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Experiment: 1

Image analysis on 16 X 16
image size

Scilab code Solution 1.1 1

1 // Image a n a l y s i s on 16∗16 image s i z e
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 //Form an image o f d imens ion 16 x16 c o n t a i n i n g 16
v e r t i c a l s t r i p s

10 A=[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

11 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

12 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;
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Figure 1.1: 1
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Figure 1.2: 1
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Figure 1.3: 1
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13 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

16 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

19 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

21 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

22 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

23 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15];

26 A1=mat2gray(A);

27 imwrite(A1, ’ V e r t i c a l S t r i p s . j p e g ’ );
28

29 //Form a check−board ”B” o f d imens ion 16 x16
c o n t a i n i n g 16 b l o c k s

30 a=[0 9; 9 0];

31 b=[a a; a a];

32 c=[b b; b b];

33 B=[c c; c c];

34 B1=mat2gray(B);

35 imwrite(B1, ’ Check−board . j p e g ’ );
36

37 //Form image c o n t a i n i n g top− l e f t and bottom−r i g h t
qu a r t e r p a r t s A and top−r i g h t & bottom− l e f t
q u a r t e r s B .

38 C=[ A B; B A];

39 C1=mat2gray(C);

40 imwrite(C1, ’ Quarter . j p e g ’ );
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Experiment: 2

Image analysis on 256 X 256
image size

check Appendix AP 1 for dependency:

Cameramanimg.jpg

Scilab code Solution 2.2 2

1 // Image a n a l y s i s on 256∗256 image s i z e
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
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Figure 2.1: 2
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Figure 2.2: 2
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Figure 2.3: 2
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Figure 2.4: 2
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Figure 2.5: 2
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Figure 2.6: 2
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4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 I=imread( ’ cameraman . jpg ’ );
10

11 // Break the cameraman image o f d imens ion 256 x256
i n t o f o u r equa l

12 // squa r e shape s C11 , C12 , C21 & C22 and d i s p l a y a l l
i n t o a s i n g l e

13 // f i g u r e o f 2x2 d imens i on s .
14 C11=I(1:128 , 1:128);

15 C12=I(1:128 , 129:256);

16 C21=I(129:256 , 1:128);

17 C22=I(129:256 , 129:256);

18 imwrite(C11 , ’ C11 . j p e g ’ );//Top Le f t
19 imwrite(C12 , ’ C12 . j p e g ’ );//Top Right
20 imwrite(C21 , ’ C21 . j p e g ’ );//Bottom Le f t
21 imwrite(C22 , ’ C22 . j p e g ’ );//Bottom Right
22 J=[C11 C12; C21 C22]; // Recon s t ru c t o r i g i n a l image

from the s qua r e s
23 imwrite(J, ’ S i n g l e . j p e g ’ );// Recon s t ru c t ed image from

squa r e s
24

25 // I n t e r c h ang e the C11 & C22 and C12 & C21 and show
the image

26 K=[C22 C21; C12 C11];

27 imwrite(K, ’ I n t e r c h ang e . j p e g ’ );// In t e r chang ed image
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Experiment: 3

Singular Value Decomposition

Scilab code Solution 3.3 3

1 // S i n g u l a r Value Decompos i t i on
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 A = [1,-2,3;3,2,-1];

10 [U,S,V]= svd(A);

11 A_recon = U*S*V’;

12 disp(U, ’U = ’ )
13 disp(S, ’ S = ’ )
14 disp(V, ’V = ’ )
15 disp(A_recon , ’A matr ix from svd = ’ )
16

17 //Output
18 //
19 // U =
20 //
21 // − 0 . 7071068 0 . 7071068
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22 // 0 . 7071068 0 . 7071068
23 //
24 // S =
25 //
26 // 4 . 2426407 0 . 0 .
27 // 0 . 3 . 1 622777 0 .
28 //
29 // V =
30 //
31 // 0 . 3333333 0 . 8944272 − 0 . 2981424
32 // 0 . 6666667 1 . 1 1 0D−16 0 . 7453560
33 // − 0 . 6666667 0 . 4472136 0 . 5962848
34 //
35 // A matr ix from svd =
36 //
37 // 1 . − 2 . 3 .
38 // 3 . 2 . − 1 .
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Experiment: 4

Performing KL transform

Scilab code Solution 4.4 4

1 // Per fo rming KL t ran s f o rm
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 X = [3,5,6,7;5,6,3,3;4,6,7,5];

10 [m,n]= size(X);

11 A = [];

12 E = [];

13 for i =1:n

14 A = A+X(:,i);

15 E = E+X(:,i)*X(:,i) ’;

16 end

17 mx = A/n; //mean matr ix
18 E = E/n;

