Scilab Manual for CC-XI: Quantum Mechanics & Applications (32221501) by Dr Neetu Agrawal Physics Daulat Ram College, University Of Delhi ¹

> Solutions provided by Dr Neetu Agrawal Physics Daulat Ram College, University Of Delhi

> > June 25, 2025

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes written in it can be downloaded from the "Migrated Labs" section at the website http://scilab.in

Contents

Li	st of Scilab Solutions	3
1	Solve the s-wave Schrodinger equation for the ground state and the first excited state of the hydrogen atom.	5
2	Solve the s-wave radial Schrodinger equation for an atom for the screened coulomb potential.	13
3	Solve the s-wave radial Schrodinger equation for a particle of mass m, for an harmonic oscillator potential. Plot wavefunctions.	18
4	Solve the s-wave radial Schrodinger equation for the vibra- tions of hydrogen molecule. Find the lowest vibrational energy (in MeV	23
5	Plot and analyse the wavefunctions for particle in an infinite potential well.	28

List of Experiments

Solution 1.01	Hydrogen atom problem	5
Solution 2.0	Screened coulomb potential	13
Solution 3.0	Harmonic Oscillator	18
Solution 4.0	Morse Potential	23
Solution 5.0	1D Box potential	28

List of Figures

1.1	Hydrogen atom problem	6
1.2	Hydrogen atom problem	7
1.3	Hydrogen atom problem	8
1.4	Hydrogen atom problem	8
2.1	Screened coulomb potential	16
2.2	Screened coulomb potential	16
2.3	Screened coulomb potential	17
3.1	Harmonic Oscillator	22
3.2	Harmonic Oscillator	22
4.1	Morse Potential	24
4.2	Morse Potential	24
5.1	1D Box potential	29
5.2	1D Box potential	30
5.3	1D Box potential	31

Solve the s-wave Schrodinger equation for the ground state and the first excited state of the hydrogen atom.

Scilab code Solution $1.01\,$ Hydrogen atom problem

1	// Submitted by Dr. Neetu Agrawal. Assistant
	Professor, Physics Dept., Daulat Ram College,
	Univ. of Delhi
2	
3	// Aim: Solve the s-wave Schrodinger equation for the ground state and the first excited
4	//state of the hydrogen atom.

Figure 1.1: Hydrogen atom problem

Figure 1.2: Hydrogen atom problem

Figure 1.3: Hydrogen atom problem

```
Input the number of intervals (should be around 500 to 750 for good computation)500
Ground state energy (1S orbital) for hydrogen atom is (in eV) :
    - 13.598212
First excited state (2S orbital) energy for hydrogen atom is (in eV):
    - 3.4025004
Second excited state (3S orbital) energy for hydrogen atom is (in eV):
    - 1.5118515
Third excited state (4S orbital) energy for hydrogen atom is (in eV):
    - 0.7744925
-->
```

