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Experiment: 1

Image Sampling and
Quantization

check Appendix AP 1 for dependency:

cameraman.jpeg

Scilab code Solution 1.1 Exp1a

1 // Image Quan t i z a t i on
2 clear;

3 clc;

4 I = imread( ’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\
s c i l a b \cameraman . j p e g ’ );

5 quanta = 50;

6 J = double(I)/255;

7 J = uint8(J*quanta);

8 J = double(J)/quanta;

9 figure

10 ShowImage(I, ’ O r i g i n a l Image ’ )
11 figure

12 ShowImage(J, ’ Quant ized Image ’ )
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Figure 1.1: Exp1a
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check Appendix AP 1 for dependency:

cameraman.jpeg

Scilab code Solution 1.2 Exp1b

1 // Image Sampl ing
2 clear;

3 clc;

4 I = imread( ’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\
s c i l a b \cameraman . j p e g ’ );

5 J = imresize(I,0.5); // Reducing the sampl ing r a t e
6 K1 = imresize(J,2, ’ n e a r e s t ’ ); // I n c r e a s i n g the

sampl ing r a t e
7 K2 = imresize(J,2, ’ b i l i n e a r ’ );
8 K3 = imresize(J,2, ’ b i c u b i c ’ );
9 figure

10 ShowImage(I, ’ O r i g i n a l Image ’ )
11 figure

12 ShowImage(J, ’ Reducing the Sampl ing Rate by 2 ’ )
13 figure

14 ShowImage(K1 , ’ I n c r e a s i n g the Sampl ing Rate by 2
n e a r e s t ne i ghbour method ’ )

15 figure

16 ShowImage(K2 , ’ I n c r e a s i n g the Sampl ing Rate by 2
b i l i n e a r method ’ )

17 figure

18 ShowImage(K3 , ’ I n c r e a s i n g the Sampl ing Rate by 2
b i c u b i c method ’ )
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Figure 1.2: Exp1a
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Figure 1.3: Exp1b
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Figure 1.4: Exp1b
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Experiment: 2

Understanding basic
relationship between pixel

check Appendix AP 1 for dependency:

cameraman.jpeg

check Appendix AP 2 for dependency:

rice.jpg

Scilab code Solution 2.1 Exp2a

1 // Image Ar i t hme t i c −d i v i s i o n , mu l t i p l i c a t i o n , image
s u b t r a c t i o n and image a dd i t i o n

2 clc;

3 clear;

4 close;

5 I = imread( ’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab
\ s c i l a b \cameraman . j p e g ’ ); //SIVP too l b ox

6 J = imread( ’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\
s c i l a b \ r i c e . j pg ’ );//SIVP too l b ox

7 IMA = imadd(I,J); //SIVP too l b ox
8 figure

9 ShowImage(IMA , ’ Image Add i t i on ’ )//IPD too l box
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10 IMS = imabsdiff(I,J);//SIVP too l b ox
11 figure

12 ShowImage(IMS , ’ Image Sub t r a c t i o n ’ );//IPD too l box
13 IMD = imdivide(I,J);//SIVP too l b ox
14 IMD = imdivide(IMD ,0.01);//SIVP too l b ox
15 figure

16 ShowImage(uint8(IMD), ’ Image D i v i s i o n ’ );//IPD too l box
17 IMM = immultiply(I,I);//SIVP too l b ox
18 figure

19 ShowImage(uint8(IMM), ’ Image Mu l t i p l y ’ );//IPD too l box

check Appendix AP 1 for dependency:

cameraman.jpeg

check Appendix AP 4 for dependency:

lenna.jpg

Scilab code Solution 2.2 Exp2b

1 // Image Ar i thmet i c− Di s t anc e and Conne c t i v i t y : To
under s tand the no t i on o f c o n n e c t i v i t y

2 // and ne ighborhood d e f i n e d f o r a po i n t i n an image .
3 clc;

4 clear;

5 close;

6 // f u n c t i o n to c onv e r t gray to b ina ry
7 function X = gray2bin(x)

8 xmean = mean2(x);

9 [m,n]= size(x);

10 X = zeros(m,n);

11 for i = 1:m
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Figure 2.1: Exp2a
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Figure 2.2: Exp2a
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12 for j = 1:n

13 if x(i,j)> xmean then

14 X(i,j) = 1;

15 end

16 end

17 end

18 endfunction

19 // f u n c t i o n to f i n d t o t a l l e n g t h o f two d imen s i ona l
matr ix

20 function n = numdims(X)

21 n = length(size(X));

22 endfunction

23 // //////////////////////////////////
24 // Funt ion to pad z e r o s i n columns and rows at both

ends o f an b ina ry image
25 function B = padarray(b)

26 //pad z e r o s i n columns and rows at both ends o f
an b ina ry image

27 [m,n] = size(b);

28 num_dims = length(size(b));

29 B = zeros(m+num_dims ,n+num_dims);

30 for i = num_dims:m+num_dims -1

31 for j = num_dims:m+num_dims -1

32 B(i,j) = b(i-1,j-1);

33 end

34 end

35 endfunction

36 // ///////////////////////////////////
37 // [ 1 ] . Euc l i d ean D i s t anc e between images and t h e i r

h i s t o g r ams
38 I = imread( ’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\

s c i l a b \ l enna . jpg ’ );
39 J = imread( ’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\

s c i l a b \cameraman . j p e g ’ )
40 h_I = CreateHistogram(I);//IPD too l box
41 h_J = CreateHistogram(J);//IPD too l box
42 I = double(I);

43 J = double(J);
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44 E_dist_Hist = sqrt(sum((h_I -h_J).^2));// Euc l i d ean
D i s t anc e between h i s t o g r ams o f two images

45 E_dist_images = sqrt(sum((I(:)-J(:)).^2));//
Euc l i d ean D i s t anc e between two images

46 disp(E_dist_images , ’ Euc l i d ean D i s t anc e between two
images ’ );

