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Experiment: 1

Linear algebra: Power and
Inverse Power methods for
finding largest and smallest
Eigenvalue and eigenvectors of
matrices

Scilab code Solution 1.01 Power and Inverse Power Method

//Operating system: Windows 8

//SCILAB Ver: 5.5.2

//Expriment No. 1

//Objective: Determination of largest and smallest (
in magnitude) Eigen value &

//Eigen Vectors Using Power Method and Inverse Power
Method respectively .

//Enter the no dimension of a sqaure of matrix A: 3
//Enter the element no (1,1):2

5



Enter the dimension of row of square matrix A: 3
Enter the element no (1,1):
2

Enter the element no (1,2):
1

Enter the element no (1,3):
1

Enter the element no (2,1):
1

[Enter the element no (2,2):
2

[Enter the element no (2,3):
1

[Enter the element no (3,1):
1

[Enter the element no (3,2):
1

[Enter the element no (3,3):
5

Lowest eigen wvalue
0.9999587
Corresponding eigen vector
- 0.7066074

0.7076057
- 0.0003643

Largest Eigen Value

2.7320494

Corresponding Eigen Vector

0.3252492
0.3252493
0.8879335

-

=

Fioure 1.1: Power and Inverse Power Method
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//Enter the element no (1,2):1
//Enter the element no (1,3):1
//Enter the element no (2,1):1
//Enter the element no (2,2):2
//Enter the element no (2,3):1
//Enter the element no (3,1):1
//Enter the element no (3,2):1
//Enter the element no (3,3):5
//Let Matrix A is A=[2,1,1;1,2,1;1,1,5];
clc
clear
//

S KK K K KK K K KKK o kKR Sk KK Sk KKK S KKK R KK K R kKO Sk KK S KKK S KKK K KK K K K KK ok K KO K K
// Creating an input square matrix
//

ok ok Kk KK K kK R kKR R kKR R KK KKK R KK R kK R kKR R kK K KK K KK R kK R KK Rk
m = input (”Enter the dimension of row of square

matrix A: ”)
for i=1:m

for j=1:m
mprintf (" Enter the element no (%d,%d): 7,1,
i)
A(i,j)=input ("7)
end

end
//

S oKk K KK K K KKK R KK SR kKO Sk KK KKK K KK K R kKO SR kKO Sk KKK KKK K KK K R K KO R K KO Kk
// Creating initial approximation x0
//

S kK K KK K R KKK R KK Sk KK Sk KKK S KKK R KK K R kKO Sk KKK S KKK S KKK K KK K R KKK R K KO K
x=rand(m,1)
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66

ok K Kk K K KKK Kk K KKK KK K K K R K K kK KOk K KOk K Kk K K kR K KOk K oKk K Kk K K R K KKK KOk K KOk K Kk K %
//Finding smallest Eigen Value using Inverse Power

Method

ok ok K K Kk KK K K K K K K K K K KK K K K K K K oK K K KK K K R KK K K kR K K Kk K KK K ok K K K K KK K K K KK R K K
z=1
f=1
yO=rand (m, 1)

while (£>0.00001)
yl=inv (A) *yO0
lowest=norm(yl,2)
yO=y1/lowest
f=abs(z-lowest)
z=lowest

end

disp(lowest, 'Lowest eigen value’)
disp(y0, "Corresponding eigen vector ’)

//

Kk sk ok ok sk sk ok sk sk ok sk sk sk sk sk ok ke sk ok sk sk ok sk skosk skosk skosk sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk sk sk sk sk sk skosk sk kosk sk ok sk sk ok sk sk ok ok

//Finding largest KEigen Value using Power Method

//

kK kK Rk koK sk sk sk sk sk sk sk sk ok sk sk kR sk sk sk ok skosk sk sk sk sk sk sk sk sk sk kR sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk kR sk sk sk sk sk sk sk sk

xO=rand(m,1)

y=1

d=1

while (d>0.00001)
x1=A*x0
highest=norm(x1,2)
x0=x1/highest
d=abs (y-highest)
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y=highest
end
disp(highest, Largest Eigen Value’)
disp(x0, "Corresponding Eigen Vector’)
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Experiment: 2

Orthogonal Polynomials as
Eigenfunctions of Hermitian
differential operators

Scilab code Solution 2.0 Finite Difference Method

// Submitted by Dr. Triranjita Srivastava. Assistant
Professor , Physics Dept., Kalindi College ,
University of Delhi

// Aim: To prove the orthogonality of Hermitian
differential Operator

// Two Hermitian Differential Operators (—id/dx) and
(-d"2/dx"2) are taken as an example

// Finite Difference Method is used to formulate the
matrices coresponding to the considered

Differential Operator

// This method takes the value of eigenfunction

10



[ = 5o
=\ S8 =X

[Enter the first boundary, x0 = 0

[Enter the second boundary, xn = 10

[Enter number of intervals, N = 501

[Enter choice 1 or 2 for differential operator -id/dx or -d~2/dx"2, respectively: 1

The Eigenvectors of the considered Hermitian Di ial Op are Or 1

-->

[Enter the first boundary, x0 = 0

[Enter the second boundary, xn = 10

[Enter number of intervals, N = 501

[Enter choice 1 or 2 for differential operator -id/dx or -d~2/dx"2, respectively: 2

The Eigenvectors of the considered Hermitian Di ial Op are Ort! 1

-—>

Figure 2.1: Finite Difference Method
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equal to 0 at the initial (x0) and final boundary
(xn), and x is defined as x=x0+ixh (h is step
size and i is integer)

