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Experiment: 1

Study of Free Space
Propagation-Path Loss Model

Scilab code Solution 1.0 Path Loss Model

// Study of Free Space Propagation—Path Loss Model (
FSPL)

// OS — Windows 10

// Scilab 6.1.0

// Course Instructor Name: Dr. V. A. Sankar
Ponnapalli

// Institute Name: ICFAI Foundation for Higher
Education Hyderabad

clc;
clear;
close () ;

disp (”Enter frequency in Hz (Recommended: 800e6 to
2.5e9):7);
f = input(”Frequency (Hz): 7);
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14 disp(”Enter minimum distance in meters (Recommended:
1 to 10 m):");

15 d_min = input (”Minimum distance (m): ”);

16

17 disp(”Enter maximum distance in meters (Recommended:
100 to 10000 m):7”);

18 d_max = input ("Maximum distance (m): ”);

19

20 disp(”Enter number of distance samples (Recommended:
50 to 500):7);

21 n = input (”Number of points: 7);

22

23 ¢ = 3e8; // Speed of light in m/s

24 lambda = ¢ / f; // Wavelength in meters

25 d = linspace(d_min, d_max, n);

26

27 // Compute Free Space Path Loss (FSPL)

28 path_loss = 20%1logl0(d) + 20*%loglO(f) + 20xloglO(4 x
hpi / c¢);

29

30 scf();

31 plot(d, path_loss, 'r’, ’'LineWidth’, 2);

32 xlabel (’Distance (m)’);

33 ylabel (’Path Loss (dB)’);

34 title (’FSPL Model: Distance vs Path Loss’);

35 h = gca(Q);

36 h.grid = [1 11; // Turn on both axes grid

37

382 // Description of the Figure

39 // User Inputs:

40 // Enter frequency in Hz (Recommended: 800e6 to 2.5
e9):

41 // Frequency (Hz): 900e6

42 // Enter minimum distance in meters (Recommended: 1
to 10 m):

43 // Minimum distance (m): 5

44 // Enter maximum distance in meters (Recommended:
100 to 10000 m):



45
46

47

48
49

50

//
//

//
//

//

Maximum distance (m): 500

Enter number of distance samples (Recommended: 50
to 500):

Number of points: 50

The figure titled "Interactive FSPL Model:
Distance vs Path Loss” illustrates how free space
path loss (in dB)

increases logarithmically with distance in a line
—of—sight communication environment.
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Experiment: 2

Study of Outdoor Propagation
— Okumura Model

Scilab code Solution 2.0 Okumura Model

// Study of Outdoor Propagation Okumura Model

// OS: Windows 10

// Scilab Version: 6.1.0

// Course Instructor: Dr. V. A. Sankar Ponnapalli

// Institute: ICFAI Foundation for Higher Education
Hyderabad

clc;
clear;
close;

disp(”Enter distance between T x Rx in km (Valid
range: 1 100 km):");
d = input(” Distance (km): 7);

disp(”Enter base station antenna height in meters (
Valid range: 30 1000 m):");
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44
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46
47
48
49

ht = input(”Base Station Height (m): 7);

disp (" Enter mobile station antenna height in meters
(Valid range: 1 10 m):”);
hr = input(” Mobile Station Height (m): 7);

disp (” Choose Environment:”) ;

disp(”1. Urban”);

disp(”2. Suburban”);

disp(” 3. Rural”);

choice = input(”Enter your choice (1 3 ): 7);

select choice
case 1 then

environment = "urban”;
case 2 then

environment = "suburban”;
case 3 then

environment = "rural”;
else

disp(”Invalid choice. Defaulting to urban.”)

b

environment = “urban”;
end
f_start = 150; // MHz
f_end = 1920; // MHz
f_step = 50; // MHz
frequencies = f_start:f_step:f_end;
medianLoss = zeros(frequencies);
// Path Loss Calculation
for i = 1:length(frequencies)
f = frequencies(i);