47 disp(E_dist_Hist , ’ Euc l i d ean D i s t anc e between
h i s t o g r ams o f two images ’ )

48 // [ 2 ] . Conn e c t i v i t y − 8 connec t ed to the background
49 // exec ( g ray2b in )
50 Ibin = gray2bin(I);

51 Jbin = gray2bin(J);

52 // c onv e r s i o n o f gray image i n t o b ina ry image
53 conn = [1,1,1;1,1,1;1,1,1]; //8− c o n n e c t i v i t y
54 // exec ( ’C: \ User s \ s en th i l kumar \Desktop \Gautam PAL Lab

\numdims . s c i ’ )
55 num_dims = numdims(I);

56 // exec ( ’C: \ User s \ s en th i l kumar \Desktop \Gautam PAL Lab
\ padarray . s c i ’ )

57 B = padarray(Ibin);

58 global FILTER_ERODE;

59 StructureElement = CreateStructureElement( ’ s qua r e ’ ,
3);

60 B_eroded = MorphologicalFilter(B,FILTER_ERODE ,

StructureElement.Data);//IPD too l box
61 // note : S t ruc tu r eE l ement . Data and conn both a r e same

va l u e s
62 // exc ep t tha t S t ruc tu r eE l ement . Data i s boo l ean

e i t h e r t r u e or f a l s e
63 p = B&~ B_eroded;

64 [m,n] = size(p);

65 for i = num_dims:m+num_dims -2

66 for j = num_dims:n+num_dims -2

67 pout(i-1,j-1) = p(i,j);

68 end

69 end

70 figure

71 ShowImage(uint8(I), ’ Gray Lenna Image ’ )
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72 figure

73 ShowImage(Ibin , ’ B inary Lenna Image ’ )
74 figure

75 ShowImage(pout , ’ 8 ne ighbourhood c o n n e c t i v i y i n Lenna
Image ’ )

76 //RESULT
77 // Euc l i d ean D i s t anc e between two images
78 //
79 // 19797 . 433
80 //
81 // Euc l i d ean D i s t anc e between h i s t o g r ams o f two

images
82 //
83 // 5770 . 7
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Figure 2.3: Exp2b
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Figure 2.4: Exp2b
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Experiment: 3

Program for Image sharpening.

Scilab code Solution 3.1 Exp3a

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 // 2 . Program to sharpen image
7 //Read image and d i s p l a y i t .
8 // For Colour Image
9 clc;

10 clear all;

11 close;

12 a = imread( ’C: \ User s \ s en th i l kumar \Desktop \
s i g n a l p r o c e s s i n g l a b \ h e s t i a n . jpg ’ );

13 ShowColorImage(a, ’ O r i g i n a l Image ’ )
14 title( ’ O r i g i n a l Image ’ );
15 // Sharpen the image and d i s p l a y i t .
16 //b = imsharpen ( a ) ;
17 // f i g u r e , imshow (b ) , t i t l e ( ’ Sharpened Image ’ ) ;
18

19
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20 radius =1;

21 amount = 0.8000;

22 threshold = 0;

23 // Gauss ian b l u r r i n g f i l t e r
24 filtRadius = ceil(radius *2);

25 filtSize = 2* filtRadius + 1;

26 gaussFilt = fspecial( ’ g a u s s i a n ’ ,[filtSize filtSize],

radius);

27 // High−pas s f i l t e r
28 sharpFilt = zeros(filtSize ,filtSize);

29 sharpFilt(filtRadius +1, filtRadius +1) = 1;

30 sharpFilt = sharpFilt - gaussFilt;

31 sharpFilt = amount*sharpFilt;

32 sharpFilt(filtRadius +1, filtRadius +1) = sharpFilt(

filtRadius +1, filtRadius +1) + 1;

33 B = imfilter(a,sharpFilt);

34 figure

35 ShowColorImage(B, ’ Sharpened Image ’ );

check Appendix AP 3 for dependency:

hestian.jpg

Scilab code Solution 3.2 Exp3b

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 // 2 . b . Program to sharpen image

23



Figure 3.1: Exp3a
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Figure 3.2: Exp3a
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7 //Read image and d i s p l a y i t .
8 // For Gray Image
9 clc;

10 clear all;

11 close;

12 a = imread( ’C: \ User s \ s en th i l kumar \Desktop \
s i g n a l p r o c e s s i n g l a b \ r i c e . j pg ’ );//SIVP too l b ox

13 ShowImage(a, ’ O r i g i n a l Image ’ )//SIVP too l b ox
14 title( ’ O r i g i n a l Image ’ );
15 // Sharpen the image and d i s p l a y i t .
16 //b = imsharpen ( a ) ;
17 // f i g u r e , imshow (b ) , t i t l e ( ’ Sharpened Image ’ ) ;
18

19

20 radius =1;

21 amount = 0.8000;

22 threshold = 0;

23 // Gauss ian b l u r r i n g f i l t e r
24 filtRadius = ceil(radius *2);

25 filtSize = 2* filtRadius + 1;

26 gaussFilt = fspecial( ’ g a u s s i a n ’ ,[filtSize filtSize],

radius);

27 // High−pas s f i l t e r
28 sharpFilt = zeros(filtSize ,filtSize);

29 sharpFilt(filtRadius +1, filtRadius +1) = 1;

30 sharpFilt = sharpFilt - gaussFilt;

31 sharpFilt = amount*sharpFilt;

32 sharpFilt(filtRadius +1, filtRadius +1) = sharpFilt(

filtRadius +1, filtRadius +1) + 1;

33 B = imfilter(a,sharpFilt);

34 figure

35 ShowImage(B, ’ Sharpened Image ’ );//IPD too l box

check Appendix AP 2 for dependency:
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Figure 3.3: Exp3b
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Figure 3.4: Exp3b
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rice.jpg
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Experiment: 4

Program for lossless Image
Compression.

