Scilab Manual for
Wireless Communications
by Dr V. A. Sankar Ponnapalli
Electronics and Telecommunication
Engineering
Icfai Foundation For Higher Education?

Solutions provided by
Dr V. A. Sankar Ponnapalli
Electronics and Telecommunication Engineering
Icfai Foundation For Higher Education

January 29, 2026

"Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the "Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions

1

2

Study of Free Space Propagation-Path Loss Model
Study of Outdoor Propagation — Okumura Model
Study of Outdoor Propagation — Hata Model
Study of Multipath Fading Channel

Modulation and Demodulation of Binary Phase Shift Key-
ing over Additive White Gaussian Noise (AWGN) channel

Modulation and Demodulation of Direct-Sequence Spread
Spectrum

Simulation of TDMA Technique
Simulation of FDMA Technique

Simulation of CDMA Technique

14

18

27

32

37

41

List of Experiments

Solution 1.0 Path Loss Model
Solution 2.0 Okumura Model
Solution 3.0 Hata Model
Solution 4.0 Multipath Fading Channel
Solution 5.0 BER OF BPSK
Solution 6.0 DSSS
Solution 7.0 TDMA
Solution 8.0 FDMA
Solution 9.0 CDMA

List of Figures

1.1 Path Loss Model
2.1 Okumura Modelo
3.1 HataModel o
4.1 Multipath Fading Channel
51 BER OF BPSK
6.1 DSSS. . . .
7.1 TDMA
81 FDMA
9.1 CDMA

10
15
19
24
28
33
38

© 00 N O

Experiment: 1

Study of Free Space
Propagation-Path Loss Model

Scilab code Solution 1.0 Path Loss Model

// Study of Free Space Propagation—Path Loss Model (
FSPL)

// OS — Windows 10

// Scilab 6.1.0

// Course Instructor Name: Dr. V. A. Sankar
Ponnapalli

// Institute Name: ICFAI Foundation for Higher
Education Hyderabad

clc;
clear;
close () ;

disp (”Enter frequency in Hz (Recommended: 800e6 to
2.5e9):7);
f = input(”Frequency (Hz): 7);

Path Loss (dB)

85

75

T

&3]

55

45

FSPL Model: Distance vs Path Loss

100

150 200 250 300 350 400

Distance (m)

Figure 1.1: Path Loss Model

450

500

14 disp(”Enter minimum distance in meters (Recommended:
1 to 10 m):");

15 d_min = input (”Minimum distance (m): ”);

16

17 disp(”Enter maximum distance in meters (Recommended:
100 to 10000 m):7”);

18 d_max = input ("Maximum distance (m): ”);

19

20 disp(”Enter number of distance samples (Recommended:
50 to 500):7);

21 n = input (”Number of points: 7);

22

23 ¢ = 3e8; // Speed of light in m/s

24 lambda = ¢ / f; // Wavelength in meters

25 d = linspace(d_min, d_max, n);

26

27 // Compute Free Space Path Loss (FSPL)

28 path_loss = 20%1logl0(d) + 20*%loglO(f) + 20xloglO(4 x
hpi / c¢);

29

30 scf();

31 plot(d, path_loss, 'r’, ’'LineWidth’, 2);

32 xlabel (’Distance (m)’);

33 ylabel (’Path Loss (dB)’);

34 title (’FSPL Model: Distance vs Path Loss’);

35 h = gca(Q);

36 h.grid = [1 11; // Turn on both axes grid

37

382 // Description of the Figure

39 // User Inputs:

40 // Enter frequency in Hz (Recommended: 800e6 to 2.5
e9):

41 // Frequency (Hz): 900e6

42 // Enter minimum distance in meters (Recommended: 1
to 10 m):

43 // Minimum distance (m): 5

44 // Enter maximum distance in meters (Recommended:
100 to 10000 m):

45
46

47

48
49

50

//
//

//
//

//

Maximum distance (m): 500

Enter number of distance samples (Recommended: 50
to 500):

Number of points: 50

The figure titled "Interactive FSPL Model:
Distance vs Path Loss” illustrates how free space
path loss (in dB)

increases logarithmically with distance in a line
—of—sight communication environment.

