
Scilab Manual for
Advanced Mathematical Physics-I

by Dr Triranjita Srivastava
Physics

Kalindi College, University Of Delhi1

Solutions provided by
Dr Triranjita Srivastava

Physics
Kalindi College, University Of Delhi

January 29, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 3

1 Linear algebra: Power and Inverse Power methods for find-
ing largest and smallest Eigenvalue and eigenvectors of ma-
trices 5

2 Orthogonal Polynomials as Eigenfunctions of Hermitian dif-
ferential operators 10

3 Determination of the principal axes of moment of inertia
through diagonalization 18

4 Study of geodesics in Euclidean and other spaces(surface of
a sphere, etc):Physics problem: problem of refraction. 22

5 Application to solve differential equations for a bound sys-
tem – Eigen value problem 27

6 Application to computer graphics: Write operators for shear,
strain, 2D rotational problems, Reflection, Translation 32

7 Lagrangian formulation in classical mechanics with constraints. 46

8 Vector-space of wave functions in Quantum-Mech: Position
and Momentum differential operators and their commuta-
tor, wave function 50

2

List of Experiments

Solution 1.01 Power and Inverse Power Method 5
Solution 2.0 Finite Difference Method 10
Solution 3.0 Diagonalization of matrix 18
Solution 4.0 Geodesic . 22
Solution 5.0 Finite Difference Method 27
Solution 6.0 Computer Graphics 32
Solution 7.0 Lagrangian Formulation 46
Solution 8.0 Hermitian Differential Op 50

3

List of Figures

1.1 Power and Inverse Power Method 6

2.1 Finite Difference Method . 11
2.2 Finite Difference Method . 16
2.3 Finite Difference Method . 17

3.1 Diagonalization of matrix 21

4.1 Geodesic . 23
4.2 Geodesic . 23
4.3 Geodesic . 24

5.1 Finite Difference Method . 31
5.2 Finite Difference Method . 31

6.1 Computer Graphics . 33
6.2 Computer Graphics . 41
6.3 Computer Graphics . 42
6.4 Computer Graphics . 43
6.5 Computer Graphics . 44
6.6 Computer Graphics . 45

7.1 Lagrangian Formulation . 49
7.2 Lagrangian Formulation . 49

8.1 Hermitian Differential Op 52
8.2 Hermitian Differential Op 53

4

Experiment: 1

Linear algebra: Power and
Inverse Power methods for
finding largest and smallest
Eigenvalue and eigenvectors of
matrices

Scilab code Solution 1.01 Power and Inverse Power Method

1 // Operat ing system : Windows 8
2 //SCILAB Ver : 5 . 5 . 2
3 // Expriment No . 1
4 // Ob j e c t i v e : Det e rmina t i on o f l a r g e s t and sma l l e s t (

i n magnitude) Eigen va lu e &
5 // Eigen Vec to r s Using Power Method and I n v e r s e Power

Method r e s p e c t i v e l y .
6

7

8 // Enter the no d imens ion o f a sqau r e o f matr ix A: 3
9 // Enter the e l ement no (1 , 1) : 2

5

Figure 1.1: Power and Inverse Power Method

6

10 // Enter the e l ement no (1 , 2) : 1
11 // Enter the e l ement no (1 , 3) : 1
12 // Enter the e l ement no (2 , 1) : 1
13 // Enter the e l ement no (2 , 2) : 2
14 // Enter the e l ement no (2 , 3) : 1
15 // Enter the e l ement no (3 , 1) : 1
16 // Enter the e l ement no (3 , 2) : 1
17 // Enter the e l ement no (3 , 3) : 5
18 // Let Matr ix A i s A= [2 , 1 , 1 ; 1 , 2 , 1 ; 1 , 1 , 5] ;
19

20 clc

21 clear

22 //
∗∗∗

23 // Crea t i ng an input squa r e matr ix
24 //

∗∗∗

25 m = input(” Enter the d imens ion o f row o f squa r e
matr ix A: ”)

26

27 for i=1:m

28 for j=1:m

29 mprintf(” Enter the e l ement no (%d,%d) : ”,i,
j)

30 A(i,j)=input(””)
31 end

32 end

33

34 //
∗∗∗

35 // Crea t i ng i n i t i a l approx imat i on x0
36 //

∗∗∗

37 x=rand(m,1)

7

38

39 //
∗∗∗

40 // F ind ing sma l l e s t Eigen Value u s i n g I n v e r s e Power
Method

41 //
∗∗∗

42 z=1

43 f=1

44 y0=rand(m,1)

45 while(f >0.00001)

46 y1=inv(A)*y0

47 lowest=norm(y1 ,2)

48 y0=y1/lowest

49 f=abs(z-lowest)

50 z=lowest

51 end

52

53 disp(lowest , ’ Lowest e i g e n va lu e ’)
54 disp(y0, ’ Cor r e spond ing e i g e n v e c t o r ’)
55

56 //
∗∗∗

57 // F ind ing l a r g e s t Eigen Value u s i n g Power Method
58 //

∗∗∗

59 x0=rand(m,1)

60 y=1

61 d=1

62 while (d >0.00001)

63 x1=A*x0

64 highest=norm(x1 ,2)

65 x0=x1/highest

66 d=abs(y-highest)

8

67 y=highest

68 end

69 disp(highest , ’ L a r g e s t Eigen Value ’)
70 disp(x0, ’ Cor r e spond ing Eigen Vector ’)

