Scilab Manual for Elements of Electrical Design by Prof Kaustubh Vyas Electrical Engineering Vishwakarma Government Engineering College¹

Solutions provided by
Prof Kaustubh Vyas
Electrical Engineering
Vishwakarma Government Engineering College

August 2, 2025

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes written in it can be downloaded from the "Migrated Labs" section at the website http://scilab.in

Contents

Lis	List of Scilab Solutions		
1	Air gap MMF calculation for magnetic circuits using SCILAB	6	
2	A SCILAB Code to compute Apparent flux density in teeth of Armature in a DC machine	9	
3	Design of starter for DC shunt motor through SCILAB code	12	
4	Design of starter for DC series motor through SCILAB code	15	
5	A SCILAB code to design rotor resistance starter of a slip- ring induction motor	18	
6	Design of a small single phase transformer using SCILAB coding	21	
7	Design of an iron cored choke coil using SCILAB coding	25	
8	A SCILAB code to workout design of simplex lap winding in DC machines	29	
9	A SCILAB code to workout design of simplex Wave winding in DC machines	31	
10	Core Loss Calculations in magnetic materials using SCILAB Programming	33	

11 A SCILAB program for Computation of slot leakage reactance in induction motor	36
12 A SCILAB program for Design of Electromagnet	39
13 Computation of winding factor and distribution factor in armature winding using SCILAB programming	43
14 Analyzing variation of slot leakage reactance in induction motor using SCILAB code	46

List of Experiments

Solution 1.1	Experiment1	. 6
Solution 2.2	Experiment2	. 9
Solution 3.3	Experiment3	. 12
Solution 4.4	Experiment4	. 15
Solution 5.5	Experiment5	. 18
Solution 6.6	Exp6	. 21
Solution 7.7	Experiment7	. 25
Solution 8.8	Exp8	. 29
Solution 9.9	Exp9	. 31
Solution 10.10	Experiment10	. 33
Solution 11.11	Experiment11	. 36
Solution 12.12	Experiment12	. 39
Solution 13.13	Exp13	. 43
Solution 14 14	Experiment 14	46

List of Figures

1.1	Experiment1	8
2.1	Experiment2	11
3.1	Experiment3	14
4.1	Experiment4	17
5.1	Experiment5	20
6.1	Exp6	24
7.1	Experiment7	28
8.1	Exp8	30
9.1	Exp9	32
10.1	Experiment10	35
11.1	Experiment11	38
12.1	Experiment12	42
13.1	Exp13	45
	Experiment14	49 50

Air gap MMF calculation for magnetic circuits using SCILAB

Scilab code Solution 1.1 Experiment1

```
slot opening in DC machine ( in range of 2-4 cm
15 L=input('Enter Value of gross core length in cm') //
      length of armature core (in range of 40 70 cm)
16 psi=input('Enter Value of pole arc in cm') // pole
      arc value in DC machine (in range of 15 3 25 cm)
17 lg=input('Enter Value of airgap length in cm') //
     length of airgap between armature and stator in
     DC machine ( in range of 0.4 - 0.7 cm)
18 phi=input('Enter Value of flux per pole in Wb') //
      airgap flux (in range of 0.04 - 0.08 Wb)
19 nd=input ('Enter no. of ventilating ducts') // radial
      ventilating ducts (in range of 4 - 10 ducts)
20 bd=input('Enter opening of each ventilating duct')
     // duct opening ( in range of 1 - 1.5 cm)
21
22
   // Actual calculations begin
23
24 \text{ slot_ratio} = \text{yo/lg}
25 if slot_ratio <= 1 then
26 kcs = 0.15 // carter's coefficient for slots
27 elseif slot_ratio <= 2 then
28
       kcs = 0.28 // carter's coefficient for slots
29 elseif slot_ratio <= 3 then
30
       kcs = 0.37 // carter's coefficient for slots
31 elseif slot_ratio <= 3.6 then
32
       kcs = 0.41 // carter's coefficient for slots
33 else
       kcs = 0.43 // carter's coefficient for slots
34
35 end
36
37 duct_ratio = bd/lg
38 if duct_ratio <= 1 then
39 kcd = 0.15 // carter's coefficient for ducts
40 elseif duct_ratio <= 2 then
41 kcd = 0.28 // carter's coefficient for ducts
42 elseif duct_ratio <= 3 then
43 kcd = 0.37 // carter's coefficient for ducts
```