// Free space path loss

11
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Lf = 32.4 + 20*1ogl0(f) + 20*x1log10(d);
// Antenna gains
Gt = 20*xlog10(ht / 200);
Gr = 10*xlogl0(Chr / 3);
// Median path loss
Am = Lf - Gt - Gr;
// Apply environment correction
select environment
case ”suburban” then
Am = Am - (2 * (loglO(f / 28))°2) - 5.4;
case "rural” then
Am = Am - (4.78 * (logl0(f))~2) + (18.33
* loglO(£f)) - 40.94;
end
medianlLoss (i) = Am;
end
scf (0) ;
plot (frequencies, medianLoss, 'r—’');
xlabel (" Frequency (MHz)”);
ylabel (" Median Path Loss (dB)”);
title ("Okumura Model: Frequency vs Median Path Loss”
)
xgrid ) ;
// Description of the Figure

// User

Inputs:

//” Enter distance between T x Rx in km (Valid range

1

100 km):”

//Distance (km): 100

//” Enter base station antenna height in meters (

Valid range: 30 1000 m):”

// Base

//” Enter mobile station antenna height in meters

Station Height (m): 200

12
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Valid range: 1
//Mobile Station Height (m): 3
//” Choose Environment :”

//71. Urban”
//72. Suburban”
//73. Rural”

10

//Enter your choice

//The figure titled ”Okumura Model: Frequency vs
Median Path Loss”
behaves with varying frequencies in an urban
setting and how the system parameters (distance
a//ntenna heights, and frequency) influence the

signal

strength .

m):”

(1 3 ): 1

illustrates

how path loss

13
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Experiment: 3

Study of Outdoor Propagation

— Hata Model

Scilab code Solution 3.0 Hata Model

// Study of Outdoor Propagation

// OS: Windows 10

// Scilab: 6.1.0

// Course Instructor: Dr.

// Institute: ICFAI Foundation
Hyderabad

clc;

clear;

close;

disp (" Enter Transmitter Height
range: 30 200 m):”);

ht = input (" Transmitter Height

disp(”Enter Receiver Height in
1 10 m):");

14

V. A. Sankar

Hata Model

Ponnapalli

for Higher Education

in meters (Valid
(m): 7);

meters (Valid range:
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hr = input(” Receiver Height (m): 7);

disp(”Enter Distance between T x Rx in km (Valid
range: 1 20 km):");
d = input(” Distance (km): 7);

f_values (160, 300, 600, 900, 1200, 1500]; // in

MHz

Lp_small zeros (1, length(f_values)); // Path loss
for small/medium cities

Lp_large = zeros(l, length(f_values)); // Path loss
for large cities

24
25

26
27
28
29
30

HATA MODEL CALCULATION

1:length(f_values)
f_values (i) ;

// Correction factor small /medium cities
ah_small = (1.1 % loglO(f) - 0.7) * hr - (1.56 x*
logl0(f) - 0.8);

// Correction factor for large cities
if £ <= 200 then
ah_large = 8.29 *x (logl0(1.54 * hr))~2 -

1.1;
else
ah_large = 3.2 * (logl0(11.75 * hr))~2 -
4.97;
end

// Path Loss Calculations
Lp_small (i) = 69.55 + 26.16 * loglO(f) - 13.82 =
logl0(ht) - ah_small + (44.9 - 6.55 * logl0(
ht)) * logl0(d);
Lp_large(i) = 69.55 + 26.16 * loglO(f) - 13.82 x

16
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log10(ht) - ah_large + (44.9 - 6.55 * logl0(
ht)) * logl0(d);
end

scf (0) ;
plot (f_values, Lp_small, ’'b—o’, ”"LineWidth”, 2);
plot (f_values, Lp_large, ’'r—s’, "LineWidth”, 2);

xlabel (" Frequency (MHz)”);

ylabel ("Path Loss (dB)”);

title (" Hata Model: Path Loss vs Frequency (Urban
Cities)”);

legend (" Small /Medium City”, ”Large City”, ”location”
, Jupper_left”);

xgrid () ;

// Description of the Figure

// User Inputs:

// 7 Enter Transmitter Height in meters (Valid range:
30 200 m):”

// Transmitter Height (m): 50

// 7 Enter Receiver Height in meters (Valid range: 1

10 m):”

// Receiver Height (m): 3

// 7 Enter Distance between T x Rx in km (Valid
range: 1 20 km):”

// Distance (km): 10

// The figure titled ”Hata Model: Path Loss vs
Frequency (Urban Cities)” illustrates the
variation of path loss with frequency for wurban
environments using the Hata propagation model.

