Scilab Manual for
Advanced Digital Communication
by Prof S K Satyanarayana
Electronics Engineering
Sreenidhi Institute Of Science And
Technology?

Solutions provided by
Prof S K Satyanarayana
Electronics Engineering
Sreenidhi Institute Of Science And Technology

February 19, 2026

Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the "Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions

1

2

8

9

Reed Solomon Codes

Duobinary Encoder & Decoder

Differential Phase Shift Keying

PseudoNoise Sequence Generator

Unipolar NRZ

Uniform Quantization PCM

Convolutional Coding using Transform Domain Approach
Duobinary Signaling - Amplitude & