Scilab Manual for Digital Signal Processing Lab-1 by Prof Jeevan Reddy Koya Electronics Engineering Sreenidhi Institute Of Science And Technology¹

Solutions provided by Mr Sai Sugun L Electronics Engineering Sreenidihi Institute Of Science & Technology

August 2, 2025

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes written in it can be downloaded from the "Migrated Labs" section at the website http://scilab.in

Contents

Lis	st of Scilab Solutions	3
1	Power spectral density estimation using n-point dft	5
2	PSD estimation via window based technique	10
3	Direct Sequence Spread Spectrum(DS-BPSK)	23
4	Constellation Diagram For Binary PSK	28
5	Repetition Code	31
6	Continuous Time Fourier Series of Sine Signal	33
7	Spectrum of Signal (Frequency Response)-Blackmann Win- dow	35
8	Comparision Of Different Power Spectrum Estimates	37
9	Continuous Time Fourier Transform Of An Exponential Sig- nal	39
10	FIR Band Pass Filter - Remez Algorithm-LPF	43

List of Experiments

1.																	•										5
2.			•	•	•				•						•		•			•				•			10
3.																											23
4.			•	•	•				•						•		•			•							28
5.			•	•	•				•						•		•			•							31
6.			•	•	•				•						•		•			•							33
7.			•	•	•				•						•		•			•							35
8.																											37
9.			•	•	•				•						•		•			•							39
10			•	•	•				•						•		•			•				•			43
Rep	oet	it	io	n(Co	odo	е		•						•		•			•							46
DSS	SS																										49
	1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 10 Rep DSS	1 2 3 4 5 6 7 8 9 10 . Repet DSSS	1 2 3 4 5 6 7 8 9 10 Repetit: DSSS .	1 2 3 4 5 6 7 8 9 10 Repetition DSSS	1	1	1	1 . . 2 . . 3 . . 4 . . 5 . . 6 . . 7 . . 8 . . 9 . . 10 . . RepetitionCode DSSS .	1	1 2 3 4 5 6 7 8 9 10 RepetitionCode DSSS	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

List of Figures

1.1	1	•		•		•	•	•	•	•	•	•	•	•			•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	6
1.2	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	6
2.1	2	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•			•	•	•		•		•	•	•	•	•	•	•		11
3.1	3	•	•	•		•	•	•	•	•	•	•	•	•		•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24
3.2	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24
4.1	4	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		29
7.1	7	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		36
9.1	9	•	•	•		•	•	•	•	•	•	•	•	•		•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	40
9.2	9	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	40
10.1	10)																																	44

Power spectral density estimation using n-point dft

Scilab code Solution 1.1 1

```
1
2 //Power spectrum evaluation of a discrete sequence
      Using N-point DFT
3 //OS: Windows 10
4 //Scilab 5.5.2
5
6 clear all;
7 \, \text{clc};
8 close;
9
          //Number of samples in given sequence
10 N = 16;
11 n =0:N-1;
12 delta_f = [0.06, 0.01]; // frequency separation
13 x1 = sin(2*\%pi*0.315*n)+cos(2*\%pi*(0.315+delta_f(1)))
      *n);
```


