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Experiment: 1

Waveform generation using

discrete time signals

Scilab code Solution 1.1 Waveform generation using DT signals

// Expt 1. Waveform generation using discrete time

signals using Scilab
// O.S. Windows 10
////Scilab 6.0.0
//Generation of unit step Discrete
clear;
clc;
t=0:4;
y=ones (1,5);
subplot (3,2,1);
plot2d3 (t,y);
xlabel(’'n’);
ylabel (’u(n) ’);

title(’Unit Step Discrete Signal’);

// Generation of Unit Ramp Discrete
n1=0:8;

signal

signal



17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Unit Step Diserete Signal Unit Ramp Disciete Signal

¢ 7 & 5 4 3 2 4 0 1 2 3 4 & 8 T 8

Figure 1.1: Waveform generation using DT signals

yl=n1;

subplot (3,2,2);

plot2d3 (n1l,yl);

xlabel('n’);

ylabel(’'r(n)’);

title(’Unit Ramp Discrete Signal’);

//Generation of Growing Exponential Discrete signal
n1=0:8;

yl=n1;

y2=exp(nl);

subplot (3,2,3);

plot2d3 (nl,y2);

xlabel('n’);

ylabel (’x(n)’);

title(’Growing Exponential Discrete Signal’);

//Generation of Decaying Exponential Discrete signal
nl1=0:8;
yl=n1;
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y2=exp (-nl);
subplot (3,2,4);
plot2d3 (nl,y2);
xlabel(’'n’);
ylabel (’x(n)’);

title(’Decaying Exponential Discrete Signal’);

//Generation of sinusoidal discrete signal

n1=0:25;

yl=n1;
y2=sin(nl) ;
subplot (3,2,5);
plot2d3 (nl,y2);
xlabel(’'n’);
ylabel (’x(n)’);

title(’Sinusoidal Discrete Signal’);

//Generation of unit impulse sequence

1=7;

n=-1:1;
x=[zeros(1,1),1,zeros(1,1)];
b=gca () ;

b.y_location="middle”;

subplot (3,2,6);
plot2d3(’gnn’,n,x);

a= gce ();

a. children (1) . thickness =5;
xtitle (’Unit Sample Sequence’,

n’,’X[n] 7);
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Experiment: 2

Z-transform and pole zero plot

of a system

Scilab code Solution 2.1 Z transform of DT sequence

//Expt2: To draw the pole—zero plot
//O.S: Windows 10;

//Scilab: 6.0.0

clear;

clc ;

//Z— transform of [1 0 3 —1 2]

clear;

clc ;

close ;

function[zal=ztransfer (sequence,n)
z=poly(0,’z’, ")

za=sequencex*(1/z) "n’

endfunction

x1=[1 0 3 -1 2];

n=0:length(x1)-1;

zz=ztransfer (x1l,n);

//Display the result in command window
disp (zz,”Z—transform of sequence is:”);
// Expected Output:
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Figure 2.1: Pole Zero Plot of a system

//Z—transform of sequence is:
// 2 4
/] 2 — 2z + 3z + z
//
// 4
// z

disp(’ROC is the entire plane except z = 07);
//ROC is the entire plane except z = 0

Scilab code Solution 2.2 Pole Zero Plot of a system

//Expt2: To draw the pole—zero plot
//O.S: Windows 10;

//Scilab: 6.0.0

clear;

clc ;
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close ;

z=%hz
H1Z=((z)*(z-1))/((z-0.25)*(z-0.5) ) ;
xset ("window ' ,1) ;

plzr (H1Z) ;

10



Experiment: 3

Linear convolution

Scilab code Solution 3.1 Linear Convolution
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//Experiment no 3
//Linear Convolution

// SciLab version : 6.0.0
// O.S. : Windows 10

clc;

close ;

t=0:6;

x=[1,2,1,2,1,3,2];
subplot (2,2,1);

plot2d3 (t,x);
xlabel('n’);
ylabel(’x(n) ) ;

title (’'Input sequence x(n)’);

t=0:5;
h=[1,-1,2,-2,1,1];
subplot(2,2,2);
plot2d3 (t,h);
xlabel('n’);

