
Scilab Manual for
Digital Image Processing
by Dr Abhishek Choubey
Electronics Engineering

Sreenidhi Institute Of Science And
Technology1

Solutions provided by
Dr Abhishek Choubey
Electronics Engineering

Sreenidhi Institute Of Science And Technology

January 22, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 4

1 Image analysis on 16 X 16 image size 7

2 Image analysis on 256 X 256 image size 12

3 Singular Value Decomposition 20

4 Performing KL transform 22

5 Brightness enhancement and supression 25

6 Contrast Manipulation 29

7 Color separation into R,B,G 33

8 Gamma correction 38

9 Adding various types of noises to image 41

10 Demonstrate the various Image Conversions 46

11 Demonstrate Spatial Domain Processing 54

12 Motion blur of an image 59

13 Trimmed Average Filter 62

14 Determine image negative 66

2

15 Image operations to perform clockwise and anti-clockwise
operations 68

3

List of Experiments

Solution 1.1 1 . 7
Solution 2.2 2 . 12
Solution 3.3 3 . 20
Solution 4.4 4 . 22
Solution 5.5 5 . 25
Solution 6.6 6 . 29
Solution 7.7 7 . 33
Solution 8.8 8 . 38
Solution 9.9 9 . 41
Solution 10.10 10 . 52
Solution 11.11 11 . 54
Solution 12.12 12 . 59
Solution 13.13 13 . 62
Solution 14.14 14 . 66
Solution 15.15 15 . 68
AP 1 Cameramanimg 73
AP 2 peppers . 74
AP 3 Lenna . 75
AP 4 ararauna . 76
AP 5 baboon . 77

4

List of Figures

1.1 1 . 8
1.2 1 . 9
1.3 1 . 10

2.1 2 . 13
2.2 2 . 14
2.3 2 . 15
2.4 2 . 16
2.5 2 . 17
2.6 2 . 18

5.1 5 . 26
5.2 5 . 27

6.1 6 . 30
6.2 6 . 31

7.1 7 . 34
7.2 7 . 35
7.3 7 . 36

8.1 8 . 39

9.1 9 . 42
9.2 9 . 43
9.3 9 . 44

10.1 10 . 47
10.2 10 . 48
10.3 10 . 49

5

10.4 10 . 50
10.5 10 . 51
10.6 10 . 52

11.1 11 . 55
11.2 11 . 56
11.3 11 . 57

12.1 12 . 60

13.1 13 . 63
13.2 13 . 64

14.1 14 . 67

15.1 15 . 69
15.2 15 . 70

6

Experiment: 1

Image analysis on 16 X 16
image size

Scilab code Solution 1.1 1

1 // Image a n a l y s i s on 16∗16 image s i z e
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 //Form an image o f d imens ion 16 x16 c o n t a i n i n g 16
v e r t i c a l s t r i p s

10 A=[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

11 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

12 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

7

Figure 1.1: 1

8

Figure 1.2: 1

9

Figure 1.3: 1

10

13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

19 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

21 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15];

26 A1=mat2gray(A);

27 imwrite(A1, ’ V e r t i c a l S t r i p s . j p e g ’);
28

29 //Form a check−board ”B” o f d imens ion 16 x16
c o n t a i n i n g 16 b l o c k s

30 a=[0 9; 9 0];

31 b=[a a; a a];

32 c=[b b; b b];

33 B=[c c; c c];

34 B1=mat2gray(B);

35 imwrite(B1, ’ Check−board . j p e g ’);
36

37 //Form image c o n t a i n i n g top− l e f t and bottom−r i g h t
qu a r t e r p a r t s A and top−r i g h t & bottom− l e f t
q u a r t e r s B .

38 C=[A B; B A];

39 C1=mat2gray(C);

40 imwrite(C1, ’ Quarter . j p e g ’);

11

Experiment: 2

Image analysis on 256 X 256
image size

check Appendix AP 1 for dependency:

Cameramanimg.jpg

Scilab code Solution 2.2 2

1 // Image a n a l y s i s on 256∗256 image s i z e
2 // S c i l a b 5 . 4 . 1
3 //Windows 10

12

Figure 2.1: 2

13

Figure 2.2: 2

14

Figure 2.3: 2

15

Figure 2.4: 2

16

Figure 2.5: 2

17

Figure 2.6: 2

18

4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 I=imread(’ cameraman . jpg ’);
10