10 // N is the number of interval , N should be taken as
odd and such that step size is small enough for
high accuracy

11

12 // Using Central Differences , tridiagonal matrix is
obtained for (—d/dx) which has 0 as diagonal
element and —1 as upper adjacent diagonal and 1
as lower adjacent diagonal elements;

13

14 //Similarly , using Central Differences , tridiagonal
matrix is obtained for (—d"2/dx"2) which has 2
and —1 as upper and lower adjacent diagonal

elements
15
16
17
18 clear
19 clc

20 //

k3K kK K K KR Kk sk sk sk sk sk sk sk sk sk sk sk sk kR kR sk koK sk sk sk sk sk sk sk sk sk sk kR kR 3k sk sk ke sk skosk sk sk sk sk sk sk sk sk kR ok ok ok sk ok sk sk

21 // Boundary over which the function is to be solved

22 //

>k 3k kK Rk Kk Kok ok ok 3k Sk Sk 3k sk sk sk sk sk ok ok sk sk sk koK ok ok ok Sk ok sk sk sk sk kR ok sk sk sk sk ok ke sk sk ok Sk ok sk sk sk sk sk sk ok ok kR ok ok ok ok ok

23 xO0=input (” Enter the first boundary, x0 = 7);

24 xn=input(” Enter the second boundary, xn = ");

25 N = input(”Enter number of intervals, N = 7");

26 h = (xn-x0)/N; //step size

27 s=input (" Enter choice 1 or 2 for differential
operator —id/dx or —d"2/dx"2, respectively: 7)

28

29 select s
30 case 1

31 //

12
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o4

K3k koK ok ok ok ok Sk sk 3k sk sk sk kR sk kR koK sk ok ok ok Sk Sk sk sk sk sk sk ok ok sk sk ko ko sk 3k ok ok Sk Sk sk sk sk sk sk kR sk kR ok sk sk ok ok sk

// Defining D1 Matrix corresponding to
differential operator —id/dx
S ok ok K K ko KK KKK KK K K KR KK KK K KK K K KR KO KK K KK K K K RO kK KK R K K K K K KK K KO X
Di=zeros (N-1,N-1);
for i=1:(N-1)
x1(1,1)=x0+i%*h;
D1(i,1i)=0;
if i<(N-1)
D1(i,i+1)=-%i;
D1(i+1,i)=%1i;
end
end
Final_D1=D1/2xh;
S ok ok ok K ko KO KK KK K K K K K KO KOk KK K KK K K K R KO KK KK R KK K K K K KO KK KKK K K K K K R kK
// Finding eigenvalue and eigenvector of
differential operator —id/dx
Sk ok ok oK K kR K KK KK K K K K K KR KK KK K KK K K K K KO KK KK R Kk K R KK KO KK KK R K K K K K R K K
[eigenvector ,eigenvalue] = spec(Final_D1);
case 2
S ok ok K K ko KK KKK KK K R KR KK KK K KK K K KR KO KK KKK K K K K KK KK R K K K K K KK K KO X
// Defining D2 Matrix corresponding to
differential operator —d"2/dx"2

K3k 3k ok ok ok ok ok Sk Sk sk sk sk sk ok sk sk sk sk kK ok ok ok Sk Sk ok Sk sk sk sk sk ok sk sk sk sk ko ok ok ok ok ok Sk sk sk sk sk sk kR sk sk sk ok ok ok ok ok ok
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end

D2=zeros (N-1,N-1);

for i=1:(N-1)
x1(1,1)=x0+1ix*h;
D2(i,i)=2;
if i<(N-1)
D2(i,i+1)=-1;
D2(i+1,1i)=-1;
end
end
Final_D2=D2/h"2;

//

koK 3k kosk sk Kk sk Sk R Sk Sk R Sk Sk sk sk sk sk skosk sk sk sk Sk sk sk Sk ok sk skosk sk sk sk skosk sk kosk sk sk skosk sk skskosk okosk sk sk sk sk ok sk sk ok sk ko

// Finding eigenvalue and eigenvector of
differential operator —d"2/dx"2

//

3kook ok sk sk sk Kk sk Sk R Sk Sk R sk Sk ok sk sk sk kosk sk sk sk Sk ok sk sk ok sk skosk sk sk sk skosk sk kosk sk sk skosk ok sk skosk ok skosk sk sk sk ok sk sk ok ok ko

[eigenvector ,eigenvalue] = spec(Final_D2);

//

K3k 3k ok ok ok ok ok 3k sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk ok ok ok Sk Sk ok sk Sk sk sk sk sk sk sk sk ok sk ks ok ok ok ok ok ok sk sk sk sk sk sk sk ok ok ok ok ok

// Ploting of first three Eigenvector of
differential operator —d"2/dx"2

//

33k ok sk sk sk kosk sk ok Sk Sk R skosk sk sk sk sk sk sk sk sk sk sk sk sk kR sk skosk sk skosk skosk sk kosk sk sk skosk sk skoskosk skosk sk sk sk sk sk sk sk ok sk ko

x=[x0,x1,xn];
if s==1 then
title(’3 Lowest Order Eigenvectors of —id/dx

) 9 7 Y .
, fontsize’ ,4);