Figure 1.1: 1

Figure 1.2: 1

```
14 x2 = sin(2*\%pi*0.315*n)+cos(2*\%pi*(0.315+delta_f(2)))
      *n);
15 L = [8, 16, 32, 128];
16 \text{ k1} = 0:L(1)-1;
17 k2 = 0:L(2)-1;
18 k3 = 0:L(3)-1;
19 k4 = 0:L(4)-1;
20 fk1 = k1./L(1);
21 fk2 = k2./L(2);
22 fk3 = k3./L(3);
23 \text{ fk4} = \text{k4./L(4)};
24 for i =1:length(fk1)
25
     Pxx1_fk1(i) = 0;
     Pxx2_fk1(i) = 0;
26
27
     for m = 1:N
       Pxx1_fk1(i)=Pxx1_fk1(i)+x1(m)*exp(-sqrt(-1)*2*
28
          %pi*(m-1)*fk1(i));
       Pxx2_fk1(i)=Pxx1_fk1(i)+x1(m)*exp(-sqrt(-1)*2*
29
          %pi*(m-1)*fk1(i));
30
     end
     Pxx1_fk1(i) = (Pxx1_fk1(i)^2)/N;
31
     Pxx2_fk1(i) = (Pxx2_fk1(i)^2)/N;
32
33 end
34 for i =1:length(fk2)
     Pxx1_fk2(i) = 0;
35
36
     Pxx2_fk2(i) = 0;
37
     for m = 1:N
       Pxx1_fk2(i) = Pxx1_fk2(i) + x1(m) * exp(-sqrt(-1) * 2*
38
          %pi*(m-1)*fk2(i));
       Pxx2_fk2(i)=Pxx1_fk2(i)+x1(m)*exp(-sqrt(-1)*2*
39
          %pi*(m-1)*fk2(i));
40
     end
     Pxx1_fk2(i) = (Pxx1_fk2(i)^2)/N;
41
     Pxx2_fk2(i) = (Pxx1_fk2(i)^2)/N;
42
43 end
44 for i =1:length(fk3)
     Pxx1_fk3(i) = 0;
45
     Pxx2_fk3(i) = 0;
46
```

```
47
     for m = 1:N
48
       Pxx1_fk3(i) =Pxx1_fk3(i)+x1(m)*exp(-sqrt(-1)*2*
          %pi*(m-1)*fk3(i));
       Pxx2_fk3(i) =Pxx1_fk3(i)+x1(m)*exp(-sqrt(-1)*2*
49
          %pi*(m-1)*fk3(i));
50
     end
     Pxx1_fk3(i) = (Pxx1_fk3(i)^2)/N;
51
52
     Pxx2_fk3(i) = (Pxx1_fk3(i)^2)/N;
53 end
54 for i =1:length(fk4)
     Pxx1_fk4(i) = 0;
55
     Pxx2_fk4(i) = 0;
56
57
     for m = 1:N
       Pxx1_fk4(i) =Pxx1_fk4(i)+x1(m)*exp(-sqrt(-1)*2*
58
          %pi*(m-1)*fk4(i));
       Pxx2_fk4(i) =Pxx1_fk4(i)+x1(m)*exp(-sqrt(-1)*2*
59
          %pi*(m-1)*fk4(i));
60
     end
     Pxx1_fk4(i) = (Pxx1_fk4(i)^2)/N;
61
     Pxx2_fk4(i) = (Pxx1_fk4(i)^2)/N;
62
63 end
64
65 figure(1)
66 subplot(2,2,1)
67 plot2d3('gnn',k1,abs(Pxx1_fk1))
68 xtitle('8 point DFT')
69 xlabel('k1')
70 ylabel('Power Spectrum')
71 subplot(2,2,2)
72 plot2d3('gnn',k2,abs(Pxx1_fk2))
73 xtitle('16 point DFT')
74 xlabel('k2')
75 ylabel('Power Spectrum')
76 subplot(2,2,3)
77 plot2d3('gnn',k3,abs(Pxx1_fk3))
78 xtitle('32 point DFT')
79 xlabel('k3')
80 ylabel('Power Spectrum')
```

```
81 subplot(2,2,4)
82 plot2d3('gnn', k4, abs(Pxx1_fk4))
83 xtitle('128 point DFT')
84 xlabel('k4')
85 ylabel('Power Spectrum')
86 figure(2)
87 xlabel('k1')
88 ylabel('Power Spectrum')
89 subplot(2,2,1)
90 plot2d3('gnn',k1,abs(Pxx2_fk1))
91 xtitle('8 point DFT')
92 xlabel('k1')
93 ylabel('Power Spectrum')
94 subplot(2,2,2)
95 plot2d3('gnn',k2,abs(Pxx2_fk2))
96 xtitle('16 point DFT')
97 xlabel('k2')
98 ylabel('Power Spectrum')
99 subplot(2,2,3)
100 plot2d3('gnn',k3,abs(Pxx2_fk3))
101 xtitle('32 point DFT')
102 xlabel('k3')
103 ylabel('Power Spectrum')
104 subplot(2,2,4)
105 plot2d3('gnn',k4,abs(Pxx2_fk4))
106 xtitle('128 point DFT')
107 xlabel('k4')
108 ylabel('Power Spectrum')
```

PSD estimation via window based technique

Scilab code Solution 2.2 2

```
1 // Determination of power spectrum of a signal using
       window based techniques
2 / OS: Windows 10
3 //Scilab 5.5.2
4
5 clear all;
6 \, \text{clc};
7 close;
8
9 //With maximum normalized frequency f = 0.1
10
11 N = 61;
12 \text{ cfreq} = [0.1 \ 0];
13 [wft,wfm,fr]=wfir(^{\prime}lp~^{\prime},\texttt{N},\texttt{cfreq},^{\prime}re~^{\prime},\texttt{O});
14 disp(wft, 'Time domain filter coefficients hd(n)=');
15 disp(wfm, 'Frequency domain filter values Hd(w)=');
16 WFM_dB = 20*log10(wfm); // Frequency response in dB
```


Figure 2.1: 2

```
17 \text{ for } n = 1:N
18
    h_balckmann(n)=0.42-0.5*cos(2*%pi*n/(N-1))+0.08*cos
       (4*%pi*n/(N-1));
19 end
20 wft_blmn = wft'.*h_balckmann;
21 disp(wft_blmn, 'Blackmann window based Filter output
     h(n) = ')
22 wfm_blmn = frmag(wft_blmn,length(fr));
23 WFM_blmn_dB =20*log10(wfm_blmn);
24 subplot(2,1,1)
25 plot2d(fr,WFM_dB)
26 xgrid(1)
27 xtitle('Power Spectrum with Rectangular window
      Filtered M = 61', 'Frequency in cycles per samples
        f', 'Energy density in dB')
28 subplot(2,1,2)
29 plot2d(fr,WFM_blmn_dB)
30 xgrid(1)
31 xtitle('Power Spectrum with Blackmann window
      Filtered M = 61', 'Frequency in cycles per
      samples
              f', 'Energy density in dB')
32
33 //Output
```

3435 // Time domain filter coefficients hd(n) =36 // 37 // 38 // column 1 to 6 39 // $0. \quad -0.0064517 \quad -0.0108118 \quad -0.0112122$ 40 // -0.00719610. 41 // 42 // column 7 to 11 43 // 44 // 0.0077957 0.0131622 0.0137605 0.00890940. 45 // column 12 to 16 46 // 47 // -0.0098473 -0.0168184 -0.0178077 -0.011693648 // 0. 49 // column 17 to 21 50 // 51 // 52 // 0.0133641 0.023287 0.0252276 0.01700890. 53 // column 22 to 26 54 // 55 // 56 // -0.0207887 -0.0378413 -0.0432472 -0.0311830. 57 // 58 // column 27 to 31 59 // $0.0467745 \quad 0.1009102 \quad 0.1513653 \quad 0.1870979$ 60 // 0.261 // 62 // column 32 to 3663 // 64 // $0.1870979 \quad 0.1513653 \quad 0.1009102 \quad 0.0467745$ 0.