9

Experiment: 2

Orthogonal Polynomials as
Eigenfunctions of Hermitian
differential operators

Scilab code Solution 2.0 Finite Difference Method

1 // Submitted by Dr . T r i r a n j i t a S r i v a s t a v a . A s s i s t a n t
P r o f e s s o r , Phy s i c s Dept . , Ka l i nd i Co l l e g e ,

Un i v e r s i t y o f De lh i
2

3 // Aim : To prove the o r t h o g o n a l i t y o f Hermit ian
d i f f e r e n t i a l Operator

4

5 // Two Hermit ian D i f f e r e n t i a l Ope ra to r s (− i d /dx) and
(−dˆ2/dx ˆ2) a r e taken as an example

6

7 // F i n i t e D i f f e r e n c e Method i s used to f o rmu l a t e the
ma t r i c e s c o r e s pond i ng to the c o n s i d e r e d

D i f f e r e n t i a l Operator
8

9 // This method t ak e s the va l u e o f e i g e n f u n c t i o n

10

Figure 2.1: Finite Difference Method

11

equa l to 0 at the i n i t i a l (x0) and f i n a l boundary
(xn) , and x i s d e f i n e d as x=x0+i ∗h (h i s s t e p

s i z e and i i s i n t e g e r)
10 // N i s the number o f i n t e r v a l , N shou ld be taken as

odd and such tha t s t e p s i z e i s sma l l enough f o r
h igh accu ra cy

11

12 // Using Cen t r a l D i f f e r e n c e s , t r i d i a g o n a l matr ix i s
ob ta i n ed f o r (−d/dx) which has 0 as d i a g on a l
e l ement and −1 as upper ad j a c en t d i a g on a l and 1
as l owe r ad j a c en t d i a g on a l e l emen t s ;

13

14 // S im i l a r l y , u s i n g Cen t r a l D i f f e r e n c e s , t r i d i a g o n a l
matr ix i s ob ta i n ed f o r (−dˆ2/dx ˆ2) which has 2
and −1 as upper and l owe r ad j a c en t d i a g ona l
e l emen t s

15

16

17

18 clear

19 clc

20 //
∗∗

21 // Boundary ove r which the f u n c t i o n i s to be s o l v e d
22 //

∗∗

23 x0=input(” Enter the f i r s t boundary , x0 = ”);
24 xn=input(” Enter the second boundary , xn = ”);
25 N = input(” Enter number o f i n t e r v a l s , N = ”);
26 h = (xn -x0)/N; // s t e p s i z e
27 s=input(” Enter c h o i c e 1 or 2 f o r d i f f e r e n t i a l

o p e r a t o r − i d /dx or −dˆ2/dx ˆ2 , r e s p e c t i v e l y : ”)
28

29 select s

30 case 1

31 //

12

∗∗

32 // De f i n i n g D1 Matr ix c o r r e s p ond i n g to
d i f f e r e n t i a l o p e r a t o r − i d /dx

33 //
∗∗

34 D1=zeros(N-1,N-1);

35

36 for i=1:(N-1)

37 x1(1,i)=x0+i*h;

38 D1(i,i)=0;

39 if i<(N-1)

40 D1(i,i+1)=-%i;

41 D1(i+1,i)=%i;

42 end

43 end

44 Final_D1=D1/2*h;

45

46 //
∗∗∗

47 // F ind ing e i g e n v a l u e and e i g e n v e c t o r o f
d i f f e r e n t i a l o p e r a t o r − i d /dx

48 //
∗∗∗

49 [eigenvector ,eigenvalue] = spec(Final_D1);

50

51 case 2

52 //
∗∗

53 // De f i n i n g D2 Matr ix c o r r e s p ond i n g to
d i f f e r e n t i a l o p e r a t o r −dˆ2/dxˆ2

54 //
∗∗

13

55

56 D2=zeros(N-1,N-1);

57

58 for i=1:(N-1)

59 x1(1,i)=x0+i*h;

60 D2(i,i)=2;

61 if i<(N-1)

62 D2(i,i+1)=-1;

63 D2(i+1,i)=-1;

64 end

65 end

66 Final_D2=D2/h^2;

67

68 //
∗∗∗

69 // F ind ing e i g e n v a l u e and e i g e n v e c t o r o f
d i f f e r e n t i a l o p e r a t o r −dˆ2/dxˆ2

70 //
∗∗∗

71 [eigenvector ,eigenvalue] = spec(Final_D2);

72 end

73

74 //
∗∗∗

75 // P l o t i n g o f f i r s t t h r e e E i g env e c t o r o f
d i f f e r e n t i a l o p e r a t o r −dˆ2/dxˆ2

76 //
∗∗∗

77

78 x=[x0 ,x1,xn];

79

80 if s==1 then

81 title(’ 3 Lowest Order E i g e n v e c t o r s o f − i d /dx
’ , ’ f o n t s i z e ’ ,4);

14

82 else

83 title(’ 3 Lowest Order E i g e n v e c t o r s o f −dˆ2/
dxˆ2 ’ , ’ f o n t s i z e ’ ,4);

84 end

85

86 for k = 1:3

87 subplot (3,1,k)

88 ylabel(’A (m) ’ , ’ f o n t s i z e ’ ,4)
89 a=get(” c u r r e n t a x e s ”);// ge t the hand le o f

the newly c r e a t e d axe s
90 a.font_size =2

91 t=get(” hd l ”) // ge t the hand le o f the newly
c r e a t e d o b j e c t

92 t.font_size =2;