QU = W N =

© 00 N O

10

12
13
14

Experiment: 2

Study of Outdoor Propagation
— Okumura Model

Scilab code Solution 2.0 Okumura Model

// Study of Outdoor Propagation Okumura Model

// OS: Windows 10

// Scilab Version: 6.1.0

// Course Instructor: Dr. V. A. Sankar Ponnapalli

// Institute: ICFAI Foundation for Higher Education
Hyderabad

clc;
clear;
close;

disp(”Enter distance between T x Rx in km (Valid
range: 1 100 km):");
d = input(” Distance (km): 7);

disp(”Enter base station antenna height in meters (
Valid range: 30 1000 m):");

Median Path Loss (dB)

138

136

134

132

130

128

126

124

122

120

e

Eh L]

4

Okumura Model: Frequency vs Median Path Loss

200 400 600 800 1000 1200 1400 1600 1800 2000

Frequency (MHz)

Figure 2.1: Okumura Model

10

15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45

46
47
48
49

ht = input(”Base Station Height (m): 7);

disp (" Enter mobile station antenna height in meters
(Valid range: 1 10 m):”);
hr = input(” Mobile Station Height (m): 7);

disp (” Choose Environment:”) ;

disp(”1. Urban”);

disp(”2. Suburban”);

disp(” 3. Rural”);

choice = input(”Enter your choice (1 3): 7);

select choice
case 1 then

environment = "urban”;
case 2 then

environment = "suburban”;
case 3 then

environment = "rural”;
else

disp(”Invalid choice. Defaulting to urban.”)

b

environment = “urban”;
end
f_start = 150; // MHz
f_end = 1920; // MHz
f_step = 50; // MHz
frequencies = f_start:f_step:f_end;
medianLoss = zeros(frequencies);
// Path Loss Calculation
for i = 1:length(frequencies)
f = frequencies(i);

// Free space path loss

11

50
51
52
53
o4
55
56
o7
58
99
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74

75
76
7
78
79

80
81

82
83

Lf = 32.4 + 20*1ogl0(f) + 20*x1log10(d);
// Antenna gains
Gt = 20*xlog10(ht / 200);
Gr = 10*xlogl0(Chr / 3);
// Median path loss
Am = Lf - Gt - Gr;
// Apply environment correction
select environment
case ”suburban” then
Am = Am - (2 * (loglO(f / 28))°2) - 5.4;
case "rural” then
Am = Am - (4.78 * (logl0(f))~2) + (18.33
* loglO(£f)) - 40.94;
end
medianlLoss (i) = Am;
end
scf (0) ;
plot (frequencies, medianLoss, 'r—’');
xlabel (" Frequency (MHz)”);
ylabel (" Median Path Loss (dB)”);
title ("Okumura Model: Frequency vs Median Path Loss”
)
xgrid) ;
// Description of the Figure

// User

Inputs:

//” Enter distance between T x Rx in km (Valid range

1

100 km):”

//Distance (km): 100

//” Enter base station antenna height in meters (

Valid range: 30 1000 m):”

// Base

//” Enter mobile station antenna height in meters

Station Height (m): 200

12

(

84
85
86
87
88
89
90

Valid range: 1
//Mobile Station Height (m): 3
//” Choose Environment :”

//71. Urban”
//72. Suburban”
//73. Rural”

10

//Enter your choice

//The figure titled ”Okumura Model: Frequency vs
Median Path Loss”
behaves with varying frequencies in an urban
setting and how the system parameters (distance
a//ntenna heights, and frequency) influence the

signal

strength .

m):”

(1 3): 1

illustrates

how path loss

13

QU = W N =

© 00 N O

10

12
13
14

Experiment: 3

Study of Outdoor Propagation

— Hata Model

Scilab code Solution 3.0 Hata Model

// Study of Outdoor Propagation

// OS: Windows 10

// Scilab: 6.1.0

// Course Instructor: Dr.