65 // column 37 to 41 66 // 67 // $68 \hspace{0.1in} // \hspace{0.1in} -0.031183 \hspace{0.1in} -0.0432472 \hspace{0.1in} -0.0378413 \hspace{0.1in} -0.0207887$ 0. 69 // 70 // column 42 to 46 71 // $72 \ // \ 0.0170089 \ 0.0252276 \ 0.023287 \ 0.0133641$ 0. 73 // 74 // column 47 to 5175 // $76 \hspace{0.1in} // \hspace{0.1in} -0.0116936 \hspace{0.1in} -0.0178077 \hspace{0.1in} -0.0168184 \hspace{0.1in} -0.0098473$ 0. 77 // column 52 to 5678 // 79 // 80 // 0.0089094 0.0137605 0.0131622 0.0077957 0. 81 // column 57 to 6182 // 83 // 84 // -0.0071961 -0.0112122 -0.0108118 -0.00645170. 85 // 86 // Frequency domain filter values Hd(w) =87 // 88 // 89 // column 1 to 4 90 // 91 // 0.9675288 0.9697174 0.9759947 0.985532792 // column 5 to 8 93 // 94 // 95 // 0.9970705 1.0090769 1.0199494 1.028222296 // 97 // column 9 to 12

98	//				
99		1.0327597	1.032908	1 1.0285865	1.0203056
100		aal	nmn 12 to 1	6	
$\frac{101}{102}$		01		0	
$102 \\ 103$		1.0091095	0.996448	5 0.9839967	0.9734374
104	11				
105	11	col	umn 17 to 2	0	
106	11				
107	//	0.9662427	0.963475	9 0.9656411	0.9726015
108					
109		col	umn 21 to 2	4	
110		0 0825771	0 007225	2 1 0117027	1 0959591
111 119		0.9655771	0.997220	0 1.0117907	1.0200001
$112 \\ 113$		col	umn 25 to 2	8	
114		0.01			
115	11	1.0359982	2 1.042143	6 1.0427207	1.0373466
116	11				
117	//	col	umn 29 to 3	2	
118	11			-	
119		1.0264107	1.011066	7 0.9931303	0.9748874
120 191		aal	$11000 22 \pm 0.2$	6	
121 199		001	umm 55 to 5		
122 123		0.9588338	0.947371	9 0.9424999	0.9455261
124		0.00000000		0 0.0121000	0.0100101
125	11	col	umn 37 to 4	0	
126	11				
127	//	0.9568447	0.975799	$6 \qquad 1.0006553$	1.0286838
128	11				
129		col	umn 41 to 4	.4	
130		1 0569695	1 070664	c 1.0044909	1 0067094
131 139		1.0003023	D 1.079004	0 1.0944208	1.090/084
132		col	umn 45 to 4	.9	
134		001		-	
135	11	1.083237	1.0516873	1.0009693	0.9313716

		0.844588		
136	11			
137	//	${ m column}$ 50 to 54		
138	//			
139	11	$0.7436142 \qquad 0.6325263$	0.51616	0.3997228
		0.2883759		
140	11			
141	//	column 55 to 58		
142	//			
143	11	0.1868241 0.0989556	0.0275603	0.0258446
144	//			
145	//	column 59 to 62		
146	11			
147	//	$0.0610721 \qquad 0.0792022$	0.082409	0.0737002
148	//			
149		column 63 to 66		
150				
151		0.0565962 0.0347843	0.0117814	0.009362
152	11			
153	//	column 67 to 70		
154				
155		0.0262894 0.0374811	0.0423011	0.0409531
156				
157	11	column 71 to 74		
158				
159	11	0.0343542 0.0239471	0.0114751	0.0012542
160	11			
161	11	column 75 to 78		
162		0.0105000 0.0010110	0.000501	
163	11	0.0125883 0.0212119	0.0262721	0.0274398
164	11			
165		column 79 to 82		
166		0.0040000	0.0115050	0.0000001
167		0.0249026 0.0192981	0.0115978	0.0029604
168				
169		column 83 to 87		
170		0.0054965 0.0194065	0.017400	0 010794
$\Gamma 1 1$	11	0.0054265 0.0124965	0.017429	0.019734

		0.0192912		
172	11			
173	11	column 88 to 92		
174	11			
175	11	0.01634 0.0114257 0	.0053107	0.0011358
		0.0070546		
176	11			
177	11	column 93 to 96		
178	11			
179	11	0.0117055 0.0145548	0.0153314	0.0140473
180	11			
181	11	column 97 to 100		
182	11			
183	11	0.0109805 0.0066249	0.0016159	0.0033586
184	11			
185	11	column 101 to 104		
186	11			
187	11	0.0076495 0.0107281	0.0122486	0.0120842
188	11			
189	//	m column 105 to 108		
190	//			
191	//	0.0103331 0.0072958	0.0034271	0.0007296
192	11			
193	//	column 109 to 112		
194	//			
195	//	0.0046165 0.0077345	0.0097054	0.0103164
196				
197		column 113 to 116		
198				
199		0.0095408 0.0075343	0.0046078	0.0011806
200				
201	//	column 117 to 120		
202	//			
203	//	0.0022776 0.0053107	0.0075345	0.0086846
204				
205	//	column 121 to 124		
206	//			
207	11	0.0086466 0.0074659	0.0053365	0.0025704