Figure 1.1: Experiment1

```
44 elseif duct_ratio <= 3.5 then
45 kcd = 0.41 // carter's coefficient for ducts
46 else
47    kcd = 0.43 // carter's coefficient for ducts
48 end
49
50 kgs = (ys)/(ys-kcs*yo) // gap contraction factor for slots
51 kgd = (L)/(L-kcd*nd*bd) // gap contraction factor for ducts
52 Bg = (phi*1e4)/(psi*L) // air gap flux density
53 ATg = 8e3*Bg*kgs*kgd*lg
54
55 mprintf('MMF for air gap is %d AT', ATg)</pre>
```

A SCILAB Code to compute Apparent flux density in teeth of Armature in a DC machine

Scilab code Solution 2.2 Experiment2

```
14 L=input ('Enter Value of gross core length in cm') //
       length of armature core (in range of 30 70 cm)
15 nd=input('Enter no. of ventilating ducts') // radial
       ventilating ducts (in range of 4-10 ducts)
16 bd=input('Enter opening of each ventilating duct')
      // duct opening (in range of 1 - 1.5 cm)
17 bt=input('Enter Value of tooth width in cm') //
      width of tooth section (in range of 1-3 cm)
18 yo=input('Enter Value of slot opening in cm') //
      slot opening in DC machine (in range of 1-4 cm
19 mu=input('Enter Value of permeability') //
      permeability corresponding to real flux density (
      in range of 30 x 10^{\circ}-6 - 40 x 10^{\circ}-6)
20 Sf=input('stacking factor') // Stacking factor ( in
      the range of 0.85 - 0.95)
21
22 // Actual calculations begin
23
24 H = Bm/mu // magnetization force in AT/m
25 Li = Sf*(L-nd*bd) // net iron length
26 \text{ ys} = \text{bt+yo} // \text{sloth pitch}
27 \text{ Ks} = (ys*L)/(bt*Li)
28
29 Bapp = Bm+4*\%pi*1e-7*H*(Ks-1)// apparent flux
      density
30
31 mprintf('Apparent flux density for given case is \%f,
      Wb/m^2, Bapp)
```


Figure 2.1: Experiment2

Design of starter for DC shunt motor through SCILAB code

Scilab code Solution 3.3 Experiment3

```
1 / Experiment -3
2 // windows 8.1 - 64-Bit
3 // Scilab - 6.0.0
5 //Aim : Design of starter for DC shunt motor through
      SCILAB code
6 // Data: Determine the resistance of each section of
      a strater to be used for DC shunt motor
8 clc
9 clear all
10
11 // Following data is to be taken form the user
12
13 N=input('Enter value of No. of studes in the starter'
     ) // no. of studs to determine the no. of element
      sections of starter ( in the range of 4-10)
14 V=input('Enter voltage rating of the motor')//
     voltage reating of the motor ( in the range of
```

```
220 - 400 \text{ V}
15 P=input('Power Rating of motor in kW') // Rating of
      motor in kW ( in the range of 15-50)
16 n=input ('Enter Efficiency in percentage') //
      efficiency of motor ( in the range of 85-95\%)
17 Ra=input ('Enter Value of Armature Resistance in Ohms
      ') // Armature resistance ( in the range of 0.1 -
       0.4 ohms)
18 Tm=input ('Enter the ratio of maximum torque to full
     load torque') // ratio of torque in per unit ( in
       the range of 1.2 - 1.8)
19
20 // Actual Calculations begin
21
22 Ia = (P*1e5)/(V*n); // Armature current
23 Im = Tm*Ia // Maximum value of full load current
24 el = N-1 // no. of resistance elements
25 R1 = V/Im // Resistance of first section
26 \text{ K} = (R1/Ra)^{(1/el)};
27 Il = Im/K // lower reange of current
28 R(1) = R1
29 \text{ for } i = 1:e1
30
       R(i+1)=R(i)/K
31
       r(i) = R(i) - R(i+1)
32
       mprintf ('Resistance value of section - %d is %f
          Ohms',i,r(i))
33
       mprintf('\n')
34 end
35
36 mprintf('Total Starter resistance is %f Ohms', sum(r)
37
       mprintf('\n')
38 mprintf('Resistance of motor is %f Ohms', Ra)
39
       mprintf('\n')
40 mprintf('Total Resistance at starting time is %f
     Ohms', Ra+sum(r))
       mprintf('\n')
41
42 mprintf('Upper range of Staring current is %f Amp',
```