// It compares path loss in two types of urban areas

17
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Experiment: 4

Study of Multipath Fading

Channel

Scilab code Solution 4.0 Multipath Fading Channel

//Study of Multipath Fading Channel

// OS—Windows 10
// Scilab 6.1.0

// Course Instructor Name: Dr. V. A. Sankar

Ponnapalli

// Institute Name: ICFAI Foundation for Higher
Education Hyderabad

clc;
clear;
close;

printf (" Enter number of frequency points N (power of

2, between 128 and 4096):\n");

N = input ("N = 7);
if “((floor(log2(N))
4096) then

log2(N)) & N >=

18

128 & N <=
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Figure 4.1: Multipath Fading Channel
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error (" Error: N must be a power of 2 between 128
and 4096.7);
end

// Input for max Doppler frequency fm
printf (" Enter maximum Doppler frequency shift fm in
Hz (e.g., between 10 and 500 Hz):\n");
fm = input("fm = 7);
if fm <= 0 | fm > 1000 then
error (" Error: fm must be between 10 and 1000 Hz.
77);

end

// Input for sampling frequency fs
printf (" Enter sampling frequency fs in Hz (must be >
2%xfm) :\n”);
fs = input("fs = 7);
if fs <= 2%xfm then
error (" Error: fs must be greater than 2 x fm.”);
end

// Derived values

df = fs / N; // Frequency resolution

T =1/ df; // Duration of fading
waveform

f = (-N/2:N/2-1)*df; // Frequency axis

// — GENERATE DOPPLER SPECTRUM S Eg(f) —

Se = zeros (1, N);
for i = 1:N
f_norm = f(i) / fm;
if abs(f_norm) < 1 then
Se(i) = 1.5 / (%pi * fm * sqrt(l - f_norm~2)
) ;
else
Se (1)

0;
end
end

20
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// GENERATE COMPLEX GAUSSIAN NOISE ——
rand ("normal”) ;

gauss_real = rand(1, N, "normal”);
gauss_imag = rand (1, N, "normal”);

Gf = (gauss_real + %i * gauss_imag) / sqrt(2);

// —— SHAPE NOISE WITH DOPPLER SPECTRUM ——
Sqrt_Se = sqrt(Se);
Hf = Gf .*x Sqrt_Se;

/) —— IFFT TO TIME DOMAIN ——
Hf _shifted = fftshift (Hf);

ht = ifft(Hf_shifted);
ht = ht * sqrt(N); // Normalize
// —— COMPUTE RAYLEIGH ENVELOPE

rayleigh_envelope = sqrt(real(ht).”2 + imag(ht)."2);

t = (0:N-1)/fs;

scf (1) ;

plot(t, rayleigh_envelope);

xlabel ("Time (s)”);

ylabel (" Rayleigh Envelope Amplitude”);

title(” Rayleigh Fading Envelope (Clarke & Gans Model
)7

// Description of the Figure

// User Inputs:

//Enter number of frequency points N (power of 2,
between 128 and 4096):

//N = 1024

//Enter maximum Doppler frequency shift fm in Hz (e.
g., between 10 and 500 Hz):

//fm = 100

//Enter sampling frequency fs in Hz (must be > 2xfm)

//fs = 1000

21



80 // The figure titled ”Rayleigh Fading Envelope (
Clarke & Gans Model)” exhibits rapid variations
typical of Rayleigh fading with many fades per
second , consistent with a Doppler frequency //of

100 Hz.

22
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Experiment: 5

Modulation and Demodulation
of Binary Phase Shift Keying
over Additive White (Gaussian
Noise (AWGN) channel

Scilab code Solution 5.0 BER OF BPSK

//Modulation and Demodulation of Binary Phase Shift
Keying over Additive White Gaussian Noise (AWGN)
channel