208	11	
209	11	column 125 to 128
210	//	
211		0.0004471 0.0033099 0.0056452 0.0071613
212		
213		column 129 to 132
214		0.0076921 0.0071717 0.0057259 0.0025621
210 916		0.0070851 0.0071717 0.0057252 0.0055021
$\frac{210}{217}$		column 133 to 136
217		corumn 155 to 150
210	//	0.0009886 0.0016436 0.0039851 0.0057344
220	11	
221	11	column 137 to 140
222	//	
223	//	0.0066764 0.0067081 0.0058494 0.0042369
224		
225		column 141 to 145
226		
227	//	0.0021034 0.0002558 0.0025229 0.0044
228	11	0.0030481
$\frac{220}{229}$		column 146 to 150
230	//	
231	11	0.0061171 0.005763 0.004652 0.0029484
	, ,	0.0008913
232	//	
233	//	column 151 to 154
234		
235		0.0012388 0.0031582 0.0046169 0.0054315
236		
237		column 155 to 158
230 230		0.0055074 = 0.0048499 = 0.003561 = 0.0018246
$\frac{239}{240}$		0.0000011 0.0010100 0.000001 0.0010240
241	//	column 159 to 162
242	11	
243	11	$0.0001203 \qquad 0.0020115 \qquad 0.0035992 \qquad 0.0046784$

244	//			
245		column 163 to 167		
246				
247		0.0051154 0.004864 0	.0039702	0.002564
		0.0008414		
248				
249		column 168 to 171		
250				
251		0.0009635 0.0026096	0.0038807	0.0046144
252				
253		column 172 to 175		
254		0.004722 0.0041002 0	0021255	0 0016594
200 256		0.004722 0.0041992 0	.0031233	0.0010324
$250 \\ 257$		column 176 to 170		
258				
$\frac{250}{250}$		0 0000183 0 0016613	0 0030588	0 0040284
$\frac{260}{260}$		0.0000105 0.0010015	0.00000000	0.0040204
$\frac{-60}{261}$	11	column 180 to 183		
262	11			
263	11	0.0044474 0.004268 0	.0035224	0.0023176
264	11			
265	11	column 184 to 187		
266	11			
267	11	0.0008202 0.0007666	0.0022306	0.0033785
268				
269	//	column 188 to 191		
270				
271		0.0040614 0.0041944	0.0037665	0.0028415
272				
273	-	m column 192 to 195		
274			0 0 0 1 1 1 0 5	
275		0.0015484 0.0000637	0.0014125	0.0026839
276				
277		column 196 to 199		
278		0.0025822 0.0020040	0 0038601	0 0020000
219		0.0000000 0.00009949	0.0038091	0.0032282
280	//			

281		column 200 to 203	
282	11		
283	11	0.0021631 0.0008199 0.0006196	0.0019626
284			
285		column 204 to 207	
286			
287		0.003031 0.0036848 0.0038407	0.0034824
288			
289		column 208 to 211	
290			
291		0.0026621 0.0014932 0.0001345	0.0012312
292			
293		column 212 to 215	
294	11		
295		0.0024216 0.0032793 0.0036924	0.003609
296			
297		column 216 to 219	
298			
299		0.0030439 0.002076 0.0008371	0.0005054
300			
301		column 220 to 223	
302			
303		0.0017717 0.0027931 0.0034349	0.0036136
304			
305	//	column 224 to 228	
306			
307		0.003308 0.0025617 0.0014769	0.0002001
		0.001097	
308			
309		column 229 to 233	
310	11		
311	11	0.002241 0.0030797 0.0035026	0.003455
		0.0029452	
312	//		
313	//	column 234 to 237	
314	//		
315	11	0.0020432 0.0008713 0.000413	0.0016374
316	11		

