 zeros(1,N-n2)];
for k=1:N

50

DFT-absolute value

0.8
0.6

0.4

DFT-angle

22 24 28 28

-0.2 4

-0.4 -

-0.5 4

-08 -

0z 04 0B 08 12 14 16 18

Figure 7.1: Exp7

51

22 24 28 28

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51

for n=1:N
w=exp ((-2*xYpi*x%ix(k-1)*(n-1))/N);
x(n)=w;
c(k,n)=x(n);

end

end

r=x2%cC;

//plotting magnitude and angle
subplot (2,1,1)
plot2d3(’gnn’,0:N-1,abs(r) ,2);
title ('DFT-absolute value’);
subplot(2,1,2)

a = gca()
plot2d3(’gnn’,0:N-1,atan(imag(r)./(real(r)+0.0001))
»5);

a.x_location="origin”;

title ('DFT—angle ’);

disp(r, "'Discrete Fourier Transform Result’)
//RESULT

//Example 1

//Howmany point DFT do you want? 4

//Enter the sequence=[1,2,3 4]

//Discrete Fourier Transform Result

// 10. — 2. + 2.i — 2. — 9.797D—-161 — 2. — 2.i
//

//Example 2

//Howmany point DFT do you want?8

//Enter the sequence=[1,1,1,1,1,1,1,1]
//Discrete Fourier Transform Result

// column 1 to 5

//

// 8. — 5.551D—-16 + 2.220D—-161 — 4.286D—16 —
4.441D-161 — 2.220D-16 + 8.882D—-161 — 4.899D—-16
i

//

// column 6 to 8

//

52

52

53
o4
95
56
57
58
99
60
61
62

63
64
65
66
67

// — 2.109D-15 — 1.221D-15i — 2.933D-15 — 6.661D

—161 3.553D—15 + 1.110D—151
//
//Example 3
//Howmany point DFT do you want? 8
//Enter the sequence= [0,1,2,3,4,5,6,7]
//Discrete Fourier Transform Result

//

//

// column 1 to 7

//

// 28. — 4. + 9.65685421i — 4. + 4.
1.65685421 — 4. — 3.429D—-151 — 4.
— 4., — 4.1

//

// column 8

//

/] — 4. — 9.65685421i

//

i — 4. +
— 1.65685421

53

© 00 J O U i W N+~

—_
)

—_ =
wW N

14
15

16

Experiment: 8

Simulation of FIR Filters

Scilab code Solution 8.1 Exp8

//Caption: To Design an Low Pass FIR Filter

//Filter Length =5, Order = 4

//Window = Rectangular Window

clc;

clear;

xdel (winsid ());

fc = input (" Enter Analog cutoff freq. in Hz=")

fs = input (" Enter Analog sampling freq. in Hz=")

M = input(”Enter order of filter =")

w = (2*x%pi)*(fc/fs);

disp(w, 'Digital cutoff frequency in radians.cycles/
samples ’) ;

wec = w/%pi;

disp(wc, "Normalized digital cutoff frequency in
cycles/samples’);

[wft ,wfm,fr]=wfir(’lp ’,M+1, [wc/2,0], 're’,[0,0]);

disp(wft, 'Impulse Response of LPF FIR Filter:h[n]=")

//Plotting the Magnitude Response of LPF FIR Filter

o4

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Magnitude [Hjn)l=

Magnitude [Hia)l=

Magnitude Response of FIR LPF

fff
,,
,,,

T T T T T T T T T T T T T T T T T T T
0 005 01 045 02 025 03 03%5 04 04 05 055 06 085 07 075 08 085 08 085 1
Normalized Digital Frequency we—>

Magnitude Response of FIR LPF

,,,

T T T T T T T T T T T T T T T T T T T
o &80 100 150 200 250 300 350 400 450 500 650 800 B850 700 750 800 B50 8o as0 1 000
Analog Frequency in Hzf-->

Figure 8.1: Exp8

subplot(2,1,1)
plot (2%fr,wfm)

xlabel ('Normalized Digital Frequency w—>7)

ylabel (’Magnitude |H(w)|=")

title (’Magnitude Response of FIR LPF’)
xgrid (1)

subplot(2,1,2)

plot (frxfs,wfm)

xlabel (’Analog Frequency in Hz f ——>7)
ylabel (’Magnitude |H(w)|=")

title (’Magnitude Response of FIR LPF’)
xgrid (1)

