Scilab Manual for
Digital Image Processing
by Dr B.Chandra Mohan

Electronics Engineering
Bapatla Engineering College!

Solutions provided by
Mr R.Senthilkumar- Assistant Professor
Electronics Engineering
Institute of Road and Transport Technology

January 24, 2026

Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the "Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions

1

2

9

Histogram display and histogram equalization
Kernel processing on images leading to image enhancement

Display of 2D filters frequency responses and processing the
images using these filters

Implementation of Airthmetic Coding for images
Basic JPEG algorithm implementation
DPCM encoding and decoding of images

Simple image watermarking algorithms using LSB substi-
tution

Simple content based image retrieval using various distance
metrics

Image segmentation algorithms using Snakes

10 Color images manipulations, reading and writing of color

images

11 Color image enhancements

12 Color image histogram manipulation

10

14

18

20

25

30

36

41

44

47

51

13 LOG Masks implementation for gray and color images 55
14 Special effects implementation on grey and color images 57

15 Simple video reading and writing .avi formats and manipu-
lation of video frames 62

List of Experiments

Solution 1.1
Solution 2.1
Solution 3.1
Solution 4.1
Solution 5.1
Solution 6.1
Solution 7.1
Solution 8.1
Solution 9.1
Solution 10.1
Solution 11.1
Solution 12.1
Solution 13.1
Solution 14.1
Solution 15.1
Solution 15.2
AP 1

AP 2

AP 3

AP 4

AP 5

AP 6

AP 7

Rotate Image 90 degree
Histogram of Gray images
Image Enhancement
Inverse Zig Zag scanning of pixels
Zig Zag Scanning of Pixels
2D Fast Fourier Trasnform
Inverse 2D Fast Fourier Transform

10
14
18
20
25
30
36
41
44
47
o1
95
o7
62
63
66
67
67
69
70
70
71

List of Figures

1.1 Expl e
1.2 Expl . . .o e e

21 BXP2 o o oo
2.2 BXP2 o o oo

31 BXP3 o o e e
3.2 BXD3 o o oo

6.1 Expb
6.2 Expb

7.1 ExXpT ..o
72 ExpT . .o

8.1 Exp8
8.2 ExXp8 . . .

11.1 Expll e e
11.2 Expll

121 Expl2 e e e
12.2 Expl2 e e e

14.1 Expld
14.2 Expld e e

12
13

16
17

28
29

34
35

39
40

49
90

53
o4

60
61

S U W N

© 00

10

11

12
13

Experiment: 1

Histogram display and
histogram equalization

Scilab code Solution 1.1 Expl

//Program 1 Histogram display and histogram
equalization

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2

clc;

clear;

close;

//a=imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image _ProcessinglLab\
tire.tif 7);//Image Path

a=imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _LAB\ Digital Image_ProcessingLab\
tire.jpeg’)

[m nl=size(a);

for i=1:256

14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39

40

b(i)=length(find (a==(i-1)));
end
pbb=b/(m*n) ;
pb (1) =pbb (1) ;
for 1i=2:256
pb(i)=pb(i-1)+pbb(i);
end

s=pb*255;
sb=uint8 (round(s)) ;
index =0;
for i=1:m
for j=1:n
index = double(a(i,j))+1;//convert it to
double
//otherwise index = 255+1 =0
hea(i,j)= sb(index);//histogram equalization
end
end
figure,
ShowImage (a, 'Original Image’)//IPD toolbox
title(’Original Image’)
figure
plot2d3(’gnn’,[1:256],b)
title (’Histogram of the Image’)
figure
ShowImage (hea, 'Image after Histogram equalization ’)
//IPD toolbox
title(’Image after Histogram equalization ’)

criginal Image

Figure 1.1: Expl

Figure 1.2: Expl

S U W N

© 00

10

11

12
13
14

Experiment: 2

Kernel processing on images
leading to image enhancement

Scilab code Solution 2.1 Exp2

//Program 2.Kernel processing on images leading to
image enhancement .

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2

clc

clear

close

a=imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab\
cktnoise.jpeg’);//SIVP toolbox

ks=input ('enter the size of the kernel 1 for 1 1 3
for 3 3 ...7);//kernel size 3x3

[m nl=size(a);

al=zeros(m+ks-1,n+ks-1);

10

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35

36
37
38

39
40
41

[m1 nill=size(al);
x=floor (ks/2) ;
al(1+x:ml1-x,1+x:nl1-x)=a;
b=[];

c=[1;

for i=1+x:ml-x
for j=1+x:nl-x
t=al(i-x:i+x,j-x:j+x);
men=sum (sum(t))/(ks*xks) ;
med=median(t(:));
b(i-x,j-x)=men;
c(i-x,j-x)=med;
end
end

figure

ShowImage (a, 'Noised image(before enhancement)’);//
IPD toolbox

title (’Noised image(before enhancement)’);

figure

ShowImage (uint8(b), 'enhancement with mean filtering’
);//IPD toolbox

title(’enhancement with mean filtering) ;

figure

ShowImage (uint8(c), 'enhancement with median
filtering ') ; //IPD toolbox

title(’enhancement with median filtering ’);