Scilab code Solution 4.1 Exp4

1 // L o s s l e s s Image Compress ion− Implementat ion o f
a r i t hm e t i c cod ing f o r images

2 //Note 1 : In o rd e r to run t h i s program download
Huffman t oo l b ox from

3 // s c i l a b atoms
4 //Note 2 : The Huffman atom i s used to encode images

Figure 4.1: Exp4
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o f sma l l s i z e on ly
5 // So f twar e v e r s i o n
6 //OS Windows7
7 // S c i l a b 5 . 4 . 1
8 // Image P r o c e s s i n g Des ign Toolbox 8 .3 .1 −1
9 // S c i l a b Image and Video P r o c c e s s i n g t o o l box

0 . 5 . 3 . 1 −2
10 clear;

11 clc;

12 close;

13 a = imread( ’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\
s c i l a b \cameraman . j p e g ’ );

14 A = imresize(a,[16 16]); //Only Image o f sma l l s i z e
i s p o s s i b l e to c a l l h u f f c o d e

15 B = size(A);

16 A=A(:).’;

17 A = double(A);

18 [QT ,QM]= huffcode(A); //Huffman Encoding
19 disp( ’ compressed Bi t s equence : ’ );
20 disp(QT);

21 disp( ’ Code Table : ’ );
22 disp(QM);

23 // Now , the r e v e r s e o p e r a t i o n
24 C = huffdeco(QT ,QM); //Huffman Decoding
25 for i=1:B(1)

26 E(i,1:B(2))= C((i-1)*B(2)+1:i*B(2));

27 end

28 D = E’;

29 E = imresize(D,[32 ,32]);

30 figure

31 ShowImage(a, ’ O r i g i n a l cameraman Image 256 x256 ’ )
32 figure

33 ShowImage(E, ’ Re con s t ru c t ed cameraman Image 32 x32 ’ );

check Appendix AP 1 for dependency:

cameraman.jpeg
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Experiment: 5

Program for lossy Image
Compression.

Scilab code Solution 5.1 Exp5

1 // Lossy Image Compress ion−Block Truncat ion Coding
2 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS

v e r s i o n used :
3 //OS : Windows 7
4 // S c i l a b v e r s i o n : 5 . 4 . 1
5 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
6 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
7 clc;

8 clear;

9 close;

10 function out_put = btcimage(in_put ,block_size)

11 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and
OS v e r s i o n used :

12 //OS : Windows 7
13 // S c i l a b v e r s i o n : 5 . 4 . 1
14 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
15 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
16 X= imread(in_put);

17 Y=imfinfo(in_put);
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18 K=block_size;

19 X1=double(X);

20 y1=size(X);

21 n=y1(1);

22 m=y1(2);

23 k=1;l=1;

24

25

26 if (Y.ColorType == ’ g r a y s c a l e ’ )
27

28 // IMAGE ENCODING
29

30 //
31 // FOR GRAY SCALE IMAGES
32 //
33 figure (1)

34 ShowImage(X, ’ O r i g i n a l ’ )
35 title( ’ORIGINAL ’ );
36 for i=1:K:n

37 for j=1:K:m

38 tmp ([1:K],[1:K])=X1([i:i+(K-1)],[j:j

+(K-1)]);

39 mn=mean(mean(tmp));

40 tmp1([i:i+(K-1)],[j:j+(K-1)])=tmp >mn

;

41 Lsmat=(tmp <mn);

42 Mrmat=(tmp >=mn);

43 Lsmn=sum(sum(Lsmat));

44 Mrmn=sum(sum(Mrmat));

45 Mu(k)=sum(sum(Lsmat.*tmp))/(Lsmn +.5)

;k=k+1;

46 Mi(l)=sum(sum(Mrmat.*tmp))/Mrmn;l=l

+1;

47 end

48 end

49 figure (2)

50 ShowImage(tmp1 , ’ Encoded Image ’ )
51 title( ’ENCODED’ );
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52

53 // IMAGE DECODING
54

55 k=1;l=1;

56 for i=1:K:n

57 for j=1:K:m

58 tmp21 ([1:K],[1:K])=tmp1([i:i+(K-1)

],[j:j+(K-1)]);

59 tmp22=(tmp21*round(Mu(k)));k=k+1;

60 tmp21 =(( tmp21 ==0)*round(Mi(l)));l=l

+1;

61 tmp21=tmp21+tmp22;

62 out_put ([i:i+(K-1)],[j:j+(K-1)])=

tmp21;

63 end

64 end

65 figure (3)

66 ShowImage(uint8(out_put), ’ Decoded Image ’ )
67 title( ’DECODED’ );
68

69 //
70 // FOR COLORED IMAGES
71 //
72

73 elseif (Y.ColorType == ’ t r u e c o l o r ’ )
74 R=X(:,:,1);

75 G=X(:,:,2);

76 B=X(:,:,3);

77 // IMAGE ENCODING
78 figure (1)

79 ShowColorImage(X, ’ O r i g i n a l ’ )
80 title( ’ORIGINAL ’ );
81 for b=1:3

82 for i=1:K:n

83 for j=1:K:m

84 tmp ([1:K],[1:K])=X1([i:i+(K-1)

],[j:j+(K-1)],b);

85 mn=mean(mean(tmp));
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86 tmp1([i:i+(K-1)],[j:j+(K-1)],b)=

tmp >mn;

87 Lsmat=(tmp <mn);

88 Mrmat=(tmp >=mn);

89 Lsmn=sum(sum(Lsmat));

90 Mrmn=sum(sum(Mrmat));

91 Mu(b,k)=sum(sum(Lsmat.*tmp))/(

Lsmn +.5);k=k+1;

92 Mi(b,l)=sum(sum(Mrmat.*tmp))/

Mrmn;l=l+1;

93 end

94 end

95 end

96 end

97 endfunction

98

99 //MAIN PROGRAM
100 I = ’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\ s c i l a b \

cameraman . j p e g ’ ;
101 block_size = 2;

102 // exec ( ’ btc image . s c i ’ )
103 // exec ( ’C: \ User s \ s en th i l kumar \Desktop \Chaya Lab\

s c i l a b \ btc image . s c i ’ ) ;
104 out_put = btcimage(I,block_size);

check Appendix AP 1 for dependency:

cameraman.jpeg
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Figure 5.1: Exp5
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Figure 5.2: Exp5
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Experiment: 6

Program for generation and
Manipulation of signal.