11 // Break the cameraman image o f d imens ion 256 x256
i n t o f o u r equa l

12 // squa r e shape s C11 , C12 , C21 & C22 and d i s p l a y a l l
i n t o a s i n g l e

13 // f i g u r e o f 2x2 d imens i on s .
14 C11=I(1:128 , 1:128);

15 C12=I(1:128 , 129:256);

16 C21=I(129:256 , 1:128);

17 C22=I(129:256 , 129:256);

18 imwrite(C11 , ’ C11 . j p e g ’);//Top Le f t
19 imwrite(C12 , ’ C12 . j p e g ’);//Top Right
20 imwrite(C21 , ’ C21 . j p e g ’);//Bottom Le f t
21 imwrite(C22 , ’ C22 . j p e g ’);//Bottom Right
22 J=[C11 C12; C21 C22]; // Recon s t ru c t o r i g i n a l image

from the s qua r e s
23 imwrite(J, ’ S i n g l e . j p e g ’);// Recon s t ru c t ed image from

squa r e s
24

25 // I n t e r c h ang e the C11 & C22 and C12 & C21 and show
the image

26 K=[C22 C21; C12 C11];

27 imwrite(K, ’ I n t e r c h ang e . j p e g ’);// In t e r chang ed image

19

Experiment: 3

Singular Value Decomposition

Scilab code Solution 3.3 3

1 // S i n g u l a r Value Decompos i t i on
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 A = [1,-2,3;3,2,-1];

10 [U,S,V]= svd(A);

11 A_recon = U*S*V’;

12 disp(U, ’U = ’)
13 disp(S, ’ S = ’)
14 disp(V, ’V = ’)
15 disp(A_recon , ’A matr ix from svd = ’)
16

17 //Output
18 //
19 // U =
20 //
21 // − 0 . 7071068 0 . 7071068

20

22 // 0 . 7071068 0 . 7071068
23 //
24 // S =
25 //
26 // 4 . 2426407 0 . 0 .
27 // 0 . 3 . 1 622777 0 .
28 //
29 // V =
30 //
31 // 0 . 3333333 0 . 8944272 − 0 . 2981424
32 // 0 . 6666667 1 . 1 1 0D−16 0 . 7453560
33 // − 0 . 6666667 0 . 4472136 0 . 5962848
34 //
35 // A matr ix from svd =
36 //
37 // 1 . − 2 . 3 .
38 // 3 . 2 . − 1 .

21

Experiment: 4

Performing KL transform

Scilab code Solution 4.4 4

1 // Per fo rming KL t ran s f o rm
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 X = [3,5,6,7;5,6,3,3;4,6,7,5];

10 [m,n]= size(X);

11 A = [];

12 E = [];

13 for i =1:n

14 A = A+X(:,i);

15 E = E+X(:,i)*X(:,i) ’;

16 end

17 mx = A/n; //mean matr ix
18 E = E/n;

19 C = E - mx*mx ’; // c o v a r i a n c e matr ix C =
E [xx ’] −mx∗mx’

20 [V,D] = spec(C); // e i g e n v a l u e s and e i g e n

22

v e c t o r s
21 d = diag(D); // d i a g ona l e l emen t s od

e i g e n v a l u e s
22 [d,i] = gsort(d); // s o r t i n g the e l emen t s o f D

in de s c end ing o rd e r
23 for j = 1: length(d)

24 T(:,j)= V(:,i(j));

25 end

26 T =T’

27 disp(d, ’ E igen Values a r e U = ’)
28 disp(T, ’ The e i g e n v e c t o r matr ix T = ’)
29 disp(T, ’ The KL tran fo rm b a s i s i s = ’)
30

31 //KL t ran s f o rm
32 for i = 1:n

33 Y(:,i)= T*X(:,i);

34 end

35 disp(Y, ’KL t r a n s f o rma t i o n o f the input matr ix Y = ’)
36

37 // Re c on s t r u c t i o n
38 for i = 1:n

39 x(:,i)= T’*Y(:,i);

40 end

41 disp(x, ’ Re con s t ru c t matr ix o f the g i v en sample
matr ix X = ’)

42

43 //Output
44 //
45 // Eigen Values a r e U =
46 //
47 // 3 . 6278623
48 // 1 . 0409979
49 // 0 . 4561398
50 //
51 // The e i g e n v e c t o r matr ix T =
52 //
53 // 0 . 7383786 − 0 . 5693168 0 . 3614907
54 // 0 . 0603190 0 . 5896337 0 . 8054152

