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Experiment: 1

Histogram display and
histogram equalization

Scilab code Solution 1.1 Expl

//Program 1 Histogram display and histogram
equalization

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2

clc;

clear;

close;

//a=imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image _ProcessinglLab\
tire.tif 7);//Image Path

a=imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _LAB\ Digital Image_ProcessingLab\
tire.jpeg’)

[m nl=size(a);

for i=1:256
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b(i)=length(find (a==(i-1)));
end
pbb=b/(m*n) ;
pb (1) =pbb (1) ;
for 1i=2:256
pb(i)=pb(i-1)+pbb(i);
end

s=pb*255;
sb=uint8 (round(s)) ;
index =0;
for i=1:m
for j=1:n
index = double(a(i,j))+1;//convert it to
double
//otherwise index = 255+1 =0
hea(i,j)= sb(index);//histogram equalization
end
end
figure,
ShowImage (a, 'Original Image’)//IPD toolbox
title(’Original Image’)
figure
plot2d3(’gnn’,[1:256],b)
title (’Histogram of the Image’)
figure
ShowImage (hea, 'Image after Histogram equalization ’)
//IPD toolbox
title(’Image after Histogram equalization ’)




criginal Image

Figure 1.1: Expl



Figure 1.2: Expl
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Experiment: 2

Kernel processing on images
leading to image enhancement

Scilab code Solution 2.1 Exp2

//Program 2.Kernel processing on images leading to
image enhancement .

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2

clc

clear

close

a=imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab\
cktnoise.jpeg’);//SIVP toolbox

ks=input ('enter the size of the kernel 1 for 1 1 3
for 3 3 ...7);//kernel size 3x3

[m nl=size(a);

al=zeros(m+ks-1,n+ks-1);
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[m1 nill=size(al);
x=floor (ks/2) ;
al(1+x:ml1-x,1+x:nl1-x)=a;
b=[];

c=[1;

for i=1+x:ml-x
for j=1+x:nl-x
t=al(i-x:i+x,j-x:j+x);
men=sum (sum(t))/(ks*xks) ;
med=median(t(:));
b(i-x,j-x)=men;
c(i-x,j-x)=med;
end
end

figure

ShowImage (a, 'Noised image(before enhancement)’);//
IPD toolbox

title (’Noised image(before enhancement)’);

figure

ShowImage (uint8(b), 'enhancement with mean filtering’
);//IPD toolbox

title(’enhancement with mean filtering ) ;

figure

ShowImage (uint8(c), 'enhancement with median
filtering ') ; //IPD toolbox

title(’enhancement with median filtering ’);

//RESULT

//enter the size of the kernel 1 for 1 1 3 for 3 3

.3

11



MNoised image{before enhancement)

Figure 2.1: Exp2

12



enhancement with mean filtering

Figure 2.2: Exp2
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Experiment: 3

Display of 2D filters frequency
responses and processing the
images using these filters

check Appendix AP 6 for dependency:
fft2d.sce
check Appendix AP 7 for dependency:

ifft2d.sce

Scilab code Solution 3.1 Exp3

//Program 3:Display of 2D filters frequency
responses and processing the images using these
filters

//Reference: 7 Digital Image Processing” ,Dr.S.
Jayaraman ,S. Esakkirajan ,T. Veerakumar ,TMH,2011

//Note: The in—built scilab functions fft2d and
ifft2d are not working properly

//1t give wrong results.

//Use My functions for 2D-FFT and 2D-IFFT.

//Software version
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//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2

clc;

close;

clear;

exec ('C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _LAB\ Digital Image_ProcessingLab\
fft2d .sce’)

exec ('C:\ Users\senthilkumar\Desktop)\
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab\
ifft2d .sce’)

im1 = imread (’C:\ Users\senthilkumar\Desktop)\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
balloonsnoisy .png’);//colour noise image

im = rgb2gray(iml);//gray noise image

fc = 100; //cut off frequency —more features choose
high cutoff frequency

n=1;//filter order =1

[co,rol= size(im) ;

cx = round(co/2); //centre of the image

cy = round(ro/2);

IM = fft2d(double (im));

imf = fftshift (IM);

H = zeros(co,ro);
for i = 1:co
for j = 1:ro
d = (i-cx) . 2+(j-cy) . 2;

H(i,j) = 1/(1+((d/fc/fc)."(2*n))); //Low
Pass Butterworth First Order filter
end
end
out_im = imf .x*xH;
out = abs(ifft2d(out_im));
out = uint8(out);
figure