Scilab code Solution 6.1 Exp6a

1 // Capt ion : Program to g en e r a t e and p l o t d i f f e r e n t
b a s i c s e qu en c e s

2 clear all;

3 clc;

4 close;

5 // Genera t i on o f Unit Impul se s i g n a l
6 L = 4; // Uppe r l im i t
7 n = -L:L;

8 x = [zeros(1,L),1,zeros(1,L)];

9

10 b = gca();

11 b.y_location = ”middle ”;
12 plot2d3( ’ gnn ’ ,n,x)
13 a=gce();

14 a.children (1).thickness =4;

15 xtitle( ’ G raph i c a l R ep r e s e n t a t i o n o f Unit Sample
Sequence ’ , ’ n ’ , ’ x [ n ] ’ );

16 // Genera t i on o f Unit Step S i g n a l
17 L = 10; // Uppe r l im i t
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18 t = -L:L;

19 x = [zeros(1,L),ones(1,L+1)];

20 figure (1)

21 subplot (2,1,1)

22 a=gca();

23 a.thickness =2;

24 a.y_location = ”middle ”;
25 plot2d2(t,x)

26 xtitle( ’ G raph i c a l R ep r e s e n t a t i o n o f Unit Step S i g n a l
’ , ’ t ’ , ’ x ( t ) ’ );

27 // Genera t i on o f Unit Step Sequence
28 L = 4; // Uppe r l im i t
29 n = -L:L;

30 x = [zeros(1,L),ones(1,L+1)];

31 subplot (2,1,2)

32 a=gca();

33 a.thickness = 2;

34 a.y_location = ”middle ”;
35 plot2d3( ’ gnn ’ ,n,x)
36 xtitle( ’ G raph i c a l R ep r e s e n t a t i o n o f Unit Step

Sequence ’ , ’ n ’ , ’ x [ n ] ’ );
37 // Genera t i on o f Ramp Sequence
38 L = 4; // Uppe r l im i t
39 n = -L:L;

40 x = [zeros(1,L) ,0:L];

41 figure (2)

42 subplot (2,1,1)

43 b = gca();

44 b.y_location = ’ middle ’ ;
45 plot2d3( ’ gnn ’ ,n,x)
46 a=gce();

47 a.children (1).thickness =2;

48 xtitle( ’ G raph i c a l R ep r e s e n t a t i o n o f D i s c r e t e Unit
Ramp Sequence ’ , ’ n ’ , ’ x [ n ] ’ );

49 // Genera t i on o f Ramp S i g n a l
50 L = 4; // Uppe r l im i t
51 t = -L:L;

52 x = [zeros(1,L) ,0:L];
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53 subplot (2,1,2)

54 b = gca();

55 b.y_location = ’ middle ’ ;
56 plot2d(n,x)

57 a=gce();

58 a.children (1).thickness =2;

59 xtitle( ’ G raph i c a l R ep r e s e n t a t i o n o f D i s c r e t e Unit
Ramp Sequence ’ , ’ t ’ , ’ x ( t ) ’ );

60 // Genera t i on o f Expon en t i a l l y I n c r e a s i n g s i g n a l
61 a =1.5;

62 n = 0:10;

63 x = (a)^n;

64 figure (3)

65 subplot (2,1,1)

66 a=gca();

67 a.thickness = 2;

68 a.x_location = ” o r i g i n ”;
69 a.y_location = ” o r i g i n ”;
70 plot2d3( ’ gnn ’ ,n,x)
71 xtitle( ’ G raph i c a l R ep r e s e n t a t i o n o f Exponen t i a l

I n c r e a s i n g S i g n a l ’ , ’ n ’ , ’ x [ n ] ’ );
72 // Genera t i on o f Expon en t a i l l y De c r e a s i n g S i g n a l
73 a =0.5;

74 n = 0:10;

75 x = (a)^n;

76 subplot (2,1,2)

77 a=gca();

78 a.thickness = 2;

79 a.x_location = ” o r i g i n ”;
80 a.y_location = ” o r i g i n ”;
81 plot2d3( ’ gnn ’ ,n,x)
82 xtitle( ’ G raph i c a l R ep r e s e n t a t i o n o f Exponen t i a l

De c r e a s i n g S i g n a l ’ , ’ n ’ , ’ x [ n ] ’ );
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Figure 6.1: Exp6a

Scilab code Solution 6.2 Exp6b

1 // Capt ion : Program to Demonstrate the s i g n a l Fo ld ing
2 clc;

3 clear;

4 x = input( ’ Enter the input s equence := ’ );
5 m = length(x);

6 lx = input( ’ Enter the s t a r t i n g po i n t o f o r i g i n a l
s i g n a l= ’ );

7 hx = lx+m-1;

8 n = lx:1:hx;

9 subplot (2,1,1)

10 a = gca();

11 a.x_location = ” o r i g i n ”;
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Figure 6.2: Exp6a
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Figure 6.3: Exp6b
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12 a.y_location = ” o r i g i n ”;
13 a.data_bounds = [-5,0;5,5];

14 plot2d3( ’ gnn ’ ,n,x)
15 xlabel( ’ n===> ’ )
16 ylabel( ’ Amplitude−−−> ’ )
17 title( ’ O r i g i n a l Sequence ’ )
18 subplot (2,1,2)

19 a = gca();

20 a.x_location = ” o r i g i n ”;
21 a.y_location = ” o r i g i n ”;
22 a.data_bounds = [-5,0;5,5];

23 plot2d3(-n,x)

24 xlabel( ’ n===> ’ )
25 ylabel( ’ Amplitude−−−> ’ )
26 title( ’ Fo lded Sequence ’ )
27 //Example
28