// OS—Windows 10

// Scilab 6.1.0

// Course Instructor Name: Dr. V. A. Sankar
Ponnapalli

// Institute Name: ICFAI Foundation for Higher
Education Hyderabad

clear;
clc;

23
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close;

1 = input (”Enter number of bits to transmit (Choose
between: 100000 to 1000000): ”);
while 1 < 100000 | 1 > 1000000
1 = input(”Invalid input. Enter number of bits
between 100000 and 1000000: 7);

end

EbNodB = 0:2:10; // Range of Eb/No in
dB

BER = zeros(1, length(EbNodB)); // Initialize BER
array

// Pick example Eb/NO for printing outputs (middle
of range)

example_idx = floor(length(EbNodB)/2);

example_EbNodB = EbNodB(example_idx) ;

for n = 1:length(EbNodB)
// Generate random BPSK symbols: —1 or 1
s = 2+%(round(rand (1, 1))-0.5);

// AWGN noise with variance based on Eb/NO
noise_std = 1/sqrt(2x10~ (EbNodB(n)/10));
W = noise_std * rand(l1, 1, ’normal’);

// Received signal
r = s + w,;

// Demodulation: sign detector
s_est = sign(r);

// BER calculation
BER(n) = sum(s "= s_est)/1;

// Save example bits for display
if n == example_idx then

25
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bits_sent = (s + 1)/2; // convert from
—1/1 to 0/1 for clarity
bits_demod = (s_est + 1)/2;
end
end

// Display example output for the chosen Eb/NO

disp (”Example Eb/NO (dB): 7 + string(example_EbNodB)
)

disp(” First 50 generated bits (0/1):7);

disp(bits_sent (1:50));

disp(” First 50 demodulated bits (0/1):7);

disp(bits_demod (1:50)) ;

// Plot BER vs Eb/N0

scf O ;

semilogy (EbNodB, BER, ’'o—');

xlabel ('Eb/No (dB) ) ;

ylabel (’Bit Error Rate (BER)’);

title ('BER Performance of BPSK over AWGN Channel ) ;

//// Description of the Figure

// User Inputs:

// Enter number of bits to transmit (Choose between:
100000 to 1000000): 1le6

// The figure titled "BER Performance of BPSK over
AWGN Channel” illustrates how BPSK performs over
AWGN.

26
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Experiment: 6

Modulation and Demodulation
of Direct-Sequence Spread
Spectrum

Scilab code Solution 6.0 DSSS

// Direct—Sequence Spread Spectrum (DSSS) Modulation
and Demodulation

// OS: Windows 10

// Scilab Version: 6.1.0

// Course Instructor: Dr. V. A. Sankar Ponnapalli

// Institute: ICFAI Foundation for Higher Education
Hyderabad

clc;
clear;
close;

N_bits = input(”Enter number of data bits (e.g., 10
to 100): 7);
PG = input(”Enter processing gain (e.g., 5 to 20):

2

27
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Figure 6.1: DSSS
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) ;

fc = input(”Enter carrier frequency in Hz (e.g.,
1000): ") ;
fs = input(”Enter sampling frequency in Hz (must be

> 10xfc): 7);

// Validations
if fs <= 10 * fc then
error (”Sampling frequency must be greater than
10 times the carrier frequency.”);
end

// Timing and signal parameters
Tb

= le-3; // Bit duration (1 ms)
Tc = Tb / PG; // Chip duration
Ns = int(fs * Tb); // Samples per bit
Nc = int(fs * Tc); // Samples per chip
total_samples = N_bits * Ns; // Total number of
samples

t = (0:total_samples - 1) / fs; // Time vector

// Generate random data bits (4+1 or —1)
data_bits = 2 * grand (1, N_bits, "uin”, 0, 2) - 1;
data_signal = matrix(ones(Ns, 1) * data_bits, 1, -1)

)

// Generate PN sequence long enough

num_chips = N_bits * PG;

pn_seq = 2 * grand (1, num_chips, "uin”, 0, 2) - 1;
pn_signal_full = matrix(ones(Nc, 1) * pn_seq, 1, -1)