15



36
37
38
39
40
41
42

Figure 3.1: Exp3

ShowColorImage (iml, *Colour Noisy Image’)

figure

ShowImage (im, 'Gray Noise Image’)
figure

ShowImage (H, 'Low Pass Filter Frequency
figure

ShowImage (out, 'Filtered Image’)

Response )
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Figure 3.2: Exp3
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Experiment: 4

Implementation of Airthmetic
Coding for images

Scilab code Solution 4.1 Exp4

// Program 4. Implementation of arithmetic coding
for images

//Note 1: In order to run this program download
Huffman toolbox from

//scilab atoms

//Note 2: The Huffman atom is used to encode images
of small size only

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2

clear;

clc;

close;

//A=testmatrix (" frk ' ,10)+1;

a = imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab\
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cameraman . jpeg ') ;

A = imresize(a,[16 16]1); //Only Image of small size
is possible to call huffcode

B = size(A);

A=AC(C:) .7,

A = double(A);

[QT,QMl=huffcode(A); //Huffman Encoding
disp(’compressed Bit sequence:’);
disp (QT);
disp(’Code Table: ) ;
disp (QM) ;
// Now, the reverse operation
C = huffdeco(QT,QM); //Huffman Decoding
for i=1:B(1)
E(i,1:B(2))= C((i-1)*B(2)+1:1i*B(2));

D = E’;
imresize (D, [32,32]);
figure

ea|
I

ShowImage (a, "Original cameraman Image 256x256 )

figure

ShowImage (E, "Reconstructed cameraman Image 256x256 ")

I
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Experiment: 5

Basic JPEG algorithm
implementation

check Appendix AP 4 for dependency:
izigzagh.sci
check Appendix AP 5 for dependency:

zigzagb.sci

Scilab code Solution 5.1 Expb

// Program 5. Basic JPEG algorithm implementation

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1—2

close

clear;

clc;

exec ('C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
zigzag_5.sci’)
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exec (’C:\ Users\senthilkumar\Desktop)
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab
izigzag 5 .sci’)
I = imread(’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _LAB\ Digital Image_ProcessingLab\
cameraman . jpeg ’'); //256x256 image
I = imresize(I,0.25);//reduced to 64x64 image [in
order to reduce the computation time |
[m,n]=size(I);// Finding the dimensions of the image
file .

I=double(I);

q= [16 11 10 16 24 40 51 61;
12 12 14 19 26 58 60 55;
14 13 16 24 40 57 69 56;
14 17 22 29 51 87 80 62;
18 22 37 56 68 109 103 77;
24 35 55 64 81 104 113 92;
49 64 78 87 103 121 120 101;
72 92 95 98 112 100 103 99];

N=8; // Block size for which
DCT is Computed.

I_Trsfrm.block=zeros(N,M); // Initialising the DCT
Coefficients Structure Matrix 7I_Trsfrm” with the
required dimensions.
for a=1:m/N
for b=1:n/M
for k=1:N
for 1=1:M
Mean_Sum=0;
//2D-Discrete Cosine Transform
/111117
for i=1:N
for j=1:M
Mean_Sum = Mean_Sum+double (I
(N*(a-1)+i,M*x(b-1)+j))*
cos (hpi*(k-1)*x(2*xi-1) /(2%
N))*xcos (%hpi*(1-1)*(2*%j-1)

21
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/(2%xM));

end
end
11111111071
if k==

Mean_Sum = Mean_Sum*sqrt (1/N);
else

Mean_Sum = Mean_Sum*sqrt (2/N);
end
if 1==

Mean_Sum = Mean_Sum*sqrt (1/M);
else

Mean_Sum = Mean_Sum*sqrt (2/M);
end
I_Trsfrm(a,b).block(k,1l)= Mean_Sum;

end
end
// Normalizing the DCT Matrix and Quantizing
the resulting values.
I_Trsfrm(a,b).block=round(I_Trsfrm(a,b).
block./q);
end
end
I_zigzag.block = zeros(N,M);
for a= 1:m/N
for b = 1:n/M
I_zigzag(a,b).block = zigzag 5(I_Trsfrm(a,b)
.block) ;
end
end
I_rec_Trnsfm.block = zeros(N,M);
for a= 1:m/N
for b = 1:n/M
I_rec_Trnsfm(a,b).block = izigzag 5(I_zigzag
(a,b).block);
end
end
// Denormalizing the Reconstructed Tranform matrix
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using the same
// Normalization matrix.
for a=1:m/N
for b=1:n/M
I_rec_Trnsfm(a,b) .block =(I_rec_Trnsfm(a,b).
block) .*q;
end
end
//Inverse 2D-DCT
for a=1:m/N
for b=1:n/M

