
Scilab Manual for
Advanced Mathematical Physics-I

by Dr Triranjita Srivastava
Physics

Kalindi College, University Of Delhi1

Solutions provided by
Dr Triranjita Srivastava

Physics
Kalindi College, University Of Delhi

January 29, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in



1



Contents

List of Scilab Solutions 3

1 Linear algebra: Power and Inverse Power methods for find-
ing largest and smallest Eigenvalue and eigenvectors of ma-
trices 5

2 Orthogonal Polynomials as Eigenfunctions of Hermitian dif-
ferential operators 10

3 Determination of the principal axes of moment of inertia
through diagonalization 18

4 Study of geodesics in Euclidean and other spaces(surface of
a sphere, etc):Physics problem: problem of refraction. 22

5 Application to solve differential equations for a bound sys-
tem – Eigen value problem 27

6 Application to computer graphics: Write operators for shear,
strain, 2D rotational problems, Reflection, Translation 32

7 Lagrangian formulation in classical mechanics with constraints. 46

8 Vector-space of wave functions in Quantum-Mech: Position
and Momentum differential operators and their commuta-
tor, wave function 50

2



List of Experiments

Solution 1.01 Power and Inverse Power Method . . . . . . . . . 5
Solution 2.0 Finite Difference Method . . . . . . . . . . . . . . 10
Solution 3.0 Diagonalization of matrix . . . . . . . . . . . . . . 18
Solution 4.0 Geodesic . . . . . . . . . . . . . . . . . . . . . . 22
Solution 5.0 Finite Difference Method . . . . . . . . . . . . . . 27
Solution 6.0 Computer Graphics . . . . . . . . . . . . . . . . 32
Solution 7.0 Lagrangian Formulation . . . . . . . . . . . . . . 46
Solution 8.0 Hermitian Differential Op . . . . . . . . . . . . . 50

3



List of Figures

1.1 Power and Inverse Power Method . . . . . . . . . . . . . . . 6

2.1 Finite Difference Method . . . . . . . . . . . . . . . . . . . . 11
2.2 Finite Difference Method . . . . . . . . . . . . . . . . . . . . 16
2.3 Finite Difference Method . . . . . . . . . . . . . . . . . . . . 17

3.1 Diagonalization of matrix . . . . . . . . . . . . . . . . . . . 21

4.1 Geodesic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Geodesic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Geodesic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Finite Difference Method . . . . . . . . . . . . . . . . . . . . 31
5.2 Finite Difference Method . . . . . . . . . . . . . . . . . . . . 31

6.1 Computer Graphics . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Computer Graphics . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Computer Graphics . . . . . . . . . . . . . . . . . . . . . . 42
6.4 Computer Graphics . . . . . . . . . . . . . . . . . . . . . . 43
6.5 Computer Graphics . . . . . . . . . . . . . . . . . . . . . . 44
6.6 Computer Graphics . . . . . . . . . . . . . . . . . . . . . . 45

7.1 Lagrangian Formulation . . . . . . . . . . . . . . . . . . . . 49
7.2 Lagrangian Formulation . . . . . . . . . . . . . . . . . . . . 49

8.1 Hermitian Differential Op . . . . . . . . . . . . . . . . . . . 52
8.2 Hermitian Differential Op . . . . . . . . . . . . . . . . . . . 53

4



Experiment: 1

Linear algebra: Power and
Inverse Power methods for
finding largest and smallest
Eigenvalue and eigenvectors of
matrices

Scilab code Solution 1.01 Power and Inverse Power Method

1 // Operat ing system : Windows 8
2 //SCILAB Ver : 5 . 5 . 2
3 // Expriment No . 1
4 // Ob j e c t i v e : Det e rmina t i on o f l a r g e s t and sma l l e s t (

i n magnitude ) Eigen va lu e &
5 // Eigen Vec to r s Using Power Method and I n v e r s e Power

Method r e s p e c t i v e l y .
6

7

8 // Enter the no d imens ion o f a sqau r e o f matr ix A: 3
9 // Enter the e l ement no ( 1 , 1 ) : 2
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Figure 1.1: Power and Inverse Power Method
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10 // Enter the e l ement no ( 1 , 2 ) : 1
11 // Enter the e l ement no ( 1 , 3 ) : 1
12 // Enter the e l ement no ( 2 , 1 ) : 1
13 // Enter the e l ement no ( 2 , 2 ) : 2
14 // Enter the e l ement no ( 2 , 3 ) : 1
15 // Enter the e l ement no ( 3 , 1 ) : 1
16 // Enter the e l ement no ( 3 , 2 ) : 1
17 // Enter the e l ement no ( 3 , 3 ) : 5
18 // Let Matr ix A i s A= [ 2 , 1 , 1 ; 1 , 2 , 1 ; 1 , 1 , 5 ] ;
19

20 clc

21 clear

22 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

23 // Crea t i ng an input squa r e matr ix
24 //

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

25 m = input(” Enter the d imens ion o f row o f squa r e
matr ix A: ”)

26

27 for i=1:m

28 for j=1:m

29 mprintf(” Enter the e l ement no (%d,%d) : ”,i,
j)

30 A(i,j)=input(””)
31 end

32 end

33

34 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

35 // Crea t i ng i n i t i a l approx imat i on x0
36 //

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

37 x=rand(m,1)
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38

39 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

40 // F ind ing sma l l e s t Eigen Value u s i n g I n v e r s e Power
Method

41 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

42 z=1

43 f=1

44 y0=rand(m,1)