29 // Enter the input s equence := [ 1 , 2 , 3 , 2 , 5 ]
30 //
31 // Enter the s t a r t i n g po i n t o f o r i g i n a l s i g n a l=−1

Scilab code Solution 6.3 Exp6c

1 // Capt ion : Program to demonst ra te the Amplitude &
Time S c a l i n g o f a s i g n a l

2 clc;

3 clear;

4 x = input( ’ Enter i nput Sequence := ’ );
5 m = length(x);

6 lx = input( ’ Enter s t a r t i n g po i n t o f o r i g i n a l s i g n a l
:= ’ )

7 hx = lx+m-1;

8 n = lx:1:hx;
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Figure 6.4: Exp6c
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9 subplot (2,2,1)

10 a = gca();

11 a.x_location = ” o r i g i n ”;
12 a.y_location = ” o r i g i n ”;
13 a.data_bounds = [ -10 ,0;10 ,10];

14 plot2d3( ’ gnn ’ ,n,x)
15 xlabel( ’ n====> ’ )
16 ylabel( ’ Amplitude−−−−> ’ )
17 title( ’ o r g i n a l s equence ’ )
18 // Amplitude S c a l i n g
19 a = input( ’ Amplitude S c a l i n g Facto r := ’ )
20 y =a*x;

21 subplot (2,2,2)

22 a = gca();

23 a.x_location = ” o r i g i n ”;
24 a.y_location = ” o r i g i n ”;
25 a.data_bounds = [ -10 ,0;10 ,10];

26 plot2d3( ’ gnn ’ ,n,y)
27 xlabel( ’ n====> ’ )
28 ylabel( ’ Amplitdue−−−−> ’ )
29 title( ’ Amplitude Sca l ed Sequence ’ )
30 //Time Sca l i n g −Compress ion
31 C = input( ’ Enter Compress ion f a c t o r −Time S c a l i n g

f a c t o r ’ )
32 n = lx/C:1/C:hx/C;

33 subplot (2,2,3)

34 a = gca();

35 a.x_location = ” o r i g i n ”;
36 a.y_location = ” o r i g i n ”;
37 a.data_bounds = [ -10 ,0;10 ,10];

38 plot2d3( ’ gnn ’ ,n,x)
39 xlabel( ’ n===> ’ )
40 ylabel( ’ Amplitude−−−> ’ )
41 title( ’ Compressed Sequence ’ )
42 //Time Sca l i n g −Expans ion
43 d = input( ’ Enter Extens i on f a c t o r −Time S c a l i n g

f a c t o r ’ )
44 n = lx*d:d:hx*d;
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45 subplot (2,2,4)

46 a = gca();

47 a.x_location = ” o r i g i n ”;
48 a.y_location = ” o r i g i n ”;
49 a.data_bounds = [ -10 ,0;10 ,10];

50 plot2d3( ’ gnn ’ ,n,x)
51 xlabel( ’ n===> ’ )
52 ylabel( ’ Amplitude−−−> ’ )
53 title( ’ Extended Sequence ’ )
54 //Example
55 // Enter i nput Sequence := [ 1 , 2 , 3 , 4 , 5 ]
56 //
57 // Enter s t a r t i n g po i n t o f o r i g i n a l s i g n a l := 2
58 //
59 // Amplitude S c a l i n g Facto r := 2
60 //
61 // Enter Compress ion f a c t o r −Time S c a l i n g f a c t o r 2
62 //
63 // Enter Extens i on f a c t o r −Time S c a l i n g f a c t o r 2

Scilab code Solution 6.4 Exp6d

1 // Capt ion : Program to demonst ra te the s h i f t i n g o f the
d i s c r e t e t ime s i g n a l

2 clc;

3 clear;

4 close;

5 x = input( ’ Enter the input s equence := ’ )
6 m = length(x);

7 lx = input( ’ Enter the s t a r t i n g po i n t o f o r i g i n a l
s i g n a l := ’ )

8 hx = lx+m-1;

9 n = lx:1:hx;
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Figure 6.5: Exp6d

10 subplot (3,1,1)

11 a = gca();

12 a.x_location = ” o r i g i n ”;
13 a.y_location = ” o r i g i n ”;
14 a.data_bounds = [ -10 ,0;10 ,10];

15 plot2d3( ’ gnn ’ ,n,x);
16 xlabel( ’ n===> ’ )
17 ylabel( ’ Amplitdue−−−> ’ )
18 title( ’ O r i g i n a l Sequence ’ )
19 //
20 d = input( ’ Enter the de l ay := ’ )
21 n = lx+d:1:hx+d;

22 subplot (3,1,2)

23 a = gca();

24 a.x_location = ” o r i g i n ”;
25 a.y_location = ” o r i g i n ”;
26 a.data_bounds = [ -10 ,0;10 ,10];

27 plot2d3( ’ gnn ’ ,n,x)
28 xlabel( ’ n===> ’ )
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29 ylabel( ’ Amplitude−−−> ’ )
30 title( ’ Delayed Sequence ’ )
31 //
32 a = input( ’ Enter the advance := ’ )
33 n = lx -a:1:hx-a;

34 subplot (3,1,3)

35 a = gca();

36 a.x_location = ” o r i g i n ”;
37 a.y_location = ” o r i g i n ”;
38 a.data_bounds = [ -10 ,0;10 ,10];

39 plot2d3( ’ gnn ’ ,n,x)
40 xlabel( ’ n===> ’ )
41 ylabel( ’ Amplitude−−−> ’ )
42 title( ’ Advanced Sequence ’ )
43 //Example
44 // Enter the input s equence := [ 1 , 2 , 3 , 4 , 5 ]
45 //
46 // Enter the s t a r t i n g po i n t o f o r i g i n a l s i g n a l :=0
47 //
48 // Enter the de l ay :=2
49 //
50 // Enter the advance :=3
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Experiment: 7

Program for Discrete Fourier
Transform

Scilab code Solution 7.1 Exp7

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 // 5 .PROGRAM TO IMPLEMENT DISCRETE FOURIER TRANSFORM
7 //DFT
8 clc;