Figure 3.1: Experiment3

Design of starter for DC series motor through SCILAB code

Scilab code Solution 4.4 Experiment4

```
1 / Experiment -4
2 // windows 8.1 - 64-Bit
3 // Scilab - 6.0.0
 //Aim : Design of starter for DC series motor
     through SCILAB code
6 // Data: Determine the resistance of each section of
      a strater to be used for DC series motor
8 clc
9 clear all
10
11 // Following data is to be taken form the user
12
13 N=input('Enter value of No. of studes in the starter'
     ) // no. of studs to determine the no. of element
      sections of starter ( in the range of 4-10)
14 V=input('Enter voltage rating of the motor')//
     voltage reating of the motor ( in the range of
```

```
220 - 400 \text{ V}
15 Im=input ('Maximum Starting current') // Maximum
      required value of starting current (in the range
       of 150 - 250 \text{ Amp}
16 Il=input('Minimum Starting current') // Minimum
      required value of starting current ( in the range
       of 100 -200 \text{ Amp}
17 Ra=input ('Enter Value of Armature Resistance in Ohms
      ') // Armature resistance ( in the range of 0.1 -
       0.4 \text{ ohms}
18 Phi=input('Enter the ratio of maximum flux to
      minimum flux') // ratio of fluxes corresponing to
       minimum and maximum current (in per unit) (in
      the range of 1.05 - 1.25)
19
20 // Actual Calculations begin
21
22 K = Im/Il // ratio of currents
23 b = Phi / K
24 el=N-1 // No. of element sections
25 R(1) = V/Im
26
27 \text{ for } i = 1:el
       R(i+1)=b*R(i)+R(1)*(1-Phi)
28
       r(i)=R(i)-R(i+1)
29
30
       mprintf('Resistance value of section - %d is %f
          Ohms', i, r(i))
       mprintf('\n')
31
32 end
```


Figure 4.1: Experiment4

A SCILAB code to design rotor resistance starter of a slip-ring induction motor

Scilab code Solution 5.5 Experiment5

```
14 N=input ('Enter no. of studes for starter to be
      designed') // No. of studs ( in range of 5-10)
15 s=input('Enter full load slip in percentage') //
      full load slip ( in the range of 1-5\%)
16 R=input ('Enter value of rotor resistance per phase
      in Ohms') // rotor resistnace ( in the range of
      0.01 - 0.1 \text{ Ohms}
17
18 // Actual Calculations begin
20 el = N-1 // no. of resistance elements
21 R(1) = R*100/s // resistance at stud 1
22 \text{ K} = (s/100)^{(1/(N-1))}
23
24 for i=1:el
25 R(i+1) = K*R(i)
26 r(i) = R(i) - R(i+1)
27 mprintf('Resistance of section - %d is %f Ohms',i,r(
      i))
28 mprintf('\n')
29 end
```