I

// Ensure PN signal has enough samples
if length(pn_signal_full) < total_samples then
// Pad if too short
extra_needed = total_samples - length(
pn_signal_full);
pn_signal_full = [pn_signal_full, ones (1,

29
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extra_needed)];

end
pn_signal = pn_signal_full(l:total_samples); //
Trim to exact length
// Spread signal
spread_signal = data_signal .* pn_signal,;
// Carrier
carrier = cos(2 * Y%pi * fc * t);
// Modulate
modulated_signal = spread_signal .* carrier;
// Receiver: Demodulate
received = modulated_signal .* carrier;
despread = received .* pn_signal,;
// Recover bits
recovered_bits = zeros(1l, N_bits);
for i = 1:N_bits
idx_start = (i - 1) * Ns + 1;
idx_end = i * Ns;
recovered_bits (i) = sign(sum(despread(idx_start:
idx_end)));
end
// Plot
clf O);
subplot (3,1,1);
plot (t, spread_signal);

xtitle (" Spread Signal using PN Sequence”);
xlabel (" Time (s)”);
ylabel (" Amplitude”) ;

subplot (3,1,2);
plot(t, modulated_signal);
xtitle ("BPSK Modulated Signal”);
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xlabel ("Time (s)”);
ylabel (" Amplitude”) ;

subplot (3,1,3);

plot (t, despread);

xtitle (" Despread Signal at Receiver”);
xlabel (" Time (s)”);

ylabel (" Amplitude”) ;

//

Display bits

disp(” Original bits: 7);
disp(data_bits);

disp(” Recovered bits: 7);
disp(recovered_bits);

//
//
//
//
//
//

//

Description of the Figure
User Inputs:

Enter number of data bits (e.g., 10 to 100):

Enter processing gain (e.g., 5 to 20): 10
Enter carrier frequency in Hz (e.g., 1000):

100

1000

Enter sampling frequency in Hz (must be > 10xfc):

11000
The figure depicts Direct—Sequence Spread
Spectrum Modulation and Demodulation .
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Experiment: 7

Simulation of TDMA
Technique

Scilab code Solution 7.0 TDMA

//Simulation of TDMA (Time Division Multiplexing and
Demultiplexing) Technique)

// OS—Windows 10

// Scilab 6.1.0

// Course Instructor Name: Dr. V. A. Sankar
Ponnapalli

// Institute Name: ICFAI Foundation for Higher
Education Hyderabad

clear;

clc;

close;

disp (=== TDMA System Simulation =—=");

N_r = input (”Enter number of traffic bursts per
frame (N.r) [1 100 ]: 7);

32
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b_r = input(”Enter number of bits per traffic burst
(b_r) [100 1000 |: ");

N_p = input(”Enter number of preambles per frame (
Nop) [1 10 J: 7);

b_p = input(”Enter bits per preamble (b_p) [10 100
It 7,

N_g = input(”Enter number of guard intervals per
frame (N_g) [1 20 |: 7);

b_g = input (”Enter bits per guard time interval (b_g
) [1 50 ]: ")

T_f = input(”Enter frame duration T_f in seconds [e.

g., 0.01]: 7");
R_b = input(”Enter bit rate R.b in bits/sec [e.g., 1
66]: 7))

//Overhead bits per frame

b_OH = N_p*b_p + N_g*xb_g;

disp(” Total overhead bits per frame (b.OH): 7 +
string (b_0H)) ;

//Total bits per frame
b_T = T_f * R_b;
disp(” Total bits per frame (b_.T): 7 + string(b_T));

//Frame Efficiency
eta_f = (1 - (b_0OH / b_T)) * 100;

disp (" Frame Efficiency ( f ) in %: 7 + string(eta_f
))

// Number of TDMA Channels

m = input(”Enter max users per channel (m) [1 100
]: 77);

B_tot = input(”Enter total system bandwidth B_tot in
Hz [e.g., 200e3]: 7);

B_guard = input (”Enter guard band on one side (
B_guard) in Hz [e.g., 10e3]: 7);