14
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else
title(’3 Lowest Order Eigenvectors of —d 2/
dx"2’, fontsize ’ ,4);
end

for k = 1:3
subplot (3,1,k)
ylabel (’A (m)’, fontsize ’,4)
a=get ("current_axes”);//get the handle of
the newly created axes
a.font_size=2
t=get (" hdl”) //get the handle of the newly
created object
t.font_size=2;
E_vector = [0;eigenvector(:,k);0];
plot(x,E_vector’, linewidth ' ,2);
end

//

Skook 3k sk sk sk R sk Sk koK Sk R Sk Sk ok sk sk sk kosk sk sk sk sk ok sk Sk sk sk skosk skosk sk skosk sk ok sk sk sk sk sk ok skoskosk ok skosk sk sk sk ok sk sk ok sk ko

xlabel ('x—coordinate (m)’, fontsize’,4)

// Orthogonality Check of eigenvector of
differential operator

//

3ok ok koK sk Kk sk Sk R Sk Sk ok sk Sk ok sk sk sk kosk sk Sk sk Sk R sk Sk ok sk skosk sk skosk kosk sk ok sk sk ok sk sk ok sk skosk ok sk sk ok sk sk ok sk sk ok sk ko

for i=1:3
for j=1:3
P(i,j) = clean(sum((eigenvector (:,i) .x*
conj(eigenvector(:,j)))));
if i=j & P(i,j) ~=0
disp(” The Eigenvectors of the
considered Hermitian Differential
Operator are Not Orthogonal”)
abort;
end
end
end

15



3 Lowest Order Eigenvectors of -id/dx
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Figure 2.2: Finite Difference Method

109 disp(” The Eigenvectors of the considered
Hermitian Differential Operator are
Orthogonal”)
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Figure 2.3: Finite Difference Method
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Experiment: 3

Determination of the principal
axes of moment of inertia
through diagonalization

Scilab code Solution 3.0 Diagonalization of matrix

// Submitted by Dr. Triranjita Srivastava. Assistant
Professor , Physics Dept., Kalindi College ,
University of Delhi

// Aim: Determination of the principal axes of
moment of inertia through diagonalization

// Example is a Dumbell with masses ’'ml’ and ’'m2’
situated at points, say coordinates are (1,1,0)
and (—1,—1,0)

clear;
clc;

//

K3k 3k ok ok ok ok ok sk sk sk sk sk ok ok kK ok sk ko k ok ok ok Sk Sk Sk sk sk sk sk sk sk kR sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk ok ok sk sk ok ok ok ok ok sk

//Function for Kronecker Delta

//

18
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28
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38
39

K3k kK Kk Kk Kok ok ok ok Sk Sk sk sk sk sk sk ok sk kR R sk koK ok ok ok ok Sk sk sk sk sk sk sk sk ok ok sk sk ke sk sk ok ok sk sk sk sk sk sk sk sk sk ok ok ok ok

function d=delta(i,j)
if i==j then
d=1;
else d=0;
end
endfunction

//

>k ok ok Kk kK ok koK ok ok Sk ok Sk sk sk sk sk sk ok sk 3k ok 5k ok ok ok ok ok ok Sk sk sk sk sk sk sk sk kR ks k sk ok ok ok ok sk sk sk sk sk sk sk kR ok ok ok

// Input of number of particles at discrete points

//

ok ok K ok ok K Kk KR kKR R K R Kk K K kK Kk ok K R kK R K R Kk K K ok K R ok K R KK K
n=input (’enter no. of particles )

r=zeros (3,3)
for i=1:n
mprintf (" Enter the mass (in kg) at point (%d):
7, 1)
M(i)=input (””)
mprintf (" Enter the position (x,y,z) coordinate

at point (%d): 7,1i)
for j =1:3
r(i,j)=input(””)
end
end

I=zeros (3,3)
for i=1:1:3
for j=1:1:3
for k=1:1:n
I(i,j)=I(i,j)+(M(k)*(sum(r(k,:)."2)x*
delta(i,j)-(r(k,i).*xr(k,j))))
end
end

19
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42
43
44

45

end

disp ("Moment of Inertia Tensor

77)
disp (I)

[ab,x,bs]=bdiag(I);

for

given problem

1S :

disp ("Moment of Inertia Tensor after diagonalization

1S :
disp (ab)

77)

20



B scilab 5.5.2 Console — a X

File Edit Control Applications ?
vaeea X ee

“ B

& 00

senter no. of particles 2
Enter the mass (in kg) at point (1):

Enter the position (x,y,z) coordinate at point (1l):

Enter the mass (in kg) at point (2):

Enter the position (x,y,Zz) coordinate at point (2):

Moment of Inertia Tensor for given problem is:

1. - 1. 0.
- 1. 1. 0.
Q. 0. 2.

Moment of Inertia Tensor after diagonalization is:

2 0. 0
0. 0. 0.
0. 0. 2.

Figure 3.1: Diagonalization of matrix
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Experiment: 4

Study of geodesics in Euclidean
and other spaces(surface of a
sphere, etc):Physics problem:
problem of refraction.