93 E_vector = [0; eigenvector (:,k);0];

94 plot(x,E_vector ’, ’ l i n ew i d t h ’ ,2);
95 end

96 xlabel(’ x−c o o r d i n a t e (m) ’ , ’ f o n t s i z e ’ ,4)
97 //

∗∗∗

98 // Or thogona l i t y Check o f e i g e n v e c t o r o f
d i f f e r e n t i a l o p e r a t o r

99 //
∗∗∗

100 for i=1:3

101 for j=1:3

102 P(i,j) = clean(sum((eigenvector (:,i).*

conj(eigenvector (:,j)))));

103 if i~=j & P(i,j) ~=0

104 disp(” The E i g e n v e c t o r s o f the
c o n s i d e r e d Hermit ian D i f f e r e n t i a l
Operator a r e Not Orthogona l ”)

105 abort;

106 end

107 end

108 end

15

Figure 2.2: Finite Difference Method

109 disp(” The E i g e n v e c t o r s o f the c o n s i d e r e d
Hermit ian D i f f e r e n t i a l Operator a r e
Orthogona l ”)

16

Figure 2.3: Finite Difference Method

17

Experiment: 3

Determination of the principal
axes of moment of inertia
through diagonalization

Scilab code Solution 3.0 Diagonalization of matrix

1 // Submitted by Dr . T r i r a n j i t a S r i v a s t a v a . A s s i s t a n t
P r o f e s s o r , Phy s i c s Dept . , Ka l i nd i Co l l e g e ,

Un i v e r s i t y o f De lh i
2

3 // Aim : Dete rmina t i on o f the p r i n c i p a l axe s o f
moment o f i n e r t i a through d i a g o n a l i z a t i o n

4 // Example i s a Dumbell with masses ’m1 ’ and ’m2 ’
s i t u a t e d at po in t s , say c o o r d i n a t e s a r e (1 , 1 , 0)
and (−1 ,−1 ,0)

5

6 clear;

7 clc;

8 //
∗∗∗

9 // Funct ion f o r Kronecker De l ta
10 //

18

∗∗∗

11 function d=delta(i,j)

12 if i==j then

13 d=1;

14 else d=0;

15 end

16 endfunction

17

18 //
∗∗∗

19 // Input o f number o f p a r t i c l e s at d i s c r e t e p o i n t s
20 //

∗∗∗

21 n=input(’ e n t e r no . o f p a r t i c l e s ’)
22

23 r=zeros (3,3)

24 for i=1:n

25 mprintf(” Enter the mass (i n kg) at po i n t (%d) :
”,i)

26 M(i)=input(””)
27 mprintf(” Enter the p o s i t i o n (x , y , z) c o o r d i n a t e

at po i n t (%d) : ”,i)
28 for j =1:3

29 r(i,j)=input(””)
30 end

31 end

32

33 I=zeros (3,3)

34 for i=1:1:3

35 for j=1:1:3

36 for k=1:1:n

37 I(i,j)=I(i,j)+(M(k)*(sum(r(k,:) .^2)*

delta(i,j)-(r(k,i).*r(k,j))))

38 end

39 end

19

40 end

41 disp(”Moment o f I n e r t i a Tensor f o r g i v en problem i s :
”)

42 disp(I)

43 [ab ,x,bs]=bdiag(I);

44 disp(”Moment o f I n e r t i a Tensor a f t e r d i a g o n a l i z a t i o n
i s : ”)

45 disp(ab)

20

Figure 3.1: Diagonalization of matrix

21

Experiment: 4

Study of geodesics in Euclidean
and other spaces(surface of a
sphere, etc):Physics problem:
problem of refraction.

Scilab code Solution 4.0 Geodesic

1 // Submitted by Dr . T r i r a n j i t a S r i v a s t a v a . A s s i s t a n t
P r o f e s s o r , Phy s i c s Dept . , Ka l i nd i Co l l e g e ,

Un i v e r s i t y o f De lh i
2

3 // Aim : To study g e o d e s i c s i n Euc l i d ean and
C y l i n d r i c a l Po l a r c o o r d i n a t e System

4

5 clc;

6 clear;

22

Figure 4.1: Geodesic

Figure 4.2: Geodesic

23

Figure 4.3: Geodesic

7 //
//∗∗

8 // // Equat ion o f Geode s i c (s t r a i g h t l i n e) p a s s i n g
through two p o i n t s i n Euc l i d ean Geometry

9 //
//∗∗

10 x1=input (” Input x c o o r d i n a t e o f p o i n t A ”)
11 y1=input (” Input y c o o r d i n a t e o f p o i n t A ”)
12 x2=input (” Input x c o o r d i n a t e o f p o i n t B ”)
13 y2=input (” Input y c o o r d i n a t e o f p o i n t B ”)
14 x=[0 ,0.1 ,10]

15 m=(y2 -y1)/(x2 -x1);

16 y=y1+m*(x-x1);

17 scf()