9 close;

10 clear all;

11 N=input( ’Howmany po i n t DFT do you want ? ’ );
12 x2=input( ’ Enter the s equence= ’ );
13 n2=length(x2);

14 c= zeros(N);

15 x2=[x2 zeros(1,N-n2)];

16 for k=1:N
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Figure 7.1: Exp7
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17 for n=1:N

18 w=exp((-2*%pi*%i*(k-1)*(n-1))/N);

19 x(n)=w;

20 c(k,n)=x(n);

21 end

22

23 end

24 r=x2*c;

25 // p l o t t i n g magnitude and ang l e
26 subplot (2,1,1)

27 plot2d3( ’ gnn ’ ,0:N-1,abs(r) ,2);
28 title( ’DFT−ab s o l u t e va lu e ’ );
29 subplot (2,1,2)

30 a = gca()

31 plot2d3( ’ gnn ’ ,0:N-1,atan(imag(r)./( real(r)+0.0001))
,5);

32 a.x_location=” o r i g i n ”;
33 title( ’DFT−ang l e ’ );
34 disp(r, ’ D i s c r e t e Fou r i e r Transform Resu l t ’ )
35 //RESULT
36 //Example 1
37 //Howmany po i n t DFT do you want ? 4
38 // Enter the s equence = [ 1 , 2 , 3 , 4 ]
39 // D i s c r e t e Fou r i e r Transform Resu l t
40 // 1 0 . − 2 . + 2 . i − 2 . − 9 . 7 97D−16 i − 2 . − 2 . i
41 //
42 //Example 2
43 //Howmany po i n t DFT do you want ?8
44 // Enter the s equence = [ 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ]
45 // D i s c r e t e Fou r i e r Transform Resu l t
46 // column 1 to 5
47 //
48 // 8 . − 5 . 5 51D−16 + 2 . 2 20D−16 i − 4 . 2 86D−16 −

4 . 4 41D−16 i − 2 . 2 20D−16 + 8 . 8 82D−16 i − 4 . 8 99D−16
i

49 //
50 // column 6 to 8
51 //
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52 // − 2 . 1 09D−15 − 1 . 2 21D−15 i − 2 . 9 33D−15 − 6 . 6 61D
−16 i 3 . 5 5 3D−15 + 1 . 1 10D−15 i

53 //
54 //Example 3
55 //Howmany po i n t DFT do you want ? 8
56 // Enter the s equence= [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ]
57 // D i s c r e t e Fou r i e r Transform Resu l t
58 //
59 //
60 // column 1 to 7
61 //
62 // 2 8 . − 4 . + 9 . 6568542 i − 4 . + 4 . i − 4 . +

1 . 6568542 i − 4 . − 3 . 4 29D−15 i − 4 . − 1 . 6568542 i
− 4 . − 4 . i

63 //
64 // column 8
65 //
66 // − 4 . − 9 . 6568542 i
67 //
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Experiment: 8

Simulation of FIR Filters

Scilab code Solution 8.1 Exp8

1 // Capt ion : To Des ign an Low Pass FIR F i l t e r
2 // F i l t e r Length =5 , Order = 4
3 //Window = Rec tangu l a r Window
4 clc;

5 clear;

6 xdel(winsid ());

7 fc = input(” Enter Analog c u t o f f f r e q . i n Hz=”)
8 fs = input(” Enter Analog sampl ing f r e q . i n Hz=”)
9 M = input(” Enter o rd e r o f f i l t e r =”)
10 w = (2*%pi)*(fc/fs);

11 disp(w, ’ D i g i t a l c u t o f f f r e qu en cy i n r a d i a n s . c y c l e s /
sample s ’ );

12 wc = w/%pi;

13 disp(wc, ’ Normal i zed d i g i t a l c u t o f f f r e qu en cy i n
c y c l e s / sample s ’ );

14 [wft ,wfm ,fr]=wfir( ’ l p ’ ,M+1,[wc/2,0], ’ r e ’ ,[0,0]);
15 disp(wft , ’ Impul se Response o f LPF FIR F i l t e r : h [ n]= ’ )

;

16 // P l o t t i n g the Magnitude Response o f LPF FIR F i l t e r
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Figure 8.1: Exp8

17 subplot (2,1,1)

18 plot (2*fr,wfm)

19 xlabel( ’ Normal i zed D i g i t a l Frequency w−−−> ’ )
20 ylabel( ’ Magnitude |H(w) |= ’ )
21 title( ’ Magnitude Response o f FIR LPF ’ )
22 xgrid (1)

23 subplot (2,1,2)

24 plot(fr*fs,wfm)

25 xlabel( ’ Analog Frequency in Hz f −−−> ’ )
26 ylabel( ’ Magnitude |H(w) |= ’ )
27 title( ’ Magnitude Response o f FIR LPF ’ )
28 xgrid (1)

29 //Example
30 // Enter Analog c u t o f f f r e q . i n Hz= 250
31 //
32 // Enter Analog sampl ing f r e q . i n Hz= 2000
33 //
34 // Enter o rd e r o f f i l t e r = 4
35 //
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36 // D i g i t a l c u t o f f f r e qu en cy i n r a d i a n s . c y c l e s /
sample s

37 //
38 // 0 . 7853982
39 //
40 // Normal i zed d i g i t a l c u t o f f f r e qu en cy i n c y c l e s /

sample s
41 //
42 // 0 . 2 5
43 //
44 // Impul se Response o f LPF FIR F i l t e r : h [ n]=
45 //
46 // 0 . 1591549 0 . 2250791 0 . 2 5 0 . 2250791

0 . 1591549
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Experiment: 9

Generation and Quantization of
Binary Numbers

Scilab code Solution 9.1 Exp9

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 // 1 . Quan t i z a t i on and sampl ing
7

8 // Quant ize a s i g n a l to n b i t s . This code assumes
the s i g n a l i s between −1

9 // and +1.
10 clc;

11 clear all;

12 close;

13 n=8; //Number o f b i t s ;
14 m= 120; //Number o f sample s ;
15 t = 2*%pi *[0:(m-1)]/m;
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Figure 9.1: Exp9

16 x=sin(t); // s i g n a l between −1 and 1 .
17 // Trying ” s i n ( ) ”

i n s t e a d o f ”
sawtooth ”

18 // r e s u l t s i n more
i n t e r e s t i n g e r r o r
( to the

19 // ex t en t tha t e r r o r
i s i n t e r e s t i n g ) .