Scilab code Solution 4.0 Geodesic

// Submitted by Dr. Triranjita Srivastava. Assistant
Professor , Physics Dept., Kalindi College ,
University of Delhi

// Aim: To study geodesics in Euclidean and
Cylindrical Polar coordinate System

clc;

clear;

22



-] Scilab 5.5.2 Console 2?2 X

Input X coordinate of point A 1
Input y coordinate of point A 1
Input X coordinate of point B 6
Input y coordinate of point B 7
Input angular coordinate (in degree) of point A 10
Input z coordinate of point A 2
Input angular coordinate (in degree) of point B 340
Input z coordinate of point B 18

-—>

Figure 4.1: Geodesic

Geodesic in Cylindrical Polar Coordinate System

Figure 4.2: Geodesic

23



10
11
12
13
14
15
16
17
18
19
20
21

22
23

Geodesic in Euclidean Geometry

y-coordinates

2 . , . - - - - : T T T
0 05 1 15 2 25 3 35 4 45 5 65 6 65 7 75 8 85 9 95 10
x-coordinates

Figure 4.3: Geodesic

//

//***************************************************************

////Equation of Geodesic (straight line) passing
through two points in Euclidean Geometry

//

//***************************************************************

x1=input ("Input x coordinate of point A 7)
yl=input ("Input y coordinate of point A 7)
x2=input (”"Input x coordinate of point B 7)
y2=input (”Input y coordinate of point B 7)

x=[0,0.1,10]

m=(y2-y1)/(x2-x1);

y=yl+m*(x-x1);

scf ()

xlabel ('x—coordinates’, "fontsize ’,5)

ylabel ('y—coordinates ', "fontsize ’,5)

title(’Geodesic in Euclidean Geometry’, fontsize’,5)

a=get (" current_axes”) //get the handle of the
newly created axes

a.font_size=4

t=get (" hdl”) //get the handle of the

Y

Y

24
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49

newly created object
t.font_size=5
plot(x,y, 'linewidth ' ,3)

//

//***********************************************************

////Plotting of cylinder
//

//***********************************************************

a=5;

theta=linspace (0,2*%pi,30)

z=linspace (0,30,30)
[theta,z]=meshgrid(theta,z)

x=a*xcos (theta) ;

y=a*sin(theta) ;

scf ()

surf(x,y,z, "facecolor’, "green’, "edge’, "white ")

//

>k ok kK ok ok ok koK ok ok ok ok ok sk sk sk sk sk sk sk sk ok ok sk ok ke ok ok ok ok Sk sk sk sk sk sk sk sk sk ok sk sk ok sk ok ok ok ok sk sk sk sk sk sk sk sk ok ok ok ok

//Equation of Geodesic (helix) in cylindrical
Coordinate System

//

>k >k >k ok ok ok ok koK ok ok ok ok ok Sk sk sk sk sk sk sk sk ok ok ok ok ke ok ok ok ok Sk Sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok sk sk sk sk sk sk sk ok ok ok ok

thetal=input (”Input angular coordinate (in degree)
of point A7)

zl=input ("Input z coordinate of point A 7)

theta2=input (”Input angular coordinate (in degree)
of point B 7)

z2=input (”"Input z coordinate of point B 7)

tl=thetalx*%pi/180;

t2=theta2x%pi/180;

t=linspace(tl,t2,100)

z=z1+(z2-z1)*x(t-t1)/(t2-t1);

title(’Geodesic in Cylindrical Polar Coordinate

25



System ’, "fontsize ’,5)
50 param3d(a*cos(t), ax*xsin(t),z)

26
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Experiment: 5

Application to solve differential
equations for a bound system —
Eigen value problem

Scilab code Solution 5.0 Finite Difference Method

// Submitted by Dr. Triranjita Srivastava. Assistant
Professor , Physics Dept., Kalindi College ,
University of Delhi

//Operating system: Windows

//SCILAB Ver: 5.5.2

//Objective: Application to solve differential
equations for a bound system — Eigenvalue Problem

// Example:Let us find out the energy eigenvalues
and corresponding wavefunction of a particle of
mass 'M’ trapped in infinite potential Well (
potential V=0) of width 'L’

//We implement Finite Difference Method (FDM) to
obtain the eigenvalues

// By using FDM the second order differential
operator is replaced by a trigonal matrix and

27
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11
12
13
14

15

16
17

18
19

20

21

22

23

24

25
26
27
28
29
30
31
32
33

the problem reduces to a simple eigenvlaue

problem
clc
clear
h_cut=1.05457x10"-34 // (Plancks

constant /2pi) J—s
L=input (" Enter the width of the potential well L (in

m) = 7)

M=input (" Enter mass of particle M (in kg) = ")

n=250 // Number of
divisions for FDM

N=(2%n)+1

x1=0 // Initial value
of x—coordinate

s=(L-x1)/N // Step size for
implementing FDM

EV=6.242%10"18 // joule to eV
conversion

//

KK koK ok ok ok ok ok sk sk sk sk sk sk kR kR Rk ko sk sk ok ok sk sk sk sk sk sk sk sk sk sk Rk sk sk sk koK k sk ok ok ok ok 3k Sk sk sk sk sk sk sk ok ok ok ok ok ok ok

// Hamiltonion Matrix H=T+V; T=Kinetic energy
operator (—d"2/dx"2)xh_cut~2/2M) ; V=0 (for
infinite potential well)

//

K3k 3k kR R R koK sk sk sk sk sk sk sk sk sk sk sk sk ok sk kR ok sk sk ke sk sk sk sk sk sk Sk sk sk sk sk sk sk sk sk kR sk kR koK sk sk sk sk ok sk sk sk sk sk sk ko kg

T=zeros (N-1,N-1)
for i=1:(N-1)
x1=x1+s
T(i,1i)=2
if (i<(N-1))
T(i,i+1)=-1
T(i+1,i)=-1
end
end