18 xlabel(’ x−c o o r d i n a t e s ’ , ’ f o n t s i z e ’ ,5)
19 ylabel(’ y−c o o r d i n a t e s ’ , ’ f o n t s i z e ’ ,5)
20 title(’ Geode s i c i n Euc l i d ean Geometry ’ , ’ f o n t s i z e ’ ,5)
21 a=get(” c u r r e n t a x e s ”) // ge t the hand le o f the

newly c r e a t e d axe s
22 a.font_size =4

23 t=get(” hd l ”) // ge t the hand le o f the

24

newly c r e a t e d o b j e c t
24 t.font_size =5

25 plot(x,y, ’ l i n ew i d t h ’ ,3)
26 //

//∗∗∗

27 // // P l o t t i n g o f c y l i n d e r
28 //

//∗∗∗

29 a=5;

30 theta=linspace (0,2*%pi ,30)

31 z=linspace (0,30,30)

32 [theta ,z]= meshgrid(theta ,z)

33 x=a*cos(theta);

34 y=a*sin(theta);

35 scf()

36 surf(x,y,z, ’ f a c e c o l o r ’ , ’ g r e en ’ , ’ edge ’ , ’ wh i t e ’)
37

38 //
∗∗∗

39 // Equat ion o f Geode s i c (h e l i x) i n c y l i n d r i c a l
Coord ina t e System

40 //
∗∗∗

41 theta1=input (” Input angu l a r c o o r d i n a t e (i n d eg r e e)
o f p o i n t A ”)

42 z1=input (” Input z c o o r d i n a t e o f p o i n t A ”)
43 theta2=input (” Input angu l a r c o o r d i n a t e (i n d eg r e e)

o f p o i n t B ”)
44 z2=input (” Input z c o o r d i n a t e o f p o i n t B ”)
45 t1=theta1*%pi /180;

46 t2=theta2*%pi /180;

47 t=linspace(t1 ,t2 ,100)

48 z=z1+(z2-z1)*(t-t1)/(t2 -t1);

49 title(’ Geode s i c i n C y l i n d r i c a l Po la r Coord ina t e

25

System ’ , ’ f o n t s i z e ’ ,5)
50 param3d(a*cos(t), a*sin(t),z)

26

Experiment: 5

Application to solve differential
equations for a bound system –
Eigen value problem

Scilab code Solution 5.0 Finite Difference Method

1 // Submitted by Dr . T r i r a n j i t a S r i v a s t a v a . A s s i s t a n t
P r o f e s s o r , Phy s i c s Dept . , Ka l i nd i Co l l e g e ,

Un i v e r s i t y o f De lh i
2 // Operat ing system : Windows
3 //SCILAB Ver : 5 . 5 . 2
4

5 // Ob j e c t i v e : App l i c a t i o n to s o l v e d i f f e r e n t i a l
e q u a t i o n s f o r a bound system − Eigenva lu e Problem

6

7 // Example : Let us f i n d out the ene rgy e i g e n v a l u e s
and c o r r e s p ond i n g wave func t i on o f a p a r t i c l e o f
mass ’M’ t rapped in i n f i n i t e p o t e n t i a l Well (
p o t e n t i a l V=0) o f width ’L ’

8 //We implement F i n i t e D i f f e r e n c e Method (FDM) to
ob t a i n the e i g e n v a l u e s

9 // By u s i n g FDM the second o rd e r d i f f e r e n t i a l
o p e r a t o r i s r e p l a c e d by a t r i g o n a l matr ix and

27

the problem r edu c e s to a s imp l e e i g e n v l a u e
problem

10

11

12 clc

13 clear

14 h_cut =1.05457*10^ -34 // (P lancks
c on s t an t /2 p i) J−s

15 L=input(” Enter the width o f the p o t e n t i a l w e l l L (i n
m) = ”)

16 M=input(” Enter mass o f p a r t i c l e M (in kg) = ”)
17 n=250 // Number o f

d i v i s i o n s f o r FDM
18 N=(2*n)+1

19 x1=0 // I n i t i a l v a l u e
o f x−c o o r d i n a t e

20 s=(L-x1)/N // Step s i z e f o r
implement ing FDM

21 EV =6.242*10^18 // j o u l e to eV
c onv e r s i o n

22 //
∗∗

23 // Hami l ton ion Matr ix H=T+V; T=K in e t i c ene rgy
op e r a t o r (−dˆ2/dx ˆ2) ∗ h cu t ˆ2/2M) ; V= 0 (f o r
i n f i n i t e p o t e n t i a l w e l l)

24 //
∗∗

25 T=zeros(N-1,N-1)

26 for i=1:(N-1)

27 x1=x1+s

28 T(i,i)=2

29 if (i<(N-1))

30 T(i,i+1)=-1

31 T(i+1,i)=-1

32 end

33 end

28

34

35 H=(T*h_cut ^2*EV/(2*M*s^2)) //
Hami l ton ion Matr ix

36

37 //
∗∗∗

38 // F ind ing e i g e n v a l u e s and c o r r e s p ond i n g
wave f un c t i on s

39 //
∗∗∗

40 eigenvalues=spec(H)

41 disp(”The e i g e n v a l u e s (eV) o f t h r e e l owe s t s t a t e s
ob ta i n ed by FDM are ”)

42 disp(eigenvalues (1:3))

43 [U,z]=spec(H)

44

45 //
∗∗∗

46 // P l o t i i n g o f t h r e e l owe s t o rd e r wave f un c t i on s
47 //

∗∗∗

48 x=linspace(s,L,N-1) // c r e a t i n g
x−c o o r d i n a t e s f o r p o t e n t i a l w e l l