Figure 1.4: Hydrogen atom problem

```
5 //Here, m is the reduced mass of the electron.
      Obtain the energy eigenvalues and plot
6 // the corresponding wavefunctions. Remember that
      the ground state energy of the
7 //hydrogen atom is -13.6 eV. Take e = 3.795 (eV)
      ^{1}/2, c = 1973 (eV) and m = 0.511 \times 10^{6} \text{ eV}/\text{c2}.
8
9 close;
10 clear;
11 clc;
12
13 // declaring constant values
14
15 hbarc=1973; // Plancks constant h divided by 2*(pi)
      called as hbar = (h/2*pi). This factor when
      multiplied by speed of light c then hbar*c in the
       units of (eV) comes out to be 1973;
16 mcsq=0.511*10^(6);//This is mass of electron c^2 we
       call it mcsq in units of (eV);
17 e = 3.795; // (eV)<sup>1</sup>/2
18
19 // We hereby input the 'r' values so as to obtain
      the potential V(r) as a function of 'r')
20 r_min=0 // in units of angstrom
21 r_max=18 // in units of angstrom
22 N = input ("Input the number of intervals (should be
       around 500 to 750 for good computation)")
23 s = (r_max - r_min)/N; //step size
24 factor1=-(hbarc^2)/(2*mcsq*s^2); // this factor is
      (hbar^2*c^2/2m*c^2) divided by s^2 //k=(hbar_c*
      h b a r_c ) / (2 * m)
25
26 // Kinetic energy matrix (Using central difference
     formula)
27
28 T=zeros(N-1,N-1)
29 for i=1:N-1
       T(i,i) = -2
30
```

```
31
       if i<N-1 then
32
            T(i, i+1) = 1
            T(i+1,i) = 1
33
34
        end
35 end
36
37 T_matrix = factor1*T;
                              // Kinetic Energy Matrix
      final (scaling done)
38
39 //Potential energy matrix
40 V_matrix=zeros(N-1,N-1)
41 for i=1:N-1
42
       r(i)=r_min+i*s
       V_{matrix(i,i)} = -(e*e)/r(i);
43
44 end
45
46 // Hamiltonian matrix
47 H_matrix=T_matrix+V_matrix
48
49 // energy eigenvalue and eigenstates
50 [u,eigen] = spec(H_matrix);
51
52 // displaying of the ground and first excited state
      energies
53 disp("Ground state energy (1S orbital) for hydrogen
      atom is (in eV) : ")
54 disp(eigen(1,1))
55 disp("First excited state (2S orbital) energy
                                                       \mathrm{for}
      hydrogen atom is (in eV): ")
56 disp(eigen(2,2))
57 disp("Second excited state (3S orbital) energy
                                                        for
      hydrogen atom is (in eV): ")
58 disp(eigen(3,3))
59 disp("Third excited state (4S orbital) energy
                                                       for
      hydrogen atom is (in eV): ")
60 \operatorname{disp}(\operatorname{eigen}(4,4))
61
62 rmatrix = [0;r;15]; //including the first and last
```

```
point at which wavefunction is zero.
63
64 //Displaying the first four energy eigen values
65 figure(1);
66 / / scf()
67 \text{ for } n = 1:1:4
68 plot(rmatrix, eigen(n,n)*ones(N+1,1), 'linewidth',n)
69 hl=legend(['n = 1'; 'n= 2'; 'n=3'; 'n=4']);
70 title('Energy Eigen values for Hydrogen atom','
      fontsize',3)
71 xlabel('r (Angstrom)', 'fontsize',3)
72 ylabel('Eigen Value', 'fontsize', 3)
73 end
74
75 //Plotting the Probability |Psi<sup>2</sup>| as a function of
76 figure(2);
77 // scf()
78 R_wave_1s=u(:,1)./r; //Radial wavefuction
79 R_wave_1s_final=[0; R_wave_1s; 0]; //including the
      first and last point at which wavefunction is
      zero.
80 // plot of probability function
81 P_wave_1s= R_wave_1s_final.*R_wave_1s_final;
82 plot(rmatrix,P_wave_1s, 'linewidth',3)
83 title('Plot of Probability function for 1s orbital',
       'fontsize',3)
84 xlabel('r (Angstrom)', 'fontsize',3)
85 ylabel('Probability', 'fontsize', 3)
86
87 figure(3);
88 / scf()
89 R_wave_2s=u(:,2)./r;
90 R_wave_2s_final=[0; R_wave_2s; 0]; //including the
      first and last point at which wavefunction is
      zero.
91 // plot of probability function
92 P_wave_2s= R_wave_2s_final.*R_wave_2s_final;
```

```
93 plot(rmatrix,P_wave_2s, 'linewidth',3)
```

- 94 title('Plot of Probability function for 2s orbital', 'fontsize',3)
- 95 xlabel('r (Angstrom)', 'fontsize',3)
 96 ylabel('Probability', 'fontsize',3)

Solve the s-wave radial Schrodinger equation for an atom for the screened coulomb potential.