45 while(f >0.00001)

46 y1=inv(A)*y0

47 lowest=norm(y1 ,2)

48 y0=y1/lowest

49 f=abs(z-lowest)

50 z=lowest

51 end

52

53 disp(lowest , ’ Lowest e i g e n va lu e ’ )
54 disp(y0, ’ Cor r e spond ing e i g e n v e c t o r ’ )
55

56 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

57 // F ind ing l a r g e s t Eigen Value u s i n g Power Method
58 //

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

59 x0=rand(m,1)

60 y=1

61 d=1

62 while (d >0.00001)

63 x1=A*x0

64 highest=norm(x1 ,2)

65 x0=x1/highest

66 d=abs(y-highest)
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67 y=highest

68 end

69 disp(highest , ’ L a r g e s t Eigen Value ’ )
70 disp(x0, ’ Cor r e spond ing Eigen Vector ’ )
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Experiment: 2

Orthogonal Polynomials as
Eigenfunctions of Hermitian
differential operators

Scilab code Solution 2.0 Finite Difference Method

1 // Submitted by Dr . T r i r a n j i t a S r i v a s t a v a . A s s i s t a n t
P r o f e s s o r , Phy s i c s Dept . , Ka l i nd i Co l l e g e ,

Un i v e r s i t y o f De lh i
2

3 // Aim : To prove the o r t h o g o n a l i t y o f Hermit ian
d i f f e r e n t i a l Operator

4

5 // Two Hermit ian D i f f e r e n t i a l Ope ra to r s (− i d /dx ) and
(−dˆ2/dx ˆ2) a r e taken as an example

6

7 // F i n i t e D i f f e r e n c e Method i s used to f o rmu l a t e the
ma t r i c e s c o r e s pond i ng to the c o n s i d e r e d

D i f f e r e n t i a l Operator
8

9 // This method t ak e s the va l u e o f e i g e n f u n c t i o n
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Figure 2.1: Finite Difference Method
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equa l to 0 at the i n i t i a l ( x0 ) and f i n a l boundary
( xn ) , and x i s d e f i n e d as x=x0+i ∗h ( h i s s t e p

s i z e and i i s i n t e g e r )
10 // N i s the number o f i n t e r v a l , N shou ld be taken as

odd and such tha t s t e p s i z e i s sma l l enough f o r
h igh accu ra cy

11

12 // Using Cen t r a l D i f f e r e n c e s , t r i d i a g o n a l matr ix i s
ob ta i n ed f o r (−d/dx ) which has 0 as d i a g on a l
e l ement and −1 as upper ad j a c en t d i a g on a l and 1
as l owe r ad j a c en t d i a g on a l e l emen t s ;

13

14 // S im i l a r l y , u s i n g Cen t r a l D i f f e r e n c e s , t r i d i a g o n a l
matr ix i s ob ta i n ed f o r (−dˆ2/dx ˆ2) which has 2
and −1 as upper and l owe r ad j a c en t d i a g ona l
e l emen t s

15

16

17

18 clear

19 clc

20 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

21 // Boundary ove r which the f u n c t i o n i s to be s o l v e d
22 //

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

23 x0=input(” Enter the f i r s t boundary , x0 = ”);
24 xn=input(” Enter the second boundary , xn = ”);
25 N = input(” Enter number o f i n t e r v a l s , N = ”);
26 h = (xn -x0)/N; // s t e p s i z e
27 s=input(” Enter c h o i c e 1 or 2 f o r d i f f e r e n t i a l

o p e r a t o r − i d /dx or −dˆ2/dx ˆ2 , r e s p e c t i v e l y : ”)
28

29 select s

30 case 1

31 //
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

32 // De f i n i n g D1 Matr ix c o r r e s p ond i n g to
d i f f e r e n t i a l o p e r a t o r − i d /dx

33 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

34 D1=zeros(N-1,N-1);

35

36 for i=1:(N-1)

37 x1(1,i)=x0+i*h;

38 D1(i,i)=0;

39 if i<(N-1)

40 D1(i,i+1)=-%i;

41 D1(i+1,i)=%i;

42 end

43 end

44 Final_D1=D1/2*h;

45

46 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

47 // F ind ing e i g e n v a l u e and e i g e n v e c t o r o f
d i f f e r e n t i a l o p e r a t o r − i d /dx

48 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

49 [eigenvector ,eigenvalue] = spec(Final_D1);

50

51 case 2

52 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

53 // De f i n i n g D2 Matr ix c o r r e s p ond i n g to
d i f f e r e n t i a l o p e r a t o r −dˆ2/dxˆ2

54 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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55

56 D2=zeros(N-1,N-1);

57

58 for i=1:(N-1)

59 x1(1,i)=x0+i*h;

60 D2(i,i)=2;

61 if i<(N-1)

62 D2(i,i+1)=-1;

63 D2(i+1,i)=-1;

64 end

65 end

66 Final_D2=D2/h^2;

67

68 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

69 // F ind ing e i g e n v a l u e and e i g e n v e c t o r o f
d i f f e r e n t i a l o p e r a t o r −dˆ2/dxˆ2

70 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

71 [eigenvector ,eigenvalue] = spec(Final_D2);