11
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Figure 3.1: Linear Convolution

ylabel (’h(n) ') ;
title (’Impulse sequence h(n)’);

m length(x);

n length (h);

//Direct Convolution Sum Formula
for i = 1:n+m-1

conv_sum = 0;
for j = 1:1
if (((i-j+1) <= n)&(j <= m))

conv_sum = conv_sum + x(j)*h(i-j+1);

end ;
y(i) = conv_sum;
end ;

end ;
disp(y, 'y=")
subplot(2,2,3);
l=length(y);
t=0:(1-1);
plot2d3 (t,y);

12



40 xlabel(’'n’);
41 ylabel(’y(n)’);
42 title(’Convolution of x(mn)and h(n)’);

13
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Experiment: 4

Auto co-relation and cross
co-relation

Scilab code Solution 4.1 Auto correlation

//Experiment no 4

//Auto Correlation

// SciLab version : 6.0.0
// O.S. : Windows 10
clear;

clc;

close;

x = input(’Enter the given discrete time sequence’);

// Enter a sequence x(n)={1,2,3,4}
1 = length(x);
t=0:1-1;
subplot (1,2,1);
plot2d3 (t,x);
xlabel(’'n’);
ylabel (’x(n) ) ;
title (’'Input sequence x(n)’);
h = zeros(1,1);

14
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Figure 4.1:

for i = 1:1
h(l-i+1) = x(i);
end
N = 2x1-1,;
Rxx = zeros(1,N);
for i = 1+1:N
h(i) = 0;
end
for i = 1+1:N
x(i) = 0;
end
for n = 1:N
for k = 1:
if(n >= k)

Auto correlation

Rxx(n) = Rxx(n)+x(n-k+1)*h(k);

end
end
end

disp(Rxx, "Auto Correlation Result

output Rxx(n) ={11,20,30,20,11}

15
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Figure 4.2: Cross corelation

L=length (Rxx) ;

t=0:L-1;

subplot (1,2,2);

plot2d3 (t,Rxx);

xlabel('n’);

ylabel ('Rxx(n) ’);

title(’Auto correlation of x(n)’);

Scilab code Solution 4.2 Cross corelation

//Experiment no 4b
//cross correlation

// SciLab version : 6.0.0
// O.S. : Windows 10
clc;

close ;

16
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t1=0:4;

x1=[0,1,2,3,4];
subplot(2,2,1);
plot2d3 (t1,x1);

xlabel(’'n’);

ylabel ('x1(n) ") ;
title (’Input sequence x1(n)’);

t2=0:4;

x2=[0,1,5,6,4];
subplot (2,2,2);
plot2d3 (t2,x2);

xlabel('n’);

ylabel (’x2(n) ) ;
title ('Input sequence x2(n)’);

y=xcorr (x1,x2);

l=length(y);
t3=0:1-1;

subplot (2,2,3);
plot2d3 (t3,y);

xlabel(’'n’);

ylabel(’y(n) ') ;

title (' cross

correlation ofx1(n) and x2(n)’);

17
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Experiment: 5

Implementation of DFT and
IDFT

Scilab code Solution 5.1 Implementation of DF'T

// Expt 5. Implementation of 8 point DFT
// O.S. Windows 10
////Scilab 6.0.0

clear;

clc;

x1=input (’Enter a sequence’);// input a sequence xl
~{1,1,1,1,0,0,0,0}

//DFT Computation

X1 = fft (x1 , -1);

disp (X1,”X1[k]=");//Expected outpput sequences X1[k]
in command window {4,1-2.4142136i,0,1—-0.41421361
0,14+0.41421361,0,1+2.41421361}

mag = abs (X1);

subplot (1,2,1);

plot2d3 (mag);

18
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Figure 5.1: Implementation of DFT

xlabel ('k’);

ylabel (' |y (k)| ’);

title ('magnitude

x1= atan ( imag (X1),real (X1));

response ) ;

phase =x1 *(180/ Y%pi );
subplot (1,2,2);
plot2d3 (phase);
xlabel ('k’);
ylabel (Targ(y(k))’);
title('Phase response’);