Scilab code Solution 2.0 Screened coulomb potential

```
1 //Solve the s-wave Schrodinger equation for the
ground state and the first excited
2 //state of the hydrogen atom.
3
4 close;
5 clear;
6 clc;
7
8 // declaring constant values
9 hbarc=1973;// Plancks constant = h , hbar*c=(h/2*pi)
^c.
10 mcsq=0.511*10^(6); // (mass of electron)*c ^2 in
units of (eV);
11 e = 3.795; // (eV )^1/2
12 //a = input("Input the vaue of a in units of
```

```
angstrom: ");
13 a=3 ; // in units of Angstrom
14 // we can check it for 3, 5, 7 angstrom etc..
15
16 r_min=0 // in units of angstrom
17 r_max=5 // in units of angstrom
18 N = input ("Input the number of intervals (should be
       around 500 to 1000 for good computation): ")
19 s = (r_max-r_min)/N; //step size
20 factor1=-(hbarc^2)/(2*mcsq*s^2);
21 // this factor is (hbar2*c^2/2m*c^2) divided by s^2
       //k = (hbar_c * hbar_c) / (2*m)
22
23 // Kinetic energy matrix (Using central difference
      formula)
24 T = zeros(N-1, N-1)
25 \text{ for } i=1:N-1
       T(i,i) = -2
26
27
       if i<N-1 then
28
           T(i, i+1) = 1
29
           T(i+1,i) = 1
30
        end
31 end
32 // Kinetic Energy Matrix final (scaling factor
      included)
33 T_matrix = factor1*T;
34
35 // Potential energy matrix
36 V_matrix=zeros(N-1,N-1)
37 \text{ for } i=1:N-1
       r(i)=r_min+i*s
38
39
       V_vector(i,1) = -((e*e)/r(i))*exp(-r(i)/a);
       V_{matrix(i,i)} = -((e * e)/r(i)) * exp(-r(i)/a);
40
41 end
42
43 // This is to plot the potential V(r) as a function
      of r
44 figure;
```

```
45 plot(r, V_vector, '-.', 'linewidth ',3)
46 xlabel('r (in Angstrom units)', 'fontsize',2)
47 ylabel('V(r)', 'fontsize',2)
48 legend (['Screened coloumb potential'])
49
50 // Hamiltonian matrix
51 H_matrix=T_matrix+V_matrix
52
53 // energy eigenvalue and eigenstates
54 [u,eigen] = spec(H_matrix);
55
56 // displaying of the groundstate energies
57 disp("Ground state energy in the presence of
      screened coloumb potential is : ")
58 \operatorname{disp}(\operatorname{eigen}(1,1))
59
60 //Radial wavefuction
61 figure();
62 Psi=u(:,1)./r;
63 plot(r,Psi, 'm', 'linewidth',3)
64 title('Eign function plot in presence of screened
      coloumb potential', 'fontsize',2)
65 xlabel('r (in Angstrom units)', 'fontsize',2)
66 ylabel('Eigen Function', 'fontsize',2)
67 legend (['Ground state wavefunction'])
```


Figure 2.1: Screened coulomb potential

Figure 2.2: Screened coulomb potential

Figure 2.3: Screened coulomb potential

Solve the s-wave radial Schrodinger equation for a particle of mass m, for an harmonic oscillator potential. Plot wavefunctions.