//RESULT

//enter the size of the kernel 1 for 1 1 3 for 3 3

.3

11

MNoised image{before enhancement)

Figure 2.1: Exp2

12

enhancement with mean filtering

Figure 2.2: Exp2

13

—

[\)

w

S

S Ot

Experiment: 3

Display of 2D filters frequency
responses and processing the
images using these filters

check Appendix AP 6 for dependency:
fft2d.sce
check Appendix AP 7 for dependency:

ifft2d.sce

Scilab code Solution 3.1 Exp3

//Program 3:Display of 2D filters frequency
responses and processing the images using these
filters

//Reference: 7 Digital Image Processing” ,Dr.S.
Jayaraman ,S. Esakkirajan ,T. Veerakumar ,TMH,2011

//Note: The in—built scilab functions fft2d and
ifft2d are not working properly

//1t give wrong results.

//Use My functions for 2D-FFT and 2D-IFFT.

//Software version

14

© 00

10

11
12
13
14

15

16

17
18

19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2

clc;

close;

clear;

exec ('C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _LAB\ Digital Image_ProcessingLab\
fft2d .sce’)

exec ('C:\ Users\senthilkumar\Desktop)\
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab\
ifft2d .sce’)

im1 = imread (’C:\ Users\senthilkumar\Desktop)\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
balloonsnoisy .png’);//colour noise image

im = rgb2gray(iml);//gray noise image

fc = 100; //cut off frequency —more features choose
high cutoff frequency

n=1;//filter order =1

[co,rol= size(im) ;

cx = round(co/2); //centre of the image

cy = round(ro/2);

IM = fft2d(double (im));

imf = fftshift (IM);

H = zeros(co,ro);
for i = 1:co
for j = 1:ro
d = (i-cx) . 2+(j-cy) . 2;

H(i,j) = 1/(1+((d/fc/fc)."(2*n))); //Low
Pass Butterworth First Order filter
end
end
out_im = imf .x*xH;
out = abs(ifft2d(out_im));
out = uint8(out);
figure

15

36
37
38
39
40
41
42

Figure 3.1: Exp3

ShowColorImage (iml, *Colour Noisy Image’)

figure

ShowImage (im, 'Gray Noise Image’)
figure

ShowImage (H, 'Low Pass Filter Frequency
figure

ShowImage (out, 'Filtered Image’)

Response)

16

Figure 3.2: Exp3

17

=

© 00 N O Ot

10
11
12
13
14

Experiment: 4

Implementation of Airthmetic
Coding for images

Scilab code Solution 4.1 Exp4

// Program 4. Implementation of arithmetic coding
for images

//Note 1: In order to run this program download
Huffman toolbox from

//scilab atoms

//Note 2: The Huffman atom is used to encode images
of small size only

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2

clear;

clc;

close;

//A=testmatrix (" frk ' ,10)+1;

a = imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab\

18

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

cameraman . jpeg ') ;

A = imresize(a,[16 16]1); //Only Image of small size
is possible to call huffcode

B = size(A);

A=AC(C:) .7,

A = double(A);

[QT,QMl=huffcode(A); //Huffman Encoding
disp(’compressed Bit sequence:’);
disp (QT);
disp(’Code Table:) ;
disp (QM) ;
// Now, the reverse operation
C = huffdeco(QT,QM); //Huffman Decoding
for i=1:B(1)
E(i,1:B(2))= C((i-1)*B(2)+1:1i*B(2));

D = E’;
imresize (D, [32,32]);
figure

ea|
I

ShowImage (a, "Original cameraman Image 256x256)

figure

ShowImage (E, "Reconstructed cameraman Image 256x256 ")

I

19

S U = W N~

© 00

10

Experiment: 5

Basic JPEG algorithm
implementation

check Appendix AP 4 for dependency:
izigzagh.sci
check Appendix AP 5 for dependency:

zigzagb.sci

Scilab code Solution 5.1 Expb

// Program 5. Basic JPEG algorithm implementation

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1—2

close

clear;

clc;

exec ('C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
zigzag_5.sci’)

20

11

12

13

14

15
16
17
18
19
20
21
22
23
24

25
26

27
28
29
30
31
32

33
34
35

exec (’C:\ Users\senthilkumar\Desktop)
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab
izigzag 5 .sci’)
I = imread(’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _LAB\ Digital Image_ProcessingLab\
cameraman . jpeg ’'); //256x256 image
I = imresize(I,0.25);//reduced to 64x64 image [in
order to reduce the computation time |
[m,n]=size(I);// Finding the dimensions of the image
file .

I=double(I);

q= [16 11 10 16 24 40 51 61;
12 12 14 19 26 58 60 55;
14 13 16 24 40 57 69 56;
14 17 22 29 51 87 80 62;
18 22 37 56 68 109 103 77;
24 35 55 64 81 104 113 92;
49 64 78 87 103 121 120 101;
72 92 95 98 112 100 103 99];

N=8; // Block size for which
DCT is Computed.