19 C = E - mx*mx ’; // c o v a r i a n c e matr ix C =
E [ xx ’ ] −mx∗mx’

20 [V,D] = spec(C); // e i g e n v a l u e s and e i g e n
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v e c t o r s
21 d = diag(D); // d i a g ona l e l emen t s od

e i g e n v a l u e s
22 [d,i] = gsort(d); // s o r t i n g the e l emen t s o f D

in de s c end ing o rd e r
23 for j = 1: length(d)

24 T(:,j)= V(:,i(j));

25 end

26 T =T’

27 disp(d, ’ E igen Values a r e U = ’ )
28 disp(T, ’ The e i g e n v e c t o r matr ix T = ’ )
29 disp(T, ’ The KL tran fo rm b a s i s i s = ’ )
30

31 //KL t ran s f o rm
32 for i = 1:n

33 Y(:,i)= T*X(:,i);

34 end

35 disp(Y, ’KL t r a n s f o rma t i o n o f the input matr ix Y = ’ )
36

37 // Re c on s t r u c t i o n
38 for i = 1:n

39 x(:,i)= T’*Y(:,i);

40 end

41 disp(x, ’ Re con s t ru c t matr ix o f the g i v en sample
matr ix X = ’ )

42

43 //Output
44 //
45 // Eigen Values a r e U =
46 //
47 // 3 . 6278623
48 // 1 . 0409979
49 // 0 . 4561398
50 //
51 // The e i g e n v e c t o r matr ix T =
52 //
53 // 0 . 7383786 − 0 . 5693168 0 . 3614907
54 // 0 . 0603190 0 . 5896337 0 . 8054152
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55 // 0 . 6716835 0 . 5728966 − 0 . 4697135
56 //
57 // The KL tran fo rm b a s i s i s =
58 //
59 // 0 . 7383786 − 0 . 5693168 0 . 3614907
60 // 0 . 0603190 0 . 5896337 0 . 8054152
61 // 0 . 6716835 0 . 5728966 − 0 . 4697135
62 //
63 // KL t r a n s f o rma t i o n o f the input matr ix Y =
64 //
65 // 0 . 8145143 2 . 444936 5 . 2527556

5 . 2681528
66 // 6 . 3507865 8 . 6718888 7 . 7687219

6 . 2182105
67 // 3 . 0006794 3 . 977516 2 . 4607962

4 . 0719067
68 //
69 // Recon s t ru c t matr ix o f the g i v en sample matr ix X =
70 //
71 // 3 . 5 . 6 . 7 .
72 // 5 . 6 . 3 . 3 .
73 // 4 . 6 . 7 . 5 .
74 //
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Experiment: 5

Brightness enhancement and
supression

check Appendix AP 5 for dependency:

baboon.png

Scilab code Solution 5.5 5

1 // B r i g h t n e s s enhancement and s u p r e s s i o n
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 a=imread( ’ baboon . png ’ );
10

11 // B r i g h t n e s s Enhancement

25



Figure 5.1: 5
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Figure 5.2: 5
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12 a = rgb2gray(a);

13 b = double(a)+50;

14 b = uint8(b);

15 imwrite(b, ’ Br ightnessEnhancedImage . j p e g ’ );
16

17 a=imread( ’ baboon . png ’ );
18

19 // B r i g h t n e s s s u pp r e s s i o n
20 a = rgb2gray(a);

21 b = double(a) -50;

22 b = uint8(b);

23 imwrite(b, ’ B r i gh tn e s sSup r e s s ed Image . j p e g ’ );
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Experiment: 6

Contrast Manipulation

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 6.6 6

1 // Cont ra s t Man ipu la t i on
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 a=imread( ’ Lenna . png ’ );
10

11 a = rgb2gray(a);

12 b = double(a)*0.5;

13 b = uint8(b)
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Figure 6.1: 6
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Figure 6.2: 6
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14 c = double(b)*2;

15 c = uint8(c)

16

17 imwrite(b, ’ D e c r e a s e i nCon t r a s t . j p e g ’ );
18 imwrite(c, ’ I n c r e a s e i nC o n t r a s t . j p e g ’ );
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Experiment: 7

Color separation into R,B,G

check Appendix AP 2 for dependency:

peppers.png

Scilab code Solution 7.7 7

1 // Co lo r s e p a r a t i o n i n t o R,B,G
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 a=imread( ’ p eppe r s . png ’ );
10

11 a1 = a;
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Figure 7.1: 7
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Figure 7.2: 7
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Figure 7.3: 7
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12 b1 = a;

13 c1 = a;

14 a1(:,:,1)=0;

15 b1(:,:,2)=0;

16 c1(:,:,3)=0;

17

18 imwrite(a1, ’ RedMiss ing . j p e g ’ );
19 imwrite(b1, ’ GreenMiss ing . j p e g ’ );
20 imwrite(c1, ’ B lueMi s s i ng . j p e g ’ );
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Experiment: 8