Figure 5.1: Experiment5

Design of a small single phase transformer using SCILAB coding

Scilab code Solution 6.6 Exp6

```
1 //Experiment-5
2 // windows 8.1 - 64-Bit
3 //Scilab - 6.0.0
4
5
6 //Aim : Design of a small single phase transformer using SCILAB coding
7 //Data: Design a small single phase transformer for given ratings
8
9 clc
10 clear all
11
12 // Following data is to be taken form the user
13 Vo=input('Enter value of output voltage of transformer') // output voltage of the transformer (in the range of 5 - 12 volts)
```

```
14 Io=input ('Enter value of output current of
      transformer') // output current of the
      transformer (in the range of 2-5 Amp.)
15 Vi=input ('Enter value of input voltage of
      transformer') // input voltage of the transformer
      (in the range of 110 - 230 volts)
16 f=input('Enter value of operating frequency in Hz')
      // operating frequency of the transformer (in the
       range of 50 - 60 \text{ Hz})
17
18 // Assuming following
20 n = 0.9 // assuming 90\% eficiency
21 Et = 9 // \text{emf per turn}
22 Bm = 1 // \text{maximum flux density}
23 Ks = 0.9 // stacking factor
24 del = 2.3 // current density in conductor
25
26 // Actual Calculations begin
27
28 P = Vo*Io // output rating of transformer
29 phi_m = (1/(4.44*f*Et)) // maximum flux in the core
30 Ac = phi_m/Bm // net area of core
31 Ag = Ac/Ks // gross core area
32 A = sqrt(Ag) // width of central limb assuming
     square cross section
33 Np = Vi*Et // No. of turns in primary
34 Ns = ceil(1.05*Vo*Et) // No. of turns in secondary
35 Ip = P/(n*Vi) // Current in primary winding
36 Ap = Ip / del // corss sectional area of bare
     primary conductor
37 dp = sqrt(4*Ap/\%pi) // diameter of bare primary
      conductor
38 dpi = dp+0.3 // diameter of insulated primary
      conductor
39 Api = (\%pi*dpi^2)/4 // corss sectional area of
      insulated primary conductor
40 As = Io / del // corss sectional area of bare
```

```
secondary conductor
41 ds = 0.2 + \text{sqrt} (4 * \text{As} / \% \text{pi}) / \text{diameter of bare}
      secondary conductor
42 dsi = ds+0.1 // diameter of insulated secondary
      conductor
43 Asi = (\%pi*dsi^2)/4 // corss sectional area of
      insulated secondary conductor
44 sfp = 0.8*(dp/dpi)^2 // space factor of primary
      winding
45 Awp = ceil(Np*Api/sfp) // window area for primary
      winding
46 sfs = 0.8*(ds/dsi)^2 // space factor of secondary
      winding
47 Aws = ceil(Ns*Asi/sfs) // window area for secondary
      winding
48 Aw = 1.2*(Aws+Awp) // gross window area required
49
50 mprintf('No. of urns required in Primary is %d', Np)
51 mprintf('\n')
52 mprintf('No. of urns required in Secondary is %d', Ns
      )
53 mprintf(' \ n')
54 mprintf('Power Rating of the transformer is %d VA',P
      )
55 mprintf(' \ n')
56 mprintf('Diameter of insulated primary conductor is
      %f mm', dpi)
57 mprintf('\n')
58 mprintf('Diameter of insulated secondary conductor
      is %f mm', dsi)
59 mprintf('\n')
60 mprintf('Gross window area required is %d mm^2', Aw)
```


Figure 6.1: Exp6

Design of an iron cored choke coil using SCILAB coding

Scilab code Solution 7.7 Experiment7

```
1 //Experiment-7
2 //windows 8.1 - 64-Bit
3 //Scilab - 6.0.0
4
5 //Aim : Design of an iron cored choke coil using SCILAB coding
6 ///Data: Design a single phase variable choke coil
7
8 clc
9 clear
10
11 //Following data are to be taken from user
12
13 V=input('Enter value of supply voltage') // supply voltage (in the range of 230 - 440 V)
14 f=input('Enter frequency of supply') // supply frequency = 50 Hz in India and 60 Hz in US
15 I=input('Enter value of current to be carried in Amp ') // currentn carrying capacity in Amp ( in the
```

```
range of 5-25 Amp)
16 lg=input('Enter maximum airgap length in cms') //
      airgap length varies between 0 and 10 cms being
      variable choke coil
17
18 // Actual Calculations begin
19
20 uo=4*%pi*1e-7 // permeability of free space
21 Sf=0.9 // stacking factor
22 K = (uo*V*I)/(2*\%pi*f*2*lg/100)
23 i = 1
24 for Bg=0.2:0.1:0.8
25
      A_root(i)=sqrt(K)/Bg
26
      i=i+1
27 end
28 \text{ Bgm} = 0.45
29 A_root=0.0225
30 A_i=A_root^2 // net iron area
31 Agi=A_i/Sf; // gross iron area
32 A = sqrt(Agi) // width of limb
33 ATg = Bgm*2*lg/100/uo // airgap mmf
34 ATt = 1.1*ATg // total mmf
35 N = ceil(ATt / I) // no. of turns
36 del=2.4 // current density
37 a = I/del // conductor area in mm^2
38 d = sqrt(4*a/\%pi)+.05 // diameter of conductor in
     mm
39 d1 = 2.488 // diameter of insulated conductor
40 a1 = (\%pi/4)*d1^2 // cross sectional area of
      insulated conductor
41 sf = 0.8*(d/d1)^2 // space factor
42 Aw = N*a1/sf // area of window
43 AW = 1.2*Aw // gross window area in mm<sup>2</sup>
44 Ww = sqrt(AW/2) // width of window in mm
45 Hw = 2*Ww // height of window assuming H/W ratio is
46 hf = Hw-20 // height of winding
47 Nh = ceil(hf/d1) // no. of conductors in height
```

```
48 Nd = N/(2*Nh) // no. of conductors in depth
49 dc = ceil(Nd*d1) // depth of coil
50 \text{ dc1} = \text{dc+5} // \text{ actual depth of coil}
51 hf1 = ceil(hf+10) // actual height of winding
52 \text{ dw} = \text{ceil}(\text{Ww} - 2*\text{dc1}) // \text{distance betwen two coils}
53 D = ceil(Ww + A*1000) // distance between limbs
54 WC = ceil(D+A*1000) // width of core in mm
55 HC = ceil(Hw+2*A*1000+lg*10) // height of core in mm
56 Z = V/I
57 mprintf('Diameter of insulated conductor is %f mm',
      d1)
58 mprintf(' \ n')
59 mprintf('Area of insulated conductor is %f mm^2', a1
      )
60 mprintf('\n')
61 mprintf('Height of coil is %d mm', hf1)
62 mprintf(' \ n')
63 mprintf('Depth of coil is %d mm', dc1)
64 mprintf(' \ n')
65 mprintf('Height of core is %d mm', HC)
66 mprintf('\n')
67 mprintf('Width of core is %d mm', WC)
68 mprintf('\n')
69 mprintf('Impedance of the coil is %d Ohms',Z)
```