72 end

73

74 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

75 // P l o t i n g o f f i r s t t h r e e E i g env e c t o r o f
d i f f e r e n t i a l o p e r a t o r −dˆ2/dxˆ2

76 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

77

78 x=[x0 ,x1,xn];

79

80 if s==1 then

81 title( ’ 3 Lowest Order E i g e n v e c t o r s o f − i d /dx
’ , ’ f o n t s i z e ’ ,4);
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82 else

83 title( ’ 3 Lowest Order E i g e n v e c t o r s o f −dˆ2/
dxˆ2 ’ , ’ f o n t s i z e ’ ,4);

84 end

85

86 for k = 1:3

87 subplot (3,1,k)

88 ylabel( ’A (m) ’ , ’ f o n t s i z e ’ ,4)
89 a=get(” c u r r e n t a x e s ”);// ge t the hand le o f

the newly c r e a t e d axe s
90 a.font_size =2

91 t=get(” hd l ”) // ge t the hand le o f the newly
c r e a t e d o b j e c t

92 t.font_size =2;

93 E_vector = [0; eigenvector (:,k);0];

94 plot(x,E_vector ’, ’ l i n ew i d t h ’ ,2);
95 end

96 xlabel( ’ x−c o o r d i n a t e (m) ’ , ’ f o n t s i z e ’ ,4)
97 //

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

98 // Or thogona l i t y Check o f e i g e n v e c t o r o f
d i f f e r e n t i a l o p e r a t o r

99 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

100 for i=1:3

101 for j=1:3

102 P(i,j) = clean(sum(( eigenvector (:,i).*

conj(eigenvector (:,j)))));

103 if i~=j & P(i,j) ~=0

104 disp(” The E i g e n v e c t o r s o f the
c o n s i d e r e d Hermit ian D i f f e r e n t i a l
Operator a r e Not Orthogona l ”)

105 abort;

106 end

107 end

108 end
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Figure 2.2: Finite Difference Method

109 disp(” The E i g e n v e c t o r s o f the c o n s i d e r e d
Hermit ian D i f f e r e n t i a l Operator a r e
Orthogona l ”)
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Figure 2.3: Finite Difference Method
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Experiment: 3

Determination of the principal
axes of moment of inertia
through diagonalization

Scilab code Solution 3.0 Diagonalization of matrix

1 // Submitted by Dr . T r i r a n j i t a S r i v a s t a v a . A s s i s t a n t
P r o f e s s o r , Phy s i c s Dept . , Ka l i nd i Co l l e g e ,

Un i v e r s i t y o f De lh i
2

3 // Aim : Dete rmina t i on o f the p r i n c i p a l axe s o f
moment o f i n e r t i a through d i a g o n a l i z a t i o n

4 // Example i s a Dumbell with masses ’m1 ’ and ’m2 ’
s i t u a t e d at po in t s , say c o o r d i n a t e s a r e ( 1 , 1 , 0 )
and (−1 ,−1 ,0)

5

6 clear;

7 clc;

8 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

9 // Funct ion f o r Kronecker De l ta
10 //
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

11 function d=delta(i,j)

12 if i==j then

13 d=1;

14 else d=0;

15 end

16 endfunction

17

18 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

19 // Input o f number o f p a r t i c l e s at d i s c r e t e p o i n t s
20 //

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

21 n=input( ’ e n t e r no . o f p a r t i c l e s ’ )
22

23 r=zeros (3,3)

24 for i=1:n

25 mprintf(” Enter the mass ( i n kg ) at po i n t (%d) :
”,i)

26 M(i)=input(””)
27 mprintf(” Enter the p o s i t i o n ( x , y , z ) c o o r d i n a t e

at po i n t (%d) : ”,i)
28 for j =1:3

29 r(i,j)=input(””)
30 end

31 end

32

33 I=zeros (3,3)

34 for i=1:1:3

35 for j=1:1:3

36 for k=1:1:n

37 I(i,j)=I(i,j)+(M(k)*(sum(r(k,:) .^2)*

delta(i,j)-(r(k,i).*r(k,j))))

38 end

39 end
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40 end

41 disp(”Moment o f I n e r t i a Tensor f o r g i v en problem i s :
”)

42 disp(I)

43 [ab ,x,bs]=bdiag(I);

44 disp(”Moment o f I n e r t i a Tensor a f t e r d i a g o n a l i z a t i o n
i s : ”)

45 disp(ab)
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Figure 3.1: Diagonalization of matrix
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Experiment: 4

Study of geodesics in Euclidean
and other spaces(surface of a
sphere, etc):Physics problem:
problem of refraction.

Scilab code Solution 4.0 Geodesic

1 // Submitted by Dr . T r i r a n j i t a S r i v a s t a v a . A s s i s t a n t
P r o f e s s o r , Phy s i c s Dept . , Ka l i nd i Co l l e g e ,

Un i v e r s i t y o f De lh i
2

3 // Aim : To study g e o d e s i c s i n Euc l i d ean and
C y l i n d r i c a l Po l a r c o o r d i n a t e System

4

5 clc;

6 clear;
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Figure 4.1: Geodesic

Figure 4.2: Geodesic
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Figure 4.3: Geodesic

7 //
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

8 // // Equat ion o f Geode s i c ( s t r a i g h t l i n e ) p a s s i n g
through two p o i n t s i n Euc l i d ean Geometry