//Example

//Enter Analog cutoff freq. in Hz= 250

//

//Enter Analog sampling freq. in Hz= 2000

//
//Enter order of filter = 4

//

95

36

37
38
39
40

41
42
43
44
45
46

Digital cutoff frequency in radians.cycles/

samples

0.7853982

Normalized digital

samples

0.25

cutoff frequency in cycles/

Impulse Response of LPF FIR Filter :h[n]|=

0.1591549
0.1591549

0.2250791

0.25

0.2250791

56

CO N O Ut i W N

10
11
12
13
14
15

Experiment: 9

Generation and Quantization of
Binary Numbers

Scilab code Solution 9.1 Exp9

//Note: Details of scilab software version and OS
version used:

//OS: Windows 7

//Scilab version: 5.4.1

//IPD Atom version:8.3.1 2

//SIVP Atom version:0.5.3.1—2

//1.Quantization and sampling

//Quantize a signal to n bits. This code assumes
the signal is between —1

//and +1.

clc;

clear all;

close;

n=8; //Number of bits;

m= 120; //Number of samples;

t = 2%Y%pi*x[0:(m-1)]1/m;

o7

16
17

18

19

20

21

22

23

24
25

Signal, Quantized signal and Error for 8 bits, 266 quantization levels
-
n_u\”‘”” HHH\M
MHHHH H|||||III
0.5

uuuuuuuuuuuuuu

1
o
45
N ‘HHHHHHHH‘
o |\|”HH HHH\M :
— 1
80 B85 o @5 100 105 110 115 120

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

1n||

0.004

- \ M \ \]

SRR ST A
NN || |

= [H \‘

Figure 9.1: Exp9

x=sin(t) ; //signal between —1 and 1.
//Trying 7sin ()”
instead of 7
sawtooth”
//results in more
interesting error
(to the
//extent that error
is interesting).
x(find (x>=1))=(1-%eps); //Make signal from —1
to just less than 1.
xq=floor ((x+1)*2~(n-1)); //Signal is one of 2°n
int values (0 to 2'n—1)

xq=xq/ (27 (n-1)); //Signal is from 0 to 2 (
quantized)
xq=xq-(2"(n)-1) /2" (n); //Shift signal down (

rounding)

Xe=X-X(q; //Error

58

26
27
28

29
30
31
32
33
34
35
36
37

subplot (3,1,1)

plot2d3(’gnn’,1:1length(x) ,x);

title(sprintf (’Signal , Quantized signal and Error
for %g bits, %g quantization levels’,n,2°n));

disp(x, "exact value’)

subplot (3,1,2)

plot2d3(’gnn’,1:1length(xq) ,xq,2);

title (’Quantized Value’)

disp(xq, 'Quantized value’)

subplot (3,1,3)

plot2d3(’gnn’,1:1length(xe) ,xe,5);

title(’Quantization Error or Quantization Noise’)

disp(xe, "Quantization error or noise’)

59

Experiment: 10

Introduction to Simulink Signal
Analysis

Scilab code Solution 10.1 Expl0a

1 //Step response of discrete time systems
2 //Refer ExplOa.xcos file for simulink analysis

This code can be downloaded from the website wwww.scilab.in

Scilab code Solution 10.2 Expl0b

1 //Step response of Continuous time systems
2 //Refer ExplOb.xcos file for simulink analysis

60

““““““““““““““““““““““““““““““ - B e e T =
L 1 1
————— | ' |
.................................... ----F | |
i 1 1
“““““““““““““ L B PP NPT | RS Y |
{ 1 | -
——— i 1 1 1 1 1 1
........ — it 1 1
e ; | | | \ i |
— L 1 !
““““““““““ - b==—-F-=-d---4--—-F--=--=--%---|-10
—— 1 1 1
i 1 1
........ = === ' \
— m < 1 |
““““ —— o Ny p P [
| — q i -,
i o 1 1 1 1 1 1
.............................) B 1 i
1 " 1 1 1 1 1 1
: E 1 |
i S NS TRV O I S S Lo
T .o 1 1
| — 1 |
\”\ . 1 1
| (@) 1 !
! — | SR CNN] [N PRGN NN OSSRt PR [- |
' 1 1 i
; &} 1 1 1 1 1 1
: = .
'] 1 1 1 1 1 1
I g 1
| a
- =
““““““ = .
== |
T T
4 T T & ®w K = W T ®w o T o = o
= = 84 8 &4 &4 & & 5 a o I
£