Scilab code Solution 3.0 Harmonic Oscillator

```
1 //Solve the s-wave radial Schrodinger equation for a
    particle of mass m
2 //for an harmonic oscillator potential for ground
    state energy (in MeV).
3
4 close;
5 clear;
6 clc;
7
8 // declaring constant values
9 hbarc=197.3 //Plancks constant h divided by 2*(pi)
    called as hbarc=(h/2*pi)*c.
10 mcsq=940; // mass of electron*c^2 = mcsq in units
```

```
of (MeV);
11 k = 100; // harmonic oscillator potential constant
       in units of MeV fm-2
12 b = 0;
13 disp("The value of b in the potential is chosen to
      be:");
14 disp(b)
15 //To obtain the plot the potential V(\,r\,) as a
      function of 'r'
16 \, r_min = 0;
17 \text{ r}_{max} = 4;
18 N = input ("Input the number of intervals (should be
       around 500 to 1000 for good computation: )")
19 s = (r_max - r_min)/N; //step size
20 factor1=-(hbarc^2)/(2*mcsq*s^2);
21
22 // making a row vector to input r values
23 for i=1:1:N
       rmat(1,i)=r_min+(i-1)*s
24
25 end
26
27 for ir = 1:1:size(rmat,2)
       r = rmat(ir);
28
29 V(1,ir) = 0.5*k*(r)^2 + 0.5*b*(r)^3;
30 end
31 figure;
32 plot(rmat, V, '-.', 'linewidth', 3)
33
34 // Kinetic energy matrix (Using central difference
      formula)
35 T = zeros(N,N)
36 for i=1:1:N
37
       T(i,i) = -2;
38
       if (i<N)</pre>
39
           T(i, i+1) = 1;
           T(i+1,i) = 1
40
41
       end
42 end
```

```
43
44 T_matrix = factor1*T; // Kinetic Energy Matrix final
       in MeV
45
46 // Potential energy matrix in MeV
47 U_matrix = zeros(N,N)
48 \text{ for } i = 1:1:N
49 U_matrix(i,i)=V(i)
50 \text{ end}
51
52 // Hamiltonian matrix
53 Ham = T_matrix+U_matrix;
54 [u,eigen] = spec(Ham);
55 eigval_numeric = spec(Ham)
56
57
58 disp ('The first five eigen values obtained using
     FDM are: ')
59 disp(eigval_numeric(1:5))
60
61 // Plotting the eigenvalues obtained by numerical
      computation
62
63 for n =1:1:5
       eigvalue_num = eigval_numeric(n)
64
65
       eigvalue_num_vector = eigvalue_num*ones(1,N);
       plot(rmat,eigvalue_num_vector,'r')
66
67 end
68
69
70 // normalisation check (The value comes out to be 1)
71 normalisation = sum((u(:,1).*conj(u(:,1))))
72
73 // plotting the eigen functions.
74 //(plot of mod psi squared). Done the scaling of
      eigen function magnitude
75
76 psisq1 = (1/normalisation)*(u(:,1).*conj(u(:,1)))
```

```
77 plot(rmat(1,:),8000*psisq1'+eigval_numeric(1),'k')
78
79 psisq2 = (1/normalisation)*(u(:,2).*conj(u(:,2)))
80 plot(rmat(1,:),8000*psisq2'+eigval_numeric(2),'k')
81
82 psisq3 = (1/normalisation)*(u(:,3).*conj(u(:,3)))
83 plot(rmat(1,:),8000*psisq3'+eigval_numeric(3),'k')
84
85 psisq4 = (1/normalisation)*(u(:,4).*conj(u(:,4)))
86 plot(rmat(1,:),8000*psisq4'+eigval_numeric(4),'k')
87
88 psisq5 = (1/normalisation)*(u(:,5).*conj(u(:,5)))
89 plot(rmat(1,:),8000*psisq5'+eigval_numeric(5),'k')
90
91 title('Plot of first 5 probability density functions
       ', 'fontsize',2);
92 xlabel('r (in fm) \longrightarrow', 'fontsize',2)
93 ylabel('Energy(in MeV) and scaled probability density
       functions)', 'fontsize',2)
94
95 legend(['Potential Plot', 'Eigenvalues'])
```


Figure 3.1: Harmonic Oscillator

Figure 3.2: Harmonic Oscillator

Solve the s-wave radial Schrodinger equation for the vibrations of hydrogen molecule. Find the lowest vibrational energy (in MeV

Scilab code Solution 4.0 Morse Potential

- 1 //This program solves the s-wave radial Schrodinger equation for the vibrations of hydrogen molecule for the Morse potential
- 2 //Find the lowest vibrational energy (in MeV) of the molecule. Also plot the corresponding wave function. //Take: $m = 940 \times 106 \text{ eV/c2}$, D = 0.755501 eV, = 1.44, r0 = 0.131349 //Where s the reduced mass of the two-atom system for the Morse potential //Find the lowest vibrational

Enter the number of intervals(should be around 500 to 1000 for good computation)750 Warning : redefining function: eval . Use funcprot(0) to avoid this message
The Eigenvalues calculated using FDM are
0.4042986
0.7535893
0.8403509
0.9841226
>