49 xlabel(’ x−c o o r d i n a t e (10ˆ−10 m) ’ , ’ f o n t s i z e ’ ,5)
50 ylabel(’ Wavefunct ion (a . u .) ’ , ’ f o n t s i z e ’ ,5)
51 title(’ Graph o f Wavefunct ion f o r t h r e e l owe s t o rd e r

mode ’ , ’ f o n t s i z e ’ ,5)
52 a=get(” c u r r e n t a x e s ”) // ge t the hand le o f the

newly c r e a t e d axe s
53 a.font_size =2

54 t=get(” hd l ”) // ge t the hand le o f the
newly c r e a t e d o b j e c t

55 t.font_size =5

56 plot(x*10^10 ,U(:,1) ’./max(U(:,1)), ’ r ’ , ’ l i n ew i d t h ’ ,3)

29

57 plot(x*10^10 ,U(:,2) ’./max(U(:,2)), ’ b ’ , ’ l i n ew i d t h ’ ,3)
58 plot(x*10^10 ,U(:,3) ’./max(U(:,3)), ’ g ’ , ’ l i n ew i d t h ’ ,3)
59 hl=legend ([’ Ground S t a t e ’ ; ’ I Exc i t ed S t a t e ’ ; ’ I I

Exc i t ed S t a t e ’],5)
60 h1.font_size =2

61

62 //
∗∗∗

63 // Comparison o f ob ta i n ed e i g e n v a l u e s with
a n a l y t i c a l s o l u t i o n

64 //
∗∗∗

65 disp(”The e i g e n v a l u e s (eV) o f t h r e e l owe s t s t a t e s
ob ta i n ed by a n a l y t i c a l r e s u l t s a r e ”)

66 for j=1:3

67 E(j)=j^2*%pi ^2* h_cut ^2*EV/(2*M*L^2)

68 disp (E(j))

69 end

30

Figure 5.1: Finite Difference Method

Figure 5.2: Finite Difference Method

31

Experiment: 6

Application to computer
graphics: Write operators for
shear, strain, 2D rotational
problems, Reflection,
Translation

Scilab code Solution 6.0 Computer Graphics

1 // Submitted by Dr . T r i r a n j i t a S r i v a s t a v a . A s s i s t a n t
P r o f e s s o r , Phy s i c s Dept . , Ka l i nd i Co l l e g e ,

Un i v e r s i t y o f De lh i
2

3 // Operat ing system : Windows 8
4 //SCILAB Ver : 5 . 5 . 2
5

6 // Ob j e c t i v e : To study computer g r a ph i c s .
7 // One can c r e a t e any o b j e c t o f c h o i c e and implement

v a r i o u s t r an f o rma t i on s , l i k e , Shear , S t r a i n , 2D
r o t a t i o n , R e f l e c t i o n , T ran s l a t i on ,

32

Figure 6.1: Computer Graphics

8

9 clc

10 clear

11 //
∗∗

12 // Crea t i on o f an o b j e c t (say , r e c t a n g l e)
13 //

∗∗

14 x=[0,5,5,0,0]

15 y=[0,0,3,3,0]

16 N=[x;y]

17

18 //
∗∗

19 //To Study Shear
20 //

∗∗

33

21 l=input(” Enter 1 , 2 or 3 f o r s h e a r a l ong x− ax i s , y−
a x i s or both ax i s , r e s p e c t i v e l y : ”)

22

23 figure (1)

24 xlabel(’ x−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
25 ylabel(’ y−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
26 a=get(” c u r r e n t a x e s ”) // ge t the hand le o f the

newly c r e a t e d axe s
27 a.font_size =4

28 t=get(” hd l ”) // ge t the hand le o f the
newly c r e a t e d o b j e c t

29 t.font_size =5

30

31 select l

32 case 1

33 // Trans f o rmat i on Matr ix f o r Shear p a r a l l e l
to x−a x i s

34 s=input(” Enter the va lu e o f s h e a r s = ”)
35 Sx=[1 s; 0 1]

36 S=Sx*N

37 title(’ Shear p a r a l l e l to x−a x i s ’ , ’ f o n t s i z e ’
,5)

38 a.data_bounds =[0 ,0;8 ,5]

39 case 2

40 // Trans f o rmat i on Matr ix f o r Shear p a r a l l e l
to y−a x i s

41 s=input(” Enter the va lu e o f s h e a r s = ”)
42 Sy=[1 0; s 1]

43 S=Sy*N

44 title(’ Shear p a r a l l e l to y−a x i s ’ , ’ f o n t s i z e ’
,5)

45 a.data_bounds =[0 ,0;6 ,8]

46 case 3

47 // Trans f o rmat i on Matr ix f o r Shear i n x and
y−d i r e c t i o n

48 sx=input(” Enter the va lu e o f s h e a r i n x−
d i r e c t i o n sx = ”)

49 sy=input(” Enter the va lu e o f s h e a r i n y−

34

d i r e c t i o n sy = ”)
50 Sxy =[1 sx; sy 1]

51 S=Sxy*N

52 title(’ Shear i n x and y d i r e c t i o n ’ , ’ f o n t s i z e
’ ,5)

53 a.data_bounds =[0 ,0;6 ,8]

54 end

55 plot(x,y, ’ l i n ew i d t h ’ ,3)
56 plot(S(1,:),S(2,:), ’−−r ’ , ’ l i n ew i d t h ’ ,3)
57 hl=legend ([’ o l d c o o r d i n a t e s ’ ; ’ new c o o r d i n a t e s ’])
58 h1.font_size =3