Scilab code Solution 5.2 Implementation of IDFT

// Expt 5. IDFT of sequence X[k|=[5,0,1—j,0,1,0,1+]

0]

// O.S. Windows 10
////Scilab 6.0.0

clear;

19
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clc ;

clear;

clc ;

j=sqrt (-1);

X = [5,0,1-j,0,1,0,1+j,071;

//IDFT Computation

x = fft (X , 1);

//Display sequences x[n]in command window
disp(x,”x[n]=");

// outputx|[n]=[1,0.75,0.5,0.25,1,0.75,0.5,0.25]

20



Experiment: 6

circular convolution using FFT

Scilab code Solution 6.1 Circular Convolution using FFT

// Expt 6. Circular Convolution using FFT

© 00 J O U i W N+~
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// O.S. Windows 10
////Scilab 6.0.0
//x1[n]=[1,-1,-2,3, —1]
//x2[n]=[1,2,3]

clear;

clc ;

close ;
x1=[1,-1,-2,3,-1];
x2=[1,2,3];

//Loop for zero padding the smaller sequence out of

the two
nl=length(x1);
n2=length (x2);
n3=n2-n1l;
if (n3>=0) then
x1=[x1,zeros(1,n3)];
else
x2=[x2,zeros(1,-n3)];

21
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Convolution ofx1(n] & x2{n]

Figure 6.1: Circular Convolution using FFT

end

//DFT Computation
X1=fft(x1,-1);

X2=fft(x2,-1);

Y=X1.%xX2;

//IDEFT Computation

y=fft(Y,1);

nd=length (y);

//Display sequence y[n] in command window
disp(y,”y[n]=");

// Plotting of sequences
t=0:n1-1;

subplot (2,2,1);

plot2d3 (t,x1);

xlabel('n’);

ylabel ('x1(n) ") ;

title(’First sequence x1[n]]’);

t1=0:n1-1;
subplot (2,2,2);

22
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plot2d3 (t1,x2);

xlabel('n’);

ylabel (’'x2(n) ) ;

title (’Second sequence x2[n]’);

t2=0:n1-1;

subplot (2,2,3);

plot2d3 (t1,y);

xlabel(’'n’);

ylabel ('y(n) ') ;

title (’Circular Convolution of x1[n] & x2[n]’);

23
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Experiment: 7

Fast convolution using Overlap
add /Overlap save method

Scilab code Solution 7.1 Fast convolution using overlap save method

// Expt 7 Fast convolution using overlap Save method
//O.S. Windows 10

//Scilab 6.0.0

clc;

clear all;

x =[1,2,-1,2,3,-2,-3,-1,1,1,2,-1]1;

h =[1,2,3,-1];

nl length(x);

n2 length (h);

N = n1+n2-1;

hi [h zeros(1,N-n1)];

n3 length (hl);

y = zeros(1,N);

x1 = [zeros(1,n3-n2) x zeros(1,n3)];
H = fft(hl,-1);

for i = 1:n2:N

yl = x1(i:1+(2*x(n3-n2)));

24
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Figure 7.1: Fast convolution using overlap save method

y2 = fft(y1);
y3 = y2.xH;
y4 = round (fft(y3,1));

y(i:(i+n3-n2)) = y4(n2:n3);

end
subplot(3,1,1);
plot2d3(x(1:n1));

title (’Input Sequence x(n)’);

xlabel ("Time —>");
ylabel (" Amplitude
subplot (3,1,2);

plot2d3(h(1:n2));

title ('Input Sequence h(n)’);

xlabel ('Time —>");
ylabel (" Amplitude
subplot (3,1,3);

disp(’Fast Convolution Using Overlap Save Method =

)
disp(y(1:N));
plot2d3(y(1:N));

>7);

>");

25
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Figure 7.2: Fast convolution using overlap add method

title (’Block Convolution Using Overlap Save Method’)

xlabel ('Time —>");

ylabel (" Amplitude ——>");
// result:Fast Convolution Using Overlap Save Method

// 1 4 6 5 2 11 0 16
-8 3 8 5 3 -5 1

Scilab code Solution 7.2 Fast convolution using overlap add method
// Expt 7 Fast convolution using overlap add method