61

t

Figure 10.2: Expl0b

This code can be downloaded from the website wwww.scilab.in

62

© 00 J O U i W N

—
)

11
12
13
14
15

Experiment: 11

Design and analysis of
Butterworth Filter

Scilab code Solution 11.1 Expll

//Note: Details of scilab software version and OS
version used:

//OS: Windows 7

//Scilab version: 5.4.1

//IPD Atom version:8.3.1 2

//SIVP Atom version:0.5.3.1 —2

clc;

clear all;

close;

n =6; //filter order

Wn = [2.5e6,29e6]1/500e6; //normalized cutoff
frequencies [lower ,upper]

ftype = ’bp’; //bandpass filter
fdesign = ’butt’; //Butterworth Filter
delta =[];

hz=iir(n,ftype,fdesign,Wn/2,delta)
[p,z,gl=iir(n,ftype,fdesign,Wn/2,delta)

63

Discrete IR filter band pass 0.005 < fr < 0.058

AT R P S e B o S R
1
1
1
-

T

n2-f----

Figure 11.1: Expll

64

16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

[hzm,frl=frmag (hz,256) ;

plot2d (fr’,hzm’) ;
xtitle(’Discrete IIR filter

0.058 7,

) Y b

xgrid (1)
// Result

//—>hz(2)

// ans

//

) 7),
b)

band pass

2

0.006 < fr <

0.0000002 — 0.0000015z + 0.0000037z

//—>hz(3)

// ans
//
//
//
//

6

— 0.0000049z + 0.0000037z

10

— 0.0000015z + 0.0000002z

8

12

0.5250468 — 6.6287407z + 38.377802z

— 134.73451z +

3

5

319.45814z2

— 538.91189z + 663.25134z

— 600.03003z + 396.0233z

7

9

8

— 185.96443z + 58.974503z

11

12

— 11.340535z + z

dt

65

4

6

10

4

2

53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

~

\

o)
I

~
~
O OO DO DO OO OO o oo

//

//—>g
/] g =
//
//
//

~
~
— = = R e e e el el e e

0.

9964120
19892502
.9822499
.9822499
19892502
9964120
9464056
8907712
.8651786
.8651786
8907712
.9464056

0000002

]
O OO O OO OO oo oo

01540051
01296191
00605121
00605121
01296191
01540051
16868451
11771101
04297431
04297431
1771101
16868451

66

© 00 J O U i W N

—
)

—_ =
N

—
w

Experiment: 12

Impulse response of first order
and second order system

Scilab code Solution 12.1 Expl2

//Note: Details of scilab software version and OS
version used:

//OS: Windows 7

//Scilab version: 5.4.1

//IPD Atom version:8.3.1 2

//SIVP Atom version:0.5.3.1 —2

clc;

clear all;

close;

s=poly (0, 's’);

//The parameters 1.Angular Position 2. Angular
Velocity of DC Motors

//are obtained from MATLAB demos file .

Angular_Position =(0.003127*xs+0.9815)/(s"2+3.929%*s
+6.343e-05) ;

Angular_velocity = (1.04*s+0.2756)/(s"2+4.461%s
+1.096) ;

67

Impulse Response - Angular Position

Impulse response-Angular velocity

Figure 12.1: Expl2

68

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

model = [Angular_Position,Angular_velocity];
H1 = model(:,1); //Angular Position

H2 = model(:,2); //Angular velocity

np=20; //number of points

t = 0:0.02:20;

ysdl = csim(’impulse’,t,model (:,1));

ysd2 = csim(’impulse’,t,model (:,2));
subplot(2,1,1)

plot(t,ysdl,’ .—b ")

title(’Impulse Response — Angular Position ’)
xgrid (1)

subplot(2,1,2)

plot(t,ysd2,’ .—1r ")

title(’Impulse response—Angular velocity ’)
xgrid (1)

disp (model, "Model System KEquations =)

disp(ysdl, "Impulse Resposne of Angular Position
disp(ysd2, 'Impulse Response of Angular velocity=")

//RESULT
//Model System Equations =

//

// 0.9815 + 0.003127s 0.2756 + 1.04s

// 2

// 0.0000634 + 3.929s + s 1.096 + 4.461s + s

69

© 00 J O U i W N

o S e S S S S G S
S U W NN = O

Experiment: 13

Circular convolution of two

given sequences.