59

60

61 //
∗∗

62 //To Study S t r a i n
63 //

∗∗

64

65 p=input(” Enter 1 or 2 f o r s t r a i n a l ong x− a x i s or y−
ax i s , r e s p e c t i v e l y : ”)

66

67 figure (2)

68 xlabel(’ x−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
69 ylabel(’ y−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
70 a=get(” c u r r e n t a x e s ”); // ge t the hand le o f the

newly c r e a t e d axe s
71 a.font_size =4

72 t=get(” hd l ”) // ge t the hand le o f the newly c r e a t e d
o b j e c t

73 t.font_size =5;

74

75 select p

76 case 1

77 // Trans f o rmat i on Matr ix f o r S t r a i n a l ong x−
a x i s

35

78 stx=input(” Enter the va lu e o f s t r a i n s t x = ”
)

79 Str_x=[stx 0; 0 1]

80 ST=Str_x*N;

81 title(’ S t r a i n a l ong x−a x i s ’ , ’ f o n t s i z e ’ ,5);
82 a.data_bounds =[0 ,0;8 ,5];

83 case 2

84 // Trans f o rmat i on Matr ix f o r s t r a i n a l ong y−
a x i s

85 sty=input(” Enter the va lu e o f s t r a i n s t y = ”
)

86 Str_y =[1 0; 0 sty]

87 ST=Str_y*N;

88 title(’ S t r a i n a l ong y−a x i s ’ , ’ f o n t s i z e ’ ,5);
89 a.data_bounds =[0 ,0;6 ,8];

90 end

91 plot(x,y, ’ l i n ew i d t h ’ ,3);
92 plot(ST(1,:),ST(2,:), ’−−r ’ , ’ l i n ew i d t h ’ ,3)
93 hl=legend ([’ o l d c o o r d i n a t e s ’ ; ’ new c o o r d i n a t e s ’]);
94 h1.font_size =3

95

96

97

98 //
∗∗

99 //To Study 2D Rota t i on
100 //

∗∗

101

102 k=input(” Enter 1 or 2 f o r 2D Rota t i on i n c l o c kw i s e
and a n t i c l o c kw i s e d i r e c t i o n , r e s p e c t i v e l y : ”)

103 th=input(” Enter the r e q u i r e d ang l e f o r r o t a t i o n th (
i n d eg r e e) = ”)

104 figure (3)

105 xlabel(’ x−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
106 ylabel(’ y−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)

36

107 a=get(” c u r r e n t a x e s ”);// ge t the hand le o f the newly
c r e a t e d axes

108 a.font_size =4

109 t=get(” hd l ”) // ge t the hand le o f the newly c r e a t e d
o b j e c t

110 t.font_size =5;

111

112 select k

113 case 1

114 // Trans f o rmat i on Matr ix f o r Rota t i on i n
c l o c kw i s e d i r e c t i o n

115 Cl=[cosd(th),sind(th);-sind(th),cosd(th)]

116 Rot=Cl*N;

117 title(’ Rota t i on i n c l o c kw i s e d i r e c t i o n ’ , ’
f o n t s i z e ’ ,5);

118 a.data_bounds =[0 ,0;8 ,5];

119 case 2

120 // Trans f o rmat i on Matr ix f o r Rota t i on i n
a n t i c l o c kw i s e d i r e c t i o n

121 Anti=[cosd(th),-sind(th);sind(th),cosd(th)]

122 Rot=Anti*N;

123 title(’ Rota t i on i n a n t i c l o c kw i s e d i r e c t i o n ’ ,
’ f o n t s i z e ’ ,5);

124 a.data_bounds =[0 ,0;6 ,8];

125 end

126 plot(x,y, ’ l i n ew i d t h ’ ,3);
127 plot(Rot(1,:),Rot(2,:), ’−−r ’ , ’ l i n ew i d t h ’ ,3)
128 hl=legend ([’ o l d c o o r d i n a t e s ’ ; ’ new c o o r d i n a t e s ’]);
129 h1.font_size =3

130

131 //
∗∗

132 //To Study the r e f l e c t i o n
133 //

∗∗

134 j=input(” Enter 1 , 2 or 3 f o r r e f l e c t i o n about x−

37

ax i s , y−a x i s or o r i g i n , r e s p e c t i v e l y : ”)
135

136 figure (4)

137 xlabel(’ x−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
138 ylabel(’ y−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
139

140 a=get(” c u r r e n t a x e s ”);// ge t the hand le o f the newly
c r e a t e d axes

141 a.font_size =4

142 t=get(” hd l ”) // ge t the hand le o f the newly c r e a t e d
o b j e c t

143 t.font_size =5;

144 select j

145 case 1

146 // Trans f o rmat i on Matr ix f o r R e f l e c t i o n about x−
a x i s

147 Rx=[1 0; 0 -1]

148 R=Rx*N;

149 title(’ R e f l e c t i o n about x−a x i s ’ , ’ f o n t s i z e ’
,5);

150 a.data_bounds =[0, -4;6,4];

151 case 2

152 // Trans f o rmat i on Matr ix f o r R e f l e c t i o n about y−
a x i s

153 Ry=[-1 0; 0 1]

154 R=Ry*N;

155 title(’ R e f l e c t i o n about y−a x i s ’ , ’ f o n t s i z e ’
,5);