23

55 // 0 . 6716835 0 . 5728966 − 0 . 4697135
56 //
57 // The KL tran fo rm b a s i s i s =
58 //
59 // 0 . 7383786 − 0 . 5693168 0 . 3614907
60 // 0 . 0603190 0 . 5896337 0 . 8054152
61 // 0 . 6716835 0 . 5728966 − 0 . 4697135
62 //
63 // KL t r a n s f o rma t i o n o f the input matr ix Y =
64 //
65 // 0 . 8145143 2 . 444936 5 . 2527556

5 . 2681528
66 // 6 . 3507865 8 . 6718888 7 . 7687219

6 . 2182105
67 // 3 . 0006794 3 . 977516 2 . 4607962

4 . 0719067
68 //
69 // Recon s t ru c t matr ix o f the g i v en sample matr ix X =
70 //
71 // 3 . 5 . 6 . 7 .
72 // 5 . 6 . 3 . 3 .
73 // 4 . 6 . 7 . 5 .
74 //

24

Experiment: 5

Brightness enhancement and
supression

check Appendix AP 5 for dependency:

baboon.png

Scilab code Solution 5.5 5

1 // B r i g h t n e s s enhancement and s u p r e s s i o n
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 a=imread(’ baboon . png ’);
10

11 // B r i g h t n e s s Enhancement

25

Figure 5.1: 5

26

Figure 5.2: 5

27

12 a = rgb2gray(a);

13 b = double(a)+50;

14 b = uint8(b);

15 imwrite(b, ’ Br ightnessEnhancedImage . j p e g ’);
16

17 a=imread(’ baboon . png ’);
18

19 // B r i g h t n e s s s u pp r e s s i o n
20 a = rgb2gray(a);

21 b = double(a) -50;

22 b = uint8(b);

23 imwrite(b, ’ B r i gh tn e s sSup r e s s ed Image . j p e g ’);

28

Experiment: 6

Contrast Manipulation

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 6.6 6

1 // Cont ra s t Man ipu la t i on
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 a=imread(’ Lenna . png ’);
10

11 a = rgb2gray(a);

12 b = double(a)*0.5;

13 b = uint8(b)

29

Figure 6.1: 6

30

Figure 6.2: 6

31

14 c = double(b)*2;

15 c = uint8(c)

16

17 imwrite(b, ’ D e c r e a s e i nCon t r a s t . j p e g ’);
18 imwrite(c, ’ I n c r e a s e i nC o n t r a s t . j p e g ’);

32

Experiment: 7

Color separation into R,B,G

check Appendix AP 2 for dependency:

peppers.png

Scilab code Solution 7.7 7

1 // Co lo r s e p a r a t i o n i n t o R,B,G
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 a=imread(’ p eppe r s . png ’);
10

11 a1 = a;

33

Figure 7.1: 7

34

Figure 7.2: 7

35

Figure 7.3: 7

36

12 b1 = a;

13 c1 = a;

14 a1(:,:,1)=0;

15 b1(:,:,2)=0;

16 c1(:,:,3)=0;

17

18 imwrite(a1, ’ RedMiss ing . j p e g ’);
19 imwrite(b1, ’ GreenMiss ing . j p e g ’);
20 imwrite(c1, ’ B lueMi s s i ng . j p e g ’);

37

Experiment: 8

Gamma correction

check Appendix AP 4 for dependency:

ararauna.png

Scilab code Solution 8.8 8

1 //Gamma c o r r e c t i o n
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 I=imread(’ a ra rauna . png ’);
10

11 gamma_Value = 0.5;

12 max_intensity = 255; // f o r u i n t 8 image
13 //Look up t a b l e c r e a t i o n
14 LUT = max_intensity .*(([0: max_intensity]./

max_intensity).^ gamma_Value);

38

Figure 8.1: 8

39

15 LUT = floor(LUT);

16 //Mapping o f i nput p i x e l s i n t o lookup t a b l e v a l u e s
17 K = double(I)+1;

18 J = zeros(I);

19 [m,n,p]= size(K);

20 for i = 1:m

21 for j =1:n

22 for k = 1:p

23 J(i,j,k)= LUT(K(i,j,k));

24 end

25 end

26 end

27

28 imwrite(uint8(J), ’ GammaCorrectedImage . j p e g ’); //
IPD too l box

40

Experiment: 9

Adding various types of noises
to image

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 9.9 9

1 //Add v a r i o u s type s o f n o i s e s to image
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 lenna=imread(’ Lenna . png ’);