// Institute: ICFAI Foundation
Hyderabad

clc;

clear;

close;

disp (" Enter Transmitter Height
range: 30 200 m):”);

ht = input (" Transmitter Height

disp(”Enter Receiver Height in
1 10 m):");

14

V. A. Sankar

Hata Model

Ponnapalli

for Higher Education

in meters (Valid
(m): 7);

meters (Valid range:

Path Loss (dB)

185

160

155

150

145

140

135

130

Hata Model: Path Loss vs Frequency (Urban Cities)

i OO SmallMadium City
b O—0—10 Large City
//:,,'//,a
' T
/ /
i d
1] 200 400 600 B0 1000 1200 1400

Frequency (MHz)

Figure 3.1: Hata Model

15

hr = input(” Receiver Height (m): 7);

disp(”Enter Distance between T x Rx in km (Valid
range: 1 20 km):");
d = input(” Distance (km): 7);

f_values (160, 300, 600, 900, 1200, 1500]; // in

MHz

Lp_small zeros (1, length(f_values)); // Path loss
for small/medium cities

Lp_large = zeros(l, length(f_values)); // Path loss
for large cities

24
25

26
27
28
29
30

HATA MODEL CALCULATION

1:length(f_values)
f_values (i) ;

// Correction factor small /medium cities
ah_small = (1.1 % loglO(f) - 0.7) * hr - (1.56 x*
logl0(f) - 0.8);

// Correction factor for large cities
if £ <= 200 then
ah_large = 8.29 *x (logl0(1.54 * hr))~2 -

1.1;
else
ah_large = 3.2 * (logl0(11.75 * hr))~2 -
4.97;
end

// Path Loss Calculations
Lp_small (i) = 69.55 + 26.16 * loglO(f) - 13.82 =
logl0(ht) - ah_small + (44.9 - 6.55 * logl0(
ht)) * logl0(d);
Lp_large(i) = 69.55 + 26.16 * loglO(f) - 13.82 x

16

43
44
45
46
47
48
49
50
51

52

53
o4
55
56
o7

58
59

60
61

62
63

64

log10(ht) - ah_large + (44.9 - 6.55 * logl0(
ht)) * logl0(d);
end

scf (0) ;
plot (f_values, Lp_small, ’'b—o’, ”"LineWidth”, 2);
plot (f_values, Lp_large, ’'r—s’, "LineWidth”, 2);

xlabel (" Frequency (MHz)”);

ylabel ("Path Loss (dB)”);

title (" Hata Model: Path Loss vs Frequency (Urban
Cities)”);

legend (" Small /Medium City”, ”Large City”, ”location”
, Jupper_left”);

xgrid () ;

// Description of the Figure

// User Inputs:

// 7 Enter Transmitter Height in meters (Valid range:
30 200 m):”

// Transmitter Height (m): 50

// 7 Enter Receiver Height in meters (Valid range: 1

10 m):”

// Receiver Height (m): 3

// 7 Enter Distance between T x Rx in km (Valid
range: 1 20 km):”

// Distance (km): 10

// The figure titled ”Hata Model: Path Loss vs
Frequency (Urban Cities)” illustrates the
variation of path loss with frequency for wurban
environments using the Hata propagation model.

// It compares path loss in two types of urban areas

17

ot =W N =

© 00 N O

10

12
13

Experiment: 4

Study of Multipath Fading

Channel

Scilab code Solution 4.0 Multipath Fading Channel

//Study of Multipath Fading Channel

// OS—Windows 10
// Scilab 6.1.0

// Course Instructor Name: Dr. V. A. Sankar

Ponnapalli

// Institute Name: ICFAI Foundation for Higher
Education Hyderabad

clc;
clear;
close;

printf (" Enter number of frequency points N (power of

2, between 128 and 4096):\n");

N = input ("N = 7);
if “((floor(log2(N))
4096) then

log2(N)) & N >=

18

128 & N <=

Rayleigh Envelope Amplitude

0.12

Rayleigh Fading Envelope (Clarke & Gans Model)

0.11

0.1+

0.09 4

0.08 <

007 4

0.06 4

0.05

004 4

0.02 4

0.01

T T T T T T T T T T T
0.1 02 0.3 0.4 05 0.6 07 0.8 08 1 11

Time (s)

Figure 4.1: Multipath Fading Channel

19

14

15
16
17
18

19
20
21

22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41

42
43
44
45

error (" Error: N must be a power of 2 between 128
and 4096.7);
end

// Input for max Doppler frequency fm
printf (" Enter maximum Doppler frequency shift fm in
Hz (e.g., between 10 and 500 Hz):\n");
fm = input("fm = 7);
if fm <= 0 | fm > 1000 then
error (" Error: fm must be between 10 and 1000 Hz.
77);

end

// Input for sampling frequency fs
printf (" Enter sampling frequency fs in Hz (must be >
2%xfm) :\n”);
fs = input("fs = 7);
if fs <= 2%xfm then
error (" Error: fs must be greater than 2 x fm.”);
end