I_Trsfrm.block=zeros(N,M); // Initialising the DCT
Coefficients Structure Matrix 7I_Trsfrm” with the
required dimensions.
for a=1:m/N
for b=1:n/M
for k=1:N
for 1=1:M
Mean_Sum=0;
//2D-Discrete Cosine Transform
/111117
for i=1:N
for j=1:M
Mean_Sum = Mean_Sum+double (I
(N*(a-1)+i,M*x(b-1)+j))*
cos (hpi*(k-1)*x(2*xi-1) /(2%
N))*xcos (%hpi*(1-1)*(2*%j-1)

21

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53

54
55
56
o7
58
59

60
61
62
63
64
65

66
67
68

/(2%xM));

end
end
11111111071
if k==

Mean_Sum = Mean_Sum*sqrt (1/N);
else

Mean_Sum = Mean_Sum*sqrt (2/N);
end
if 1==

Mean_Sum = Mean_Sum*sqrt (1/M);
else

Mean_Sum = Mean_Sum*sqrt (2/M);
end
I_Trsfrm(a,b).block(k,1l)= Mean_Sum;

end
end
// Normalizing the DCT Matrix and Quantizing
the resulting values.
I_Trsfrm(a,b).block=round(I_Trsfrm(a,b).
block./q);
end
end
I_zigzag.block = zeros(N,M);
for a= 1:m/N
for b = 1:n/M
I_zigzag(a,b).block = zigzag 5(I_Trsfrm(a,b)
.block) ;
end
end
I_rec_Trnsfm.block = zeros(N,M);
for a= 1:m/N
for b = 1:n/M
I_rec_Trnsfm(a,b).block = izigzag 5(I_zigzag
(a,b).block);
end
end
// Denormalizing the Reconstructed Tranform matrix

22

69
70
71
72

73
74
75
76
7
78
79
80
81
82
83
84

85
86

87
88
89
90
91
92
93
94

using the same
// Normalization matrix.
for a=1:m/N
for b=1:n/M
I_rec_Trnsfm(a,b) .block =(I_rec_Trnsfm(a,b).
block) .*q;
end
end
//Inverse 2D-DCT
for a=1:m/N
for b=1:n/M

for i=1:N
for j=1:M
Mean_Sum =0;
for k=1:N
for 1=1:M
if k==
temp =double(sqrt(1/2) *
I_rec_Trnsfm(a,b).
block(k,1))*cos (%pix*(k
-1)*(2%i-1) /(2xN)) *cos
(hpi*(1-1)*x(2%j-1) /(2%
M));
else
temp = double(
I_rec_Trnsfm(a,b).
block (k,1))*cos (%pix(
k-1) % (2%i-1)/(2%N))*
cos (hpi*(1-1)*x(2%xj-1)
/(2xM)) ;
end
if 1==
temp = temp*sqrt(1/2);
end
Mean_Sum = Mean_Sum+temp;
end
end

Mean_Sum = Mean_Sumx*(2/sqrt (M*N));

23

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

I_rec((a-1)*N+i,(b-1)*M+j)= Mean_Sum
end
end
end
end
// Displaying the Reconstructed Image.

diff_image = im2double (I)*255-I_rec;
diff_image = diff_image/max(max(diff_image));
diff_image = im2uint8(diff_image) ;

I_rec = I_rec/max(max(I_rec));

I_rec = im2uint8(I_rec);

figure

ShowImage (I_rec, "Recovered Image’);
figure

ShowImage (diff_image, 'Difference Image’)
figure

imhist (I_rec);

figure

imhist (diff) ;

24

S U = W N =

10
11
12
13
14
15
16

Experiment: 6

DPCM encoding and decoding
of images

Scilab code Solution 6.1 Exp6

// Program 6 DPCM encoding and decoding of images

//Software version

//OS Windows7

//Scilab5 .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1-2

clc

clear

//Function to find number of elements in an image

function [N] = numel (X)
//X~input image

//N— number of elements in image X
[m,n]= size(X);
N = m*n;

endfunction

//

N A

25

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

//Function to calculate peak signal to noise ratio
function [psnr,mse,maxerr] = psnr_mse_maxerr (X, Xapp)
//PSNR.MSE_MAXERR Peak signal to noise ratio

//X — original Image

//Xapp — reconstructed image

//psnr — peak signal to noise ratio

//mse — mean square error

//maxerr — maximum error

X = double (X);

Xapp = double (Xapp);

absD = abs (X-Xapp);

A = absD."2;

mse = sum(A(:))/numel (X);
psnr = 10%1logl0 (255*255/mse) ;
maxerr = round(max(absD(:)));
endfunction

//

N Ny as

a=imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _LAB\ Digital Image_ProcessingLab\
cameraman . jpeg ') ;
a=double (a);
[m nl=size(a);
pre=0;
g=input (’enter the quantization value’);
for i=1:m
for j=1:n
tli=a(i,j)-pre;
tq=round(tl/q);
pre=pre+tqgx*q;

b(i,j)=tq;
end
end
repre=0;
for i=1:m
for j=1:n
ret=b(i, j);

26

51
52
53
o4
95
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70

ing=ret*q;
repre=repre+ing;
c(i,j)=repre;

end
end
figure
ShowImage (a, 'Image Before Quantization ')
figure
ShowImage (b, ’Quantized Image’)
figure
ShowImage (c, "Reconstructed Image From Quantized
Image ")
psnr = psnr_mse_maxerr(a,c);
disp(psnr, 'PSNR in dB= ")
//RESULT