41

Figure 9.1: 9

42

Figure 9.2: 9

43

Figure 9.3: 9

44

10

11 // Gauss ian
12 lenaNgaussian = imnoise(lenna , ’ g a u s s i a n ’);
13 imwrite(lenaNgaussian , ’ l e naNgau s s i an . j p e g ’);
14

15 // Spe ck l e
16 lenaNspeckle = imnoise(lenna , ’ s p e c k l e ’);
17 imwrite(lenaNspeckle , ’ l e n aNsp e c k l e . j p e g ’);
18

19 // S a l t & Pepper
20 d=0.25 // drop out n o i s e
21 lenaNsalpep = imnoise(lenna , ’ s a l t & pepper ’ ,d);
22 imwrite(lenaNsalpep , ’ l e naNsa lp ep . j p e g ’);

45

Experiment: 10

Demonstrate the various Image
Conversions

check Appendix AP 1 for dependency:

Cameramanimg.jpg

check Appendix AP 3 for dependency:

Lenna.png

check Appendix AP 4 for dependency:

ararauna.png

check Appendix AP 5 for dependency:

baboon.png

check Appendix AP 2 for dependency:

peppers.png

46

Figure 10.1: 10

47

Figure 10.2: 10

48

Figure 10.3: 10

49

Figure 10.4: 10

50

Figure 10.5: 10

51

Figure 10.6: 10

Scilab code Solution 10.10 10

1 // Demonstrate the v a r i o u s Image Conve r s i on s
2 // S c i l a b 5 . 4 . 1
3 //Windows 10

52

4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 //RBG to Gray s c a l e
10 baboon = imread(’ baboon . png ’);
11 babgray = rgb2gray(baboon);

12 imwrite(babgray , ’ babgray . j p e g ’);
13

14 //RBG to Binary
15 lena = imread(’ Lenna . png ’);
16 lenabw = im2bw(lena ,0.5);

17 imwrite(lenabw , ’ lenabw . j p eg ’);
18

19 //RBG to HSV
20 cameraman = imread(’ cameraman . jpg ’);
21 cameramanhsv = rgb2hsv(cameraman);

22 imwrite(cameramanhsv , ’ cameramanhsv . j p e g ’);
23

24 //HSV to RGB
25 peppers = imread(’ p eppe r s . png ’);
26 peppersrgb = hsv2rgb(peppers);

27 imwrite(peppersrgb , ’ p eppe r s r gb . j p e g ’);
28

29 //RBG to YCbCr
30 baboon = imread(’ baboon . png ’);
31 baboonycbcr = rgb2ycbcr(baboon);

32 imwrite(baboonycbcr , ’ baboonycbcr . j p e g ’);
33

34 //YCbCr to RGB
35 ararauna = imread(’ a ra rauna . png ’);
36 araraunargb = ycbcr2rgb(ararauna);

37 imwrite(araraunargb , ’ a r a raunargb . j p e g ’);

53

Experiment: 11

Demonstrate Spatial Domain
Processing

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 11.11 11

1 // Demonstrate S p a t i a l Domain P r o c e s s i n g
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 lenna=imread(’ Lenna . png ’);

54

Figure 11.1: 11

55

Figure 11.2: 11

56

Figure 11.3: 11

57

10

11 // Sobe l
12 h = fspecial(’ s o b e l ’);
13 lenaSobel = imfilter(lenna ,h)

14 imwrite(lenaSobel , ’ l e n a S ob e l . j p e g ’);
15

16 // Pr ew i t t
17 h = fspecial(’ p r ew i t t ’);
18 lenaPrewitt = imfilter(lenna ,h)

19 imwrite(lenaPrewitt , ’ l e n aP r ew i t t . j p e g ’);
20

21 // Lap l a c i an
22 h = fspecial(’ l a p l a c i a n ’);
23 lenaLaplacian = imfilter(lenna ,h)

24 imwrite(lenaLaplacian , ’ l e n aLap l a c i a n . j p e g ’);

58

Experiment: 12

Motion blur of an image

check Appendix AP 4 for dependency:

ararauna.png

Scilab code Solution 12.12 12

1 //Motion b l u r o f an image
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 a=imread(’ a ra rauna . png ’);
10

11 // f i l t e r c o e f f i c i e n t s o f f s p e c i a l (’ motion ’ , 1 0 , 2 5)
12 H =[0 ,0 ,0 ,0 ,0 ,0 ,0 ,0.0032 ,0.0449 ,0.0865 ,0.0072;...