9 //
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

10 x1=input (” Input x c o o r d i n a t e o f p o i n t A ”)
11 y1=input (” Input y c o o r d i n a t e o f p o i n t A ”)
12 x2=input (” Input x c o o r d i n a t e o f p o i n t B ”)
13 y2=input (” Input y c o o r d i n a t e o f p o i n t B ”)
14 x=[0 ,0.1 ,10]

15 m=(y2 -y1)/(x2 -x1);

16 y=y1+m*(x-x1);

17 scf()

18 xlabel( ’ x−c o o r d i n a t e s ’ , ’ f o n t s i z e ’ ,5)
19 ylabel( ’ y−c o o r d i n a t e s ’ , ’ f o n t s i z e ’ ,5)
20 title( ’ Geode s i c i n Euc l i d ean Geometry ’ , ’ f o n t s i z e ’ ,5)
21 a=get(” c u r r e n t a x e s ”) // ge t the hand le o f the

newly c r e a t e d axe s
22 a.font_size =4

23 t=get(” hd l ”) // ge t the hand le o f the

24



newly c r e a t e d o b j e c t
24 t.font_size =5

25 plot(x,y, ’ l i n ew i d t h ’ ,3)
26 //

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

27 // // P l o t t i n g o f c y l i n d e r
28 //

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

29 a=5;

30 theta=linspace (0,2*%pi ,30)

31 z=linspace (0,30,30)

32 [theta ,z]= meshgrid(theta ,z)

33 x=a*cos(theta);

34 y=a*sin(theta);

35 scf()

36 surf(x,y,z, ’ f a c e c o l o r ’ , ’ g r e en ’ , ’ edge ’ , ’ wh i t e ’ )
37

38 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

39 // Equat ion o f Geode s i c ( h e l i x ) i n c y l i n d r i c a l
Coord ina t e System

40 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

41 theta1=input (” Input angu l a r c o o r d i n a t e ( i n d eg r e e )
o f p o i n t A ”)

42 z1=input (” Input z c o o r d i n a t e o f p o i n t A ”)
43 theta2=input (” Input angu l a r c o o r d i n a t e ( i n d eg r e e )

o f p o i n t B ”)
44 z2=input (” Input z c o o r d i n a t e o f p o i n t B ”)
45 t1=theta1*%pi /180;

46 t2=theta2*%pi /180;

47 t=linspace(t1 ,t2 ,100)

48 z=z1+(z2-z1)*(t-t1)/(t2 -t1);

49 title( ’ Geode s i c i n C y l i n d r i c a l Po la r Coord ina t e

25



System ’ , ’ f o n t s i z e ’ ,5)
50 param3d(a*cos(t), a*sin(t),z)
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Experiment: 5

Application to solve differential
equations for a bound system –
Eigen value problem

Scilab code Solution 5.0 Finite Difference Method

1 // Submitted by Dr . T r i r a n j i t a S r i v a s t a v a . A s s i s t a n t
P r o f e s s o r , Phy s i c s Dept . , Ka l i nd i Co l l e g e ,

Un i v e r s i t y o f De lh i
2 // Operat ing system : Windows
3 //SCILAB Ver : 5 . 5 . 2
4

5 // Ob j e c t i v e : App l i c a t i o n to s o l v e d i f f e r e n t i a l
e q u a t i o n s f o r a bound system − Eigenva lu e Problem

6

7 // Example : Let us f i n d out the ene rgy e i g e n v a l u e s
and c o r r e s p ond i n g wave func t i on o f a p a r t i c l e o f
mass ’M’ t rapped in i n f i n i t e p o t e n t i a l Well (
p o t e n t i a l V=0) o f width ’L ’

8 //We implement F i n i t e D i f f e r e n c e Method (FDM) to
ob t a i n the e i g e n v a l u e s

9 // By u s i n g FDM the second o rd e r d i f f e r e n t i a l
o p e r a t o r i s r e p l a c e d by a t r i g o n a l matr ix and
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the problem r edu c e s to a s imp l e e i g e n v l a u e
problem

10

11

12 clc

13 clear

14 h_cut =1.05457*10^ -34 // ( P lancks
c on s t an t /2 p i ) J−s

15 L=input(” Enter the width o f the p o t e n t i a l w e l l L ( i n
m) = ”)

16 M=input(” Enter mass o f p a r t i c l e M ( in kg ) = ”)
17 n=250 // Number o f

d i v i s i o n s f o r FDM
18 N=(2*n)+1

19 x1=0 // I n i t i a l v a l u e
o f x−c o o r d i n a t e

20 s=(L-x1)/N // Step s i z e f o r
implement ing FDM

21 EV =6.242*10^18 // j o u l e to eV
c onv e r s i o n

22 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

23 // Hami l ton ion Matr ix H=T+V; T=K in e t i c ene rgy
op e r a t o r (−dˆ2/dx ˆ2) ∗ h cu t ˆ2/2M) ; V= 0 ( f o r
i n f i n i t e p o t e n t i a l w e l l )

24 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

25 T=zeros(N-1,N-1)

26 for i=1:(N-1)

27 x1=x1+s

28 T(i,i)=2

29 if (i<(N-1))

30 T(i,i+1)=-1

31 T(i+1,i)=-1

32 end

33 end
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34

35 H=(T*h_cut ^2*EV/(2*M*s^2)) //
Hami l ton ion Matr ix

36

37 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

38 // F ind ing e i g e n v a l u e s and c o r r e s p ond i n g
wave f un c t i on s

