Scilab Manual for
Digital Signal Processing
by Prof Akhtar Nadaf
Electronics and Telecommunication
Engineering
Nagesh Karajagi Orchid College Of
Engineering & Technology, Solapur!

Solutions provided by
Mr Akhtar Nadaf
Electronics and Telecommunication Engineering
N K Orchid College Of Engineering & Technology

January 8, 2026

Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the "Migrated Labs” section at the website
http://scilab.in






Contents

List of Scilab Solutions

1

2

8

9

Waveform generation using discrete time signals
Z-transform and pole zero plot of a system

Linear convolution

Auto co-relation and cross co-relation

Implementation of DFT and IDFT

circular convolution using FFT

Fast convolution using Overlap add/Overlap save method
Realization of FIR system

Design of FIR filter using frequency sampling method.

10 Design of FIR filter using windowing technique.

11 Design of IIR filter using impulse invariant technique.

12 Design of IIR filters using Bilinear transformation/Butter-

worth Technique.

13 Design of IIR Filters Chebyshev

11

14

18

21

24

29

31

33

36

38

40



List of Experiments

Solution 1.1 ~ Waveform generation using DT signals . . . . . . 5
Solution 2.1 Z transform of DT sequence . . . . ... ... .. 8
Solution 2.2 Pole Zero Plot of a system . . . . ... ... ... 9
Solution 3.1 Linear Convolution . . . . .. ... ... ..... 11
Solution 4.1  Auto correlation . . . . . .. .. ... 14
Solution 4.2 Cross corelation . . . . . ... .. ... 16
Solution 5.1  Implementation of DET . . . . .. ... ... .. 18
Solution 5.2 Implementation of IDFT . . . ... ... .. ... 19
Solution 6.1 Circular Convolution using FFT . . . .. ... .. 21
Solution 7.1  Fast convolution using overlap save method . . . . 24
Solution 7.2 Fast convolution using overlap add method . . . . 26
Solution 8.1 Program to determine filter coefficients obtained by
sampling . . . . ... L oo 29
Solution 9.1 Design of FIR LPF using frequency sampling method 31
Solution 10.1  FIR Filter using rectangular window . . . . . .. 33
Solution 11.1  Design of IIR Filter using Impulse Invarient tech-
NIQUE . . . v v e e e e 36
Solution 12.1 IR filter design using Bilinear Transformation Tech-
nique . . ... 38
Solution 13.1  To Design an analog Chebyshev Filter with Given
Specifications . . . . . ... ... L. 40



List of Figures

1.1  Waveform generation using DT signals
2.1 Pole Zero Plot of a system . . . . ..
3.1 Linear Convolution . . . .. ... ..

4.1 Auto correlation . . . . . . . . .. ..
4.2 Cross corelation . . . . . . .. .. ..

5.1 Implementation of DFT . . . . . ..

6.1 Circular Convolution using FFT . . .

7.1 Fast convolution using overlap save method . . . . ... ..
7.2 Fast convolution using overlap add method . . . . . . . . ..

9.1 Design of FIR LPF using frequency sampling method . . . .

10.1 FIR Filter using rectangular window

12

15
16

19
22

25
26

32
34



© 00 J O U i W N

= s e s e
S U W NN = O

Experiment: 1

Waveform generation using

discrete time signals

Scilab code Solution 1.1 Waveform generation using DT signals

// Expt 1. Waveform generation using discrete time

signals using Scilab
// O.S. Windows 10
////Scilab 6.0.0
//Generation of unit step Discrete
clear;
clc;
t=0:4;
y=ones (1,5);
subplot (3,2,1);
plot2d3 (t,y);
xlabel(’'n’);
ylabel (’u(n) ’);

title(’Unit Step Discrete Signal’);

// Generation of Unit Ramp Discrete
n1=0:8;

signal

signal



17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Unit Step Diserete Signal Unit Ramp Disciete Signal

¢ 7 & 5 4 3 2 4 0 1 2 3 4 & 8 T 8

Figure 1.1: Waveform generation using DT signals

yl=n1;

subplot (3,2,2);

plot2d3 (n1l,yl);

xlabel('n’);

ylabel(’'r(n)’);

title(’Unit Ramp Discrete Signal’);