28
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95
56

H=(T*h_cut "2*EV/(2*Mxs~2)) //
Hamiltonion Matrix
//
ok ok kK ko kO KK K KK K K KR KR KK KKK KK K K KR K KK KKK K K K K KR K KK K KK K K K K KR K K K KO X
// Finding eigenvalues and corresponding
wavefunctions
S ok ok K K K ko K KK K K K K K KR KR KK KKK KK K K K R KO KK KKK K K K K KR Sk KK K KK K K K K KR KK K KO X
eigenvalues=spec (H)
disp(”The eigenvalues (eV) of three lowest states
obtained by FDM are 7 )
disp(eigenvalues (1:3))
[U,z]=spec (H)
sk ok ok KK K K R K K K KO KK R KR K K KK KO KK KK R K K KK KO KK KKk K R K K K KK KK R KR K K K K KK O X
// Plotiing of three lowest order wavefunctions
sk ok oK KKk Kk K K KR SO KK KK R K K KR KR KK kK R oK R KK KO kK KKk K K KK K KK KK R KOk K K KR K KK O X
x=linspace(s,L,N-1) // creating
x—coordinates for potential well
xlabel ('x—coordinate (10°—10 m)’, fontsize ,5)
ylabel (’Wavefunction (a.u.)’, fontsize’,5)
title (’Graph of Wavefunction for three lowest order
mode’, ’fontsize ’,5)
a=get (" current_axes”) //get the handle of the
newly created axes
a.font_size=2
t=get (" hdl”) //get the handle of the

newly created object
t.font_size=5
plot (x*10°10,U0(:,1)’./max(U(:,1)), ’r’, linewidth ’,3)
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plot (x*10°10,U(:,2)’./max(U(:,2)),’b’, linewidth ’,3)

plot(x%*10°10,U(:,3)’./max(U(:,3)),’g’, linewidth ’,3)

hl=1legend ([ "Ground State’;’'] Excited State’; Il
Excited State’],5)

hl.font_size=2

//

kK kK R R Kk Kk sk sk sk sk sk sk sk sk sk sk sk kR >k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok kR sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok

// Comparison of obtained eigenvalues with
analytical solution

//

k3K kK Rk Kk koK sk sk sk sk sk sk sk sk sk sk kR kR sk sk sk ke sk skosk sk sk sk sk sk sk sk sk kR kR sk sk sk sk sk sk sk sk sk sk sk sk sk sk kR ok ok ok ok ok ok ok

disp(”The eigenvalues (eV) of three lowest states
obtained by analytical results are 7 )
for j=1:3
E(j)=j 2*%pi~2*h_cut "2*EV/(2*M*L"2)
disp (E(j))
end

30



B scilab 5522 Console
‘File Edit Control Applications ?
ZE|AGCO Y &8 S X e

Sciab 552 Console ?

Enter the width of the potential well L (in m) = 2*10"°-10
[Enter mass of particle M (in kg) = 9.1*107-31

The eigenvalues (eV) of three lowest states obtained by FDM are
|

9.4111248
37.644129
84.697903

|
The eigenvalues (eV) of three lowest states obtained by analytical results are

|
9.4111556
37.6448623

84.700401

-

Figure 5.1: Finite Difference Method

Graph of Wavefunction for three lowest order mode

1
.05
5
s
-y
2 04
5
c
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o
g -0.5
Ground State
———— | Excited State
-1 ————— Il Excited State

0 010203040506070809 1 111213141516 17 1819 2
x-coordinate (10”-10 m)

Figure 5.2: Finite Difference Method
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Experiment: 6

Application to computer
graphics: Write operators for
shear, strain, 2D rotational
problems, Reflection,
Translation

Scilab code Solution 6.0 Computer Graphics

// Submitted by Dr. Triranjita Srivastava. Assistant
Professor , Physics Dept., Kalindi College ,
University of Delhi

//Operating system: Windows 8
//SCILAB Ver: 5.5.2

// Objective: To study computer graphics.

// One can create any object of choice and implement
various tranformations , like , Shear, Strain , 2D
rotation , Reflection , Translation |,
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B scilab 5.52 Consche - a %
File Edt Control Applications ?

EEIACOIY S S SR e

Enter 1, 2 or 3 for shear along x- axis, y-axis or both axis, respectively: 3

Enter the value of shear in x-direction sx = 0.05

Enter the value of shear in y-direction sy = 0.05

Enter 1 or 2 for strain along x- axis or y-axis, respectively: 2

Enter the value of strain sty = 1.5

Enter 1 or 2 for 2D Rotation in clockwise and anticlockwise direction, respectively: 2
Enter the reguired angle for rotation th (in degree) = 10

Enter 1, 2 or 3 for reflection about x- axis, y-axis or origin, respectively: 3

Enter 1, 2 or 3 for translation along x- axis, y-axis or both directions, respectively: 2
Enter the the required translation along x direction ty = 2

==

Figure 6.1: Computer Graphics

clc
clear

//

K3k sk ok sk sk sk okosk sk sk sk sk kosk sk kosk sk ok sk sk ok sk sk ok sk sk ok sk sk sk skosk sk skosk sk skosk sk kosk sk kosk sk ok sk sk ok skosk ok sk sk ok ok sk ok

//Creation of an object (say, rectangle)

//

K3k sk ok ok sk sk ok sk sk ok sk sk sk sk sk ok sk sk sk ok sk ok sk Sk ok sk kR skosk ok skosk ok skosk sk kosk sk ok sk sk ok sk sk ok sk sk ok ok sk ok ok sk ok ok sk ok

x=[0,5,5,0,0]
y=[0,0,3,3,0]
N=[x;y]