39 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

40 eigenvalues=spec(H)

41 disp(”The e i g e n v a l u e s ( eV) o f t h r e e l owe s t s t a t e s
ob ta i n ed by FDM are ” )

42 disp(eigenvalues (1:3))

43 [U,z]=spec(H)

44

45 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

46 // P l o t i i n g o f t h r e e l owe s t o rd e r wave f un c t i on s
47 //

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

48 x=linspace(s,L,N-1) // c r e a t i n g
x−c o o r d i n a t e s f o r p o t e n t i a l w e l l

49 xlabel( ’ x−c o o r d i n a t e (10ˆ−10 m) ’ , ’ f o n t s i z e ’ ,5)
50 ylabel( ’ Wavefunct ion ( a . u . ) ’ , ’ f o n t s i z e ’ ,5)
51 title( ’ Graph o f Wavefunct ion f o r t h r e e l owe s t o rd e r

mode ’ , ’ f o n t s i z e ’ ,5)
52 a=get(” c u r r e n t a x e s ”) // ge t the hand le o f the

newly c r e a t e d axe s
53 a.font_size =2

54 t=get(” hd l ”) // ge t the hand le o f the
newly c r e a t e d o b j e c t

55 t.font_size =5

56 plot(x*10^10 ,U(:,1) ’./max(U(:,1)), ’ r ’ , ’ l i n ew i d t h ’ ,3)
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57 plot(x*10^10 ,U(:,2) ’./max(U(:,2)), ’ b ’ , ’ l i n ew i d t h ’ ,3)
58 plot(x*10^10 ,U(:,3) ’./max(U(:,3)), ’ g ’ , ’ l i n ew i d t h ’ ,3)
59 hl=legend ([ ’ Ground S t a t e ’ ; ’ I Exc i t ed S t a t e ’ ; ’ I I

Exc i t ed S t a t e ’ ],5)
60 h1.font_size =2

61

62 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

63 // Comparison o f ob ta i n ed e i g e n v a l u e s with
a n a l y t i c a l s o l u t i o n

64 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

65 disp(”The e i g e n v a l u e s ( eV) o f t h r e e l owe s t s t a t e s
ob ta i n ed by a n a l y t i c a l r e s u l t s a r e ” )

66 for j=1:3

67 E(j)=j^2*%pi ^2* h_cut ^2*EV/(2*M*L^2)

68 disp (E(j))

69 end
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Figure 5.1: Finite Difference Method

Figure 5.2: Finite Difference Method
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Experiment: 6

Application to computer
graphics: Write operators for
shear, strain, 2D rotational
problems, Reflection,
Translation

Scilab code Solution 6.0 Computer Graphics

1 // Submitted by Dr . T r i r a n j i t a S r i v a s t a v a . A s s i s t a n t
P r o f e s s o r , Phy s i c s Dept . , Ka l i nd i Co l l e g e ,

Un i v e r s i t y o f De lh i
2

3 // Operat ing system : Windows 8
4 //SCILAB Ver : 5 . 5 . 2
5

6 // Ob j e c t i v e : To study computer g r a ph i c s .
7 // One can c r e a t e any o b j e c t o f c h o i c e and implement

v a r i o u s t r an f o rma t i on s , l i k e , Shear , S t r a i n , 2D
r o t a t i o n , R e f l e c t i o n , T ran s l a t i on ,
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Figure 6.1: Computer Graphics

8

9 clc

10 clear

11 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

12 // Crea t i on o f an o b j e c t ( say , r e c t a n g l e )
13 //

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

14 x=[0,5,5,0,0]

15 y=[0,0,3,3,0]

16 N=[x;y]

17

18 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

19 //To Study Shear
20 //

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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21 l=input(” Enter 1 , 2 or 3 f o r s h e a r a l ong x− ax i s , y−
a x i s or both ax i s , r e s p e c t i v e l y : ”)

22

23 figure (1)

24 xlabel( ’ x−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
25 ylabel( ’ y−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
26 a=get(” c u r r e n t a x e s ”) // ge t the hand le o f the

newly c r e a t e d axe s
27 a.font_size =4

28 t=get(” hd l ”) // ge t the hand le o f the
newly c r e a t e d o b j e c t

29 t.font_size =5

30

31 select l

32 case 1

33 // Trans f o rmat i on Matr ix f o r Shear p a r a l l e l
to x−a x i s

34 s=input(” Enter the va lu e o f s h e a r s = ”)
35 Sx=[1 s; 0 1]

36 S=Sx*N

37 title( ’ Shear p a r a l l e l to x−a x i s ’ , ’ f o n t s i z e ’
,5)

38 a.data_bounds =[0 ,0;8 ,5]

39 case 2

40 // Trans f o rmat i on Matr ix f o r Shear p a r a l l e l
to y−a x i s

41 s=input(” Enter the va lu e o f s h e a r s = ”)
42 Sy=[1 0; s 1]

43 S=Sy*N

44 title( ’ Shear p a r a l l e l to y−a x i s ’ , ’ f o n t s i z e ’
,5)

45 a.data_bounds =[0 ,0;6 ,8]

46 case 3

47 // Trans f o rmat i on Matr ix f o r Shear i n x and
y−d i r e c t i o n

48 sx=input(” Enter the va lu e o f s h e a r i n x−
d i r e c t i o n sx = ”)