//enter the quantization value 2

//PSNR in dB = 51.165559

enter the quantization value 8
//
//PSNR in dB = 40.698164

//

27

Figure 6.1: Expb6

28

Figure 6.2: Exp6

29

o Ot

© 00

10

12

Experiment: 7

Simple image watermarking
algorithms using LSB
substitution

Scilab code Solution 7.1 Exp7

//Program 7. Simple image watermarking algorithms
using LSB substitution

//Note 1: The imread function in SIVP toolbox read
the binary image as gray

//scale image. During bitset it will create problems

//The grayscale image can be converted into binary
image using the function

// gray?2bin ()

//Note 2: The functions bit_set and bit_get are
written inorder to save the

// scilab workspace memory during execution

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1—1

//Scilab Image and Video Proccessing toolbox

30

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

0.5.3.1 -2

clc
clear
close
//Function to find number of elements in an image
function [N] = numel(X)

//X—input image

//N— number of elements in image X

[m,n]= size(X);

N = mx*n;
endfunction
//Function to calculate peak signal to noise ratio
function [psnr,mse,maxerr] = psnr_mse_maxerr (X, Xapp)
//PSNR.MSE_MAXERR Peak signal to noise ratio
//X — original Image
//Xapp — reconstructed image
//psnr — peak signal to noise ratio
//mse — mean square error
//maxerr — maximum error
X = double (X);
Xapp = double (Xapp);
absD = abs (X-Xapp);

A = absD."2;

mse = sum(A(:))/numel (X);
psnr = 10%1logl0 (255*x255/mse) ;
maxerr = round(max(absD(:)));

endfunction

/
Ny as

function [A]l= gray2bin(B)
[m,n] = size(B)
for i 1:m

for j = 1:n
if (B(i,j)>200)
A(i,j)= 1;
else
A(i,j)=0;

31

48
49
50
o1
52
53
54

55
56
57
58
99
60
61
62
63

64
65
66
67
68
69
70
71

end
end

end
endfunction

//
N Ny as

function [c]l= bit_set(c,b)

[m,n] = size(c);
for i=1:m
for j=1:n
c(i,j)=bitset(c(i,j),1,b(i,j));
end
end
endfunction
//
NNy aas
function [d] = bit_get (c)

[m,n] = size(c);
for i=1:m
for j=1:n
d(i,j)=bitget(c(i,j),1);
end
end
endfunction

2 //

73

74

75

N Ny as

a = imread (’C:\ Users\senthilkumar\Desktop)\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
cameraman.jpeg’); // original image

b = imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _LAB\ Digital Image_ProcessingLab\wat
.jpg’); // watermark image

b = gray2bin(b);

32

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

[m n] = size(a);
a double (a);

a;

bit_set (c,b);
bit_get (c);

c
c
d

figure

ShowImage (a, "Original image’) ;

title(’Original image’);

figure

ShowImage (b, "watermark image’);

title ("watermark image’);

figure

ShowImage (uint8(c), "watermarked image’) ;

title (’watermarked image’) ;

figure

ShowImage (d, "extracted watermark’) ;

title(’extracted watermark’);

psnr = psnr_mse_maxerr(a,c);

correlation = corr2(b,d);

disp(correlation, 'correlation between watermark
image and extracted watermark=")

33

watermatked image

Figure 7.1: Exp7

34

extracted watermark

Bapatla
Engineering

college

Figure 7.2: Exp7

35

10
11
12

Experiment: 8

Simple content based image
retrieval using various distance
metrics

Scilab code Solution 8.1 Exp8

//Program 8: Simple content based image retrieval
using various distance metrics.

//Based on Similarity matrix

//Using Colormaps of different images

//Note 1: Other methods like wavelet based
decomposition along with Euclidean distance

//comparison of sub images can be used for image
retrieval

//Note 2: Principal Component Analysis (PCA) inbuilt
function is available to

//get eigen vectors and eigen values for image
retrieval

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1—1

//Scilab Image and Video Proccessing toolbox

36

13
14
15
16

17
18

19
20

21
22

23
24
25
26
27
28
29
30
31

32

33
34
35
36
37
38
39
40
41

0.5.3.1 -2

clear;

clc;

close;

I1 = imread(’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
Picturel .png’);//257x257x3.

I1 = imresize(I1,0.5);

[IndexedImage_I1, ColorMap] = RGB2Ind(I1l); //IPD
toolbox

I = ColorMap;//66049x3

J1 = imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab\
Picture2 .png’);//257x257x3.