// Derived values

df = fs / N; // Frequency resolution

T =1/ df; // Duration of fading
waveform

f = (-N/2:N/2-1)*df; // Frequency axis

// — GENERATE DOPPLER SPECTRUM S Eg(f) —

Se = zeros (1, N);
for i = 1:N
f_norm = f(i) / fm;
if abs(f_norm) < 1 then
Se(i) = 1.5 / (%pi * fm * sqrt(l - f_norm~2)
) ;
else
Se (1)

0;
end
end

20

46
47
48
49
50
51
52
53
o4
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71
72
73
74

75
76

7
78

79

// GENERATE COMPLEX GAUSSIAN NOISE ——
rand ("normal”) ;

gauss_real = rand(1, N, "normal”);
gauss_imag = rand (1, N, "normal”);

Gf = (gauss_real + %i * gauss_imag) / sqrt(2);

// —— SHAPE NOISE WITH DOPPLER SPECTRUM ——
Sqrt_Se = sqrt(Se);
Hf = Gf .*x Sqrt_Se;

/) —— IFFT TO TIME DOMAIN ——
Hf _shifted = fftshift (Hf);

ht = ifft(Hf_shifted);
ht = ht * sqrt(N); // Normalize
// —— COMPUTE RAYLEIGH ENVELOPE

rayleigh_envelope = sqrt(real(ht).”2 + imag(ht)."2);

t = (0:N-1)/fs;

scf (1) ;

plot(t, rayleigh_envelope);

xlabel ("Time (s)”);

ylabel (" Rayleigh Envelope Amplitude”);

title(” Rayleigh Fading Envelope (Clarke & Gans Model
)7

// Description of the Figure

// User Inputs:

//Enter number of frequency points N (power of 2,
between 128 and 4096):

//N = 1024

//Enter maximum Doppler frequency shift fm in Hz (e.
g., between 10 and 500 Hz):

//fm = 100

//Enter sampling frequency fs in Hz (must be > 2xfm)

//fs = 1000

21

80 // The figure titled ”Rayleigh Fading Envelope (
Clarke & Gans Model)” exhibits rapid variations
typical of Rayleigh fading with many fades per
second , consistent with a Doppler frequency //of

100 Hz.

22

© 00 N O

Experiment: 5

Modulation and Demodulation
of Binary Phase Shift Keying
over Additive White (Gaussian
Noise (AWGN) channel

Scilab code Solution 5.0 BER OF BPSK

//Modulation and Demodulation of Binary Phase Shift
Keying over Additive White Gaussian Noise (AWGN)
channel

// OS—Windows 10

// Scilab 6.1.0

// Course Instructor Name: Dr. V. A. Sankar
Ponnapalli

// Institute Name: ICFAI Foundation for Higher
Education Hyderabad

clear;
clc;

23

Bit Errar Rate (BER)

BER Performance of BPSK over AWGN Channel

EbiMo (dB)

Figure 5.1: BER OF BPSK

24

10

10
11
12

13
14

15
16
17

18

19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

close;

1 = input (”Enter number of bits to transmit (Choose
between: 100000 to 1000000): ”);
while 1 < 100000 | 1 > 1000000
1 = input(”Invalid input. Enter number of bits
between 100000 and 1000000: 7);

end

EbNodB = 0:2:10; // Range of Eb/No in
dB

BER = zeros(1, length(EbNodB)); // Initialize BER
array

// Pick example Eb/NO for printing outputs (middle
of range)

example_idx = floor(length(EbNodB)/2);

example_EbNodB = EbNodB(example_idx) ;

for n = 1:length(EbNodB)
// Generate random BPSK symbols: —1 or 1
s = 2+%(round(rand (1, 1))-0.5);

// AWGN noise with variance based on Eb/NO
noise_std = 1/sqrt(2x10~ (EbNodB(n)/10));
W = noise_std * rand(l1, 1, ’normal’);

// Received signal
r = s + w,;

// Demodulation: sign detector
s_est = sign(r);

// BER calculation
BER(n) = sum(s "= s_est)/1;

// Save example bits for display
if n == example_idx then

25

43

44
45
46
47
48
49

50
51
52
53
54
95
56
57
58
59
60
61
62
63
64

65

bits_sent = (s + 1)/2; // convert from
—1/1 to 0/1 for clarity
bits_demod = (s_est + 1)/2;
end
end