49 sy=input(” Enter the va lu e o f s h e a r i n y−
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d i r e c t i o n sy = ”)
50 Sxy =[1 sx; sy 1]

51 S=Sxy*N

52 title( ’ Shear i n x and y d i r e c t i o n ’ , ’ f o n t s i z e
’ ,5)

53 a.data_bounds =[0 ,0;6 ,8]

54 end

55 plot(x,y, ’ l i n ew i d t h ’ ,3)
56 plot(S(1,:),S(2,:), ’−−r ’ , ’ l i n ew i d t h ’ ,3)
57 hl=legend ([ ’ o l d c o o r d i n a t e s ’ ; ’ new c o o r d i n a t e s ’ ])
58 h1.font_size =3

59

60

61 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

62 //To Study S t r a i n
63 //

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

64

65 p=input(” Enter 1 or 2 f o r s t r a i n a l ong x− a x i s or y−
ax i s , r e s p e c t i v e l y : ”)

66

67 figure (2)

68 xlabel( ’ x−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
69 ylabel( ’ y−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
70 a=get(” c u r r e n t a x e s ”); // ge t the hand le o f the

newly c r e a t e d axe s
71 a.font_size =4

72 t=get(” hd l ”) // ge t the hand le o f the newly c r e a t e d
o b j e c t

73 t.font_size =5;

74

75 select p

76 case 1

77 // Trans f o rmat i on Matr ix f o r S t r a i n a l ong x−
a x i s
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78 stx=input(” Enter the va lu e o f s t r a i n s t x = ”
)

79 Str_x=[stx 0; 0 1]

80 ST=Str_x*N;

81 title( ’ S t r a i n a l ong x−a x i s ’ , ’ f o n t s i z e ’ ,5);
82 a.data_bounds =[0 ,0;8 ,5];

83 case 2

84 // Trans f o rmat i on Matr ix f o r s t r a i n a l ong y−
a x i s

85 sty=input(” Enter the va lu e o f s t r a i n s t y = ”
)

86 Str_y =[1 0; 0 sty]

87 ST=Str_y*N;

88 title( ’ S t r a i n a l ong y−a x i s ’ , ’ f o n t s i z e ’ ,5);
89 a.data_bounds =[0 ,0;6 ,8];

90 end

91 plot(x,y, ’ l i n ew i d t h ’ ,3);
92 plot(ST(1,:),ST(2,:), ’−−r ’ , ’ l i n ew i d t h ’ ,3)
93 hl=legend ([ ’ o l d c o o r d i n a t e s ’ ; ’ new c o o r d i n a t e s ’ ]);
94 h1.font_size =3

95

96

97

98 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

99 //To Study 2D Rota t i on
100 //

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

101

102 k=input(” Enter 1 or 2 f o r 2D Rota t i on i n c l o c kw i s e
and a n t i c l o c kw i s e d i r e c t i o n , r e s p e c t i v e l y : ”)

103 th=input(” Enter the r e q u i r e d ang l e f o r r o t a t i o n th (
i n d eg r e e ) = ”)

104 figure (3)

105 xlabel( ’ x−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
106 ylabel( ’ y−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
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107 a=get(” c u r r e n t a x e s ”);// ge t the hand le o f the newly
c r e a t e d axes

108 a.font_size =4

109 t=get(” hd l ”) // ge t the hand le o f the newly c r e a t e d
o b j e c t

110 t.font_size =5;

111

112 select k

113 case 1

114 // Trans f o rmat i on Matr ix f o r Rota t i on i n
c l o c kw i s e d i r e c t i o n

115 Cl=[cosd(th),sind(th);-sind(th),cosd(th)]

116 Rot=Cl*N;

117 title( ’ Rota t i on i n c l o c kw i s e d i r e c t i o n ’ , ’
f o n t s i z e ’ ,5);

118 a.data_bounds =[0 ,0;8 ,5];

119 case 2

120 // Trans f o rmat i on Matr ix f o r Rota t i on i n
a n t i c l o c kw i s e d i r e c t i o n

121 Anti=[cosd(th),-sind(th);sind(th),cosd(th)]

122 Rot=Anti*N;

123 title( ’ Rota t i on i n a n t i c l o c kw i s e d i r e c t i o n ’ ,
’ f o n t s i z e ’ ,5);

124 a.data_bounds =[0 ,0;6 ,8];

125 end

126 plot(x,y, ’ l i n ew i d t h ’ ,3);
127 plot(Rot(1,:),Rot(2,:), ’−−r ’ , ’ l i n ew i d t h ’ ,3)
128 hl=legend ([ ’ o l d c o o r d i n a t e s ’ ; ’ new c o o r d i n a t e s ’ ]);
129 h1.font_size =3

130

131 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

132 //To Study the r e f l e c t i o n
133 //

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

134 j=input(” Enter 1 , 2 or 3 f o r r e f l e c t i o n about x−
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ax i s , y−a x i s or o r i g i n , r e s p e c t i v e l y : ”)
135

136 figure (4)

137 xlabel( ’ x−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
138 ylabel( ’ y−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
139

140 a=get(” c u r r e n t a x e s ”);// ge t the hand le o f the newly
c r e a t e d axes

141 a.font_size =4

142 t=get(” hd l ”) // ge t the hand le o f the newly c r e a t e d
o b j e c t

143 t.font_size =5;