156 a.data_bounds =[0 ,0;8 ,4];

157 case 3

158 // Trans f o rmat i on Matr ix f o r R e f l e c t i o n about
o r i g i n

159 Rxy=[-1 0; 0 -1]

160 R=Rxy*N;

161 title(’ R e f l e c t i o n about o r i g i n ’ , ’ f o n t s i z e ’
,5);

162 a.data_bounds =[-8,-5;8,5];

163 end

38

164

165 plot(x,y, ’ l i n ew i d t h ’ ,3);
166 plot(R(1,:),R(2,:), ’−−r ’ , ’ l i n ew i d t h ’ ,3)
167 hl=legend ([’ o l d c o o r d i n a t e s ’ ; ’ new c o o r d i n a t e s ’]);
168 h1.font_size =5

169

170 //
∗∗

171 //To Study t r a n s l a t i o n
172 //

∗∗

173 i=input(” Enter 1 , 2 or 3 f o r t r a n s l a t i o n a l ong x−
ax i s , y−a x i s or both d i r e c t i o n s , r e s p e c t i v e l y : ”)

174

175 figure (5)

176 xlabel(’ x−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
177 ylabel(’ y−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
178 a=get(” c u r r e n t a x e s ”); // ge t the hand le o f the

newly c r e a t e d axe s
179 a.font_size =4

180 t=get(” hd l ”) // ge t the hand le o f the newly c r e a t e d
o b j e c t

181 t.font_size =5;

182

183 select i

184 case 1

185 // Trans f o rmat i on Matr ix f o r t r a n s l a t i o n
a l ong to x−a x i s

186 tx=input(” Enter the r e q u i r e d t r a n s l a t i o n
a l ong x d i r e c t i o n tx = ”)

187 T1=[ones(1,length(x));zeros(1,length(x))];

188 X=N+tx*T1;

189 title(’ T r a n s l a t i o n a l ong to x−a x i s ’ , ’
f o n t s i z e ’ ,5);

190 a.data_bounds =[0 ,0;8 ,5];

191 case 2

39

192 // Trans f o rmat i on Matr ix f o r t r a n s l a t i o n
a l ong to y−a x i s

193 ty=input(” Enter the the r e q u i r e d t r a n s l a t i o n
a l ong x d i r e c t i o n ty = ”)

194 T1=[zeros(1,length(x));ones(1,length(x))];

195 X=N+ty*T1;

196 title(’ T r a n s l a t i o n a l ong to y−a x i s ’ , ’
f o n t s i z e ’ ,5);

197 a.data_bounds =[0 ,0;6 ,8];

198 case 3

199 // Trans f o rmat i on Matr ix f o r t r a n s l a t i o n
a l ong to y−a x i s

200 tx=input(” Enter the r e q u i r e d t r a n s l a t i o n
a l ong x d i r e c t i o n tx = ”)

201 ty=input(” Enter the r e q u i r e d t r a n s l a t i o n
a l ong y d i r e c t i o n ty = ”)

202 T1=[ones(1,length(x));zeros(1,length(x))];

203 T2=[zeros(1,length(x));ones(1,length(x))];

204 X=N+tx*T1+ty*T2;

205 title(’ T r a n s l a t i o n a l ong to y−a x i s ’ , ’
f o n t s i z e ’ ,5);

206 a.data_bounds =[0 ,0;6 ,8];

207 end

208 plot(x,y, ’ l i n ew i d t h ’ ,3);
209 plot(X(1,:),X(2,:), ’−−r ’ , ’ l i n ew i d t h ’ ,3)
210 hl=legend ([’ o l d c o o r d i n a t e s ’ ; ’ new c o o r d i n a t e s ’]);
211 h1.font_size =3

40

Figure 6.2: Computer Graphics

41

Figure 6.3: Computer Graphics

42

Figure 6.4: Computer Graphics

43

Figure 6.5: Computer Graphics

44

Figure 6.6: Computer Graphics

45

Experiment: 7

Lagrangian formulation in
classical mechanics with
constraints.

Scilab code Solution 7.0 Lagrangian Formulation

1 // Submitted by Dr . T r i r a n j i t a S r i v a s t a v a . A s s i s t a n t
P r o f e s s o r , Phy s i c s Dept . , Ka l i nd i Co l l e g e ,

Un i v e r s i t y o f De lh i
2

3 // Operat ing system : Windows 8
4 //SCILAB Ver : 5 . 5 . 2
5 // Ob j e c t i v : Lagrang ian f o rmu l a t i o n i n c l a s s i c a l

mechan ics with c o n s t r a i n t s
6 //Example : S imple Pendulum o f l e n g t h L (m) op e r a t i n g

i n g r a v i t a t i o n a l f i e l d . A f t e r app l y i ng
Lagrang ian f o rmu l a t i o n t h i s problem r edu c e s to a
s imp l e second o rd e r d i f f e r e n t i a l e qua t i on [(dˆ2
th e t a / dt ˆ2)+(g/L) s i n (t h e t a)]=0 . Here th e t a i s
angu l a r d i s p l a c emen t .