Scilab code Solution 13.1 Expl3

//Note: Details
version used

//OS: Windows 7

of scilab software version and OS

//Scilab version: 5.4.1
//IPD Atom version:8.3.1 2

//SIVP Atom ver

// 3.CIRCULAR CONVOLUTION OF TWO SEQUENCES

clc;

close;

clear all;

al= input(’1st
bl= input (’2nd
ax=length (al);
bx=length(bl);
n=max (ax,bx) ;
n3=ax-bx;

if (n3<=0)

sion:0.5.3.1 -2

Sequence x:7)
Sequence h:’)

70

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

n
sssss d sequence
PR
15
g 1
05
a T T T T T T T
1 12 1.4 16 18 2 22 24 28 28 : | 3z 34 38 ae
n
anvalution sequence
115
1086
= o
as
a T T T T T T T
1 12 T4 18 18 2 22 24 28 28 3 32 34 38 38

Figure 13.1: Expl3

al=[al,zeros(1,-n3)];
else
bl=[bl,zeros(1,n3)];
end
for r = 1:n
y(r)=0;
for i=1:n
j=r-i+1;
if (j<=0)
Jj=jtn;
end

y(r)=y(r)+b1(j)*al(j);

end
end

disp(y, 'circular convloution

subplot (3,1,1);
plot2d3(’gnn’,al);
xlabel('n’);

71

result ’)

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
95
56
o7
58
59
60
61
62
63
64

ylabel(’a(n)’);

title(’'first

sequence)

subplot (3,1,2);
plot2d3(’gnn’,bl);

xlabel('n’);

ylabel (’'b(n) ’);
title(’'second sequence ') ;
subplot (3,1,3);

plot2d3(’gnn’,y);

xlabel('n’);

ylabel('y(n)’);

title(’circular

/ /RESULT

//Example 1

//1st Sequence x:[1,2,3
//2nd Sequence h:[1,1,1, 1]

//

// circular

//
//
//

//Example 2

10.

convloution

10. 10.

3

convolution sequence’);

4]

result

10.

//1st Sequence x:[1,2,3 4]

//2nd Sequence h:[1,1,1]

//

// circular

//
//

6.

convloution

result

72

© 00 J O U i W N

I e T e T o T o S S S SO
O O Ut i W N+~ O

Experiment: 14

Linear convolution of two given
sequences.

Scilab code Solution 14.1 Expl4

//Note: Details of scilab software version and OS
version used:
//OS: Windows 7
//Scilab version: 5.4.1
//IPD Atom version:8.3.1—2
//SIVP Atom version:0.5.3.1 —2
//4.program for linear convolution of to sequence
clc;
clear all;
close;
x = input(’enter the first sequence’);
= input (’enter the second sequence’);
= length(x);
= length(y);
= m+n-1;
or i=1:p
q=1i;
k=0;
for j=1:1

H'T B B <

73

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

end

disp(z, "convolution of two sequence

/ /RESULT

end

if g>m
qQ=9-1;
elseif j>n
k=k;
else k=x(q)*y(j)+k;
qQ=q9-1;
end

z (i) =k;

//enter the first sequence
//enter the second sequence

//
//
//
//
//
//
//
//
//
//

convolution of two sequence

W ot oY O W

[1,2,3]
[1,1,1,1]

is:

74

Appendix

75

Cameraman Image file

76

tian Colour Image File

78

Lenna Image File

79

	
	Image Sampling and Quantization
	Understanding basic relationship between pixel
	Program for Image sharpening.
	Program for lossless Image Compression.
	Program for lossy Image Compression.
	Program for generation and Manipulation of signal.
	Program for Discrete Fourier Transform
	Simulation of FIR Filters
	Generation and Quantization of Binary Numbers
	Introduction to Simulink Signal Analysis
	Design and analysis of Butterworth Filter
	Impulse response of first order and second order system
	Circular convolution of two given sequences.
	Linear convolution of two given sequences.