317		column 238 to 241	
318	11		
319	11	$0.0026386 \qquad 0.0032833 \qquad 0.0034864 \qquad 0.003222$	1
320	11		
321	//	column 242 to 245	
322			
323		0.0025269 0.0014951 0.0002654 0.000997	1
324	//		
325		column 246 to 249	
326			
327	//	0.0021236 0.0029635 0.0034049 0.003389	4
328			
329		column 250 to 253	
330	11		
331	11	0.0029197 0.0020592 0.0009236 0.000334	8
332			
333		column 254 to 256	
334	11		
335		0.0015476 0.0025522 0.0032144	
	177		
336	11		
336 337		Blackmann window based Filter output $h(n) =$	
336 337 338	 	Blackmann window based Filter output $h(n) =$	
336 337 338 339	// // // //	Blackmann window based Filter output $h(n) = -7.725D-21$	
336 337 338 339 340	 	Blackmann window based Filter output $h(n) =$ -7.725D-21 -0.0000259	
 336 337 338 339 340 341 242 	 	Blackmann window based Filter output $h(n) = -7.725D-21 -0.0000259 -0.0000994$	
 336 337 338 339 340 341 342 242 	 	Blackmann window based Filter output $h(n) =$ -7.725D-21 -0.0000259 -0.0000994 -0.0001879	
 336 337 338 339 340 341 342 343 244 	 	Blackmann window based Filter output $h(n) =$ -7.725D-21 -0.0000259 -0.0000994 -0.0001879 -0.0001942	
 336 337 338 339 340 341 342 343 344 		Blackmann window based Filter output $h(n) =$ -7.725D-21 -0.0000259 -0.0000994 -0.0001879 -0.0001942 3.135D-19	
 336 337 338 339 340 341 342 343 344 345 246 		Blackmann window based Filter output $h(n) =$ -7.725D-21 -0.0000259 -0.0000994 -0.0001879 -0.0001942 3.135D-19 0.0004427	
 336 337 338 339 340 341 342 343 344 345 346 347 		Blackmann window based Filter output $h(n) =$ -7.725D-21 -0.0000259 -0.0000994 -0.0001879 -0.0001942 3.135D-19 0.0004427 0.0010144	
 336 337 338 339 340 341 342 343 344 345 346 347 240 		Blackmann window based Filter output $h(n) =$ -7.725D-21 -0.0000259 -0.0000994 -0.0001879 -0.0001942 3.135D-19 0.0004427 0.0010144 0.0013951 0.0011522	
 336 337 338 339 340 341 342 343 344 345 346 347 348 240 		Blackmann window based Filter output $h(n) =$ -7.725D-21 -0.0000259 -0.0001879 -0.0001942 3.135D-19 0.0004427 0.0010144 0.0013951 0.0011582 1.272D 18	
 336 337 338 339 340 341 342 343 344 345 346 347 348 349 250 		Blackmann window based Filter output $h(n) =$ -7.725D-21 -0.0000259 -0.0000994 -0.0001879 -0.0001942 3.135D-19 0.0004427 0.0010144 0.0013951 0.0011582 -1.272D-18 0.001077	
 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 251 		Blackmann window based Filter output $h(n) =$ -7.725D-21 -0.0000259 -0.0000994 -0.0001879 -0.0001942 3.135D-19 0.0004427 0.0010144 0.0013951 0.0011582 -1.272D-18 -0.001977 0.0040862	
 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 252 		Blackmann window based Filter output $h(n) =$ -7.725D-21 -0.0000259 -0.0000994 -0.0001879 -0.0001942 3.135D-19 0.0004427 0.0010144 0.0013951 0.0011582 -1.272D-18 -0.001977 -0.0040862 0.005155	
 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 252 		Blackmann window based Filter output $h(n) =$ -7.725D-21 -0.0000259 -0.0000994 -0.0001879 -0.0001942 3.135D-19 0.0004427 0.0010144 0.0013951 0.0011582 -1.272D-18 -0.001977 -0.0040862 -0.005155 0.0029758	
 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 254 		Blackmann window based Filter output $h(n) =$ -7.725D-21 -0.0000259 -0.0001879 -0.0001942 3.135D-19 0.0004427 0.0010144 0.0013951 0.0011582 -1.272D-18 -0.001977 -0.0040862 -0.005155 -0.0039758 2.072D 18	

	0.0060255
11	0.0118714
11	0.0143756
11	0.0107156
11	-5.373D-18
11	-0.0155126
11	-0.0302706
	-0.0367268
	-0.0278468
11	$7.253D{-}18$
11	0.0449152
11	0.0991097
	0.1506861
	0.1870979
	0.1991026
	0.1837596
	0.1453485
	0.0938771
	0.0417702
	$6.621D{-}18$
	-0.0249443
	-0.0322712
	-0.0260792
	-0.0130968
	-4.443D-18
	0.0086709
	0.0113744
	0.0091754
	0.0045438
	$2.257D{-}18$
	-0.0028411
	-0.0035753
	-0.0027431
	-0.0012801
	-7.904D-19
	0.0006867
	0.0007815
	0.0005293

393	//	0.0002104
394	//	1.306D - 19
395	//	-0.0000662
396	//	-0.000045
397	//	-0.000107
398	//	8.953D-20
399	//	-7.725D-21

Direct Sequence Spread Spectrum(DS-BPSK)

check Appendix AP 2 for dependency:

DS_Spread_Spectrum.sci

Scilab code Solution 3.3 3

```
1
2 // Direct Sequence Spread Spectrum (DS-BPSK)
3 //OS: Windows 10
4 // Scilab 5.5.2
5
6 clear all;
7 clc;
8 close;
9
10 function[st,mt]= DS_Spread_Spectrum(bt,ct_polar)
```


Figure 3.1: 3

Figure 3.2: 3

```
11 // Generation of waveforms in DS/BPSK spread spectrum
       transmitter
12 //bt: Input Data Sequence (bipolar format)
13 //ct_polar: Spreading code (bipolar format)
14 Ft = 0:0.01:1;
15 //bt = [1 * ones (1, N) -1 * ones (1, N)];
16 \ t = 0: length(bt) - 1;
17 // \operatorname{ct_polar} = [-1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1];
18 mt = bt.*ct_polar;
19 Carrier = 2*sin(Ft*2*%pi);
20 st = [];
21 for i = 1:length(mt)
22
     st = [st mt(i)*Carrier];
23 end
24
25 figure
26 subplot(3,1,1)
27 a =gca();
28 a.x_location = "origin";
29 a.y_location = "origin";
30 \text{ a.data_bounds} = [0, -2; 20, 2];
31 plot2d2(t,bt,5)
32 xlabel('
      t ')
33 ylabel('
      b(t)')
34 title('Data')
35 subplot(3,1,2)
36 \ a = gca();
37 a.x_location = "origin";
38 a.y_location = "origin";
39 a.data_bounds = [0,-2;20,2];
40 plot2d2(t,ct_polar,5)
41 xlabel('
```