for i=1:N
for j=1:M
Mean_Sum =0;
for k=1:N
for 1=1:M
if k==
temp =double(sqrt(1/2) *
I_rec_Trnsfm(a,b).
block(k,1))*cos (%pix*(k
-1)*(2%i-1) /(2xN) ) *cos
(hpi*(1-1)*x(2%j-1) /(2%
M));
else
temp = double(
I_rec_Trnsfm(a,b).
block (k,1))*cos (%pix(
k-1) % (2%i-1)/(2%N))*
cos (hpi*(1-1)*x(2%xj-1)
/(2xM)) ;
end
if 1==
temp = temp*sqrt(1/2);
end
Mean_Sum = Mean_Sum+temp;
end
end

Mean_Sum = Mean_Sumx*(2/sqrt (M*N));
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I_rec((a-1)*N+i,(b-1)*M+j)= Mean_Sum
end
end
end
end
// Displaying the Reconstructed Image.

diff_image = im2double (I)*255-I_rec;
diff_image = diff_image/max(max(diff_image));
diff_image = im2uint8(diff_image) ;

I_rec = I_rec/max(max(I_rec));

I_rec = im2uint8(I_rec);

figure

ShowImage (I_rec, "Recovered Image’);
figure

ShowImage (diff_image, 'Difference Image’)
figure

imhist (I_rec);

figure

imhist (diff) ;
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Experiment: 6

DPCM encoding and decoding
of images

Scilab code Solution 6.1 Exp6

// Program 6 DPCM encoding and decoding of images

//Software version

//OS Windows7

//Scilab5 .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1-2

clc

clear

//Function to find number of elements in an image

function [N] = numel (X)
//X~input image

//N— number of elements in image X
[m,n]= size(X);
N = m*n;

endfunction

//

N A
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//Function to calculate peak signal to noise ratio
function [psnr,mse,maxerr] = psnr_mse_maxerr (X, Xapp)
//PSNR.MSE_MAXERR Peak signal to noise ratio

//X — original Image

//Xapp — reconstructed image

//psnr — peak signal to noise ratio

//mse — mean square error

//maxerr — maximum error

X = double (X);

Xapp = double (Xapp);

absD = abs (X-Xapp);

A = absD."2;

mse = sum(A(:))/numel (X);
psnr = 10%1logl0 (255*255/mse) ;
maxerr = round(max(absD(:)));
endfunction

//

N Ny as

a=imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _LAB\ Digital Image_ProcessingLab\
cameraman . jpeg ') ;
a=double (a);
[m nl=size(a);
pre=0;
g=input (’enter the quantization value’);
for i=1:m
for j=1:n
tli=a(i,j)-pre;
tq=round(tl/q);
pre=pre+tqgx*q;

b(i,j)=tq;
end
end
repre=0;
for i=1:m
for j=1:n
ret=b(i, j);
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ing=ret*q;
repre=repre+ing;
c(i,j)=repre;

end
end
figure
ShowImage (a, 'Image Before Quantization ')
figure
ShowImage (b, ’Quantized Image’)
figure
ShowImage (c, "Reconstructed Image From Quantized
Image ")
psnr = psnr_mse_maxerr(a,c);
disp(psnr, 'PSNR in dB= ")
//RESULT

//enter the quantization value 2

//PSNR in dB = 51.165559

enter the quantization value 8
//
//PSNR in dB = 40.698164

//

27



Figure 6.1: Expb6
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Figure 6.2: Exp6

29



o Ot

© 00

10

12

Experiment: 7

Simple image watermarking
algorithms using LSB
substitution

Scilab code Solution 7.1 Exp7

//Program 7. Simple image watermarking algorithms
using LSB substitution

//Note 1: The imread function in SIVP toolbox read
the binary image as gray

//scale image. During bitset it will create problems

//The grayscale image can be converted into binary
image using the function

// gray?2bin ()

//Note 2: The functions bit_set and bit_get are
written inorder to save the

// scilab workspace memory during execution

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1—1

//Scilab Image and Video Proccessing toolbox
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0.5.3.1 -2

clc
clear
close
//Function to find number of elements in an image
function [N] = numel(X)

//X—input image

//N— number of elements in image X

[m,n]= size(X);

N = mx*n;
endfunction
//Function to calculate peak signal to noise ratio
function [psnr,mse,maxerr] = psnr_mse_maxerr (X, Xapp)
//PSNR.MSE_MAXERR Peak signal to noise ratio
//X — original Image
//Xapp — reconstructed image
//psnr — peak signal to noise ratio
//mse — mean square error
//maxerr — maximum error
X = double (X);
Xapp = double (Xapp);
absD = abs (X-Xapp);

A = absD."2;

mse = sum(A(:))/numel (X);
psnr = 10%1logl0 (255*x255/mse) ;
maxerr = round(max(absD(:)));

endfunction

/
Ny as

function [A]l= gray2bin(B)
[m,n] = size(B)
for i 1:m

for j = 1:n
if (B(i,j)>200)
A(i,j)= 1;
else
A(i,j)=0;
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end
end

end
endfunction

//
N Ny as

function [c]l= bit_set(c,b)

[m,n] = size(c);
for i=1:m
for j=1:n
c(i,j)=bitset(c(i,j),1,b(i,j));
end
end
endfunction
//
NNy aas
function [d] = bit_get (c)

[m,n] = size(c);
for i=1:m
for j=1:n
d(i,j)=bitget(c(i,j),1);
end
end
endfunction

2 //
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74

75

N Ny as

a = imread (’C:\ Users\senthilkumar\Desktop)\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
cameraman.jpeg’); // original image

b = imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _LAB\ Digital Image_ProcessingLab\wat
.jpg’); // watermark image

b = gray2bin(b);
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[m n] = size(a);
a double (a);

a;

bit_set (c,b);
bit_get (c);

c
c
d

figure

ShowImage (a, "Original image’) ;

title(’Original image’);

figure

ShowImage (b, "watermark image’);

title ("watermark image’);

figure

ShowImage (uint8(c), "watermarked image’) ;

title (’watermarked image’) ;

figure

ShowImage (d, "extracted watermark’) ;

title(’extracted watermark’);

psnr = psnr_mse_maxerr(a,c);

correlation = corr2(b,d);

disp(correlation, 'correlation between watermark
image and extracted watermark=")
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watermatked image

Figure 7.1: Exp7
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extracted watermark

Bapatla
Engineering

college

Figure 7.2: Exp7
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Experiment: 8

Simple content based image
retrieval using various distance
metrics

Scilab code Solution 8.1 Exp8

//Program 8: Simple content based image retrieval
using various distance metrics.

//Based on Similarity matrix

//Using Colormaps of different images

//Note 1: Other methods like wavelet based
decomposition along with Euclidean distance

//comparison of sub images can be used for image
retrieval

//Note 2: Principal Component Analysis (PCA) inbuilt
function is available to

//get eigen vectors and eigen values for image
retrieval

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1—1

//Scilab Image and Video Proccessing toolbox
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0.5.3.1 -2

clear;

clc;

close;

I1 = imread(’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
Picturel .png’);//257x257x3.

I1 = imresize(I1,0.5);

[IndexedImage_I1, ColorMap] = RGB2Ind(I1l); //IPD
toolbox

I = ColorMap;//66049x3

J1 = imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab\
Picture2 .png’);//257x257x3.

J1 = imresize(J1,0.5);

[IndexedImage_J1, ColorMap] = RGB2Ind(J1); //IPD
toolbox

J = ColorMap;//66049x3

//Similarity Matrix Method

[r,cl= size(I);

A= [1;

I = double(I);

J = double(J);

for i = 1:r

for j = 1:c

M1(i,j) = (I(i,2)*sin(I(i,1))-3J(j,2)*sin(J(j
»1))) 725

M2(i,j) = (I(i,2)*cos(I(i,1))-J(j,2)*cos(J(]
,1))) 725

M3(i,j) = (I(i,3)-J(i,3))"2;

M(i,j)= sqrt(M1(i,j)+M2(i,j)+M3(i,j));

A(i,j) = 1-M(i,j)/sqrt(5);

end
end
I1_rec = Ind2RGB(IndexedImage_I1,A)
I1_rec = imresize(Il_rec,2);
Ji_rec = Ind2RGB(IndexedImage_J1,A)
Ji_rec = imresize(Jl_rec,b2);
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figure

ShowColorImage (I1, 'original

figure

first image’);

ShowColorImage (Il_rec, Reconstructed first

figure

ShowColorImage (J1, original

figure

second image ) ;

image ) ;

ShowColorImage (J1_rec, 'Reconstructed second image’);
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Figure 8.1: Exp8
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Figure 8.2: Exp8
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Experiment: 9

Image segmentation algorithms

using Snakes

Scilab code Solution 9.1 Exp9

// Program 9.Image segmentation algorithms using
snakes .