B_c = input(”Enter bandwidth per channel B_c in Hz |
e.g., 25e3]: 7);
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N_channels = m * (B_tot - 2%B_guard) / B_c;
disp ("Number of TDMA channels (N): 7 + string(
N_channels));

x = [b_OH, b_T - b_0H];

bar (x) ;

xtitle ("TDMA Frame Composition”, 7 Bit Category”, 7
Bits”);

a = gca(); // get current axes
a.x_ticks = tlist([”ticks”, "locations”, ”"labels”],
[1; 2], ["Overhead Bits”; ”Information Bits”]);

// Description of the Figure
// User Inputs:

//Enter number of traffic bursts per frame (N_r) [1

100 ]: 50
//Enter number of bits per traffic burst (b_r) [100
1000 ]: 150
//Enter number of preambles per frame (N_p) [1 10
]: 5
//Enter bits per preamble (b_p) [10 100 ]: 50
//Enter number of guard intervals per frame (N_g) |1
20 ]: 10
//Enter bits per guard time interval (b_g) [1 50 ]:
5

//Enter frame duration T_f in seconds [e.g., 0.01]:
0.01

//Enter bit rate R.b in bits/sec [e.g., le6]: 1eb6

//Enter max users per channel (m) [1 100 ]: 50

//Enter total system bandwidth B_tot in Hz [e.g.,
200e3]: 200e3

//Enter guard band on one side (B_guard) in Hz [e.g

., 10e3]: 10e3
//Enter bandwidth per channel B_c in Hz [e.g., 25e3
|: 25e3

//The left bar labeled Overhead Bits
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represents preambles and guard intervals that
support synchronization and prevent interference.

65 //The right bar labeled Information Bits
represents actual user data.
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Experiment: 8

Simulation of FDMA Technique

Scilab code Solution 8.0 FDMA

//Simulation of FDMA (Frequency Division
Multiplexing and Demultiplexing) Technique

// OS—Windows 10
// Scilab 6.1.0

// Course Instructor Name: Dr. V. A. Sankar

Ponnapalli

// Institute Name:

clear;
clc;
close;

disp (== FDMA System Capacity Simulation

ICFAI Foundation for Higher
Education Hyderabad

// Total bandwidth B_t
B_t = input(” Enter total system bandwidth B_t

[1e6 25¢6 | :

while B_t < 1le6

’7);
B_t > 25e6
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Figure 8.1: FDMA
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B_t = input(”Invalid! Enter B_t between 1le6 and

25e6 Hz: 7);
end

// Guard band per side
B_guard = input(”Enter guard band on one side
B_guard in Hz [le4 5e5]: 7);
while B_guard < 1le4 | B_guard > 5eb
B_guard = input(”Invalid! Enter B_guard between
led and 5eb Hz: 7);
end

// Channel bandwidth B_c
B_c = input(”Enter bandwidth per FDMA channel B_c¢ in
Hz [le4 Sed|: 7);
while B_c < 1e4 | B_c > be4d
B_c = input(”Invalid! Enter B_c between le4 and

5e4 Hz: 7);
end
//
// Calculation
//

if B_t <= 2xB_guard then
error (" Total bandwidth must be greater than
twice the guard band.”);
end

B_available = B_t - 2 *x B_guard;
N_channels = floor(B_available / B_c);
B_used = N_channels * B_c;

B_unused = B_available - B_used;
efficiency = (B_used / B_t) * 100;

mprintf (" Total Bandwidth (B_t): %.2f Hz\n”, B_t);

mprintf (" Guard Band per side (B_guard): %.2f Hz\n”,
B_guard) ;

mprintf (” Channel Bandwidth (B_c): %.2f Hz\n”, B_c);
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mprintf (" Available Bandwidth after guard bands: %.2f
Hz\n”, B_available);

mprintf (" Number of FDMA Channels (N): %d\n”,
N_channels) ;

mprintf (" Total Used Bandwidth: %.2f Hz\n”, B_used);

mprintf (" Unused Bandwidth: %.2f Hz\n”, B_unused);

mprintf (" Bandwidth Utilization Efficiency: %.2f %%\n
7, efficiency);

scf (0) ;
bar ([1 2], [B_used B_unused], "stacked”);
xt = [1, 2];
labels = ["Used Bandwidth”, ”Unused Bandwidth”];
for i = 1:2
xstring(xt(i) - 0.1, 0, labels(i));
end
ylabel (" Bandwidth (Hz)”);
title ("FDMA Bandwidth Utilization”);