// Display example output for the chosen Eb/NO

disp (”Example Eb/NO (dB): 7 + string(example_EbNodB)
)

disp(” First 50 generated bits (0/1):7);

disp(bits_sent (1:50));

disp(” First 50 demodulated bits (0/1):7);

disp(bits_demod (1:50)) ;

// Plot BER vs Eb/N0

scf O ;

semilogy (EbNodB, BER, ’'o—');

xlabel ('Eb/No (dB)) ;

ylabel (’Bit Error Rate (BER)’);

title ('BER Performance of BPSK over AWGN Channel) ;

//// Description of the Figure

// User Inputs:

// Enter number of bits to transmit (Choose between:
100000 to 1000000): 1le6

// The figure titled "BER Performance of BPSK over
AWGN Channel” illustrates how BPSK performs over
AWGN.

26

O = W N

© 00 J O

10

12

Experiment: 6

Modulation and Demodulation
of Direct-Sequence Spread
Spectrum

Scilab code Solution 6.0 DSSS

// Direct—Sequence Spread Spectrum (DSSS) Modulation
and Demodulation

// OS: Windows 10

// Scilab Version: 6.1.0

// Course Instructor: Dr. V. A. Sankar Ponnapalli

// Institute: ICFAI Foundation for Higher Education
Hyderabad

clc;
clear;
close;

N_bits = input(”Enter number of data bits (e.g., 10
to 100): 7);
PG = input(”Enter processing gain (e.g., 5 to 20):

2

27

Amplitude

Amplitude

Amplitude

Spread Signal using PN Sequence

10
0
I T T T T T T T T T
0 o001 0.2 0.03 0.04 0.05 0.06 0.07 0.08 0.09 01
Time (s)
BPSK Modulated Signal
10
1]
-10 T T T L B B T L R R
0 0.01 0.02 0.03 0.04 0.05 0.08 0.7 0.08 008 0.1
Time (s)
Despread Signal at Receiver
20 -
0 —
T T T T T T T T T
0 001 002 0.03 0.04 005 0.08 0.07 0.08 009 01
Time (s)

Figure 6.1: DSSS

28

13

14

15
16
17
18

19
20
21
22
23
24
25
26

27
28
29
30
31

32
33
34
35
36

37
38
39
40
41

42

) ;

fc = input(”Enter carrier frequency in Hz (e.g.,
1000): ") ;
fs = input(”Enter sampling frequency in Hz (must be

> 10xfc): 7);

// Validations
if fs <= 10 * fc then
error (”Sampling frequency must be greater than
10 times the carrier frequency.”);
end

// Timing and signal parameters
Tb

= le-3; // Bit duration (1 ms)
Tc = Tb / PG; // Chip duration
Ns = int(fs * Tb); // Samples per bit
Nc = int(fs * Tc); // Samples per chip
total_samples = N_bits * Ns; // Total number of
samples

t = (0:total_samples - 1) / fs; // Time vector

// Generate random data bits (4+1 or —1)
data_bits = 2 * grand (1, N_bits, "uin”, 0, 2) - 1;
data_signal = matrix(ones(Ns, 1) * data_bits, 1, -1)

)

// Generate PN sequence long enough

num_chips = N_bits * PG;

pn_seq = 2 * grand (1, num_chips, "uin”, 0, 2) - 1;
pn_signal_full = matrix(ones(Nc, 1) * pn_seq, 1, -1)

I

// Ensure PN signal has enough samples
if length(pn_signal_full) < total_samples then
// Pad if too short
extra_needed = total_samples - length(
pn_signal_full);
pn_signal_full = [pn_signal_full, ones (1,

29

43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
7

extra_needed)];

end
pn_signal = pn_signal_full(l:total_samples); //
Trim to exact length
// Spread signal
spread_signal = data_signal .* pn_signal,;
// Carrier
carrier = cos(2 * Y%pi * fc * t);
// Modulate
modulated_signal = spread_signal .* carrier;
// Receiver: Demodulate
received = modulated_signal .* carrier;
despread = received .* pn_signal,;
// Recover bits
recovered_bits = zeros(1l, N_bits);
for i = 1:N_bits
idx_start = (i - 1) * Ns + 1;
idx_end = i * Ns;
recovered_bits (i) = sign(sum(despread(idx_start:
idx_end)));
end
// Plot
clf O);
subplot (3,1,1);
plot (t, spread_signal);

xtitle (" Spread Signal using PN Sequence”);
xlabel (" Time (s)”);
ylabel (" Amplitude”) ;

subplot (3,1,2);
plot(t, modulated_signal);
xtitle ("BPSK Modulated Signal”);