Figure 7.1: Experiment7

A SCILAB code to workout design of simplex lap winding in DC machines

Scilab code Solution 8.8 Exp8

```
1 //Experiment-8
2 // windows 8.1 - 64-Bit
3 //Scilab - 6.0.0
4
5 //Aim : A SCILAB code to workout design of simplex lap winding in DC machines
6 //Data: Workout details of simplex lap winding for DC generator
7
8 clc;
9 clear all;
10
11 // Following data is to be aken from user
12
13 p=input('Enter No. of poles') // no. poles (in the range of 2 - 12) always an even number
14 s=input('Enter No. of slots in armature') // no. of
```


Figure 8.1: Exp8

```
armature slots (in the range of 16 - 48)
15 c=input('Enter no. of armature coils') // armature
      coils in multiple of armature slots (in the range
       of 16 - 48)
16
17 // Actual calculations begin
19 cs=c*2 // no. of coil sides
20 csps=cs/s // no. of coils sides per slot
21 cspp=cs/p // no. of coils sides per pole
22
23 yb = cspp+1 // back pitch
24 yf = cspp-1 //front pitch
25
26 mprintf('front pitch for given machine is %d',yf)
27 mprintf('\n')
28 mprintf('back pitch for given machine is %d',yb)
```

A SCILAB code to workout design of simplex Wave winding in DC machines

Scilab code Solution 9.9 Exp9

Figure 9.1: Exp9

```
armature slots (in the range of 10-48)
15 c=input('Enter no. of armature coils') // armature
      coils in multiple of armature slots (in the range
       of 10 - 48)
16
17 // Actual calculations begin
18
19 cs=c*2 // no. of coil sides
20 csps=cs/s // no. of coils sides per slot
21 cspp=cs/p // no. of coils sides per pole
22
23 yb = floor(cs/p) // back pitch
24 y = (cs-2)/(p/2) //winding pitch
25 \text{ yf} = \text{y-yb}
26
27 mprintf('front pitch for given machine is %d',yf)
28 mprintf('\n')
29 mprintf('back pitch for given machine is %d',yb)
```