// Description of the Figure

// User Inputs:

// Enter total system bandwidth B_t in Hz [1e6
25e6]: 1leb6

// Enter guard band on one side B_guard in Hz [le4

5eb]: led
// Enter bandwidth per FDMA channel B_c in Hz [le4
bed]: led

// The figure titles 7FDMA Bandwidth Utilization?”
shows how efficiently the bandwidth is utilized
in an FDMA system given user—defined channel
width and guard bands.
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Experiment: 9

Simulation of CDMA
Technique

Scilab code Solution 9.0 CDMA

//Simulation of CDMA (Code Division Multiplexing and
Demultiplexing) Technique

// OS—Windows 10

// Scilab 6.1.0

// Course Instructor Name: Dr. V. A. Sankar
Ponnapalli

// Institute Name: ICFAI Foundation for Higher
Education Hyderabad

clear;
clc;
close;

W = input (”Enter total RF bandwidth W in Hz (e.g.,
1.25e6 for 1.25 MHz): 7);
R = input(”Enter data rate R per user in Hz (e.g.,
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Figure 9.1: CDMA
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4800, 9600, 19200): ");
Eb_NO = input(”Enter Eb/NO in dB (suggested range: 5
to 15 dB): 7);

eta = input (”Enter background noise fraction (
suggested range: 0.5 to 1): 7);

alpha = input (”Enter voice activity factor (
suggested range: 0.3 to 1): 7);

sectorization_factor = input(” Enter antenna

sectorization factor (1 for omni, 3 for 120
beamwidth): 7);

// Convert Eb/N0 from dB to linear
Eb_NO_linear = 10" (Eb_NO0/10);

S = 1; // Assume desired signal power S = 1 unit
N_basic =1 + (W/R) / (Eb_NO_linear * (eta/S));

// Apply sectorization and voice activity factor
N_sector = (N_basic - 1) * alpha + (eta/S);
Eb_NO_sector = (W/R) / N_sector;

// Final capacity with sectoring and voice activity
N_final =1 + (W/R) / Eb_NO_sector;

disp (7 CDMA Capacity Results 7))

disp(”Processing Gain (W/R): 7 + string(W/R));

disp("Eb/NO (linear): ” + string(Eb_NO_linear));

disp (” Estimated basic user capacity (no interference

control): 7 + string(N_basic));

disp("Eb/NO within sector with interference control:
7 + string (Eb_NO_sector));

disp(” Estimated final user capacity (with
sectorization and voice activity): 7 + string(
N_final));

eb_range = 5:1:15;
N_plot = [];
for eb eb_range

43



42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56

57

58

59

60

61

62

EbNO_lin = 10~ (eb/10);
N_temp = 1 + (W/R) / (EbNO_lin * (eta/S));
N_plot ($+1) = N_temp;

end

scf (0);

plot (eb_range, N_plot);

xlabel ("Eb/NO (dB)”);

ylabel ("CDMA Capacity (Users)”);
title (" Effect of Eb/NO on CDMA Capacity”);
xtitle ("CDMA Capacity vs Eb/N0”);

// Description of the Figure

// User Inputs:

// Enter total RF bandwidth W in Hz (e.g., 1.25¢6
for 1.25 MHz): 1.5¢6

// Enter data rate R per wuser in Hz (e.g., 4800,
9600, 19200): 9600

// Enter Eb/NO in dB (suggested range: 5 to 15 dB):
8

// Enter background noise fraction (suggested
range: 0.5 to 1): 0.8
// Enter voice activity factor (suggested range:

0.3 to 1): 0.5
// Enter antenna sectorization factor (1 for omni, 3
for 120 beamwidth): 3
// The figure titled "CDMA Capacity vs Eb/NO0”
represents how the user capacity of a CDMA system
changes with respect to the energy—per—bit to
noise power spectral density ratio.
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