J1 = imresize(J1,0.5);

[IndexedImage_J1, ColorMap] = RGB2Ind(J1); //IPD
toolbox

J = ColorMap;//66049x3

//Similarity Matrix Method

[r,cl= size(I);

A= [1;

I = double(I);

J = double(J);

for i = 1:r

for j = 1:c

M1(i,j) = (I(i,2)*sin(I(i,1))-3J(j,2)*sin(J(j
»1))) 725

M2(i,j) = (I(i,2)*cos(I(i,1))-J(j,2)*cos(J(]
,1))) 725

M3(i,j) = (I(i,3)-J(i,3))"2;

M(i,j)= sqrt(M1(i,j)+M2(i,j)+M3(i,j));

A(i,j) = 1-M(i,j)/sqrt(5);

end
end
I1_rec = Ind2RGB(IndexedImage_I1,A)
I1_rec = imresize(Il_rec,2);
Ji_rec = Ind2RGB(IndexedImage_J1,A)
Ji_rec = imresize(Jl_rec,b2);

37

42
43
44
45
46
47
48
49

figure

ShowColorImage (I1, 'original

figure

first image’);

ShowColorImage (Il_rec, Reconstructed first

figure

ShowColorImage (J1, original

figure

second image) ;

image) ;

ShowColorImage (J1_rec, 'Reconstructed second image’);

38

Figure 8.1: Exp8

39

Figure 8.2: Exp8

40

© 00 N O

10

12
13
14
15

Experiment: 9

Image segmentation algorithms

using Snakes

Scilab code Solution 9.1 Exp9

// Program 9.Image segmentation algorithms using
snakes .

//Note: Incomplete.

//So many functions are not avilable in Scilab

//Image segmentation algorithms using snakes is
impossible with current

//version of scilab and scilab image processing
atoms .

//1 tried my best

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1—1

//Scilab Image and Video Proccessing toolbox
0.5.3.1—-2

close;

clear;

clc;

J = imread (’C:\ Users\senthilkumar\Desktop)\

41

Chandra_Mohan LAB\ Digital Image _ProcessingLab\
binary_image.jpg’);

J = rgb2gray(J);
J = imresize(J,[256,256]) ;
J = double (J);

[h,w] = size(J);
for i = 1:h

for j= 1:w
if (J(i,j)>200)
J(i,j)= 1;
else
J(i,j) =0;
end
end

end

I = imfilter (J,fspecial (’gaussian’,[17 17],3));
figure

ShowImage (I, "Snakes)

N=500; // number of snake points
alpha=1;

tstep=1;

N_iter=500;

f=50;

global EDGE_SOBEL;

gradient = EdgeFilter (I,EDGE_SOBEL);

[m,n] = size(gradient);
Ix = gradient(:,:);

Iy = gradient(:,:)’;

S = -f*x(Ix.*xIx + Iy.*xIy);

gradient = EdgeFilter (S,EDGE_SOBEL);

Sx = gradient (:,:);

Sy = gradient(:,:)’;

eps = 2.2204e-016;

Smag = sqrt(Sx."2 + Sy.~"2)+eps;

Sx(:) = Sx./Smag;

Sy(:) = Sy./Smag;

D=[-tstep*alpha*ones(N,1) (l+2xtstep*alpha)*ones(N
,1) -tstep*alpha*ones(N,1)];

42

51
52
53
54
95
56
57

D(2,3)=D(2,3)-tstep*alpha;
D($-1,1)=D($-1,1)-tstep*alpha;
theta = linspace (0,2*%pi,N);
theta theta (:);

x = w/2 + 10 + (h/3)*cos(theta);
y = h/2 - 10 + (h/4)*sin(theta);
plot(x,y, 'r’);

43

S T W N

© 00

10

12

Experiment: 10

Color images manipulations,
reading and writing of color
images

Scilab code Solution 10.1 Expl0

//Program 10.Color images manipulations , reading and
writing of color images
//Software version
//OS Windows7
//Scilabb .4.1
//Image Processing Design Toolbox 8.3.1-1
//Scilab Image and Video Proccessing toolbox
0.5.3.1-2
clc
clear
close
//Showing RGB components of a color RGB image.
//Splitting the color image (RGB Image) into three
planes
a=imread ('C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _LAB\DIP _Scilab_Programs\peppers.
png’); //this image is 348x512x3 size

44

13
14
15
16
17
18
19
20
21
22

23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

figure

ar=a(:,:,1);

ShowImage (ar, '/RED Matrix ’)

figure

ag=a(:,:,2);
ShowImage (ag, '"GREEN Matrix ")

figure

ab=a(:,:,3);

ShowImage (ab, 'BLUE Matrix ")
//Reconstruction of original color image from three
RGB planes

RGB = imread(’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan_LAB\DIP _Scilab_Programs\peppers.
png’); //SIVP toolbox

RGB_128 = RGB/2;

RGB_128 = round (RGB_128)
[X,map] = RGB2Ind(RGB_128);
figure

ShowImage (X, 'Indexed Image’ ,map)
//Limiting no of colours to 8 without dithering
figure
RGB_8 = RGB/7;
RGB_8 = round (RGB_8)
[X1,mapl1]=RGB2Ind (RGB) ;
ShowImage (X1, "Without Dither ’,map1)

figure

ShowColorImage (RGB, 'RGB Color Image’)
YIQ = rgb2ntsc(RGB);

figure

ShowColorImage (YIQ, 'NTSC image YIQ')

RGB = ntsc2rgb(YIQ);
YCC = rgb2ycbcr (RGB) ;
figure

ShowColorImage (YCC, "equivalent HSV image YCbCr’)
RGB ycbcr2rgb (YCC) ;
HSV rgb2hsv (RGB) ;