Core Loss Calculations in magnetic materials using SCILAB Programming

Scilab code Solution 10.10 Experiment10

```
1 //Experiment-10
2 // windows 8.1 - 64-Bit
3 //Scilab - 6.0.0
4
5 //Aim : Core Loss Calculations in magnetic materials using SCILAB Programming
6 //Data: CAlculate core loss per kg in a specimen of ally sheet using user defined data
7
8 clear;
9 clc;
10
11
12 // Following data is to be taken from user
13
14 Bm=input('Enter value of Maximum flux density in Wb/m^2') // maxium flux density (in the range of 0.5)
```

```
-2.5 \text{ Wb/m}^2
15 f=input('Enter value of frequency in Hz') //
      frequency of flux reversal (genrally 50 Hz)
16 t=input ('Enter thickness of laminated plates in mm')
      // tickness of laminations (in range of 0.2 -
      0.6 \, \mathrm{mm}
17 r=input('Enter Resistivity of material in Ohm*m')//
      resistivity in Ohm*m (in the range of 0.2-0.6
      micro Ohm*m)
18 sg=input ('Enter specific gravity of material in kg/m
      ^3') // specific gravity (in the range of 7-10
      kg/m^3
19 hl=input('Enter value of hysterisis loss in in J*Hz/
     m<sup>3</sup>') // specific hysterisis loss (in range of
      400 - 800 \ J*Hz/m^3)
20
21 // Actual calculations begin
23 Pe=((\%pi^2)*(f^2)*(Bm^2)*((t/1000)^2))/((sg*1000)
      *(6*r)) // eddy current loss per kg
24 \text{ Ph=hl*f/(sg*1e3)}
25 Pi=Pe+Ph
26 mprintf ('Eddy Current Loss per kg for given material
       is %f W', Pe)
27 mprintf(' \ n')
28 mprintf ('Hysterisis Loss per kg for given material
      is %f W', Ph)
29 mprintf(' \ n')
30 mprintf('Total Iron Loss per kg for given material
      is %f W', Pi)
```


Figure 10.1: Experiment10

A SCILAB program for Computation of slot leakage reactance in induction motor

Scilab code Solution 11.11 Experiment11

```
1 //Experiment-11
2 // windows 8.1 - 64-Bit
3 //Scilab - 6.0.0
4
5 //Aim : A SCILAB program for Computation of slot
    leakage reactance in induction motor
6 // Data: Find out slot leakage reactance for
    induction motor from given slot dimensions
7
8 clc;
9 clear all;
10
11 // Data to be taken from user
12
13 T=input('Enter no. of turns per phase') // turns per
    phase for induction motor (in the range of 200 -
    300)
```

```
14 s=input('Enter no. of slots per phase') // slots per
       phase for induction motor (in the range of 12 -
      24)
15 bs=input('Enter slot width in mm') // slot opening
      in mm (in the range of 10 -30 \text{ mm})
16 L=input('Enter core / slot length in mm') // slot
      length in mm (in the range of 150 - 650 mm)
17 wo=input ('Enter lip opening in mm') // width of lip
      in mm (in the range of 2-6 mm)
18 h1=input ('Enter heigth of conductor in slot in mm')
      // heigth of conductor portion in mm (in the
      range of 20 - 80 \text{ mm})
19 h2=input ('Enter Value of clearance between
      conductors and wedge') // clearnace in mm (in the
       range of 1 - 4 \text{ mm})
20 h3=input('Enter heigth of wedge in mm') // wedge
      height in mm (in the range of 2-6 mm)
21 h4=input('Enter height of lip in mm') // lip height
      in mm (in the range of 1-4 mm)
22
23 // Actual calculations begin
24
25 f=50; // frequency of supply
26 uo=4*%pi*1e-7; // pearmeabilty of free space
27 \text{ Ls} = (h1/(3*bs)) + (h2/(bs)) + (2*h3/(bs+wo)) + (h4/wo)
28 \text{ xs} = 8 * \% \text{pi} * f * uo * T^2 * (L/1000) * Ls/s
29
30 mprintf ('Leakage reactance for given machine is %f
      Ohms', xs)
```