//Note: Incomplete.

//So many functions are not avilable in Scilab

//Image segmentation algorithms using snakes is
impossible with current

//version of scilab and scilab image processing
atoms .

//1 tried my best

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1—1

//Scilab Image and Video Proccessing toolbox
0.5.3.1—-2

close;

clear;

clc;

J = imread (’C:\ Users\senthilkumar\Desktop)\
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Chandra_Mohan LAB\ Digital Image _ProcessingLab\
binary_image.jpg’);

J = rgb2gray(J);
J = imresize(J,[256,256]) ;
J = double (J);

[h,w] = size(J);
for i = 1:h

for j= 1:w
if (J(i,j)>200)
J(i,j)= 1;
else
J(i,j) =0;
end
end

end

I = imfilter (J,fspecial (’gaussian’,[17 17],3));
figure

ShowImage (I, "Snakes )

N=500; // number of snake points
alpha=1;

tstep=1;

N_iter=500;

f=50;

global EDGE_SOBEL;

gradient = EdgeFilter (I,EDGE_SOBEL);

[m,n] = size(gradient);
Ix = gradient(:,:);

Iy = gradient(:,:)’;

S = -f*x(Ix.*xIx + Iy.*xIy);

gradient = EdgeFilter (S,EDGE_SOBEL);

Sx = gradient (:,:);

Sy = gradient(:,:)’;

eps = 2.2204e-016;

Smag = sqrt(Sx."2 + Sy.~"2)+eps;

Sx(:) = Sx./Smag;

Sy(:) = Sy./Smag;

D=[-tstep*alpha*ones(N,1) (l+2xtstep*alpha)*ones(N
,1) -tstep*alpha*ones(N,1)];
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D(2,3)=D(2,3)-tstep*alpha;
D($-1,1)=D($-1,1)-tstep*alpha;
theta = linspace (0,2*%pi,N);
theta theta (:);

x = w/2 + 10 + (h/3)*cos(theta);
y = h/2 - 10 + (h/4)*sin(theta);
plot(x,y, 'r’);
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Experiment: 10

Color images manipulations,
reading and writing of color
images

Scilab code Solution 10.1 Expl0

//Program 10.Color images manipulations , reading and
writing of color images
//Software version
//OS Windows7
//Scilabb .4.1
//Image Processing Design Toolbox 8.3.1-1
//Scilab Image and Video Proccessing toolbox
0.5.3.1-2
clc
clear
close
//Showing RGB components of a color RGB image.
//Splitting the color image (RGB Image) into three
planes
a=imread ('C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _LAB\DIP _Scilab_Programs\peppers.
png’); //this image is 348x512x3 size
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figure

ar=a(:,:,1);

ShowImage (ar, '/RED Matrix ’)

figure

ag=a(:,:,2);
ShowImage (ag, '"GREEN Matrix ")

figure

ab=a(:,:,3);

ShowImage (ab, 'BLUE Matrix ")
//Reconstruction of original color image from three
RGB planes

RGB = imread(’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan_LAB\DIP _Scilab_Programs\peppers.
png’); //SIVP toolbox

RGB_128 = RGB/2;

RGB_128 = round (RGB_128)
[X,map] = RGB2Ind(RGB_128);
figure

ShowImage (X, 'Indexed Image’ ,map)
//Limiting no of colours to 8 without dithering
figure
RGB_8 = RGB/7;
RGB_8 = round (RGB_8)
[X1,mapl1]=RGB2Ind (RGB) ;
ShowImage (X1, "Without Dither ’,map1)

figure

ShowColorImage (RGB, 'RGB Color Image’)
YIQ = rgb2ntsc(RGB);

figure

ShowColorImage (YIQ, 'NTSC image YIQ')

RGB = ntsc2rgb(YIQ);
YCC = rgb2ycbcr (RGB) ;
figure

ShowColorImage (YCC, "equivalent HSV image YCbCr’)
RGB ycbcr2rgb (YCC) ;
HSV rgb2hsv (RGB) ;

45



48 figure
49 ShowColorImage (HSV, "equivalent HSV image’)
50 RGB = hsv2rgb (HSV);
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Experiment: 11