13 0 ,0 ,0 ,0 ,0 ,0.0092 ,0.0509 ,0.0925 ,0.0629 ,0.0213 ,0;...

14 0 ,0 ,0 ,0.0152 ,0.0569 ,0.0985 ,0.0569 ,0.0152 ,0 ,0 ,0;...

15 0 ,0.0213 ,0.0629 ,0.0925 ,0.0509 ,0.0092 ,0 ,0 ,0 ,0 ,0;...

59

Figure 12.1: 12

60

16 0.0072 ,0.0865 ,0.0449 ,0.0032 ,0 ,0 ,0 ,0 ,0 ,0 ,0];

17 Motion_Blur = imfilter(a,H);

18 Motion_Blur =uint8(Motion_Blur);

19

20 imwrite(Motion_Blur , ’ Mot ionBlurredImage . j p e g ’)

61

Experiment: 13

Trimmed Average Filter

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 13.13 13

1 //Trimmed Average F i l t e r
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 c=imread(’ Lenna . png ’);
10 s = 1; // s deno t e s the number o f v a l u e s to be l e f t

i n the end
11 r = 1;

12 N = 9; // 3x3 window

62

Figure 13.1: 13

63

Figure 13.2: 13

64

13 a = double(imnoise(c, ’ g a u s s i a n ’));
14 [m,n] = size(a);

15 b = zeros(m,n);

16 for i= 2:m-1

17 for j = 2:n-1

18 mat = [a(i,j),a(i,j-1),a(i,j+1),a(i-1,j),a(i

+1,j),a(i-1,j-1) ,...

19 a(i-1,j+1),a(i-1,j+1),a(i+1,j+1)];

20 sorted_mat = gsort(mat);

21 Sum =0;

22 for k=r+s:(N-s)

23 Sum = Sum+mat(k);

24 end

25 b(i,j)= Sum/(N-r-s);

26 end

27 end

28 a = uint8(a);

29 b = uint8(b);

30 // f i g u r e
31 // imshow (c)
32 // t i t l e (’ O r i g i n a l Image ’)
33

34 imwrite(a, ’ no i sy image . j p e g ’)
35 imwrite(b, ’ Tr immedAverageFi l te redImage . j p e g ’)

65

Experiment: 14

Determine image negative

check Appendix AP 2 for dependency:

peppers.png

Scilab code Solution 14.14 14

1 // Determine image n e g a t i v e
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 a=imread(’ p eppe r s . png ’);
10 k = 255- double(a);

11 k = uint8(k);

12 imwrite(k, ’ ImageNegat ive . j p e g ’)

66

Figure 14.1: 14

67

Experiment: 15

Image operations to perform
clockwise and anti-clockwise
operations

check Appendix AP 1 for dependency:

Cameramanimg.jpg

Scilab code Solution 15.15 15

1 // Image o p e r a t i o n s to per fo rm c l o c kw i s e and ant i−
c l o c kw i s e o p e r a t i o n s

2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

68

Figure 15.1: 15

69

Figure 15.2: 15

70

9 A = imread(’ Cameramanimg . jpg ’);
10

11 // Rotate the Image a n t i c l o c kw i s e by an ang l e o f 90
d e g r e e s

12 [M,N]=size(A);

13 for i=1:N

14 for j=1:M

15 B(j,i)=A(i,j);

16 end

17 end

18 NM=B(N:-1:1,:);

19 imwrite(NM, ’ a n t i c l o c kw i s e 9 0 . j p e g ’)
20

21 // Rotate the Image by an ang l e o f 180 d e g r e e s
22 B= A(size(A,1):-1:1,size(A,1):-1:1,:);

23 imwrite(B, ’ c l o c kw i s e 1 8 0 . j p e g ’)

71

Appendix

72

Cameramanimg

73

pep-
pers

74

Lenna

75

ara-
rauna

76

ba-
boon

77

	
	Image analysis on 16 X 16 image size
	Image analysis on 256 X 256 image size
	Singular Value Decomposition
	Performing KL transform
	Brightness enhancement and supression
	Contrast Manipulation
	Color separation into R,B,G
	Gamma correction
	Adding various types of noises to image
	Demonstrate the various Image Conversions
	Demonstrate Spatial Domain Processing
	Motion blur of an image
	Trimmed Average Filter
	Determine image negative
	Image operations to perform clockwise and anti-clockwise operations