Figure 4.1: Morse Potential

Figure 4.2: Morse Potential

```
energy (in MeV) of the molecule to an accuracy of
      three significant digits. Also plot the //
      corresponding wave function. //Take: m = 940 \times 106
     eV/c2, D = 0.755501 eV, = 1.44, ro = 0.131349
3
4 clear
5 close
6 clc
7
8 // Declaring the values of constants
9 hcutc=1973 //Planck's constant h divided by 2*pi (
     hcut=h/2*pi). This when multiplied by speed of
      light c gives hcutc(in units of eV A)
10 mcsq=940*10^6; //mass*c^2 in units of eV/c^2
11
12 x0=0.131349 //In units of Angstrom
13 alpha=1.44 //a*x0 where 'a' is a constant for
      particular molecule
14 D=0.755501 // Dissociation Energy In units of eV
15
16 //Getting values of x to plot V(x), v/s, x, plot
17 xmin=0.05; //in units of A<sup>o</sup>
18 xmax=1; //in units of A^o
19
20 n=input("Enter the number of intervals(should be
      around 500 to 1000 for good computation)");
21 s=(xmax-xmin)/n; //step size
22
23 for i=1:1:n
24 x(1,i)=xmin+s*(i-1); //x vector of 1 row and n
     columns to input values of internuclear
      seperation
25 x_{(1,i)}=(x(1,i)-x0)/x0 / x_{vector}= (x-x0)/x0
26 end
27
28 factor1=-(hcutc^2)/(2*mcsq*s^2) //this factor is (
      hcut^{2}*c^{2}/2*m*c^{2}*s^{2}
```

```
29
30 //plot of potential V(x) v/s x
31 V=zeros(n,n); //Potential energy matrix
32 for i=1:1:n
33 V_matrix(i,i)=(D*(1-exp(-alpha*x_(1,i)))^2) //
      formula for potential
34 \text{ end}
35
36 for j=1:1:size(V_matrix,2)
37 V_vec(1,j)=V_matrix(j,j)
38 end
39 plot(x,(V_vec),"linewidth",2) //linewidth command to
       set width of line
40 title("Plot of first four Energy eigenvalues and
      Probability density for eigenfunctions", "fontsize
     ",2) //title of the plot
41 xlabel('Internuclear separation - x(Angstrom) -> ',"
      fontsize",3) //fontsize command to set the font
      size of labels
42 ylabel('Energy(MeV) \rightarrow >>(And the scaled wavefunctions
     )',"fontsize",3)
43
44 for i=1:1:n
45 for j=1:1:n
46 if i==j then
47 K(i,j)=-2;
48 elseif i==(j-1)|i==(j+1) then
49 K(i,j)=1;
50 else
51 K(i,j)=0;
52 end
53 end
54 end
55 T_matrix=factor1*K; //Kinetic energy matrix
56 H_matrix=V_matrix+T_matrix; //Hamiltonian matrix
57 eval=spec(H_matrix); //eval stores the eigenvalues
      of matrix H
58 [a,b]=spec(H_matrix); //a stores the eigenvectors
```

```
59 disp("The Eigenvalues calculated using FDM are")
60 for i=1:1:4
61 disp(eval(i,1))
62 end
63
64 // Plotting the eigenvalues obtained by Numerical
      computation
65 for i=1:1:4
66 eval_num=eval(i)
67 eval_num_vec=eval_num*ones(1,n)
68 plot(x,eval_num_vec, 'k', "linewidth",2)
69 end
70 //normalization check
71 normalisation=sum(a(:,1).*conj(a(:,1)));
72 // Plotting the first four Eigen functions (plot of
     mod psi square). We do the scaling of Eigen
      functions magnitudes by
73 //a factor of 15 and raise to level of eigen values
     to make the conventional plot with eigen values
     and
74 //eigen functions on the same line
75 psisq1=(1/normalisation)*(a(:,1).*conj(a(:,1)))
76 psisq2=(1/normalisation)*(a(:,2).*conj(a(:,2)))
77 psisq3=(1/normalisation)*(a(:,3).*conj(a(:,3)))
78 psisq4=(1/normalisation)*(a(:,4).*conj(a(:,4)))
79 plot(x(1,:),15*psisq1'+eval(1),'r',"linewidth",1.5)
80 plot(x(1,:),15*psisq2'+eval(2),'r',"linewidth",1.5)
81 plot(x(1,:),15*psisq3'+eval(3),'r',"linewidth",1.5)
82 plot(x(1,:),15*psisq4'+eval(4),'r',"linewidth",1.5)
83 legend([' Morse Potential Curve', 'Energy Eigenvalues
      '])
```

Plot and analyse the wavefunctions for particle in an infinite potential well.