Color image enhancements

check Appendix AP 3 for dependency:

imgenhll.sci

Scilab code Solution 11.1 Expll

//Program 11. Color image enhancements

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2

clc

clear

close

a=imread ('C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image _ProcessingLab\
balloonsnoisy .png’) ;

ks=input (’enter the size of the kernel 1 for 1 1
for 3 3 ...7);

exec (’'C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
imgenh_11.sci’)
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for i=1:3
b(:,:,i)=imgenh11(a(:,:,i) ,ks);
end

figure
ShowColorImage (a, 'Noised image(before enhancement)’)

title(’Noised image(before enhancement)’);

figure

ShowColorImage (uint8(b), 'enhancement with mean

filtering ’);

title(’enhancement with mean filtering ');

//RESULT

//enter the size of the kernel 1 for 1 1 3 for 3 3
.3

//NOTE: since the image is large [480 640] it will
take some time to
//show the result
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Moised image(before enhancement)

Figure 11.1: Expll
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enhancement with mean filtering

Figure 11.2: Expll
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Experiment: 12

Color image histogram
manipulation

check Appendix AP 2 for dependency:
histbwl2.sci

Scilab code Solution 12.1 Expl2

//Program 12 Color image histogram manipulation

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2

clc

close

a=imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
peppers.png’);

al=uint8(a);

exec (’'C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
histbw_12.sci’)
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for i=1:3
b(:,:,i)=histbwi2(al(:,:,1));
end
figure
ShowColorImage(a, 'original color image’);
title(’original color image’);

figure
ShowColorImage (b, "histogram equalization of color
image ") ;

title ("histogram equalization of color image’);

rgbhist_12(a);

//exec (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\
rgbhist_12.sci’)
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ariginal colarimage

Figure 12.1: Expl2
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histogram equalization of color image

Figure 12.2: Expl2
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Experiment: 13

LOG Masks implementation for
gray and color images

Scilab code Solution 13.1 Expl3

//Program 13. LOG Masks implementation for gray and

color images

//Software version

//OS Windows7
//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1
//Scilab Image and Video Proccessing toolbox

0.5.3.1—2
clc
clear
close

a=imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab\
cameraman . jpeg ') ;

a=double (a);

logmask=[0 1 1 2 2 2 11 0;1 24550542 1;1453

0 354 1;25 3

-24 0 5 2;
2 53

-12

-12

-24

-24 -12 3 5 2;2 5 0 -24 -40

-12 3 5 2;1 45 3 0354 1;1
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2455542 1;011222110];

[m n]l=size(a);
[m1 ni]=size(logmask) ;
b=zeros (m+ml-1,n+n1-1) ;
m2=floor (ml1/2) ;
n2=floor(nl/2);
b(m2+1:m+m2 ,n2+1:n+n2)=a;
for i=m2+1:m+m2

for j=n2+1:n+n2

c=b(i-m2:i+m2,j-n2:j+n2);
d=sum(sum(c.*logmask));

if d>150

e(i-m2,j-n2)=0;

else

e(i-m2,j-n2)=1;

end

end
end

title (’Camerman image after LOG masked’)

imshow (e) //SIVP toolbox
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Experiment: 14

Special effects implementation
on grey and color images

check Appendix AP 1 for dependency:

rot90f.sci

Scilab code Solution 14.1 Expl4

//Program 14. Special effects implementation on gray
and color images

//Note: The functions like entropfilt().m are not
available in scilab

//But similar effects can be produced in scilab
using other methods.

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2

clc;

clear;

close;
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exec (’C:\ Users\senthilkumar\Desktop)
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab
rot90_f.sci’)

imgl = imread (’C:\ Users\senthilkumar\Desktop)\
Chandra_Mohan _LAB\ Digital Image_ProcessingLab\
mandrill . jpeg’);//colour image

img2 = imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab
twozebras.jpg’);//colour image

img3 = imread (’C:\ Users\senthilkumar\Desktop)\
Chandra_Mohan LAB\ Digital Image _ProcessingLab\
cameraman . jpeg ’);//gray image

filterl = fspecial(’sobel’);

imgl_filter = imfilter (imgl,filterl);

img2_filter = imfilter (img2,filterl);

ShowColorImage (imgl, "original image 17);

figure

ShowColorImage (imgl_filter, 'Special effect in
Mandrill Image’)

figure

ShowColorImage (img2, 'original image 27);

figure

ShowColorImage (img2_filter, 'Special effect in
twozebras Image’)

img3_negative = 255-double(img3); //image negative

img3_rotate = rot90f (img3,3);