//

Kk sk 3k sk sk sk skoskosk sk sk sk sk sk sk kosk sk sk sk sk sk sk Sk sk sk kR sk sk sk sk sk sk skosk sk skosk sk sk sk sk kosk sk sk sk sk ok skosk ok sk sk ok sk sk ok

//To Study Shear
//

K3k sk ok ok sk sk ok sk sk sk sk sk sk sk sk kosk sk ok sk sk ok sk Sk ok sk Sk ok sk sk ok sk sk sk skosk sk skosk sk kosk sk kosk sk ok sk sk ok skosk ok ok sk ok ok sk ok
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l=input (" Enter 1,

2 or 3 for

shear

along x— axis, y—

axis or both axis, respectively: 7)
figure (1)
xlabel ('x—coordinates (cm)’, fontsize’,5)
ylabel (’y—coordinates (cm)’, fontsize’,5)

a=get (" current_axes”)

newly created axes
a.font_size=4

t=get (" hdl”)

newly created object

select 1

t.font_size=5

case 1

// Transformation Matrix
to x—axis
s=input (" Enter the value

Sx=[1 s; 0 1]

S=Sx*N

title(’Shear parallel to
,5)

a.data_bounds=[0,0;8,5]

case 2

// Transformation Matrix
to y—axis
s=input (” Enter the value

Sy=[1 0; s 1]

S=Sy*N

title(’Shear parallel to
,5)

a.data_bounds=[0,0;6,8]

case 3

// Transformation Matrix
y—direction

sx=input (" Enter the value of shear

direction sx = 7)

sy=input (" Enter the value of shear

34

//get the handle of the

//get the handle of the

for Shear parallel
of shear s = 7)

x—axis’, fontsize’
for Shear parallel
of shear s = 7)

y—axis ', 'fontsize’
for Shear in x and

in x—

in y—
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direction sy = )

Sxy=[1 sx; sy 1]

S=8Sxyx*N

title(’Shear in x and y direction
’,5)

a.data_bounds=[0,0;6,8]

)

, fontsize

end

plot(x,y, linewidth ’,3)
plot(S(1,:),8(2,:),—1r’, linewidth ' ,3)
hl=legend ([ "old coordinates’; 'new coordinates '])
hl.font_size=3

//

Kk sk ok ok sk sk ok sk sk skosk sk sk sk sk kosk sk ok sk sk sk sk Sk ok sk sk ok sk sk sk skosk sk skosk sk skosk sk kosk sk ok sk sk ok sk sk ok sk sk ok ok sk ok ok sk ok

//To Study Strain
//

K3k sk ok ok sk sk ok sk sk ok sk sk ok sk sk ok ok sk sk ook sk ok ok Sk ok ok sk ok ok sk ok ok sk ok ok sk sk kosk sk ok sk sk ok sk sk ok ok sk ok ok sk ok ok sk ok ok sk ok

p=input (" Enter 1 or 2 for strain along x— axis or y—
axis , respectively: 7)

figure (2)

xlabel ('x—coordinates (cm)’, fontsize’,5)

ylabel (’y—coordinates (cm)’, fontsize’,5)

a=get (" current_axes”); //get the handle of the

newly created axes

a.font_size=4

t=get (" hdl”) //get the handle of the newly created
object

t.font_size=5;

Y

Y

select p
case 1
// Transformation Matrix for Strain along x—
axis
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78 stx=input (" Enter the value of strain stx =7

)

79 Str_x=[stx 0; 0 1]

80 ST=Str_x*N;

81 title(’Strain along x—axis’, fontsize ,5);

82 a.data_bounds=[0,0;8,5];

83 case 2

84 // Transformation Matrix for strain along y—

axis

85 sty=input (" Enter the value of strain sty =7
)

86 Str_y=[1 0; 0 sty]

87 ST=8tr_yx*N;

88 title(’Strain along y—axis’, fontsize’ ,5);

89 a.data_bounds=[0,0;6,8];

90 end

91 plot(x,y, linewidth ,3);
92 plot(ST(1,:),ST(2,:),’—r’, linewidth ,3)

93 hl=legend([’old coordinates’; 'new coordinates ’']);
94 hl.font_size=3

95

96

97

98 //

K3k 3k ok ok sk sk ok sk sk kosk sk sk sk sk ok sk sk ok sk sk ok sk Sk ok sk sk ok sk sk ok skosk sk skosk sk skosk sk ok sk sk ok sk sk ok sk sk ok skosk ok ok sk ok ok sk ok

99 //To Study 2D Rotation
100 //

K3k kK K kK sk sk sk sk sk sk sk sk sk kR kR sk ko sk sk sk sk sk sk sk sk sk sk sk sk kR sk sk sk sk sk sk sk sk sk sk sk sk sk kR kR k k sk sk sk sk

101

102 k=input ("Enter 1 or 2 for 2D Rotation in clockwise
and anticlockwise direction , respectively: 7)

103 th=input (" Enter the required angle for rotation th (
in degree) = 7)

104 figure (3)
105 xlabel(’x—coordinates (cm)
106 ylabel(’y—coordinates (cm)

>, ' fontsize’,5)

>, ' fontsize’,5)
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107 a=get (" current_axes”);//get the handle of the newly
created axes