//O.S. Windows 10
//Scilab 6.0.0

26
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clc;
clear;

x = [1,2,-1,2,3,-2,-3,-1,1,1,2,-1];

h = [1,2,3,-1];

nl = length(x);

n2 = length(h);

N = n1+n2-1;

y = zeros(1,N);

hli = [h zeros(1,n2-1)1;
n3 = length(hl);

y = zeros(1,N+n3-n2);

H = fft(hl,-1);

for i = 1:n2:nl

if i<=(nl1+n2-1)

x1 = [x(i:1+n3-n2) zeros(1,n3-n2)];
else

x1 = [x(i:nl1) zeros(1,n3-n2)];

end

x2 = fft(x1,-1);

x3 = x2.%*H;

x4 = round (fft(x3,1));
if (i==1)

y(1:n3) = x4(1:n3);
else
y(i:i+n3-1) =
end
end

subplot(3,1,1);
plot2d3(x(1:n1));

title (’Input Sequence x(n)’);

xlabel ("Time —>");
ylabel (" Amplitude
subplot (3,1,2);

plot2d3(h(1:n2));

title ('Input Sequence h(n)’);

xlabel ('Time —>");
ylabel (" Amplitude
subplot(3,1,3);

y(i:1+n3-1)+x4(1:n3);

>");

>");
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disp(’Fast Convolution Using Overlap Add Method = 7)

disp(y(1:N));

plot2d3(y(1:N));

title(’Fast Convolution Using Overlap Add Method ) ;
xlabel ('Time >");

ylabel ("Amplitude >7);

// Result:Fast Convolution Using Overlap Add Method

// 1 4 6 5 2 11 0 16
-8 3 8 5 3 -5 1

28
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Experiment: 8

Realization of FIR system

Scilab code Solution 8.1 Program to determine filter coefficients obtained
by sampling

// Expt 8. Program to determine filter coefficients
obtained by sampling:

// O.S. Windows 10

//Scilab 6.0.1

clear;

clc ;

close ;

N=7;

U=1; //Zero Adjust

for n=0+U:1:N-1+T

h(n)=(1+2%cos (2*%%pi*(n-U-3) /7)) /N

end

disp(h,” Filter Coefficients ,h(n)=")

// Filter Coefficients ,h(n)=

/) —0.1145625
/) 0.0792797
//  0.3209971
/) 0.4285714
/) 0.3209971

29
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Experiment: 9

Design of FIR filter using
frequency sampling method.

Scilab code Solution 9.1 Design of FIR LPF using frequency sampling
method

//Exp 9. FIR LPF using frequency Sampling Method
//O.S. Windows 10;

// Scilab 6.0.0.

clc ;

clear ;

N =15;

U=1;

for n=0+U:1:N-1+U

h(n)=(1+cos (2*%pi*(7-n)/N))/N;
end

[hz,fl=frmag(h,256) ;
hz_dB=20%10g10 (hz) ./max (hz) ;
figure;

plot (2%f,hz_dB);

a=gca();

xlabel ('Frequency wpi’);

31



Figure 9.1: Design of FIR LPF using frequency sampling method

17 ylabel (’Magnitude in dB’) ;
18 title (’Frequency Response of FIR LPF’);

32
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Experiment: 10

Design of FIR filter using
windowing technique.