//Generation of Growing Exponential Discrete signal
n1=0:8;

yl=n1;

y2=exp(nl);

subplot (3,2,3);

plot2d3 (nl,y2);

xlabel('n’);

ylabel (’x(n)’);

title(’Growing Exponential Discrete Signal’);

//Generation of Decaying Exponential Discrete signal
nl1=0:8;
yl=n1;



37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64

y2=exp (-nl);
subplot (3,2,4);
plot2d3 (nl,y2);
xlabel(’'n’);
ylabel (’x(n)’);

title(’Decaying Exponential Discrete Signal’);

//Generation of sinusoidal discrete signal

n1=0:25;

yl=n1;
y2=sin(nl) ;
subplot (3,2,5);
plot2d3 (nl,y2);
xlabel(’'n’);
ylabel (’x(n)’);

title(’Sinusoidal Discrete Signal’);

//Generation of unit impulse sequence

1=7;

n=-1:1;
x=[zeros(1,1),1,zeros(1,1)];
b=gca () ;

b.y_location="middle”;

subplot (3,2,6);
plot2d3(’gnn’,n,x);

a= gce ();

a. children (1) . thickness =5;
xtitle (’Unit Sample Sequence’,

n’,’X[n] 7);




© 00 N O U b W N

I S e G T = T T =y SRy Y
© 00 J O T i W N = O

Experiment: 2

Z-transform and pole zero plot

of a system

Scilab code Solution 2.1 Z transform of DT sequence

//Expt2: To draw the pole—zero plot
//O.S: Windows 10;

//Scilab: 6.0.0

clear;

clc ;

//Z— transform of [1 0 3 —1 2]

clear;

clc ;

close ;

function[zal=ztransfer (sequence,n)
z=poly(0,’z’, ")

za=sequencex*(1/z) "n’

endfunction

x1=[1 0 3 -1 2];

n=0:length(x1)-1;

zz=ztransfer (x1l,n);

//Display the result in command window
disp (zz,”Z—transform of sequence is:”);
// Expected Output:



T = W DN =

Figure 2.1: Pole Zero Plot of a system

//Z—transform of sequence is:
// 2 4
/] 2 — 2z + 3z + z
//
// 4
// z

disp(’ROC is the entire plane except z = 07);
//ROC is the entire plane except z = 0

Scilab code Solution 2.2 Pole Zero Plot of a system

//Expt2: To draw the pole—zero plot
//O.S: Windows 10;

//Scilab: 6.0.0

clear;

clc ;



© 00 N O

10

close ;

z=%hz
H1Z=((z)*(z-1))/((z-0.25)*(z-0.5) ) ;
xset ("window ' ,1) ;

plzr (H1Z) ;

10



Experiment: 3

Linear convolution

Scilab code Solution 3.1 Linear Convolution

© 00 J O U i W N+~

R e S e G = T T = S S et
© 00 J O U i WO NN = O

//Experiment no 3
//Linear Convolution

// SciLab version : 6.0.0
// O.S. : Windows 10

clc;

close ;

t=0:6;

x=[1,2,1,2,1,3,2];
subplot (2,2,1);

plot2d3 (t,x);
xlabel('n’);
ylabel(’x(n) ) ;

title (’'Input sequence x(n)’);

t=0:5;
h=[1,-1,2,-2,1,1];
subplot(2,2,2);
plot2d3 (t,h);
xlabel('n’);

11



20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Inputsequence x(n) Impulse sequence h(n)

Convolution of xinjand hin)

Figure 3.1: Linear Convolution

ylabel (’h(n) ') ;
title (’Impulse sequence h(n)’);

m length(x);

n length (h);

//Direct Convolution Sum Formula
for i = 1:n+m-1

conv_sum = 0;
for j = 1:1
if (((i-j+1) <= n)&(j <= m))

conv_sum = conv_sum + x(j)*h(i-j+1);

end ;
y(i) = conv_sum;
end ;

end ;
disp(y, 'y=")
subplot(2,2,3);
l=length(y);
t=0:(1-1);
plot2d3 (t,y);

12



40 xlabel(’'n’);
41 ylabel(’y(n)’);
42 title(’Convolution of x(mn)and h(n)’);