//Image contrat adjustment

[m,n] = size(img3);

for 1

1:m

for j = 1:n
if img3(i,j)>70 then
img3_adjust (i, j)
,3)) 5

img3 (i, j)+(255-img3 (i

else
img3_adjust (i, j)

img3(i,j);
end

end
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end
figure

ShowImage (img3, ’Cameraman original Image’);

figure

ShowImage (img3_negative, "Cameraman Negative Image’)

figure

ShowImage (img3_rotate, '270 degree rotation of

camerman image ')
figure

ShowImage (img3_adjust , 'Cameraman Image Contrast

Adjustment ’)
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Figure 14.1: Expl4
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Figure 14.2: Expl4
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Experiment: 15

Simple video reading and
writing .avi formats and
manipulation of video frames

Scilab code Solution 15.1 Explba

//Program 15. Simple video reading and writing .avi
formats and manipulation of video frames.
//Note 1: Install xvid codec for read and write

video files from
//http://www.xvid.org/Downloads.15.0. html
//Note 2: very large can not be read by scilab
//Note 3: shuttle.avi is a large file more 100
frames. use shuttlenew.avi file
//for video processing applications
//Using SIVP Atom
//Software version
//OS Windows7
//Scilabb .4.1
//Image Processing Design Toolbox 8.3.1-1
//Scilab Image and Video Proccessing toolbox
0.5.3.1 -2
clear;
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clc;

close;

//n = aviopen (SCI+’/contrib /sivp/images/video.avi’) ;

n = aviopen(’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _LAB\ Digital Image_ProcessingLab\red
—car—video.avi’);

im = avireadframe(n); //get a frame

imshow (im) ;

avilistopened ()

aviclose(n);

Scilab code Solution 15.2 Explbb

//Program 15. Simple video reading and writing .avi
formats and manipulation of video frames.
//Note 1: Install xvid codec for read and write
video files from

//http://www.xvid.org/Downloads.15.0. html

//Note 2: very large can not be read by scilab

//Note 3: shuttle.avi is a large file more 100
frames. use red—car—video.avi file

//for video processing applications

//Using Image Processing Design Atom (IPD)

//Software version

//OS Windows7

//Scilabb .4.1

//Image Processing Design Toolbox 8.3.1-1

//Scilab Image and Video Proccessing toolbox
0.5.3.1-2

clear;

clc;

close;

VideoPath = ’'C:\ Users\senthilkumar\Desktop\
Chandra_Mohan _ LAB\ Digital Image_ProcessingLab\red

b

—car—video.avi’;
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VideoInfo = GetVideoStruct (’C:\ Users\senthilkumar\
Desktop\Chandra_Mohan_LAB\
Digital Image_ProcessingLab\red—car—video.avi’);
VideoFilePointer = OpenVideoFile (’'C:\ Users})
senthilkumar\Desktop\Chandra_Mohan LABY\
Digital Image_ProcessingLab\red—car—video.avi’);
figure ) ;
for n = 1 : VideoInfo.NumberOfFrames
RGB = ReadImage(VideoFilePointer);
ShowColorImage (RGB, VideoPath);

end ;

CloseVideoFile(VideoFilePointer) ;
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Appendix

Scilab code AP11 function [B] = rot90f (A,k)
[%nargout , %nargin] = argn(0)
//ROT90 Rotate matrix 90 degrees.
// ROT90(A) is the 90 degree counterclockwise
rotation of matrix A.
// ROT90(A,K) is the K«90 degree rotation of A, K
= +-1,+-2,...
[m,n] = size(A);
if %nargin==1 then
k = 1;
else
k = k-fix(k/4) .*4;
if (k<0) then

k = k+4;
end
end
if k == 1
A = A.7;
B = A(n:-1:1,:);
elseif k == 2
B = A(m:-1:1,n:-1:1);
elseif k == 3
B = A(m:-1:1,:);
B = B.’;
else
B = A;
end
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endfunction

Rotate Image 90 degree

Scilab code AP12 function [hea,b]l=histbwil2(a)
//a=imread (’C:\ Users\senthilkumar\Desktop\

Chandra_Mohan LAB\ Digital Image_ProcessinglLab

\tire.jpeg’)
//a— original image
//b— histogram
//hea— histogram equalized image
[m nl=size(a);
for i=1:256
b(i)=length(find (a==(i-1)));
end
pbb=b/(m*n) ;
pb (1) =pbb (1) ;
for 1i=2:256
pb(i)=pb(i-1)+pbb(i);

end
s=pb*255;
sb=uint8 (round(s)) ;
index =0;
for i=1:m
for j=1:mn
index = double(a(i,j))+1;//convert
double
//otherwise index = 255+1 =0
hea(i,j)= sb(index);//histogram
equalization
end
end

endfunction

//note:

//First run this function

//type the following commands in scilab console
window
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//a=imread (’C:\ Users\senthilkumar\Desktop\
Chandra_Mohan LAB\ Digital Image_ProcessingLab\

tire .jpeg ’)
//[hea ,b] = histbw_12(a);
//figure |

//Showlmage (a,’ Original Image’)//IPD toolbox
//title (?Original Image’)

//figure

//plot2d3 (’gnn’ ,[1:256] ,b)

//title ("Histogram of the Image’)

//figure
//Showlmage (hea, ’Image after Histogram equalization

") //IPD toolbox
//title ("Image after Histogram equalization ")

Histogram of Gray images

Scilab code AP 13 function [out] =imgenhl1 (a,ks)
[m nl=size(a);
al=zeros (m+ks-1,n+ks-1);
[m1 nill=size(al);
x=floor (ks/2) ;
al(1+x:ml1-x,1+x:nl-x)=a;
out=[];

for i=1+x:ml-x
for j=1+x:nl-x
t=al(i-x:i+x,j-x:j+x);
med=median(t(:));
out (i-x,j-x)=med;
end
end
endfunction

Image Enhancement

Scilab code APU4 function [result] = izigzagb(data)
//inverse ZigZag scanning of input data
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N= sqrt(size(data,l)
z = 1;
count
row
col = ;
for (x = 2:2xN),
if (x <=

1;
0

if (modulo (x,
col = col
else
TOW = Tow
end
else
y = N+1;
if (modulo (x
TOW = TOW
col col
else
row
col
end

row
col

end

while ((row < y)&(col < y)&(row > 0)&(col > 0))
data(z) ;

result (row, c
z =z + 1;
if (modulo (x,
TOWw = TowW
col = col
else
TOW = TOoWw
col = col
end

end
end
endfunction

) ;

2)

+ 1;

+ 1;

,2)

ol)

2)

+
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Inverse Zig Zag scanning of pixels

Scilab code AP function [result] = zigzagb(data)
/] ZigZag scanning of input data

N= size(data,1);

z = 1;

count
row =
col

I
O~

for (x = 2:2%N),
if (x <= N+1)

y = x + 1;
if (modulo(x,2) == 0)
col = col + 1;
else
row = row + 1;
end
else
y = N+1;
if (modulo(x,2) == 0)
row = row - 1;
col = col + 2;
else
row = row + 2;
col = col - 1;
end
end

while ((row < y)&(col < y)&(row > 0)&(col > 0))
result(z) = data(row,col);
z =z + 1;
if (modulo(x,2) =
row = row - 1;
col col + 1
else
row

row + 1;
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col = col - 1;
end
end
end
endfunction

Zig Zag Scanning of Pixels

Scilab code AP6 function [a2] = fft2d(a)

//a = any real or complex 2D matrix

//a2 = 2D-DFT of 2D matrix ’a’

m=size(a,1)

n=size(a,2)

// fourier transform along the rows

for i=1:n

al(:,i)=exp(-2%%ix*x%pi*x(0:m-1) ’.*.(0:m-1)/m)*a(:,1i)
end

// fourier transform along the columns

for j=1:m

a2temp=exp (-2*%ix*%pi*(0:n-1) > .*.(0:n-1)/n)*x(al(j,:))

a2(j,:)=a2temp.’
end
for i = 1:m
for j = 1:n
if ((abs(real(a2(i,j))) <0.0001)&(abs (imag(a2(
i,3)))<0.0001))
a2 (i, j)=0;
elseif (abs(real(a2(i,j)))<0.0001)
a2(i,j)= O0+%iximag(a2(i,j));
elseif (abs(imag(a2(i, j))) <0.0001)
a2(i,j)= real(a2(i,j))+0;
end
end
end

2D Fast Fourier Trasnform
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Scilab code AP 17 function [a] =ifft2d(a2)

//a2 = 2D-DFT of any real or complex 2D matrix
//a = 2D-IDFT of a2

m=size(a2,1)

n=size(a2,2)

//Inverse Fourier transform along the rows

for i=1:m

al(:,i)=exp (2%%i*%pi*x(0:m-1) ’ . *.(0:m-1)/m)*a2(:,1i)

end
//Inverse fourier transform along the columns
for j=1:m

atemp=exp (2% %i*%pi*(0:n-1) > .*.(0:n-1)/n)*(al(j,:)).

a(j,:)=atemp.’

end
a = a/(m*n)
a = real(a)

endfunction

Inverse 2D Fast Fourier Transform
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