t ')

```
42 ylabel('
      c(t)')
43 title('Spreading code')
44 subplot(3,1,3)
45 \, a = gca();
46 a.x_location = "origin";
47 a.y_location = "origin";
48 \text{ a.data_bounds} = [0, -2; 20, 2];
49 plot2d2(t,mt,5)
50 xlabel('
      t ')
51 ylabel('
      m(t)')
52 title('Product Signal')
53
54 figure
55 subplot(3,1,1)
56 \, a = gca();
57 a.x_location = "origin";
58 a.y_location = "origin";
59 \text{ a.data_bounds} = [0, -2; 20, 2];
60 plot2d2(t,mt,5)
61 xlabel('
      t ')
62 ylabel('
      m(t)')
63 title('Product Signal')
64 subplot(3,1,2)
65 \, a = gca();
66 a.x_location = "origin";
67 a.y_location = "origin";
68 a.data_bounds = [0,-2;20,2];
69 plot(Carrier)
```

```
70 xlabel('
      t ')
71 ylabel('
     c(t)')
72 title('Carrier Signal')
73 subplot(3,1,3)
74 a = gca();
75 a.x_location = "origin";
76 a.y_location = "origin";
77 a.data_bounds = [0,-2;20,2];
78 plot(st)
79 xlabel('
      t ')
80 ylabel('
      s(t)')
81 title('DS/BPSK signal')
82 endfunction
83
84 bt = [1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1]
85 ct_polar = [-1,-1,1,1,1,-1,-1,-1,1,1,1,1,-1,1]
86 [st,mt] = DS_Spread_Spectrum(bt,ct_polar)
```

Constellation Diagram For Binary PSK

Scilab code Solution 4.4 4

```
1 // Constellation Diagram For Binary PSK
2 //OS: Windows 10
3 //Scilab 5.5.2
4
5 clear all;
6 clc;
7 close;
8
9 function[y] = Constellation_BPSK()
10 M =2;
11 i = 1:M;
12 y = \cos(2*\%pi+(i-1)*\%pi);
13 annot = dec2bin([length(y)-1:-1:0], log2(M));
14 disp(y, 'coordinates of message points')
15 disp(annot, 'Message points')
16 figure;
17 a =gca();
```


Figure 4.1: 4

```
18 a.data_bounds = [-2,-2;2,2];
19 a.x_location = "origin";
20 a.y_location = "origin";
21 plot2d(real(y(1)), imag(y(1)), -9)
22 plot2d(real(y(2)), imag(y(2)), -5)
23 xlabel('
     In-Phase ');
24 ylabel('
      Quadrature');
25 title('Constellation for BPSK')
26 legend(['message point 1 (binary 1)'; 'message point
      2 (binary 0)'],5)
27 endfunction
28
29 Constellation_BPSK()
30
31 //Output
32 //coordinates of message points
33 //
34 //
        1. -1.
35 //
```

36 // Message points 37 // 38 //!1 0 !

Repetition Code

check Appendix AP 1 for dependency:

RepetitionCode.sci

Scilab code Solution 5.5 5

```
1 //Repetition Code
2 / OS: Windows 10
3 // Scilab 5.5.2
4
5 clear all;
6 \, \operatorname{clc};
7 close;
8
9 function [G,H,x]=RepetitionCode(n,k,m)
10 //Repetition Codes
11 //n =block of identical 'n' bits
12 / k = 1 one bit
13 //m = 1; // bit value = 1
14 I = eye(n-k,n-k); // Identity matrix
15 P = ones(1,n-k);//coefficient matrix
16 H = [I P']; // parity-check matrix
17 G = [P 1]; //generator matrix
```

```
18 x = m.*G; //code word
19 disp(G, 'generator matrix');
20 disp(H, 'parity-check matrix');
21 disp(x, 'code word for binary one input');
22 endfunction
23
24 n=5;
25 k=1;
26 m = 1;
27 [G,H,x]=RepetitionCode(n,k,m)
28
29 //Output
30 // generator matrix
31 //
32 //
       1. 1. 1. 1.
                             1.
33 //
34 // parity-check matrix
35 //
36 //
        1.
              0.
                   0.
                         0.
                              1.
37 //
        0.
              1.
                   0.
                         0.
                              1.
38 //
        0.
              0.
                   1.
                         0.
                              1.
39 //
        0.
              0.
                   0.
                         1.
                              1.
40 //
41 // code word for binary one input
42 //
43 //
        1.
              1.
                  1.
                         1.
                              1.
```