13



0 3 O O == W N

10
11
12
13
14
15
16

Experiment: 4

Auto co-relation and cross
co-relation

Scilab code Solution 4.1 Auto correlation

//Experiment no 4

//Auto Correlation

// SciLab version : 6.0.0
// O.S. : Windows 10
clear;

clc;

close;

x = input(’Enter the given discrete time sequence’);

// Enter a sequence x(n)={1,2,3,4}
1 = length(x);
t=0:1-1;
subplot (1,2,1);
plot2d3 (t,x);
xlabel(’'n’);
ylabel (’x(n) ) ;
title (’'Input sequence x(n)’);
h = zeros(1,1);

14



17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Figure 4.1:

for i = 1:1
h(l-i+1) = x(i);
end
N = 2x1-1,;
Rxx = zeros(1,N);
for i = 1+1:N
h(i) = 0;
end
for i = 1+1:N
x(i) = 0;
end
for n = 1:N
for k = 1:
if(n >= k)

Auto correlation

Rxx(n) = Rxx(n)+x(n-k+1)*h(k);

end
end
end

disp(Rxx, "Auto Correlation Result

output Rxx(n) ={11,20,30,20,11}

15

is’);//Expected



36
37
38
39
40
41
42

S UL W N =

Figure 4.2: Cross corelation

L=length (Rxx) ;

t=0:L-1;

subplot (1,2,2);

plot2d3 (t,Rxx);

xlabel('n’);

ylabel ('Rxx(n) ’);

title(’Auto correlation of x(n)’);

Scilab code Solution 4.2 Cross corelation

//Experiment no 4b
//cross correlation

// SciLab version : 6.0.0
// O.S. : Windows 10
clc;

close ;

16



© 00

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

t1=0:4;

x1=[0,1,2,3,4];
subplot(2,2,1);
plot2d3 (t1,x1);

xlabel(’'n’);

ylabel ('x1(n) ") ;
title (’Input sequence x1(n)’);

t2=0:4;

x2=[0,1,5,6,4];
subplot (2,2,2);
plot2d3 (t2,x2);

xlabel('n’);

ylabel (’x2(n) ) ;
title ('Input sequence x2(n)’);

y=xcorr (x1,x2);

l=length(y);
t3=0:1-1;

subplot (2,2,3);
plot2d3 (t3,y);

xlabel(’'n’);

ylabel(’y(n) ') ;

title (' cross

correlation ofx1(n) and x2(n)’);

17



N OO W N

© oo

10
11

12
13
14

Experiment: 5

Implementation of DFT and
IDFT

Scilab code Solution 5.1 Implementation of DF'T

// Expt 5. Implementation of 8 point DFT
// O.S. Windows 10
////Scilab 6.0.0

clear;

clc;

x1=input (’Enter a sequence’);// input a sequence xl
~{1,1,1,1,0,0,0,0}

//DFT Computation

X1 = fft (x1 , -1);

disp (X1,”X1[k]=");//Expected outpput sequences X1[k]
in command window {4,1-2.4142136i,0,1—-0.41421361
0,14+0.41421361,0,1+2.41421361}

mag = abs (X1);

subplot (1,2,1);

plot2d3 (mag);

18



15
16
17
18
19
20
21
22
23
24
25

w

3 a5 4 as s 85 68 es 7 75 &8
K

Figure 5.1: Implementation of DFT

xlabel ('k’);

ylabel (' |y (k)| ’);

title ('magnitude

x1= atan ( imag (X1),real (X1));

response ) ;

phase =x1 *(180/ Y%pi );
subplot (1,2,2);
plot2d3 (phase);
xlabel ('k’);
ylabel (Targ(y(k))’);
title('Phase response’);

Scilab code Solution 5.2 Implementation of IDFT

// Expt 5. IDFT of sequence X[k|=[5,0,1—j,0,1,0,1+]

0]

// O.S. Windows 10
////Scilab 6.0.0

clear;

19




© 00 J & Ot

10

12
13
14

clc ;

clear;

clc ;

j=sqrt (-1);

X = [5,0,1-j,0,1,0,1+j,071;

//IDFT Computation

x = fft (X , 1);

//Display sequences x[n]in command window
disp(x,”x[n]=");

// outputx|[n]=[1,0.75,0.5,0.25,1,0.75,0.5,0.25]

20



Experiment: 6

circular convolution using FFT

Scilab code Solution 6.1 Circular Convolution using FFT

// Expt 6. Circular Convolution using FFT

© 00 J O U i W N+~

—_
)