Gamma correction

check Appendix AP 4 for dependency:

ararauna.png

Scilab code Solution 8.8 8

1 //Gamma c o r r e c t i o n
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 I=imread( ’ a ra rauna . png ’ );
10

11 gamma_Value = 0.5;

12 max_intensity = 255; // f o r u i n t 8 image
13 //Look up t a b l e c r e a t i o n
14 LUT = max_intensity .*(([0: max_intensity ]./

max_intensity).^ gamma_Value);
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Figure 8.1: 8
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15 LUT = floor(LUT);

16 //Mapping o f i nput p i x e l s i n t o lookup t a b l e v a l u e s
17 K = double(I)+1;

18 J = zeros(I);

19 [m,n,p]= size(K);

20 for i = 1:m

21 for j =1:n

22 for k = 1:p

23 J(i,j,k)= LUT(K(i,j,k));

24 end

25 end

26 end

27

28 imwrite(uint8(J), ’ GammaCorrectedImage . j p e g ’ ); //
IPD too l box
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Experiment: 9

Adding various types of noises
to image

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 9.9 9

1 //Add v a r i o u s type s o f n o i s e s to image
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 lenna=imread( ’ Lenna . png ’ );
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Figure 9.1: 9
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Figure 9.2: 9

43



Figure 9.3: 9
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10

11 // Gauss ian
12 lenaNgaussian = imnoise(lenna , ’ g a u s s i a n ’ );
13 imwrite(lenaNgaussian , ’ l e naNgau s s i an . j p e g ’ );
14

15 // Spe ck l e
16 lenaNspeckle = imnoise(lenna , ’ s p e c k l e ’ );
17 imwrite(lenaNspeckle , ’ l e n aNsp e c k l e . j p e g ’ );
18

19 // S a l t & Pepper
20 d=0.25 // drop out n o i s e
21 lenaNsalpep = imnoise(lenna , ’ s a l t & pepper ’ ,d);
22 imwrite(lenaNsalpep , ’ l e naNsa lp ep . j p e g ’ );
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Experiment: 10

Demonstrate the various Image
Conversions

check Appendix AP 1 for dependency:

Cameramanimg.jpg

check Appendix AP 3 for dependency:

Lenna.png

check Appendix AP 4 for dependency:

ararauna.png

check Appendix AP 5 for dependency:

baboon.png

check Appendix AP 2 for dependency:

peppers.png
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Figure 10.1: 10
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Figure 10.2: 10
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Figure 10.3: 10
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Figure 10.4: 10
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Figure 10.5: 10
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Figure 10.6: 10

Scilab code Solution 10.10 10

1 // Demonstrate the v a r i o u s Image Conve r s i on s
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
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4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 //RBG to Gray s c a l e
10 baboon = imread( ’ baboon . png ’ );
11 babgray = rgb2gray(baboon);

12 imwrite(babgray , ’ babgray . j p e g ’ );
13

14 //RBG to Binary
15 lena = imread( ’ Lenna . png ’ );
16 lenabw = im2bw(lena ,0.5);

17 imwrite(lenabw , ’ lenabw . j p eg ’ );
18

19 //RBG to HSV
20 cameraman = imread( ’ cameraman . jpg ’ );
21 cameramanhsv = rgb2hsv(cameraman);

22 imwrite(cameramanhsv , ’ cameramanhsv . j p e g ’ );
23

24 //HSV to RGB
25 peppers = imread( ’ p eppe r s . png ’ );
26 peppersrgb = hsv2rgb(peppers);

27 imwrite(peppersrgb , ’ p eppe r s r gb . j p e g ’ );
28

29 //RBG to YCbCr
30 baboon = imread( ’ baboon . png ’ );
31 baboonycbcr = rgb2ycbcr(baboon);

32 imwrite(baboonycbcr , ’ baboonycbcr . j p e g ’ );
33

34 //YCbCr to RGB
35 ararauna = imread( ’ a ra rauna . png ’ );
36 araraunargb = ycbcr2rgb(ararauna);

37 imwrite(araraunargb , ’ a r a raunargb . j p e g ’ );
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Experiment: 11

Demonstrate Spatial Domain
Processing

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 11.11 11

1 // Demonstrate S p a t i a l Domain P r o c e s s i n g
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 lenna=imread( ’ Lenna . png ’ );
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Figure 11.1: 11
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Figure 11.2: 11
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Figure 11.3: 11
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10

11 // Sobe l
12 h = fspecial( ’ s o b e l ’ );
13 lenaSobel = imfilter(lenna ,h)

14 imwrite(lenaSobel , ’ l e n a S ob e l . j p e g ’ );
15

16 // Pr ew i t t
17 h = fspecial( ’ p r ew i t t ’ );
18 lenaPrewitt = imfilter(lenna ,h)

19 imwrite(lenaPrewitt , ’ l e n aP r ew i t t . j p e g ’ );
20

21 // Lap l a c i an
22 h = fspecial( ’ l a p l a c i a n ’ );
23 lenaLaplacian = imfilter(lenna ,h)

24 imwrite(lenaLaplacian , ’ l e n aLap l a c i a n . j p e g ’ );
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Experiment: 12

Motion blur of an image

check Appendix AP 4 for dependency:

ararauna.png

Scilab code Solution 12.12 12

1 //Motion b l u r o f an image
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 a=imread( ’ a ra rauna . png ’ );
10

11 // f i l t e r c o e f f i c i e n t s o f f s p e c i a l ( ’ motion ’ , 1 0 , 2 5 )
12 H =[0 ,0 ,0 ,0 ,0 ,0 ,0 ,0.0032 ,0.0449 ,0.0865 ,0.0072;...

13 0 ,0 ,0 ,0 ,0 ,0.0092 ,0.0509 ,0.0925 ,0.0629 ,0.0213 ,0;...

14 0 ,0 ,0 ,0.0152 ,0.0569 ,0.0985 ,0.0569 ,0.0152 ,0 ,0 ,0;...

15 0 ,0.0213 ,0.0629 ,0.0925 ,0.0509 ,0.0092 ,0 ,0 ,0 ,0 ,0;...
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Figure 12.1: 12
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16 0.0072 ,0.0865 ,0.0449 ,0.0032 ,0 ,0 ,0 ,0 ,0 ,0 ,0];

17 Motion_Blur = imfilter(a,H);

18 Motion_Blur =uint8(Motion_Blur);

19

20 imwrite(Motion_Blur , ’ Mot ionBlurredImage . j p e g ’ )

61



Experiment: 13

Trimmed Average Filter

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 13.13 13

1 //Trimmed Average F i l t e r
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 c=imread( ’ Lenna . png ’ );
10 s = 1; // s deno t e s the number o f v a l u e s to be l e f t

i n the end
11 r = 1;

12 N = 9; // 3x3 window
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Figure 13.1: 13
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Figure 13.2: 13
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13 a = double(imnoise(c, ’ g a u s s i a n ’ ));
14 [m,n] = size(a);

15 b = zeros(m,n);

16 for i= 2:m-1

17 for j = 2:n-1

18 mat = [a(i,j),a(i,j-1),a(i,j+1),a(i-1,j),a(i

+1,j),a(i-1,j-1) ,...

19 a(i-1,j+1),a(i-1,j+1),a(i+1,j+1)];

20 sorted_mat = gsort(mat);

21 Sum =0;

22 for k=r+s:(N-s)

23 Sum = Sum+mat(k);

24 end

25 b(i,j)= Sum/(N-r-s);

26 end

27 end

28 a = uint8(a);

29 b = uint8(b);

30 // f i g u r e
31 // imshow ( c )
32 // t i t l e ( ’ O r i g i n a l Image ’ )
33

34 imwrite(a, ’ no i sy image . j p e g ’ )
35 imwrite(b, ’ Tr immedAverageFi l te redImage . j p e g ’ )
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Experiment: 14

Determine image negative

check Appendix AP 2 for dependency:

peppers.png

Scilab code Solution 14.14 14

1 // Determine image n e g a t i v e
2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8

9 a=imread( ’ p eppe r s . png ’ );
10 k = 255- double(a);

11 k = uint8(k);

12 imwrite(k, ’ ImageNegat ive . j p e g ’ )
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Figure 14.1: 14
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Experiment: 15

Image operations to perform
clockwise and anti-clockwise
operations

check Appendix AP 1 for dependency:

Cameramanimg.jpg

Scilab code Solution 15.15 15

1 // Image o p e r a t i o n s to per fo rm c l o c kw i s e and ant i−
c l o c kw i s e o p e r a t i o n s

2 // S c i l a b 5 . 4 . 1
3 //Windows 10
4 // Requ i r e s SIVP , IPD t o o l b o x e s
5

6 clear;

7 clc;

8
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Figure 15.1: 15
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Figure 15.2: 15
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9 A = imread( ’ Cameramanimg . jpg ’ );
10

11 // Rotate the Image a n t i c l o c kw i s e by an ang l e o f 90
d e g r e e s

12 [M,N]=size(A);

13 for i=1:N

14 for j=1:M

15 B(j,i)=A(i,j);

16 end

17 end

18 NM=B(N:-1:1,:);

19 imwrite(NM, ’ a n t i c l o c kw i s e 9 0 . j p e g ’ )
20

21 // Rotate the Image by an ang l e o f 180 d e g r e e s
22 B= A(size(A,1):-1:1,size(A,1):-1:1,:);

23 imwrite(B, ’ c l o c kw i s e 1 8 0 . j p e g ’ )

71



Appendix
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