20 x(find(x>=1))=(1-%eps); //Make s i g n a l from −1
to j u s t l e s s than 1 .

21 xq=floor((x+1) *2^(n-1)); // S i g n a l i s one o f 2ˆn
i n t v a l u e s (0 to 2ˆn−1)

22 xq=xq /(2^(n-1)); // S i g n a l i s from 0 to 2 (
quan t i z ed )

23 xq=xq -(2^(n) -1)/2^(n); // S h i f t s i g n a l down (
round ing )

24

25 xe=x-xq; // Er ro r
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26 subplot (3,1,1)

27 plot2d3( ’ gnn ’ ,1:length(x),x);
28 title(sprintf( ’ S i gna l , Quant ized s i g n a l and Er ro r

f o r %g b i t s , %g qu an t i z a t i o n l e v e l s ’ ,n,2^n));
29 disp(x, ’ e xa c t va l u e ’ )
30 subplot (3,1,2)

31 plot2d3( ’ gnn ’ ,1:length(xq),xq ,2);
32 title( ’ Quant ized Value ’ )
33 disp(xq, ’ Quant ized va lu e ’ )
34 subplot (3,1,3)

35 plot2d3( ’ gnn ’ ,1:length(xe),xe ,5);
36 title( ’ Quan t i z a t i on Er ro r or Quan t i z a t i on No i s e ’ )
37 disp(xe, ’ Quan t i z a t i on e r r o r or n o i s e ’ )
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Experiment: 10

Introduction to Simulink Signal
Analysis

Scilab code Solution 10.1 Exp10a

1 // Step r e s p on s e o f d i s c r e t e t ime sys t ems
2 // Re f e r Exp10a . xco s f i l e f o r s imu l i n k a n a l y s i s

This code can be downloaded from the website wwww.scilab.in

Scilab code Solution 10.2 Exp10b

1 // Step r e s p on s e o f Cont inuous t ime sys t ems
2 // Re f e r Exp10b . xco s f i l e f o r s imu l i n k a n a l y s i s
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Figure 10.1: Exp10a

Figure 10.2: Exp10b
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This code can be downloaded from the website wwww.scilab.in
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Experiment: 11

Design and analysis of
Butterworth Filter

Scilab code Solution 11.1 Exp11

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 clc;

7 clear all;

8 close;

9 n = 6; // f i l t e r o r d e r
10 Wn = [2.5e6 ,29e6 ]/500e6; // no rma l i z ed c u t o f f

f r e q u e n c i e s [ lower , upper ]
11 ftype = ’ bp ’ ; // bandpass f i l t e r
12 fdesign = ’ but t ’ ; // Butte rworth F i l t e r
13 delta =[];

14 hz=iir(n,ftype ,fdesign ,Wn/2,delta)

15 [p,z,g]=iir(n,ftype ,fdesign ,Wn/2,delta)
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Figure 11.1: Exp11

64



16 [hzm ,fr]=frmag(hz ,256);

17 plot2d(fr’,hzm ’);

18 xtitle( ’ D i s c r e t e IIR f i l t e r band pas s 0 . 0 0 5 < f r <
0 . 0 58 ’ , ’ ’ , ’ ’ );

19 xgrid (1)

20 // Re su l t
21

22 //−−>hz ( 2 )
23 // ans =
24 //
25 // 2 4
26 // 0 . 0000002 − 0 . 0000015 z + 0 . 0000037 z
27 // 6 8
28 // − 0 . 0000049 z + 0 . 0000037 z
29 // 10 12
30 // − 0 . 0000015 z + 0 . 0000002 z
31 //
32 //−−>hz ( 3 )
33 // ans =
34 //
35 // 2
36 // 0 . 5250468 − 6 . 6287407 z + 38 . 377802 z
37 // 3 4
38 // − 134 . 73451 z + 319 . 45814 z
39 // 5 6
40 // − 538 . 91189 z + 663 . 25134 z
41 // 7 8
42 // − 600 . 03003 z + 396 . 0233 z
43 // 9 10
44 // − 185 . 96443 z + 58 . 974503 z
45 // 11 12
46 // − 11 . 340535 z + z
47 //
48 //−−>hz ( 1 )
49 // ans =
50 //
51 // ! r num den dt !
52 //
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53 //−−>p
54 // p =
55 //
56 // 0 . 9964120 − 0 . 0154005 i
57 // 0 . 9892502 − 0 . 0129619 i
58 // 0 . 9822499 − 0 . 0060512 i
59 // 0 . 9822499 + 0 . 0060512 i
60 // 0 . 9892502 + 0 . 0129619 i
61 // 0 . 9964120 + 0 . 0154005 i
62 // 0 . 9464056 + 0 . 1686845 i
63 // 0 . 8907712 + 0 . 1177110 i
64 // 0 . 8651786 + 0 . 0429743 i
65 // 0 . 8651786 − 0 . 0429743 i
66 // 0 . 8907712 − 0 . 1177110 i
67 // 0 . 9464056 − 0 . 1686845 i
68 //
69 //−−>z
70 // z =
71 //
72 // 1 .
73 // 1 .
74 // 1 .
75 // 1 .
76 // 1 .
77 // 1 .
78 // − 1 .
79 // − 1 .
80 // − 1 .
81 // − 1 .
82 // − 1 .
83 // − 1 .
84 //
85 //−−>g
86 // g =
87 //
88 // 0 . 0000002
89 //
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Experiment: 12

Impulse response of first order
and second order system

Scilab code Solution 12.1 Exp12

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 clc;