12
13
14
15
16
17
18

// O.S. Windows 10
////Scilab 6.0.0
//x1[n]=[1,-1,-2,3, —1]
//x2[n]=[1,2,3]

clear;

clc ;

close ;
x1=[1,-1,-2,3,-1];
x2=[1,2,3];

//Loop for zero padding the smaller sequence out of

the two
nl=length(x1);
n2=length (x2);
n3=n2-n1l;
if (n3>=0) then
x1=[x1,zeros(1,n3)];
else
x2=[x2,zeros(1,-n3)];

21



19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

20}

Convolution ofx1(n] & x2{n]

Figure 6.1: Circular Convolution using FFT

end

//DFT Computation
X1=fft(x1,-1);

X2=fft(x2,-1);

Y=X1.%xX2;

//IDEFT Computation

y=fft(Y,1);

nd=length (y);

//Display sequence y[n] in command window
disp(y,”y[n]=");

// Plotting of sequences
t=0:n1-1;

subplot (2,2,1);

plot2d3 (t,x1);

xlabel('n’);

ylabel ('x1(n) ") ;

title(’First sequence x1[n]]’);

t1=0:n1-1;
subplot (2,2,2);

22



39
40
41
42
43
44
45
46
47
48
49

plot2d3 (t1,x2);

xlabel('n’);

ylabel (’'x2(n) ) ;

title (’Second sequence x2[n]’);

t2=0:n1-1;

subplot (2,2,3);

plot2d3 (t1,y);

xlabel(’'n’);

ylabel ('y(n) ') ;

title (’Circular Convolution of x1[n] & x2[n]’);

23



© 00 J O U i W N

T e T e T o S = S S G SRt
N O T = W= O

Experiment: 7

Fast convolution using Overlap
add /Overlap save method

Scilab code Solution 7.1 Fast convolution using overlap save method

// Expt 7 Fast convolution using overlap Save method
//O.S. Windows 10

//Scilab 6.0.0

clc;

clear all;

x =[1,2,-1,2,3,-2,-3,-1,1,1,2,-1]1;

h =[1,2,3,-1];

nl length(x);

n2 length (h);

N = n1+n2-1;

hi [h zeros(1,N-n1)];

n3 length (hl);

y = zeros(1,N);

x1 = [zeros(1,n3-n2) x zeros(1,n3)];
H = fft(hl,-1);

for i = 1:n2:N

yl = x1(i:1+(2*x(n3-n2)));

24



18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36

Figure 7.1: Fast convolution using overlap save method

y2 = fft(y1);
y3 = y2.xH;
y4 = round (fft(y3,1));

y(i:(i+n3-n2)) = y4(n2:n3);

end
subplot(3,1,1);
plot2d3(x(1:n1));

title (’Input Sequence x(n)’);

xlabel ("Time —>");
ylabel (" Amplitude
subplot (3,1,2);

plot2d3(h(1:n2));

title ('Input Sequence h(n)’);

xlabel ('Time —>");
ylabel (" Amplitude
subplot (3,1,3);

disp(’Fast Convolution Using Overlap Save Method =

)
disp(y(1:N));
plot2d3(y(1:N));

>7);

>");

25

)



37

38
39
40
41

42

N R R

Figure 7.2: Fast convolution using overlap add method

title (’Block Convolution Using Overlap Save Method’)

xlabel ('Time —>");

ylabel (" Amplitude ——>");
// result:Fast Convolution Using Overlap Save Method

// 1 4 6 5 2 11 0 16
-8 3 8 5 3 -5 1

Scilab code Solution 7.2 Fast convolution using overlap add method
// Expt 7 Fast convolution using overlap add method

//O.S. Windows 10
//Scilab 6.0.0

26



© 0o N O Ot

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

clc;
clear;

x = [1,2,-1,2,3,-2,-3,-1,1,1,2,-1];

h = [1,2,3,-1];

nl = length(x);

n2 = length(h);

N = n1+n2-1;

y = zeros(1,N);

hli = [h zeros(1,n2-1)1;
n3 = length(hl);

y = zeros(1,N+n3-n2);

H = fft(hl,-1);

for i = 1:n2:nl

if i<=(nl1+n2-1)

x1 = [x(i:1+n3-n2) zeros(1,n3-n2)];
else

x1 = [x(i:nl1) zeros(1,n3-n2)];

end

x2 = fft(x1,-1);

x3 = x2.%*H;

x4 = round (fft(x3,1));
if (i==1)

y(1:n3) = x4(1:n3);
else
y(i:i+n3-1) =
end
end

subplot(3,1,1);
plot2d3(x(1:n1));

title (’Input Sequence x(n)’);

xlabel ("Time —>");
ylabel (" Amplitude
subplot (3,1,2);

plot2d3(h(1:n2));

title ('Input Sequence h(n)’);

xlabel ('Time —>");
ylabel (" Amplitude
subplot(3,1,3);

y(i:1+n3-1)+x4(1:n3);

>");

>");



43

44
45
46
47
48
49

50

disp(’Fast Convolution Using Overlap Add Method = 7)

disp(y(1:N));

plot2d3(y(1:N));

title(’Fast Convolution Using Overlap Add Method ) ;
xlabel ('Time >");

ylabel ("Amplitude >7);

// Result:Fast Convolution Using Overlap Add Method

// 1 4 6 5 2 11 0 16
-8 3 8 5 3 -5 1

28



© 00 J O Ot = W N

e S e e S S S O T
© 00 J O U i W N = O

Experiment: 8

Realization of FIR system

Scilab code Solution 8.1 Program to determine filter coefficients obtained
by sampling

// Expt 8. Program to determine filter coefficients
obtained by sampling:

// O.S. Windows 10

//Scilab 6.0.1

clear;

clc ;

close ;

N=7;

U=1; //Zero Adjust

for n=0+U:1:N-1+T

h(n)=(1+2%cos (2*%%pi*(n-U-3) /7)) /N

end

disp(h,” Filter Coefficients ,h(n)=")

// Filter Coefficients ,h(n)=

/) —0.1145625
/) 0.0792797
//  0.3209971
/) 0.4285714
/) 0.3209971

29



20 //
21 /)

0.0792797
—0.1145625

30



© 00 J O U i W N

= s e s e
S U W NN = O

Experiment: 9

Design of FIR filter using
frequency sampling method.

Scilab code Solution 9.1 Design of FIR LPF using frequency sampling
method

//Exp 9. FIR LPF using frequency Sampling Method
//O.S. Windows 10;

// Scilab 6.0.0.

clc ;

clear ;

N =15;

U=1;

for n=0+U:1:N-1+U

h(n)=(1+cos (2*%pi*(7-n)/N))/N;
end

[hz,fl=frmag(h,256) ;
hz_dB=20%10g10 (hz) ./max (hz) ;
figure;

plot (2%f,hz_dB);

a=gca();

xlabel ('Frequency wpi’);

31



Figure 9.1: Design of FIR LPF using frequency sampling method

17 ylabel (’Magnitude in dB’) ;
18 title (’Frequency Response of FIR LPF’);

32



© 00 J O U i W N

= s e s e
S UL W NN = O

Experiment: 10

Design of FIR filter using
windowing technique.

Scilab code Solution 10.1 FIR Filter using rectangular window

//Expt. 10 Design of FIR filter (Band Pass) using
windowing technique (Kaiser Window)

// O.S. Windows 10

// Scilab 6.0.0.

clear;

clc ;

close ;

wsf=200x%pi;//rad/sec

ws1=20x%pi;//rad/sec

ws2=80x%pi;//rad/sec

wpl=40*%pi;//rad/sec

wp2=60*%pi;//rad/sec

as=30//dB

ap=0.5//dB

B=min (wpl-wsl,ws2-wp2);

wcl=wpl-B/2;

wc2=wp2+B/2;

33



17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35

Figure 10.1: FIR Filter using rectangular window

wcl=wcl*2x*%pi/wsf;

wc2=wc2*2x*%pi/wst;

deltal=10"(-0.05%*as) ;

delta2=(10"(0.05*%xas)-1) /(10" (0.05%*as)+1) ;

delta=min(deltal,delta2);

alphas=-20*1logl0(delta) ;

alpha=0.5842*(alphas-21) "0.4+0.07886* (alphas-21)

D=(alphas-7.95)/14.36;

Ni=wsf*D/B+1;

N=ceil (N1);