30

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

99

xlabel ("Time (s)”);
ylabel (" Amplitude”) ;

subplot (3,1,3);

plot (t, despread);

xtitle (" Despread Signal at Receiver”);
xlabel (" Time (s)”);

ylabel (" Amplitude”) ;

//

Display bits

disp(” Original bits: 7);
disp(data_bits);

disp(” Recovered bits: 7);
disp(recovered_bits);

//
//
//
//
//
//

//

Description of the Figure
User Inputs:

Enter number of data bits (e.g., 10 to 100):

Enter processing gain (e.g., 5 to 20): 10
Enter carrier frequency in Hz (e.g., 1000):

100

1000

Enter sampling frequency in Hz (must be > 10xfc):

11000
The figure depicts Direct—Sequence Spread
Spectrum Modulation and Demodulation .

31

© 00 N O

10

12
13

Experiment: 7

Simulation of TDMA
Technique

Scilab code Solution 7.0 TDMA

//Simulation of TDMA (Time Division Multiplexing and
Demultiplexing) Technique)

// OS—Windows 10

// Scilab 6.1.0

// Course Instructor Name: Dr. V. A. Sankar
Ponnapalli

// Institute Name: ICFAI Foundation for Higher
Education Hyderabad

clear;

clc;

close;

disp (=== TDMA System Simulation =—=");

N_r = input (”Enter number of traffic bursts per
frame (N.r) [1 100]: 7);

32

Bits.

10000

TDMA Frame Composition

9000

8000 —

7000 —

5000

5000

4000 |

3000

2000 +

1000 —

Ovarhead Bits

Information Bits

Bit Category

Figure 7.1: TDMA

33

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

b_r = input(”Enter number of bits per traffic burst
(b_r) [100 1000 |: ");

N_p = input(”Enter number of preambles per frame (
Nop) [1 10 J: 7);

b_p = input(”Enter bits per preamble (b_p) [10 100
It 7,

N_g = input(”Enter number of guard intervals per
frame (N_g) [1 20 |: 7);

b_g = input (”Enter bits per guard time interval (b_g
) [1 50]: ")

T_f = input(”Enter frame duration T_f in seconds [e.

g., 0.01]: 7");
R_b = input(”Enter bit rate R.b in bits/sec [e.g., 1
66]: 7))

//Overhead bits per frame

b_OH = N_p*b_p + N_g*xb_g;

disp(” Total overhead bits per frame (b.OH): 7 +
string (b_0H)) ;

//Total bits per frame
b_T = T_f * R_b;
disp(” Total bits per frame (b_.T): 7 + string(b_T));

//Frame Efficiency
eta_f = (1 - (b_0OH / b_T)) * 100;

disp (" Frame Efficiency (f) in %: 7 + string(eta_f
))

// Number of TDMA Channels

m = input(”Enter max users per channel (m) [1 100
]: 77);

B_tot = input(”Enter total system bandwidth B_tot in
Hz [e.g., 200e3]: 7);

B_guard = input (”Enter guard band on one side (
B_guard) in Hz [e.g., 10e3]: 7);

B_c = input(”Enter bandwidth per channel B_c in Hz |
e.g., 25e3]: 7);

34

39
40
41

42
43
44
45

46
47

48
49
50
51
52
53
54

55
56

o7

58

99

60

61

62

63

64

N_channels = m * (B_tot - 2%B_guard) / B_c;
disp ("Number of TDMA channels (N): 7 + string(
N_channels));

x = [b_OH, b_T - b_0H];

bar (x) ;

xtitle ("TDMA Frame Composition”, 7 Bit Category”, 7
Bits”);

a = gca(); // get current axes
a.x_ticks = tlist([”ticks”, "locations”, ”"labels”],
[1; 2], ["Overhead Bits”; ”Information Bits”]);

// Description of the Figure
// User Inputs:

//Enter number of traffic bursts per frame (N_r) [1

100]: 50
//Enter number of bits per traffic burst (b_r) [100
1000]: 150
//Enter number of preambles per frame (N_p) [1 10
]: 5
//Enter bits per preamble (b_p) [10 100]: 50
//Enter number of guard intervals per frame (N_g) |1
20]: 10
//Enter bits per guard time interval (b_g) [1 50]:
5