108 a.font_size=4

109 t=get (”hdl”) //get the handle of the newly created

object

110 t.font_size=5;

111

112 select k

113 case 1

114 // Transformation Matrix for Rotation in
clockwise direction

115 Cl=[cosd(th),sind(th);-sind(th),cosd(th)]

116 Rot=Clx*N;

117 title(’Rotation in clockwise direction’,’
fontsize ’,5);

118 a.data_bounds=[0,0;8,5];

119 case 2

120 // Transformation Matrix for Rotation in
anticlockwise direction

121 Anti=[cosd(th) ,-sind(th) ;sind(th),cosd(th)]

122 Rot=Antix*N;

123 title(’Rotation in anticlockwise direction’,
"fontsize ' ,5);

124 a.data_bounds=[0,0;6,8];

125 end

126 plot(x,y, linewidth ’,3);
127 plot(Rot(1,:),Rot(2,:), —r’, linewidth ’,3)

128 hl=legend([’old coordinates’; 'new coordinates ’]);
129 hl.font_size=3
130

131 //

K3k 3k ok ok ok ok ok sk sk sk sk sk ok ok sk sk ok kok ok 3k ok Sk sk sk sk sk sk sk kR sk sk sk ok ok ok ok ok Sk sk sk sk sk sk kR kR ok kook ok ok ok ok ok sk k
132 //To Study the reflection
133 //

Kk sk ok ok sk sk okosk sk skosk sk sk sk sk ok sk sk ok sk sk ok sk Sk ok sk sk R sk sk ok sk sk sk skosk sk skosk sk sk sk sk ok sk sk ok sk sk ok sk sk ok ok sk ok ok ko

134 j=input ("Enter 1, 2 or 3 for reflection about x—
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axis , y—axis or origin, respectively: 7)

135

136 figure (4)

137 xlabel(’x—coordinates (cm)’, fontsize’,5)

138 ylabel(’y—coordinates (cm)’, fontsize’,5)

139

140 a=get (" current_axes”);//get the handle of the newly
created axes

141 a.font_size=4

142 t=get (7" hdl”) //get the handle of the newly created

object
143 t.font_size=5;
144 select j

145 case 1
146 // Transformation Matrix for Reflection about x—
axis

147 Rx=[1 0; 0 -1]

148 R=Rx*N;

149 title(’Reflection about x—axis’, ' fontsize’
,5);

150 a.data_bounds=[0,-4;6,4];

151 case 2

152 // Transformation Matrix for Reflection about y—

axis

153 Ry=[-1 0; 0 1]

154 R=Ry*N;

155 title(’Reflection about y—axis’, fontsize’
,5) 5

156 a.data_bounds=[0,0;8,4];

157 case 3

158 //Transformation Matrix for Reflection about
origin

159 Rxy=[-1 0; 0 -1]

160 R=Rxy*N;

161 title(’Reflection about origin’, fontsize’
,5);

162 a.data_bounds=[-8,-5;8,5];

163 end
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173

174
175
176
177
178

179
180

181
182
183
184
185

186
187
188
189

190
191

plot(x,y, 'linewidth ' ,3);
plot(R(1,:),R(2,:),—r1r’, linewidth ’,3)
hl=legend ([ "old coordinates’; 'new coordinates ']);
hl.font_size=5

//

K3k kK K Kk K sk sk sk sk sk sk sk sk sk kR kR sk ko sk sk sk sk sk sk sk sk sk sk kR kR sk sk sk sk sk sk sk sk sk sk sk sk sk kR kR k k sk sk sk sk

//To Study translation

//

k3K kK K Kk Kk koK sk sk sk Sk sk sk sk sk sk kR ok sk ok k sk sk sk sk sk sk sk sk sk sk sk sk kR sk sk ok sk sk sk ok sk sk sk sk sk sk ok sk kR ko sk sk sk

i=input ("Enter 1, 2 or 3 for translation along x—
axis , y—axis or both directions , respectively: 7)

figure (5)

xlabel (’x—coordinates (cm)’, ' fontsize ,5)

ylabel (’y—coordinates (cm)’, ' fontsize ,5)

a=get ("current_axes”); //get the handle of the

newly created axes

a.font_size=4

t=get (" hdl”) //get the handle of the newly created
object

t.font_size=5;

b

b

select i
case 1
// Transformation Matrix for translation
along to x—axis
tx=input (" Enter the required translation

along x direction tx = 7)
Ti=[ones (1, length(x));zeros(l,length(x))];
X=N+tx*T1;

title(’Translation along to x—axis’,’
fontsize ’,5);
a.data_bounds=[0,0;8,5];
case 2
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// Transformation Matrix for translation
along to y—axis
ty=input (" Enter the the required translation

along x direction ty = 7)
Ti=[zeros(l,length(x));ones(l,length(x))];
X=N+ty*T1;

Y )

title(’Translation along to y—axis’,
fontsize ’,5);
a.data_bounds=[0,0;6,8];
case 3
// Transformation Matrix for translation
along to y—axis
tx=input (" Enter the required translation

along x direction tx = 7)
ty=input (" Enter the required translation
along y direction ty = 7)

Ti=[ones(1,length(x));zeros(l,length(x))];

T2=[zeros(1l,length(x));ones(1l,length(x))];

X=N+tx*T1+ty*T2;

title(’Translation along to y—axis’,
fontsize ’,5);

a.data_bounds=[0,0;6,8];

9

end

plot(x,y, 'linewidth ' ,3);

plot (X(1,:),X(2,:), —71r’, linewidth ’,3)
hl=legend ([ "old coordinates’; 'new coordinates ']);
hl.font_size=3
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Figure 6.2: Computer Graphics
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Figure 6.3: Computer Graphics

42



Figure 6.4: Computer Graphics
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Figure 6.5: Computer Graphics
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Figure 6.6: Computer Graphics
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Experiment: 7

Lagrangian formulation in
classical mechanics with
constraints.