144 select j

145 case 1

146 // Trans f o rmat i on Matr ix f o r R e f l e c t i o n about x−
a x i s

147 Rx=[1 0; 0 -1]

148 R=Rx*N;

149 title( ’ R e f l e c t i o n about x−a x i s ’ , ’ f o n t s i z e ’
,5);

150 a.data_bounds =[0, -4;6,4];

151 case 2

152 // Trans f o rmat i on Matr ix f o r R e f l e c t i o n about y−
a x i s

153 Ry=[-1 0; 0 1]

154 R=Ry*N;

155 title( ’ R e f l e c t i o n about y−a x i s ’ , ’ f o n t s i z e ’
,5);

156 a.data_bounds =[0 ,0;8 ,4];

157 case 3

158 // Trans f o rmat i on Matr ix f o r R e f l e c t i o n about
o r i g i n

159 Rxy=[-1 0; 0 -1]

160 R=Rxy*N;

161 title( ’ R e f l e c t i o n about o r i g i n ’ , ’ f o n t s i z e ’
,5);

162 a.data_bounds =[-8,-5;8,5];

163 end
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164

165 plot(x,y, ’ l i n ew i d t h ’ ,3);
166 plot(R(1,:),R(2,:), ’−−r ’ , ’ l i n ew i d t h ’ ,3)
167 hl=legend ([ ’ o l d c o o r d i n a t e s ’ ; ’ new c o o r d i n a t e s ’ ]);
168 h1.font_size =5

169

170 //
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

171 //To Study t r a n s l a t i o n
172 //

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

173 i=input(” Enter 1 , 2 or 3 f o r t r a n s l a t i o n a l ong x−
ax i s , y−a x i s or both d i r e c t i o n s , r e s p e c t i v e l y : ”)

174

175 figure (5)

176 xlabel( ’ x−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
177 ylabel( ’ y−c o o r d i n a t e s (cm) ’ , ’ f o n t s i z e ’ ,5)
178 a=get(” c u r r e n t a x e s ”); // ge t the hand le o f the

newly c r e a t e d axe s
179 a.font_size =4

180 t=get(” hd l ”) // ge t the hand le o f the newly c r e a t e d
o b j e c t

181 t.font_size =5;

182

183 select i

184 case 1

185 // Trans f o rmat i on Matr ix f o r t r a n s l a t i o n
a l ong to x−a x i s

186 tx=input(” Enter the r e q u i r e d t r a n s l a t i o n
a l ong x d i r e c t i o n tx = ”)

187 T1=[ones(1,length(x));zeros(1,length(x))];

188 X=N+tx*T1;

189 title( ’ T r a n s l a t i o n a l ong to x−a x i s ’ , ’
f o n t s i z e ’ ,5);

190 a.data_bounds =[0 ,0;8 ,5];

191 case 2
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192 // Trans f o rmat i on Matr ix f o r t r a n s l a t i o n
a l ong to y−a x i s

193 ty=input(” Enter the the r e q u i r e d t r a n s l a t i o n
a l ong x d i r e c t i o n ty = ”)

194 T1=[ zeros(1,length(x));ones(1,length(x))];

195 X=N+ty*T1;

196 title( ’ T r a n s l a t i o n a l ong to y−a x i s ’ , ’
f o n t s i z e ’ ,5);

197 a.data_bounds =[0 ,0;6 ,8];

198 case 3

199 // Trans f o rmat i on Matr ix f o r t r a n s l a t i o n
a l ong to y−a x i s

200 tx=input(” Enter the r e q u i r e d t r a n s l a t i o n
a l ong x d i r e c t i o n tx = ”)

201 ty=input(” Enter the r e q u i r e d t r a n s l a t i o n
a l ong y d i r e c t i o n ty = ”)

202 T1=[ones(1,length(x));zeros(1,length(x))];

203 T2=[ zeros(1,length(x));ones(1,length(x))];

204 X=N+tx*T1+ty*T2;

205 title( ’ T r a n s l a t i o n a l ong to y−a x i s ’ , ’
f o n t s i z e ’ ,5);

206 a.data_bounds =[0 ,0;6 ,8];

207 end

208 plot(x,y, ’ l i n ew i d t h ’ ,3);
209 plot(X(1,:),X(2,:), ’−−r ’ , ’ l i n ew i d t h ’ ,3)
210 hl=legend ([ ’ o l d c o o r d i n a t e s ’ ; ’ new c o o r d i n a t e s ’ ]);
211 h1.font_size =3
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Figure 6.2: Computer Graphics

41



Figure 6.3: Computer Graphics
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Figure 6.4: Computer Graphics
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Figure 6.5: Computer Graphics
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Figure 6.6: Computer Graphics
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Experiment: 7

Lagrangian formulation in
classical mechanics with
constraints.

Scilab code Solution 7.0 Lagrangian Formulation

1 // Submitted by Dr . T r i r a n j i t a S r i v a s t a v a . A s s i s t a n t
P r o f e s s o r , Phy s i c s Dept . , Ka l i nd i Co l l e g e ,

Un i v e r s i t y o f De lh i
2

3 // Operat ing system : Windows 8
4 //SCILAB Ver : 5 . 5 . 2
5 // Ob j e c t i v : Lagrang ian f o rmu l a t i o n i n c l a s s i c a l

mechan ics with c o n s t r a i n t s
6 //Example : S imple Pendulum o f l e n g t h L (m) op e r a t i n g

i n g r a v i t a t i o n a l f i e l d . A f t e r app l y i ng
Lagrang ian f o rmu l a t i o n t h i s problem r edu c e s to a
s imp l e second o rd e r d i f f e r e n t i a l e qua t i on [ ( dˆ2
th e t a / dt ˆ2)+(g/L) s i n ( t h e t a ) ]=0 . Here th e t a i s
angu l a r d i s p l a c emen t .