Continuous Time Fourier Series of Sine Signal

Scilab code Solution 6.6 6

```
1 //Continuous Time Fourier Series of Sine Signal
2 //OS: Windows 10
3 //Scilab 5.5.2
4
5 clear;
6 \, \operatorname{clc};
7 close;
8
9 //periodic sine signal x(t) = sin(Wot)
10
11 t = 0:0.01:1;
12 T = 1;
13 Wo = 2*\%pi/T;
14 xt = sin(Wo*t);
15 for k = 0:5
     C(k+1,:) = exp(-sqrt(-1)*Wo*t.*k);
16
     a(k+1) = xt*C(k+1,:) '/length(t); //fourier series
17
        is done
    if(abs(a(k+1)) <= 0.01)</pre>
18
```

```
a(k+1)=0;
19
20
       end
21 end
22 a =a';
23 ak = [-a(\$:-1:1), a(2:\$)];
24 disp(ak, 'Continuous Time Fourier Series Coefficients
         are: ')
25
26 //Output
27 // Continuous Time Fourier Series Coefficients are:
28 //
29 //
30 //
                  column 1 to 9
31 //
32 \hspace{0.1in} // \hspace{0.1in} 0. \hspace{0.1in} 0. \hspace{0.1in} 0. \hspace{0.1in} 0. \hspace{0.1in} 0. \hspace{0.1in} 0.4950495 \hspace{0.1in} i \hspace{0.1in} 0. \hspace{0.1in} -0.4950495
    i 0. 0.
33 //
                  column 10 to 11
34 //
35 //
         0. 0.
36 //
```

Spectrum of Signal (Frequency Response)-Blackmann Window

Scilab code Solution 7.7 7

```
1 //SPECTRUM OF SIGNAL (FREQUENCY RESPONSE) - BLACKMANN
       WINDOW
2 / OS: Windows 10
3 //Scilab 5.5.2
4
5 clear all;
6 \quad clc;
7 close;
8
9 //With maximum normalized frequency f = 0.4
10
11 N = 11;
12 \text{ cfreq} = [0.4 0];
13 [wft,wfm,fr]=wfir('lp',N,cfreq,'re',0);
14 wft;
                         // Time domain filter
      coefficients
                         // Frequency domain filter
15 wfm;
```


Figure 7.1: 7

```
values
```

```
// Frequency sample points
16 fr;
17 \text{ for } n = 1:N
     h_blackmann(n)=0.42-0.5*cos(2*%pi*n/(N-1))+0.08*
18
        cos(4*%pi*n/(N-1));
     wft_blmn(n) = wft(n)*h_blackmann(n);
19
20 \text{ end}
21 wfm_blmn = frmag(wft_blmn,length(fr));
22 WFM_blmn_dB =20*log10(wfm_blmn);
23 plot2d(fr,WFM_blmn_dB)
24 xtitle('Frequency Response of Blackmann window
      Filtered output N = 11', 'Frequency in cycles per
               f', 'Energy density in dB')
      samples
```

Comparision Of Different Power Spectrum Estimates

Scilab code Solution 8.8 8

```
1 //COMPARISON OF DIFFERENT POWER SPECTRUM ESTIMATES
2 //OS: Windows 10
3 //Scilab 5.5.2
4
5 clear all;
6 \, \text{clc};
7 close;
8
9 Q = 10; //Quality factor
10 N = 1000; //Length of the sample sequence
11 // Bartlett Method
12 F_Bartlett = Q/(1.11*N);
13 disp(F_Bartlett, 'Frequency Resolution of Bartlett
     Power Spectrum Estimation')
14 //Welch Method
15 F_Welch = Q/(1.39*N);
16 disp(F_Welch, 'Frequency Resolution of Welch Power
      Spectrum Estimation')
17 //Blackmann-Tukey Method
```

```
18 F_Blackmann_Tukey = Q/(2.34*N);
19 disp(F_Blackmann_Tukey, 'Frequency Resolution of
     Blackmann Tukey Power Spectrum Estimation')
20
21
22 //Output
23 // Frequency Resolution of Bartlett Power Spectrum
      Estimation
24 //
25 //
        0.009009
26 //
27 // Frequency Resolution of Welch Power Spectrum
      Estimation
28 //
29 //
        0.0071942
30 //
31 // Frequency Resolution of Blackmann Tukey Power
     Spectrum Esti
32 // mation
        0.0042735
33 //
```

Continuous Time Fourier Transform Of An Exponential Signal

Scilab code Solution 9.9 9

```
1 //CONTINUOUS TIME FOURIER TRANSFORM OF A EXPONENTIAL
SIGNAL
2 //OS:Windows 10
3 //Scilab 5.5.2
4
5 clear all;
6 clc;
7 close;
8
9 //Continuous Time Exponential Signal x(t)= exp(-A*t)
u(t), A>0
10
11 // Analog Signal
```


Figure 9.1: 9

Figure 9.2: 9

```
12 A =1; //Amplitude
13 Dt = 0.005;
14 t = 0:Dt:10;
15 xt = \exp(-A*t);
16
17 // Continuous-time Fourier Transform
                          //Analog Frequency = 1Hz
18 Wmax = 2*%pi*1;
19 K = 4;
20 \ k = 0: (K/1000):K;
21 W = k*Wmax/K;
22 XW = xt* exp(-sqrt(-1)*t'*W) * Dt;
23 XW_Mag = abs(XW);
24 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
     Wmax to Wmax
25 XW_Mag = [mtlb_fliplr(XW_Mag), XW_Mag(2:1001)];
26 [XW_Phase,db] = phasemag(XW);
27 XW_Phase = [-mtlb_fliplr(XW_Phase),XW_Phase(2:1001)
     ];
28
29 // Plotting Continuous Time Signal
30 figure
31 \ a = gca();
32 a.y_location = "origin";
33 plot(t,xt);
34 xlabel('t in sec.');
35 ylabel('x(t)')
36 title('Continuous Time Signal')
37
38 // Plotting Magnitude Response of CTS
39 figure
40 subplot(2,1,1);
41 a = gca();
42 a.y_location = "origin";
43 plot(W,XW_Mag);
44 xlabel('Frequency in Radians/Seconds—> W');
45 ylabel('abs(X(jW))')
46 title('Magnitude Response (CTFT)')
47
```