45

48 figure
49 ShowColorImage (HSV, "equivalent HSV image’)
50 RGB = hsv2rgb (HSV);

46

S U = W N~

© 00

10

11

12

Experiment: 11

Color image enhancements

check Appendix AP 3 for dependency:

imgenhll.sci

Scilab code Solution 11.1 Expll

//Program 11. Color image enhancements

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2

clc

clear

close

a=imread ('C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image _ProcessingLab\
balloonsnoisy .png’) ;

ks=input (’enter the size of the kernel 1 for 1 1
for 3 3 ...7);

exec (’'C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
imgenh_11.sci’)

47

3

13
14
15
16
17
18

19
20
21

22
23
24

25
26

27

for i=1:3
b(:,:,i)=imgenh11(a(:,:,i) ,ks);
end

figure
ShowColorImage (a, 'Noised image(before enhancement)’)

title(’Noised image(before enhancement)’);

figure

ShowColorImage (uint8(b), 'enhancement with mean

filtering ’);

title(’enhancement with mean filtering ');

//RESULT

//enter the size of the kernel 1 for 1 1 3 for 3 3
.3

//NOTE: since the image is large [480 640] it will
take some time to
//show the result

48

Moised image(before enhancement)

Figure 11.1: Expll

49

enhancement with mean filtering

Figure 11.2: Expll

50

S UL W N =

co

10
11

Experiment: 12

Color image histogram
manipulation

check Appendix AP 2 for dependency:
histbwl2.sci

Scilab code Solution 12.1 Expl2

//Program 12 Color image histogram manipulation

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2

clc

close

a=imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
peppers.png’);

al=uint8(a);

exec (’'C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
histbw_12.sci’)

51

12
13
14
15
16
17
18
19

20
21
22

for i=1:3
b(:,:,i)=histbwi2(al(:,:,1));
end
figure
ShowColorImage(a, 'original color image’);
title(’original color image’);

figure
ShowColorImage (b, "histogram equalization of color
image ") ;

title ("histogram equalization of color image’);

rgbhist_12(a);

//exec (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
rgbhist_12.sci’)

52

ariginal colarimage

Figure 12.1: Expl2

53

histogram equalization of color image

Figure 12.2: Expl2

o4

S UL W N

© 00

10

11
12

13

Experiment: 13

LOG Masks implementation for
gray and color images

Scilab code Solution 13.1 Expl3

//Program 13. LOG Masks implementation for gray and

color images

//Software version

//OS Windows7
//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1
//Scilab Image and Video Proccessing toolbox

0.5.3.1—2
clc
clear
close

a=imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab\
cameraman . jpeg ') ;

a=double (a);

logmask=[0 1 1 2 2 2 11 0;1 24550542 1;1453

0 354 1;25 3

-24 0 5 2;
2 53

-12

-12

-24

-24 -12 3 5 2;2 5 0 -24 -40

-12 3 5 2;1 45 3 0354 1;1

95

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

2455542 1;011222110];

[m n]l=size(a);
[m1 ni]=size(logmask) ;
b=zeros (m+ml-1,n+n1-1) ;
m2=floor (ml1/2) ;
n2=floor(nl/2);
b(m2+1:m+m2 ,n2+1:n+n2)=a;
for i=m2+1:m+m2

for j=n2+1:n+n2

c=b(i-m2:i+m2,j-n2:j+n2);
d=sum(sum(c.*logmask));

if d>150

e(i-m2,j-n2)=0;

else

e(i-m2,j-n2)=1;

end

end
end

title (’Camerman image after LOG masked’)

imshow (e) //SIVP toolbox

56

o 3 O Ot

10
11

Experiment: 14

Special effects implementation
on grey and color images

check Appendix AP 1 for dependency:

rot90f.sci

Scilab code Solution 14.1 Expl4

//Program 14. Special effects implementation on gray
and color images

//Note: The functions like entropfilt().m are not
available in scilab

//But similar effects can be produced in scilab
using other methods.

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2

clc;

clear;

close;

o7

12

13

14

15

16
17
18
19
20
21

22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38

exec (’C:\ Users\senthilkumar\Desktop)
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab
rot90_f.sci’)

imgl = imread (’C:\ Users\senthilkumar\Desktop)\
Chandra_Mohan _LAB\ Digital Image_ProcessingLab\
mandrill . jpeg’);//colour image

img2 = imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab
twozebras.jpg’);//colour image

img3 = imread (’C:\ Users\senthilkumar\Desktop)\
Chandra_Mohan LAB\ Digital Image _ProcessingLab\
cameraman . jpeg ’);//gray image

filterl = fspecial(’sobel’);

imgl_filter = imfilter (imgl,filterl);

img2_filter = imfilter (img2,filterl);

ShowColorImage (imgl, "original image 17);

figure

ShowColorImage (imgl_filter, 'Special effect in
Mandrill Image’)

figure

ShowColorImage (img2, 'original image 27);

figure

ShowColorImage (img2_filter, 'Special effect in
twozebras Image’)

img3_negative = 255-double(img3); //image negative

img3_rotate = rot90f (img3,3);