Scilab code Solution 10.1 FIR Filter using rectangular window

//Expt. 10 Design of FIR filter (Band Pass) using
windowing technique (Kaiser Window)

// O.S. Windows 10

// Scilab 6.0.0.

clear;

clc ;

close ;

wsf=200x%pi;//rad/sec

ws1=20x%pi;//rad/sec

ws2=80x%pi;//rad/sec

wpl=40*%pi;//rad/sec

wp2=60*%pi;//rad/sec

as=30//dB

ap=0.5//dB

B=min (wpl-wsl,ws2-wp2);

wcl=wpl-B/2;

wc2=wp2+B/2;

33
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Figure 10.1: FIR Filter using rectangular window

wcl=wcl*2x*%pi/wsf;

wc2=wc2*2x*%pi/wst;

deltal=10"(-0.05%*as) ;

delta2=(10"(0.05*%xas)-1) /(10" (0.05%*as)+1) ;

delta=min(deltal,delta2);

alphas=-20*1logl0(delta) ;

alpha=0.5842*(alphas-21) "0.4+0.07886* (alphas-21)

D=(alphas-7.95)/14.36;

Ni=wsf*D/B+1;

N=ceil (N1);

U=ceil (N/2);

win_l=window(’re’,N,alpha);

for n=-floor(N/2)+U:1:floor(N/2)+U

if n==ceil (N/2);

hd(n)=0.4;

else

hd(n)=(sin(0.7*%pi*(n-U))-sin (0.3*%pi*x(n-U))) /(hpix(
n-U));

end

h(n)=hd(n)*win_1(n) ;

34
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end

[hzm ,fr 1= frmag (h ,256) ;

hzm_dB = 20% loglO (hzm)./ max ( hzm );

figure

plot (2*fr , hzm_dB )

a= gca ();

xlabel (’Frequency wxpi’);
ylabel (’Magnitude in dB’);

title (’Frequency Response of given BPF using

rectangular Window ) ;

xgrid (2);
disp(h,” Filter

Coefficients ,h(n)

77),
b
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Experiment: 11

Design of IIR filter using
impulse invariant technique.

Scilab code Solution 11.1 Design of IIR Filter using Impulse Invarient

[
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technique

//Expt.11:To Design the Filter

Invarient Method
// O.S. Windows 10
//Scilab: 6.0.0
clear;
clc ;
close ;
s=hs;
T=0.2;
HS=10/(s"2+7*s+10) ;
elts=pfss (HS);
disp(elts, "Factorized HS

//Outputs :
//Factorized HS =
// (1)
/] 3.3333333

//

// 2 + s

= 7)’

36

using Impulse
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/] (2)
// —3.3333333

//

//

//The poles comes out to be at —5 and —2

5 + s

pl=-5;
p2=-2;

z=%hz;

HZ=T*((-3.33/(1-%e ~ (p1*T)*xz~(-1)))+(3.33/(1-%e  (p2*T

)kz~(-1))))
disp(HZ, 'HZ = ’);
//Result :

/ /HZ

//
//
//
//

0.2014254z

0.2465970 — 1.0381995z + z

37



Experiment: 12

Design of IIR filters using
Bilinear

transformation /Butterworth
Technique.

Scilab code Solution 12.1 IIR filter design using Bilinear Transformation
Technique

//Expt 12 Design of IIR filters using Bilinear
transformation /Butterworth Technique.

//To Find out Bilinear Transformation of HS=2/((s+1)
£(5+2) (5+3))

// O.S. Windows 10;

//Scilab 6.0.0

clear;

clc ;

close ;

S=%S ;

z=%z;

HS=2/((s+1) *(s+2) x(s+3) ) ;

T=1;

HZ=horner (HS, (2/T)*(z-1)/(z+1));
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disp(HZ, 'H(z) =");

//H(z) =

/]

//
//
//
//

) 2 3
2 + 6z + 6z + 2

Z

2
—47z — 8z + 60z

3
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Experiment: 13

Design of I1IR Filters
Chebyshev

Scilab code Solution 13.1 To Design an analog Chebyshev Filter with
Given Specifications

//Expt 13 To Design an analog Chebyshev Filter with
Given Specifications

// O.S. Windows 10;

//Scilab 6.0.0

clear;

clc ;

//

0s=2;

op=1;

ap=3;//db

as=16; //db

el=1/sqrt (2);

11=0.1;

epsilon=sqrt(1/(el172)-1);

lambda=sqrt (1/(117°2) -1);

N=acosh(lambda/epsilon)/acosh(os/op);

disp(ceil(N), 'Order of the filter , N =7);
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// Result:
//Order of the filter , N

//

3.
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