//Enter frame duration T_f in seconds [e.g., 0.01]:
0.01

//Enter bit rate R.b in bits/sec [e.g., le6]: 1eb6

//Enter max users per channel (m) [1 100]: 50

//Enter total system bandwidth B_tot in Hz [e.g.,
200e3]: 200e3

//Enter guard band on one side (B_guard) in Hz [e.g

., 10e3]: 10e3
//Enter bandwidth per channel B_c in Hz [e.g., 25e3
|: 25e3

//The left bar labeled Overhead Bits

35

represents preambles and guard intervals that
support synchronization and prevent interference.

65 //The right bar labeled Information Bits
represents actual user data.

36

© 00 N O

10
12
13
14

15

Experiment: 8

Simulation of FDMA Technique

Scilab code Solution 8.0 FDMA

//Simulation of FDMA (Frequency Division
Multiplexing and Demultiplexing) Technique

// OS—Windows 10
// Scilab 6.1.0

// Course Instructor Name: Dr. V. A. Sankar

Ponnapalli

// Institute Name:

clear;
clc;
close;

disp (== FDMA System Capacity Simulation

ICFAI Foundation for Higher
Education Hyderabad

// Total bandwidth B_t
B_t = input(” Enter total system bandwidth B_t

[1e6 25¢6 | :

while B_t < 1le6

’7);
B_t > 25e6

37

77),
b

in Hz

Bandwidth (Hz)

1a08

FDMA Bandwidth Utilization

Bals

Bals

Tals —

Bals

5a0s —|

4008

3a05 |

2a05

1al5 —

0ald -

Unusad Bandwidth

T
2

Figure 8.1: FDMA

38

16

17
18
19
20

21
22

23
24
25
26

27
28

29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45

46

B_t = input(”Invalid! Enter B_t between 1le6 and

25e6 Hz: 7);
end

// Guard band per side
B_guard = input(”Enter guard band on one side
B_guard in Hz [le4 5e5]: 7);
while B_guard < 1le4 | B_guard > 5eb
B_guard = input(”Invalid! Enter B_guard between
led and 5eb Hz: 7);
end

// Channel bandwidth B_c
B_c = input(”Enter bandwidth per FDMA channel B_c¢ in
Hz [le4 Sed|: 7);
while B_c < 1e4 | B_c > be4d
B_c = input(”Invalid! Enter B_c between le4 and

5e4 Hz: 7);
end
//
// Calculation
//

if B_t <= 2xB_guard then
error (" Total bandwidth must be greater than
twice the guard band.”);
end

B_available = B_t - 2 *x B_guard;
N_channels = floor(B_available / B_c);
B_used = N_channels * B_c;

B_unused = B_available - B_used;
efficiency = (B_used / B_t) * 100;

mprintf (" Total Bandwidth (B_t): %.2f Hz\n”, B_t);

mprintf (" Guard Band per side (B_guard): %.2f Hz\n”,
B_guard) ;

mprintf (” Channel Bandwidth (B_c): %.2f Hz\n”, B_c);

39

47

48

49
50
51

52
53
54
55
56
o7
58
59
60
61
62
63
64
65

66

67

68

mprintf (" Available Bandwidth after guard bands: %.2f
Hz\n”, B_available);

mprintf (" Number of FDMA Channels (N): %d\n”,
N_channels) ;

mprintf (" Total Used Bandwidth: %.2f Hz\n”, B_used);

mprintf (" Unused Bandwidth: %.2f Hz\n”, B_unused);

mprintf (" Bandwidth Utilization Efficiency: %.2f %%\n
7, efficiency);

scf (0) ;
bar ([1 2], [B_used B_unused], "stacked”);
xt = [1, 2];
labels = ["Used Bandwidth”, ”Unused Bandwidth”];
for i = 1:2
xstring(xt(i) - 0.1, 0, labels(i));
end
ylabel (" Bandwidth (Hz)”);
title ("FDMA Bandwidth Utilization”);

// Description of the Figure

// User Inputs:

// Enter total system bandwidth B_t in Hz [1e6
25e6]: 1leb6

// Enter guard band on one side B_guard in Hz [le4

5eb]: led
// Enter bandwidth per FDMA channel B_c in Hz [le4
bed]: led

// The figure titles 7FDMA Bandwidth Utilization?”
shows how efficiently the bandwidth is utilized
in an FDMA system given user—defined channel
width and guard bands.