Scilab code Solution 5.0 1D Box potential

```
1 close
2 clear
3 clc
4
5 //This is program calculates the energy eigen vaules
        and eigen functions
6 //for a particle in an infinite potential well of
        width a
7
8
9 // declaring constant values
```


Figure 5.1: 1D Box potential

```
"The box size is (in meters):"
  1.000D-10
Input the number of intervals (should be around 500 to 1000 for good computation)750
 "The Eigen (eV) values obtained from Finite difference method are :"
  37.637235
  150.54828
  338.73117
  602.18259
  940.89795
 "The Eigen values (eV) obtained from Analytic Formula are :"
  37.737723
  150.95089
  339.63951
  603.80357
  943.44308
-->
```



```
10 m = 9.1e-31; // mass of electron
11 hplanck= 6.63*1e-34 // value of plancks constant
12 hbar = hplanck/(2*%pi) // value of h/2*pi (let we
      call it hbar)
13 hbarsqbytwo_m_term = (hbar^2)/(2*m); //(value of
     hbar square by 2*m)
14 eV = 1.6e-19; // vale of electron volt si units
15 MeV = (1e+6)*eV; // writing Mega elctron volt
16 Angst = 1e-10; // value of one angstrom
17
18 \text{ x_min} = 0;
19 x_max = 1*Angst; //This value can be changed to
     change width of 1D box
20
21 disp ('The box size is (in meters):')
22 disp(x_max)
23
24 N = input ("Input the number of intervals (should be
```


Figure 5.3: 1D Box potential

```
around 500 to 1000 for good computation)")
25 a = (x_max - x_min);
                        // width of 1 d box
26 \ s = (x_max - x_min) / N;
                           // step size
27 fac = -hbarsqbytwo_m_term/(s^2);
                                          // this factor
      is (hbar^2/2m) divided by h^2
28
29 // making a row vector to input x values
30 for i=1:1:N
       x(1,i) = x_{min} + (i-1) * s
31
32 end
33 // Kinetic energy matrix (Using central difference
      formula)
34 \quad T=zeros(N,N)
35 for i=1:1:N
       T(i,i) = -2;
36
       if (i<N)</pre>
37
38
           T(i,i+1) = 1;
           T(i+1,i)=1
39
40
       end
41 end
42 T_matrix = fac*T/eV; // Kinetic Energy Matrix in eV
43
44 // potential energy matrix
45 U_matrix = zeros(N,N)
46 \text{ for } i = 1:1:N
47 U_matrix(i,i)=0;
48 end
49
50 // Hamiltonian matrix H=U+T
51 H_matrix = T_matrix+U_matrix;
52 [u,eigen] = spec(H_matrix);
53 eigval_numeric = spec(H_matrix)
54
55 // normalisation check
56 normalisation = sum((u(:,1).*conj(u(:,1))))
57
58 // By theoretically achieved Formulae
59 for n= 1:1:5
```

```
60 eigval_theory = (n^2*%pi^2*hbar^2)/(2*m*a^2) // in
      SI units
61 eigval_th_eV(n) = eigval_theory/eV
                                         // in eV
62 end
63
64 disp('The Eigen (eV) values obtained from Finite
      difference method are :')
65 disp(eigval_numeric(1:5))
66 disp('The Eigen values (eV) obtained from Analytic
     Formula are : ')
67 disp(eigval_th_eV(1:5))
68
69 // Plotting the eigenvalues
70 figure;
71 for n =1:1:5
       temp1 = eigval_numeric(n)
72
       eigval_numeric_vector = temp1*ones(1,N);
73
       plot(x/Angst,eigval_numeric_vector,'r-', '
74
          linewidth', 2)
       xlabel('x (in angstrom units)', 'fontsize',3)
75
       ylabel('Eigenvalue (eV)', 'fontsize',3)
76
       title('Eigenvalues for first 5 Eigen functions',
77
          'fontsize',3)
78 end
79
80
81 // plotting the Probbility functions. (plot of mod
     psi squared)
82
83 figure;
84 for in =1:1:5
85 psisq(:,in) = (u(:,in).*conj(u(:,in)))
86 end
87
88 subplot (5,1,1)
89 title('First five Probability density functions','
      fontsize',3)
90 plot(x(1,:)/Angst, psisq(:,1)', 'r', 'linewidth',2)
```

```
91 subplot(5,1,2)
92 plot(x(1,:)/Angst,psisq(:,2)', 'r', 'linewidth', 2)
93 subplot(5,1,3)
94 plot(x(1,:)/Angst,psisq(:,3)', 'r', 'linewidth', 2)
95 ylabel("Probability density", 'fontsize',3)
96 subplot(5,1,4)
97 plot(x(1,:)/Angst,psisq(:,4)', 'r', 'linewidth', 2)
98 subplot(5,1,5)
99 plot(x(1,:)/Angst,psisq(:,5)', 'r', 'linewidth', 2)
100 xlabel("x (in angstrom units)", 'fontsize',3)
```