//Image contrat adjustment

[m,n] = size(img3);

for 1

1:m

for j = 1:n
if img3(i,j)>70 then
img3_adjust (i, j)
,3)) 5

img3 (i, j)+(255-img3 (i

else
img3_adjust (i, j)

img3(i,j);
end

end

58

39
40
41
42
43
44
45

46
47

end
figure

ShowImage (img3, ’Cameraman original Image’);

figure

ShowImage (img3_negative, "Cameraman Negative Image’)

figure

ShowImage (img3_rotate, '270 degree rotation of

camerman image ')
figure

ShowImage (img3_adjust , 'Cameraman Image Contrast

Adjustment ’)

59

Figure 14.1: Expl4

60

Figure 14.2: Expl4

61

ot

© 00 N O

10

12

13

Experiment: 15

Simple video reading and
writing .avi formats and
manipulation of video frames

Scilab code Solution 15.1 Explba

//Program 15. Simple video reading and writing .avi
formats and manipulation of video frames.
//Note 1: Install xvid codec for read and write

video files from
//http://www.xvid.org/Downloads.15.0. html
//Note 2: very large can not be read by scilab
//Note 3: shuttle.avi is a large file more 100
frames. use shuttlenew.avi file
//for video processing applications
//Using SIVP Atom
//Software version
//OS Windows7
//Scilabb .4.1
//Image Processing Design Toolbox 8.3.1-1
//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2
clear;

62

14
15
16
17

18
19
20
21

[GRS

© o O

10

12

13
14
15
16

clc;

close;

//n = aviopen (SCI+’/contrib /sivp/images/video.avi’) ;

n = aviopen(’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _LAB\ Digital Image_ProcessingLab\red
—car—video.avi’);

im = avireadframe(n); //get a frame

imshow (im) ;

avilistopened ()

aviclose(n);

Scilab code Solution 15.2 Explbb

//Program 15. Simple video reading and writing .avi
formats and manipulation of video frames.
//Note 1: Install xvid codec for read and write
video files from

//http://www.xvid.org/Downloads.15.0. html

//Note 2: very large can not be read by scilab

//Note 3: shuttle.avi is a large file more 100
frames. use red—car—video.avi file

//for video processing applications

//Using Image Processing Design Atom (IPD)

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1-2

clear;

clc;

close;

VideoPath = ’'C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab\red

b

—car—video.avi’;

63

17
18

19
20

21
22
23
24
25
26
27
28
29
30
31
32

VideoInfo = GetVideoStruct (’C:\ Users\senthilkumar\
Desktop\Chandra_Mohan_LAB\
Digital Image_ProcessingLab\red—car—video.avi’);
VideoFilePointer = OpenVideoFile (’'C:\ Users})
senthilkumar\Desktop\Chandra_Mohan LABY\
Digital Image_ProcessingLab\red—car—video.avi’);
figure) ;
for n = 1 : VideoInfo.NumberOfFrames
RGB = ReadImage(VideoFilePointer);
ShowColorImage (RGB, VideoPath);

end ;

CloseVideoFile(VideoFilePointer) ;

64

w

© 00 N O

Appendix

Scilab code AP11 function [B] = rot90f (A,k)
[%nargout , %nargin] = argn(0)
//ROT90 Rotate matrix 90 degrees.
// ROT90(A) is the 90 degree counterclockwise
rotation of matrix A.
// ROT90(A,K) is the K«90 degree rotation of A, K
= +-1,+-2,...
[m,n] = size(A);
if %nargin==1 then
k = 1;
else
k = k-fix(k/4) .*4;
if (k<0) then

k = k+4;
end
end
if k == 1
A = A.7;
B = A(n:-1:1,:);
elseif k == 2
B = A(m:-1:1,n:-1:1);
elseif k == 3
B = A(m:-1:1,:);
B = B.’;
else
B = A;
end

65

26

[\)

© 00 J O UL = W

10
11
12
13
14
15
16
17
18
19
20
21

22
23

24
25
26
27
28
29

endfunction

Rotate Image 90 degree

Scilab code AP12 function [hea,b]l=histbwil2(a)
//a=imread (’C:\ Users\senthilkumar\Desktop\

Chandra_Mohan LAB\ Digital Image_ProcessinglLab

\tire.jpeg’)
//a— original image
//b— histogram
//hea— histogram equalized image
[m nl=size(a);
for i=1:256
b(i)=length(find (a==(i-1)));
end
pbb=b/(m*n) ;
pb (1) =pbb (1) ;
for 1i=2:256
pb(i)=pb(i-1)+pbb(i);

end
s=pb*255;
sb=uint8 (round(s)) ;
index =0;
for i=1:m
for j=1:mn
index = double(a(i,j))+1;//convert
double
//otherwise index = 255+1 =0
hea(i,j)= sb(index);//histogram
equalization
end
end

endfunction

//note:

//First run this function

//type the following commands in scilab console
window

66

1t to

30

31
32
33
34
35
36
37
38
39

40

© 00 J O U = W N

o T e S e S G S G SO
S U W NN = O

//a=imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\

tire .jpeg ’)
//[hea ,b] = histbw_12(a);
//figure |

//Showlmage (a,’ Original Image’)//IPD toolbox
//title (?Original Image’)

//figure

//plot2d3 (’gnn’ ,[1:256] ,b)