< X

FIR Band Pass Filter - Remez Algorithm-LPF

Scilab code Solution 10.10 10

```
1 //FIR BAND PASS FILTER - REMEZ ALGORITHM -FOR LPF
2 //OS: Windows 10
3 //Scilab 5.5.2
4
5 //Band Pass Filter of length M = 16
6 //Lower Cutoff frequency fp = 0.2 and Upper Cutoff
     frequency fs = 0.3
7
8 clear all;
9 clc;
10 close;
11 hn = 0;
12 \text{ hm} = 0;
13 hn=eqfir(16,[0 .1;.2 .35;.425 .5],[0 1 0],[10 1 10])
      ;//number of cosine functions, pass band magnitude
     &stop band, weighting function
14 [hm,fr]=frmag(hn,256);
```


Figure 10.1: 10

```
15 disp(hn, 'The Filter Coefficients are: ')
16 figure
17 plot(.5*(0:255)/256,20*log10(frmag(hn,256)));
18 \ a = gca();
19 xlabel('Normalized Digital Frequency fr');
20 ylabel('Magnitude in dB');
21 title('Frequency Response of FIR BPF using REMEZ
      algorithm M=16')
22 xgrid(2)
23
  //Output
24
25
  26 // The Filter Coefficients are:
27 //
       -0.0395487
28
  29
        0\,.\,0\,2\,3\,2\,2\,8\,4
  30
        0.0480681
  31
  -0.0218794
32
  0.0975735
33
       -0.1012773
  34 //
       -0.2880134
35 //
        0.2847346
        0.2847346
36 //
```

37		-0.2880134
38		-0.1012773
39		0.0975735
40		-0.0218794
41		0.0480681
42		0.0232284
43		-0.0395487
44	11	

Appendix

```
Scilab code AP11 clear all;
2 \text{ clc};
3 close;
4
5 function [G,H,x]=RepetitionCode(n,k,m)
6 //Repetition Codes
7 //n = block of identical 'n' bits
8 / k = 1 one bit
9 //m = 1; // bit value = 1
10 I = eye(n-k,n-k); // Identity matrix
11 P = ones(1, n-k); // coefficient matrix
12 H = [I P']; // parity-check matrix
13 G = [P 1]; //generator matrix
14 x = m.*G; //code word
15 disp(G, 'generator matrix');
16 disp(H, 'parity-check matrix');
17 disp(x, 'code word for binary one input');
18 endfunction
```

RepetitionCode

```
Scilab code AP12 clear all;
2 clc;
3 close;
4
5 function[st,mt]= DS_Spread_Spectrum(bt,ct_polar)
6 //Generation of waveforms in DS/BPSK spread spectrum
```

```
transmitter
7 //bt: Input Data Sequence (bipolar format)
8 //ct_polar: Spreading code (bipolar format)
9 Ft = 0:0.01:1;
10 //bt = [1 * ones (1, N) - 1 * ones (1, N)];
11 t = 0: length (bt) -1;
12 // \operatorname{ct_polar} = [-1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1];
13 mt = bt.*ct_polar;
14 Carrier = 2*sin(Ft*2*%pi);
15 st = [];
16 for i = 1:length(mt)
     st = [st mt(i)*Carrier];
17
18 end
19
20 figure
21 subplot(3,1,1)
22 a =gca();
23 a.x_location = "origin";
24 a.y_location = "origin";
25 \text{ a.data_bounds} = [0, -2; 20, 2];
26 plot2d2(t,bt,5)
27 xlabel('
      t ')
28 ylabel('
      b(t)')
29 title('Data')
30 subplot(3,1,2)
31 a =gca();
32 a.x_location = "origin";
33 a.y_location = "origin";
34 \text{ a.data_bounds} = [0, -2; 20, 2];
35 plot2d2(t,ct_polar,5)
36 xlabel('
      t ')
37 ylabel('
```

```
c(t)')
38 title('Spreading code')
39 subplot(3,1,3)
40 a =gca();
41 a.x_location = "origin";
42 a.y_location = "origin";
43 \text{ a.data_bounds} = [0, -2; 20, 2];
44 plot2d2(t,mt,5)
45 xlabel('
      t ')
46 ylabel('
      m(t)')
47 title('Product Signal')
48
49 figure
50 subplot(3,1,1)
51 a =gca();
52 a.x_location = "origin";
53 a.y_location = "origin";
54 \text{ a.data_bounds} = [0, -2; 20, 2];
55 plot2d2(t,mt,5)
56 xlabel('
      t ')
57 ylabel('
      m(t)')
58 title('Product Signal')
59 subplot(3,1,2)
60 a =gca();
61 a.x_location = "origin";
62 a.y_location = "origin";
63 \text{ a.data_bounds} = [0, -2; 20, 2];
64 plot(Carrier)
65 xlabel('
```

```
t ')
66 ylabel('
     c(t)')
67 title('Carrier Signal')
68 subplot(3,1,3)
69 a =gca();
70 a.x_location = "origin";
71 a.y_location = "origin";
72 a.data_bounds = [0,-2;20,2];
73 plot(st)
74 xlabel(,
      t ')
75 ylabel('
      s(t)')
76 title('DS/BPSK signal')
77 endfunction
   DSSS
```