40

© 00 N O

10

12

13

Experiment: 9

Simulation of CDMA
Technique

Scilab code Solution 9.0 CDMA

//Simulation of CDMA (Code Division Multiplexing and
Demultiplexing) Technique

// OS—Windows 10

// Scilab 6.1.0

// Course Instructor Name: Dr. V. A. Sankar
Ponnapalli

// Institute Name: ICFAI Foundation for Higher
Education Hyderabad

clear;
clc;
close;

W = input (”Enter total RF bandwidth W in Hz (e.g.,
1.25e6 for 1.25 MHz): 7);
R = input(”Enter data rate R per user in Hz (e.g.,

41

CDMA Capacity (Users)

CDMA Capacity vs Eb/ND

T T T T T
& ! 10 " 12

Eb/MO (dB)

Figure 9.1: CDMA

42

16

14

15

16

17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36

37

38

39

40
41

4800, 9600, 19200): ");
Eb_NO = input(”Enter Eb/NO in dB (suggested range: 5
to 15 dB): 7);

eta = input (”Enter background noise fraction (
suggested range: 0.5 to 1): 7);

alpha = input (”Enter voice activity factor (
suggested range: 0.3 to 1): 7);

sectorization_factor = input(” Enter antenna

sectorization factor (1 for omni, 3 for 120
beamwidth): 7);

// Convert Eb/N0 from dB to linear
Eb_NO_linear = 10" (Eb_NO0/10);

S = 1; // Assume desired signal power S = 1 unit
N_basic =1 + (W/R) / (Eb_NO_linear * (eta/S));

// Apply sectorization and voice activity factor
N_sector = (N_basic - 1) * alpha + (eta/S);
Eb_NO_sector = (W/R) / N_sector;

// Final capacity with sectoring and voice activity
N_final =1 + (W/R) / Eb_NO_sector;

disp (7 CDMA Capacity Results 7))

disp(”Processing Gain (W/R): 7 + string(W/R));

disp("Eb/NO (linear): ” + string(Eb_NO_linear));

disp (” Estimated basic user capacity (no interference

control): 7 + string(N_basic));

disp("Eb/NO within sector with interference control:
7 + string (Eb_NO_sector));

disp(” Estimated final user capacity (with
sectorization and voice activity): 7 + string(
N_final));

eb_range = 5:1:15;
N_plot = [];
for eb eb_range

43

42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56

57

58

59

60

61

62

EbNO_lin = 10~ (eb/10);
N_temp = 1 + (W/R) / (EbNO_lin * (eta/S));
N_plot ($+1) = N_temp;

end

scf (0);

plot (eb_range, N_plot);

xlabel ("Eb/NO (dB)”);

ylabel ("CDMA Capacity (Users)”);
title (" Effect of Eb/NO on CDMA Capacity”);
xtitle ("CDMA Capacity vs Eb/N0”);

// Description of the Figure

// User Inputs:

// Enter total RF bandwidth W in Hz (e.g., 1.25¢6
for 1.25 MHz): 1.5¢6

// Enter data rate R per wuser in Hz (e.g., 4800,
9600, 19200): 9600

// Enter Eb/NO in dB (suggested range: 5 to 15 dB):
8

// Enter background noise fraction (suggested
range: 0.5 to 1): 0.8
// Enter voice activity factor (suggested range:

0.3 to 1): 0.5
// Enter antenna sectorization factor (1 for omni, 3
for 120 beamwidth): 3
// The figure titled "CDMA Capacity vs Eb/NO0”
represents how the user capacity of a CDMA system
changes with respect to the energy—per—bit to
noise power spectral density ratio.

44

	
	Study of Free Space Propagation-Path Loss Model
	Study of Outdoor Propagation – Okumura Model
	Study of Outdoor Propagation – Hata Model
	Study of Multipath Fading Channel
	Modulation and Demodulation of Binary Phase Shift Keying over Additive White Gaussian Noise (AWGN) channel
	Modulation and Demodulation of Direct-Sequence Spread Spectrum
	Simulation of TDMA Technique
	Simulation of FDMA Technique
	Simulation of CDMA Technique