//title ("Histogram of the Image’)

//figure
//Showlmage (hea, ’Image after Histogram equalization

") //IPD toolbox
//title ("Image after Histogram equalization ")

Histogram of Gray images

Scilab code AP 13 function [out] =imgenhl1 (a,ks)
[m nl=size(a);
al=zeros (m+ks-1,n+ks-1);
[m1 nill=size(al);
x=floor (ks/2) ;
al(1+x:ml1-x,1+x:nl-x)=a;
out=[];

for i=1+x:ml-x
for j=1+x:nl-x
t=al(i-x:i+x,j-x:j+x);
med=median(t(:));
out (i-x,j-x)=med;
end
end
endfunction

Image Enhancement

Scilab code APU4 function [result] = izigzagb(data)
//inverse ZigZag scanning of input data

67

© 00 N O Ut = W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

N= sqrt(size(data,l)
z = 1;
count
row
col = ;
for (x = 2:2xN),
if (x <=

1;
0

if (modulo (x,
col = col
else
TOW = Tow
end
else
y = N+1;
if (modulo (x
TOW = TOW
col col
else
row
col
end

row
col

end

while ((row < y)&(col < y)&(row > 0)&(col > 0))
data(z) ;

result (row, c
z =z + 1;
if (modulo (x,
TOWw = TowW
col = col
else
TOW = TOoWw
col = col
end

end
end
endfunction

) ;

2)

+ 1;

+ 1;

,2)

ol)

2)

+

© 00 J O U i W N

W W W W W W N DNDDNDNDDNDDNDIDNDDNDNDDN = o = = s
TU iR W N O O© WO Ui WN HEHF O O© WO Ui W= O

Inverse Zig Zag scanning of pixels

Scilab code AP function [result] = zigzagb(data)
/] ZigZag scanning of input data

N= size(data,1);

z = 1;

count
row =
col

I
O~

for (x = 2:2%N),
if (x <= N+1)

y = x + 1;
if (modulo(x,2) == 0)
col = col + 1;
else
row = row + 1;
end
else
y = N+1;
if (modulo(x,2) == 0)
row = row - 1;
col = col + 2;
else
row = row + 2;
col = col - 1;
end
end

while ((row < y)&(col < y)&(row > 0)&(col > 0))
result(z) = data(row,col);
z =z + 1;
if (modulo(x,2) =
row = row - 1;
col col + 1
else
row

row + 1;

36
37
38
39
40

© 00 J O U i W N

—_ =
N = O

13
14
15
16
17

18
19
20
21
22
23
24
25

col = col - 1;
end
end
end
endfunction

Zig Zag Scanning of Pixels

Scilab code AP6 function [a2] = fft2d(a)

//a = any real or complex 2D matrix

//a2 = 2D-DFT of 2D matrix ’a’

m=size(a,1)

n=size(a,2)

// fourier transform along the rows

for i=1:n

al(:,i)=exp(-2%%ix*x%pi*x(0:m-1) ’.*.(0:m-1)/m)*a(:,1i)
end

// fourier transform along the columns

for j=1:m

a2temp=exp (-2*%ix*%pi*(0:n-1) > .*.(0:n-1)/n)*x(al(j,:))

a2(j,:)=a2temp.’
end
for i = 1:m
for j = 1:n
if ((abs(real(a2(i,j))) <0.0001)&(abs (imag(a2(
i,3)))<0.0001))
a2 (i, j)=0;
elseif (abs(real(a2(i,j)))<0.0001)
a2(i,j)= O0+%iximag(a2(i,j));
elseif (abs(imag(a2(i, j))) <0.0001)
a2(i,j)= real(a2(i,j))+0;
end
end
end

2D Fast Fourier Trasnform

70

© 00 N O U = W N

e e T = T T T
N O U R W N = O

Scilab code AP 17 function [a] =ifft2d(a2)

//a2 = 2D-DFT of any real or complex 2D matrix
//a = 2D-IDFT of a2

m=size(a2,1)

n=size(a2,2)

//Inverse Fourier transform along the rows

for i=1:m

al(:,i)=exp (2%%i*%pi*x(0:m-1) ’ . *.(0:m-1)/m)*a2(:,1i)

end
//Inverse fourier transform along the columns
for j=1:m

atemp=exp (2% %i*%pi*(0:n-1) > .*.(0:n-1)/n)*(al(j,:)).

a(j,:)=atemp.’

end
a = a/(m*n)
a = real(a)

endfunction

Inverse 2D Fast Fourier Transform

71

	
	Histogram display and histogram equalization
	Kernel processing on images leading to image enhancement
	Display of 2D filters frequency responses and processing the images using these filters
	Implementation of Airthmetic Coding for images
	Basic JPEG algorithm implementation
	DPCM encoding and decoding of images
	Simple image watermarking algorithms using LSB substitution
	Simple content based image retrieval using various distance metrics
	Image segmentation algorithms using Snakes
	Color images manipulations, reading and writing of color images
	Color image enhancements
	Color image histogram manipulation
	LOG Masks implementation for gray and color images
	Special effects implementation on grey and color images
	Simple video reading and writing .avi formats and manipulation of video frames