7 // We implemented o rd i n a r y d i f f e r e n t i a l e qua t i on (
ODE) So l v e r to s o l v e the second o rd e r
d i f f e r e n t i a l e qua t i on
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8 //We p r e s e n t p l o t o f s o l u t i o n o f angu l a r
d i s p l a c emen t f o r t=0 to t=10 s e cond s

9

10 clear

11 clc

12 L=input ( ’ Enter the l e n g t h o f pendulum (m) L = ’ )
13 g = 9.8 // a c c e l e r a t i o n due to

g r a v i t y (m/ s ˆ2)
14 k=g/L

15 theta=input( ’ Enter the i n i t i a l angu l a r d i s p l a c emen t
( r ad i an ) at ( t = 0) = ’ ) ; // I n i t i a l
angu l a r d i s p l a c emen t at t = 0

16 dt=input( ’ Enter i n i t i a l d t h e t a / dt ( r ad i an ) at ( t =
0) = ’ ) ; // I n i t i a l boundary c o n d i t i o n
d t h e t a / dt at t = 0

17 //
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

18 // // Funct ion d e c l a r a t i o n f o r ODE
19 //

//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

20 t=linspace (0 ,10 ,200)

21 function dx=f(t,x,k)

22 dx(1)=x(2)

23 dx(2)=-k*sin(x(1))

24 endfunction

25 //
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

26 // // So l v i n g second o rd e r d i f f e r e n t i a l e qua t i on by
ODE s o l v e r

27 //
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

28 y=ode([ theta;dt],0,t,f)

29 ysol=y(1,:)

30 ydotsol = y(2,:)
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31

32 //
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

33 // // P l o t t i n g the s o l u t i o n ( angu l a r d i s p l a c emen t (
t h e t a ) and d th e t a / dt )

34 //
//∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

35 scf()

36 title( ’ S o l u t i o n o f S imple Pendulum ’ , ’ f o n t s i z e ’ ,5)
37 ylabel( ’ S o l u t i o n −−−> ’ , ’ f o n t s i z e ’ ,5)
38 xlabel( ’ t ( s e c ) −−−> ’ , ’ f o n t s i z e ’ ,5)
39 a=get(” c u r r e n t a x e s ”) // ge t the hand le o f the

newly c r e a t e d axe s
40 a.font_size =4

41 t=get(” hd l ”) // ge t the hand le o f the
newly c r e a t e d o b j e c t

42 t.font_size =5

43 plot(t,ysol , ’ r ’ , ’ l i n ew i d t h ’ ,3)
44 plot(t,ydotsol , ’ k ’ , ’ l i n ew i d t h ’ ,3)
45 h1 = legend ([ ’ $\ t h e t a$ ’ ; ’ $d\ t h e t a / dt$ ’ ])
46 h1.font_size =3
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Figure 7.1: Lagrangian Formulation

Figure 7.2: Lagrangian Formulation
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Experiment: 8

Vector-space of wave functions
in Quantum-Mech: Position
and Momentum differential
operators and their
commutator, wave function

Scilab code Solution 8.0 Hermitian Differential Op

1 // Submitted by Dr . T r i r a n j i t a S r i v a s t a v a . A s s i s t a n t
P r o f e s s o r , Phy s i c s Dept . , Ka l i nd i Co l l e g e ,

Un i v e r s i t y o f De lh i
2

3 // Aim : To show the commutator r e l a t i o n i n p o s t i o n
and momentum space [ x , p]= i h c u t or n g e n e r a l [ xˆn
, p]= i ∗ h cu t ∗n∗x ˆ(n−1)

4 // Two examples a r e shown in t h i s program
5 // 1 . Let the f i r s t f u n c t i o n i s f x=x
6 // 2 . Let the second f u n c t i o n i s f x=xˆ3
7 // For s i m p l i c i t y l e t the wave func t i on A=x
8 // [ fx , p ]=( i h c u t ) ( d fx /dx )
9 // h cu t=h/2 p i ; h i s p l anck c on s t an t
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10

11

12 clc

13 x=poly(0,”x”)
14 h_cut =1.05*(10) ^-34 // h cu t=h/2 pi ,

u n i t s i s i n Jou le−s e c
15 A=x // Cons ide r ed

Wavefunct ion i s A=x
16

17 s=input(” Enter 1 or 2 to choo s e the f u n c t i o n as f x =
x or f x = x ˆ3 , s= ”)

18 select s

19 case 1

20 fx=x // F i r s t
wave func t i on

21 case 2

22 fx=x^3 // Second wave func t i on
23 end

24

25 fx_p=fx*(-%i*h_cut)*derivat(A)

26 p_fx=(-%i*h_cut)*derivat(fx*A)

27 commutator =(fx_p -p_fx)

28 disp(” [ fx , p ] = ”)
29 disp(commutator)

30 disp (”The r e s u l t c o n t a i n s an ex t r a x because the
chosen wave func t i on i s A = x”)
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Figure 8.1: Hermitian Differential Op
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Figure 8.2: Hermitian Differential Op
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