Figure 11.1: Experiment11

A SCILAB program for Design of Electromagnet

Scilab code Solution 12.12 Experiment12

```
1 / Experiment -12
2 //windows 8.1 - 64-Bit
3 // Scilab - 6.0.0
5 //Aim : A SCILAB program for Design of Electromagnet
6 //Data:Design a flat faced armature type of circular
      electromagnet
8 clc
9 clear
10
11 //Following data is to be taken form the user
13 F=input('Enter Amount of force in kg') // force to
     be exerted by electromagnet in kg(in the range of
      100 - 250 \text{ kg}
14 s=input('Enter value of stroke in mm') // stroke in
     mm (in the range of 0.5 - 1.5 mm)
15 v=input('Enter supply volage') // in the range of 5
```

```
- 15 volts
16 ta=input ('Enter ambient temperature in degree
      celcius') // general value is 20 oC
17 t=input('Enter permissible temperature rise above
      ambient temperature') // 50 - 80 oC
18
19 // Actual Calculations begin
20
21 Bm = 1.1 // maximum flux density in Wb/m<sup>2</sup>
22 uo = 4*\%pi*1e-7
23 ro_0=0.01734 // resistib=vity at 0 degree
24 alp_0=0.00393 // temperature coefficient of
      resistance
25 h_by_d=3 // heigth to depth ratio of coil
26 \quad C=0.085 \quad // \quad constant
27 Sf=0.5 // assumed space factor
28
29 A = F*uo/(0.102*Bm^2) // are of central limb
30 r1 = sqrt(A/%pi) // radius of central limb
31 / disp(r1)
32 AT=(1600000*Bm*s*1e-3)/0.85 // total mmf required
33 \text{ ro}_{70}=\text{ro}_{0}*(1+(alp_{0}*t))
34 \text{ hc} = ((3*ro_70*C*AT^2)/(2*Sf*t)*1e-6)^(1/3) // \text{heigth}
      of coil
35 // disp (hc)
36 \text{ dc=hc/3} //\text{depth of coil}
37 // disp (dc)
38 r2 = dc + r1
39 // disp(r2)
40 \text{ t1=r1/2}
41 // disp(t1)
42 t2=(r1^2)/(2*r2)
43 // disp(t2)
44 r3=sqrt(r1^2+r2^2)
45 //disp(r3)
46 \ a=(AT*ro_70*\%pi*(r1+r2))*1e-3/v // cross sectional
      area of conductor
47 // disp (a)
```

```
48 d=sqrt(4*a*1000/%pi) // diameter of conductor
49 //disp(d)
50 dc1=dc*1000-2 // depth of coil considering clearance
51 // \operatorname{disp}(\operatorname{dc1})
52 nd=ceil(dc1/d) // no. of layers in depth
53 //disp(nd)
54 hc1=hc*1000-3 // height of coil considering
      clearance
55 nh=ceil(hc1/d) // no o flayers in height
\frac{1}{6} // disp(nh)
57 T=nd*nh // no. of turns in coil
58 // \operatorname{disp}(T)
59 ab=(%pi/4*d^2) // diameter of bare conductor
60 R=T*ro_70*(\%pi*(r1+r2))/ab // resistance of coil
61 // disp (R)
62 I=v/R; // current in coil
63 // disp(I)
64 mmf=I*T // actual mmf developed by coil
65 // \operatorname{disp}(\mathrm{mmf})
66 sf=T*ab/(hc*dc) // actual space factor
67 // \operatorname{disp}(sf)
68 theta = (ro_70*C*mmf^2*1e-6)*1e6/(2*sf*dc*hc^2)
69 //disp(theta)
70
71 mprintf('heigth of coil is %f mm',hc*1000)
72 mprintf(' \ n')
73 mprintf('depth of coil is %f mm', dc*1000)
74 mprintf(' \ n')
75 mprintf('total no. of turns in the coil are %d',T)
76 mprintf (' \ n')
77 mprintf('Current flowing through the coil is %f Amp
      ',I)
78 mprintf('\n')
79 mprintf('MMF developed by the coil is %d AT', mmf)
80 mprintf('\n')
81 mprintf('Temperature rise of the coil is %f oC',
      theta)
82 mprintf('\n')
```


Figure 12.1: Experiment12

Computation of winding factor and distribution factor in armature winding using SCILAB programming