7 // We implemented o rd i n a r y d i f f e r e n t i a l e qua t i on (
ODE) So l v e r to s o l v e the second o rd e r
d i f f e r e n t i a l e qua t i on

46

8 //We p r e s e n t p l o t o f s o l u t i o n o f angu l a r
d i s p l a c emen t f o r t=0 to t=10 s e cond s

9

10 clear

11 clc

12 L=input (’ Enter the l e n g t h o f pendulum (m) L = ’)
13 g = 9.8 // a c c e l e r a t i o n due to

g r a v i t y (m/ s ˆ2)
14 k=g/L

15 theta=input(’ Enter the i n i t i a l angu l a r d i s p l a c emen t
(r ad i an) at (t = 0) = ’) ; // I n i t i a l
angu l a r d i s p l a c emen t at t = 0

16 dt=input(’ Enter i n i t i a l d t h e t a / dt (r ad i an) at (t =
0) = ’) ; // I n i t i a l boundary c o n d i t i o n
d t h e t a / dt at t = 0

17 //
//∗∗

18 // // Funct ion d e c l a r a t i o n f o r ODE
19 //

//∗∗

20 t=linspace (0 ,10 ,200)

21 function dx=f(t,x,k)

22 dx(1)=x(2)

23 dx(2)=-k*sin(x(1))

24 endfunction

25 //
//∗∗

26 // // So l v i n g second o rd e r d i f f e r e n t i a l e qua t i on by
ODE s o l v e r

27 //
//∗∗

28 y=ode([theta;dt],0,t,f)

29 ysol=y(1,:)

30 ydotsol = y(2,:)

47

31

32 //
//∗∗

33 // // P l o t t i n g the s o l u t i o n (angu l a r d i s p l a c emen t (
t h e t a) and d th e t a / dt)

34 //
//∗∗

35 scf()

36 title(’ S o l u t i o n o f S imple Pendulum ’ , ’ f o n t s i z e ’ ,5)
37 ylabel(’ S o l u t i o n −−−> ’ , ’ f o n t s i z e ’ ,5)
38 xlabel(’ t (s e c) −−−> ’ , ’ f o n t s i z e ’ ,5)
39 a=get(” c u r r e n t a x e s ”) // ge t the hand le o f the

newly c r e a t e d axe s
40 a.font_size =4

41 t=get(” hd l ”) // ge t the hand le o f the
newly c r e a t e d o b j e c t

42 t.font_size =5

43 plot(t,ysol , ’ r ’ , ’ l i n ew i d t h ’ ,3)
44 plot(t,ydotsol , ’ k ’ , ’ l i n ew i d t h ’ ,3)
45 h1 = legend ([’ $\ t h e t a$ ’ ; ’ $d\ t h e t a / dt$ ’])
46 h1.font_size =3

48

Figure 7.1: Lagrangian Formulation

Figure 7.2: Lagrangian Formulation

49

Experiment: 8

Vector-space of wave functions
in Quantum-Mech: Position
and Momentum differential
operators and their
commutator, wave function

Scilab code Solution 8.0 Hermitian Differential Op

1 // Submitted by Dr . T r i r a n j i t a S r i v a s t a v a . A s s i s t a n t
P r o f e s s o r , Phy s i c s Dept . , Ka l i nd i Co l l e g e ,

Un i v e r s i t y o f De lh i
2

3 // Aim : To show the commutator r e l a t i o n i n p o s t i o n
and momentum space [x , p]= i h c u t or n g e n e r a l [xˆn
, p]= i ∗ h cu t ∗n∗x ˆ(n−1)

4 // Two examples a r e shown in t h i s program
5 // 1 . Let the f i r s t f u n c t i o n i s f x=x
6 // 2 . Let the second f u n c t i o n i s f x=xˆ3
7 // For s i m p l i c i t y l e t the wave func t i on A=x
8 // [fx , p]=(i h c u t) (d fx /dx)
9 // h cu t=h/2 p i ; h i s p l anck c on s t an t

50

10

11

12 clc

13 x=poly(0,”x”)
14 h_cut =1.05*(10) ^-34 // h cu t=h/2 pi ,

u n i t s i s i n Jou le−s e c
15 A=x // Cons ide r ed

Wavefunct ion i s A=x
16

17 s=input(” Enter 1 or 2 to choo s e the f u n c t i o n as f x =
x or f x = x ˆ3 , s= ”)

18 select s

19 case 1

20 fx=x // F i r s t
wave func t i on

21 case 2

22 fx=x^3 // Second wave func t i on
23 end

24

25 fx_p=fx*(-%i*h_cut)*derivat(A)

26 p_fx=(-%i*h_cut)*derivat(fx*A)

27 commutator =(fx_p -p_fx)

28 disp(” [fx , p] = ”)
29 disp(commutator)

30 disp (”The r e s u l t c o n t a i n s an ex t r a x because the
chosen wave func t i on i s A = x”)

51

Figure 8.1: Hermitian Differential Op

52

Figure 8.2: Hermitian Differential Op

53

	
	Linear algebra: Power and Inverse Power methods for finding largest and smallest Eigenvalue and eigenvectors of matrices
	Orthogonal Polynomials as Eigenfunctions of Hermitian differential operators
	Determination of the principal axes of moment of inertia through diagonalization
	Study of geodesics in Euclidean and other spaces(surface of a sphere, etc):Physics problem: problem of refraction.
	Application to solve differential equations for a bound system – Eigen value problem
	Application to computer graphics: Write operators for shear, strain, 2D rotational problems, Reflection, Translation
	Lagrangian formulation in classical mechanics with constraints.
	Vector-space of wave functions in Quantum-Mech: Position and Momentum differential operators and their commutator, wave function