Scilab code Solution 7.0 Lagrangian Formulation

// Submitted by Dr. Triranjita Srivastava. Assistant
Professor , Physics Dept., Kalindi College ,
University of Delhi

//Operating system: Windows 8

//SCILAB Ver: 5.5.2

//Objectiv: Lagrangian formulation in classical
mechanics with constraints

//Example: Simple Pendulum of length L (m)operating
in gravitational field . After applying
Lagrangian formulation this problem reduces to a
simple second order differential equation [(d"2
theta/dt "2)+(g/L)sin (theta)]=0. Here theta is
angular displacement .

// We implemented ordinary differential equation (
ODE) Solver to solve the second order
differential equation
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//We present plot of solution of angular
displacement for t=0 to t=10 seconds
clear
clc
L=input (’Enter the length of pendulum (m) L = 7)
g = 9.8 //acceleration due to
gravity (m/s”2)
k=g/L
theta=input ("Enter the initial angular displacement
(radian) at (t = 0) = ") ; // Initial
angular displacement at t = 0
dt=input ("Enter initial d_theta/dt (radian) at (t =
0) = 7) // Imnitial boundary condition
d_theta/dt at t = 0
//
[ ] koK sk sk kKo ok sk kK KR K R KK KK 3K K KK KO K R R KK KK 3K K KK KO K R KK KK K oK KK K K
//// Function declaration for ODE
//
[ ] ok sk sk kK Kk sk kK KR K R K KKK K SR KK KO K R K KKK K K KK KO K R KK KK R O K KK KK
t=1linspace (0,10,200)

function dx=f(t,x,k)
dx (1) =x(2)
dx (2)=-k*sin(x (1))
endfunction

//

//***************************************************************

//// Solving second order differential equation by
ODE solver

//

//***************************************************************

y=ode ([theta;dt],0,t,f)
ysol=y(1,:)
ydotsol = y(2,:)
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//

//***************************************************************

//// Plotting the solution (angular displacement (
theta)and d_theta/dt)

//

//***************************************************************

scf ()

title(’Solution of Simple Pendulum’, ’'fontsize’,5)
ylabel (' Solution ——>’, fontsize ’,5)

xlabel(’t (sec) ——> ', fontsize’,5)

a=get (" current_axes”) //get the handle of the

newly created axes

a.font_size=4

t=get (" hdl”) //get the handle of the
newly created object

t.font_size=5

plot(t,ysol, ’'r’, "linewidth ' ,3)

plot (t,ydotsol, 'k’, "linewidth ’,3)

hl = legend([’$\theta$’; ’$d\theta/dt$’ 1)

hl.font_size=3
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» 4l Scilab 5.5.2 Console D 4

—] [Enter the length of pendulum (m) L =1

-~

Enter the initial angular displacement (radian) at (t = 0) = %pi/10
Enter initial d_t.hel:a/dt (radian) at (t = 0) =0

-

Figure 7.1: Lagrangian Formulation

Solution of Simple Pendulum
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Figure 7.2: Lagrangian Formulation
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Experiment: 8

Vector-space of wave functions
in Quantum-Mech: Position
and Momentum differential
operators and their
commutator, wave function

Scilab code Solution 8.0 Hermitian Differential Op

// Submitted by Dr. Triranjita Srivastava. Assistant
Professor , Physics Dept., Kalindi College ,
University of Delhi

// Aim: To show the commutator relation in postion
and momentum space [x,p]=ih_cut or n general [x'n
,p]=ixh_cut*nxx"(n—1)

// Two examples are shown in this program

//1. Let the first function is fx=x

//2. Let the second function is fx=x"3

// For simplicity let the wavefunction A=x

//[fx ,p]=(ih_cut) (dfx/dx)

//h_cut=h/2pi; h is planck constant
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clc
x=poly(0,”"x”
h_cut=1.05%(10) " -34

//h_cut=h/2pi,

units is in Joule—sec

A=x
Wavefunction is A=x

s=input (”Enter 1 or 2 to choose the function as fx

// Considered

x or fx =x"3, s=7")

select s
case 1
fx=x
wavefunction
case 2
fx=x"3
end

// First

//Second wavefunction

fx_p=fx*x(-%i*h_cut)*derivat (A)
p_fx=(-%i*h_cut)*derivat (fx*A)

commutator=(fx_p-p_£fx)
disp (" [fx,p] = ")
disp(commutator)

disp ("The result contains an extra x because the

chosen wavefunction

is A =x"

o1



Enter 1 or 2 to choose the function as fx = x or fx = x°3, &= 1

[fx,p] =

Real part

L]
Imaginary part

1.050D-34x

The result contains an extra x the on is A = x

=

Figure 8.1: Hermitian Differential Op

52



Enter 1 or 2 to choose the function as fx = x or fx = x*3, s= 2
[£x,p] =
Real part

o
Imaginary part

3
3.150D-34x

The result contains an extra x because the chosen wavefunction is A = x

=

Figure 8.2: Hermitian Differential Op
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