Scilab code Solution 13.13 Exp13

```
1 //Experiment-13
2 // windows 8.1 - 64-Bit
3 //Scilab - 6.0.0
4
5 //Aim : Computation of winding factor and distribution factor in armature winding using SCILAB programming
6 //Data: Calculate winding factor and distribution factor for armature winding of synchronous machine
7
8 clc;
9 clear all;
10
11 // Data to be taken from the user
```

```
12
13 p=input('Enter no. of poles') // no. of poles in
      synchronous machine (in the range of 2-12)
14 s=input('Enter no. of slots') // no. of slots in
      synchronous machine (in the range of 16 - 96)
15 pitch=input('Enter No. of short pitch slots') // no.
       of slots by which short pitching is required (
      in the range of 1 to 4)
16
17 // Actual calculations start
18
19 sp = s/p // slots per pole
20 spp = sp/3 // slots per pole per phase
21 \text{ dist} = \% \text{pi/spp} //
22 spread = %pi/sp // phase spread angle
23 alpha = spread*pitch // angle of short pitch
24 bet = %pi/p // distribution angle
25
26 kp1=cos(alpha/2) // pitch factor for fundamental
27 kp5=cos(5*alpha/2) // pitch factor for 5th harmonic
28
29 kd1=(sin(spp*bet/2))/(spp*sin(bet/2)) //
      distribution factor for fundamental
30 \text{ kd5} = (\sin(\text{spp}*5*\text{bet}/2))/(\text{spp}*\sin(5*\text{bet}/2)) //
      distribution factor for 5th harmonic
31
32 mprintf('Pitch factor for fundamental is %f',kp1)
33 mprintf('\n')
34 mprintf('Pitch factor for 5th harmonic is %f',kp5)
35 mprintf('\n')
36 mprintf('Distribution factor for fundamental is %f',
     kd1)
37 \text{ mprintf}(' \ n')
38 mprintf('Distribution factor for 5th harmonic is %f'
      ,kd5)
39 mprintf('\n')
```


Figure 13.1: Exp13

Analyzing variation of slot leakage reactance in induction motor using SCILAB code

Scilab code Solution 14.14 Experiment14

```
1 / Experiment -14
2 // windows 8.1 - 64-Bit
3 // Scilab - 6.0.0
4 //Aim : Analyzing variation of slot leakage reactance
       in induction motor using SCILAB code
5 // Data: Plot graphs showing effect of no. of slots,
      length of armature core and no. of turns on slot
      leakage reactance
6
7 clc;
8 clear;
10 // Assumed data
11
12
13
14 bs=10 // slot opening in mm (in the range of 10 -30
```

```
mm)
15 wo=3 // width of lip in mm (in the range of 2-6 mm
16 h1=30 // heigth of conductor portion in mm (in the
      range of 20 - 80 \text{ mm})
17 h2=1 // clearnace in mm (in the range of 1-4 \text{ mm})
18 h3=3.25 // wedge height in mm (in the range of 2-6
      mm)
19 h4=1.2 // lip height in mm (in the range of 1-4 mm
20
21 f=50; // frequency of supply
22 uo=4*%pi*1e-7; // pearmeabilty of free space
23 Ls=(h1/(3*bs))+(h2/(bs))+(2*h3/(bs+wo))+(h4/wo)
24
25 // Evaluating variation in leakage reactance with
      change in no. of slots
26 L=200
27 T=225
28 \text{ for s} = 1:25
29
       xs(s)=8*\%pi*f*uo*T^2*(L/1000)*Ls/s
30 end
31
32 x = 1:25
33 figure(1)
34 plot(x,xs)
35 xlabel('No. of slots')
36 ylabel ('Leakage reactance in Ohms')
37 title ('Variation of leakage reactance with change in
       no. of slots')
38
39 clear xs s T L
40 // Evaluating variation in leakage reactance with
      change in length of core
41 L = 100:10:2000
42 	 s = 20
43 T = 225
44 for i = 1:length(L)
```

```
xs(i)=8*\%pi*f*uo*T^2*(L(i)/1000)*Ls/s
45
46 \text{ end}
47 figure (2)
48 \text{ plot}(L,xs)
49 xlabel('length of core in mm')
50 ylabel ('Leakage reactance in Ohms')
51 title('Variation of leakage reactance with change in
       length of core')
52
53 clear xs s T L
54 // Evaluating variation in leakage reactance with
      change in no. of turns per phase
55 L = 200
56 s = 20
57 T = 100:400
58 \text{ for } i = 1:length(T)
       xs(i)=8*\%pi*f*uo*T(i)^2*(L/1000)*Ls/s
59
60 \text{ end}
61 figure (3)
62 plot(T,xs)
63 xlabel('No. of turns per phase')
64 ylabel ('Leakage reactance in Ohms')
65 title('Variation of leakage reactance with change in
       no. of turns per phase')
```


Figure 14.1: Experiment14

Figure 14.2: Experiment14