7 clear all;

8 close;

9 s=poly(0, ’ s ’ );
10 //The paramete r s 1 . Angular P o s i t i o n 2 . Angular

V e l o c i t y o f DC Motors
11 // a r e ob ta i n ed from MATLAB demos f i l e .
12 Angular_Position =(0.003127*s+0.9815) /(s^2+3.929*s

+6.343e-05);

13 Angular_velocity = (1.04*s+0.2756) /(s^2+4.461*s

+1.096);
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Figure 12.1: Exp12
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14 model = [Angular_Position ,Angular_velocity ];

15 H1 = model (:,1); // Angular P o s i t i o n
16 H2 = model (:,2); // Angular v e l o c i t y
17 np=20; //number o f p o i n t s
18 t = 0:0.02:20;

19 ysd1 = csim( ’ impu l s e ’ ,t,model (:,1));
20 ysd2 = csim( ’ impu l s e ’ ,t,model (:,2));
21 subplot (2,1,1)

22 plot(t,ysd1 , ’ .−b ’ )
23 title( ’ Impul se Response − Angular P o s i t i o n ’ )
24 xgrid (1)

25 subplot (2,1,2)

26 plot(t,ysd2 , ’ .− r ’ )
27 title( ’ Impul se r e spons e−Angular v e l o c i t y ’ )
28 xgrid (1)

29 disp(model , ’ Model System Equat ions = ’ )
30 disp(ysd1 , ’ Impul se Resposne o f Angular P o s i t i o n = ’ )
31 disp(ysd2 , ’ Impul se Response o f Angular v e l o c i t y= ’ )
32

33 //RESULT
34 //Model System Equat ions =
35 //
36 // 0 . 9 815 + 0 . 003127 s 0 . 2 756 + 1 . 0 4 s
37 // −−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−
38 // 2 2
39 // 0 . 0000634 + 3 . 9 29 s + s 1 . 0 9 6 + 4 . 4 61 s + s
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Experiment: 13

Circular convolution of two
given sequences.

Scilab code Solution 13.1 Exp13

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 // 3 .CIRCULAR CONVOLUTION OF TWO SEQUENCES
7 clc;

8 close;

9 clear all;

10 a1= input( ’ 1 s t Sequence x : ’ )
11 b1= input( ’ 2nd Sequence h : ’ )
12 ax=length(a1);

13 bx=length(b1);

14 n=max(ax,bx);

15 n3=ax-bx;

16 if(n3 <=0)
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Figure 13.1: Exp13

17 a1=[a1,zeros(1,-n3)];

18 else

19 b1=[b1,zeros(1,n3)];

20 end

21 for r = 1:n

22 y(r)=0;

23 for i=1:n

24 j=r-i+1;

25 if (j<=0)

26 j=j+n;

27 end

28 y(r)=y(r)+b1(j)*a1(j);

29 end

30 end

31 disp(y, ’ c i r c u l a r c o nv l o u t i o n r e s u l t ’ )
32

33 subplot (3,1,1);

34 plot2d3( ’ gnn ’ ,a1);
35 xlabel( ’ n ’ );
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36 ylabel( ’ a ( n ) ’ );
37 title( ’ f i r s t s equence ’ );
38 subplot (3,1,2);

39 plot2d3( ’ gnn ’ ,b1);
40 xlabel( ’ n ’ );
41 ylabel( ’ b ( n ) ’ );
42 title( ’ s e cond s equence ’ );
43 subplot (3,1,3);

44 plot2d3( ’ gnn ’ ,y);
45 xlabel( ’ n ’ );
46 ylabel( ’ y ( n ) ’ );
47 title( ’ c i r c u l a r c o nv o l u t i o n s equence ’ );
48

49 //RESULT
50 //Example 1
51 // 1 s t Sequence x : [ 1 , 2 , 3 , 4 ]
52 // 2nd Sequence h : [ 1 , 1 , 1 , 1 ]
53 //
54 // c i r c u l a r c o nv l o u t i o n r e s u l t
55 //
56 // 1 0 . 1 0 . 1 0 . 1 0 .
57 //
58 //Example 2
59 // 1 s t Sequence x : [ 1 , 2 , 3 , 4 ]
60 // 2nd Sequence h : [ 1 , 1 , 1 ]
61 //
62 // c i r c u l a r c o nv l o u t i o n r e s u l t
63 //
64 // 6 . 6 . 6 . 6 .
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Experiment: 14

Linear convolution of two given
sequences.

Scilab code Solution 14.1 Exp14

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 //OS : Windows 7
3 // S c i l a b v e r s i o n : 5 . 4 . 1
4 //IPD Atom v e r s i o n : 8 . 3 . 1 −2
5 //SIVP Atom v e r s i o n : 0 . 5 . 3 . 1 − 2
6 // 4 . program f o r l i n e a r c o nv o l u t i o n o f to s equence
7 clc;

8 clear all;

9 close;

10 x = input( ’ e n t e r the f i r s t s equence ’ );
11 y = input( ’ e n t e r the second s equence ’ );
12 m = length(x);

13 n = length(y);

14 p = m+n-1;

15 for i=1:p

16 q=i;

17 k=0;

18 for j=1:i
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19 if q>m

20 q=q-1;

21 elseif j>n

22 k=k;

23 else k=x(q)*y(j)+k;

24 q=q-1;

25 end

26 end

27 z(i)=k;

28 end

29 disp(z, ’ c o n v o l u t i o n o f two s equence i s : ’ )
30

31 //RESULT
32 // e n t e r the f i r s t s equence [ 1 , 2 , 3 ]
33 // e n t e r the second s equence [ 1 , 1 , 1 , 1 ]
34 //
35 // c onv o l u t i o n o f two s equence i s :
36 //
37 // 1 .
38 // 3 .
39 // 6 .
40 // 6 .
41 // 5 .
42 // 3 .
43 //
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Appendix
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Cameraman Image file
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Rice
Image File
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Hes-
tian Colour Image File
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Lenna Image File
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