U=ceil (N/2);

win_l=window(’re’,N,alpha);

for n=-floor(N/2)+U:1:floor(N/2)+U

if n==ceil (N/2);

hd(n)=0.4;

else

hd(n)=(sin(0.7*%pi*(n-U))-sin (0.3*%pi*x(n-U))) /(hpix(
n-U));

end

h(n)=hd(n)*win_1(n) ;

34



36
37
38
39
40
41
42
43
44

45
46

end

[hzm ,fr 1= frmag (h ,256) ;

hzm_dB = 20% loglO (hzm)./ max ( hzm );

figure

plot (2*fr , hzm_dB )

a= gca ();

xlabel (’Frequency wxpi’);
ylabel (’Magnitude in dB’);

title (’Frequency Response of given BPF using

rectangular Window ) ;

xgrid (2);
disp(h,” Filter

Coefficients ,h(n)

77),
b

35



Experiment: 11

Design of IIR filter using
impulse invariant technique.

Scilab code Solution 11.1 Design of IIR Filter using Impulse Invarient

[

© 00 J O Ut i W N

T e T e T o S = S G SRt
N O U = W N = O

technique

//Expt.11:To Design the Filter

Invarient Method
// O.S. Windows 10
//Scilab: 6.0.0
clear;
clc ;
close ;
s=hs;
T=0.2;
HS=10/(s"2+7*s+10) ;
elts=pfss (HS);
disp(elts, "Factorized HS

//Outputs :
//Factorized HS =
// (1)
/] 3.3333333

//

// 2 + s

= 7)’

36

using Impulse



18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34

/] (2)
// —3.3333333

//

//

//The poles comes out to be at —5 and —2

5 + s

pl=-5;
p2=-2;

z=%hz;

HZ=T*((-3.33/(1-%e ~ (p1*T)*xz~(-1)))+(3.33/(1-%e  (p2*T

)kz~(-1))))
disp(HZ, 'HZ = ’);
//Result :

/ /HZ

//
//
//
//

0.2014254z

0.2465970 — 1.0381995z + z

37



Experiment: 12

Design of IIR filters using
Bilinear

transformation /Butterworth
Technique.

Scilab code Solution 12.1 IIR filter design using Bilinear Transformation
Technique

//Expt 12 Design of IIR filters using Bilinear
transformation /Butterworth Technique.

//To Find out Bilinear Transformation of HS=2/((s+1)
£(5+2) (5+3))

// O.S. Windows 10;

//Scilab 6.0.0

clear;

clc ;

close ;

S=%S ;

z=%z;

HS=2/((s+1) *(s+2) x(s+3) ) ;

T=1;

HZ=horner (HS, (2/T)*(z-1)/(z+1));

38



13
14
15
16
17
18
19
20
21

disp(HZ, 'H(z) =");

//H(z) =

/]

//
//
//
//

) 2 3
2 + 6z + 6z + 2

Z

2
—47z — 8z + 60z

3

39



© 00 J O Ut i W N

e e T e T o S = S S SRt
N O U = W NN = O

Experiment: 13

Design of I1IR Filters
Chebyshev

Scilab code Solution 13.1 To Design an analog Chebyshev Filter with
Given Specifications

//Expt 13 To Design an analog Chebyshev Filter with
Given Specifications

// O.S. Windows 10;

//Scilab 6.0.0

clear;

clc ;

//

0s=2;

op=1;

ap=3;//db

as=16; //db

el=1/sqrt (2);

11=0.1;

epsilon=sqrt(1/(el172)-1);

lambda=sqrt (1/(117°2) -1);

N=acosh(lambda/epsilon)/acosh(os/op);

disp(ceil(N), 'Order of the filter , N =7);

40



18
19
20
21

// Result:
//Order of the filter , N

//

3.

41



	
	Waveform generation using discrete time signals
	Z-transform and pole zero plot of a system
	Linear convolution
	Auto co-relation and cross co-relation
	Implementation of DFT and IDFT
	circular convolution using FFT
	Fast convolution using Overlap add/Overlap save method
	Realization of FIR system
	Design of FIR filter using frequency sampling method.
	Design of FIR filter using windowing technique.
	Design of IIR filter using impulse invariant technique.
	Design of IIR filters using Bilinear transformation/Butterworth Technique.
	Design of IIR Filters Chebyshev

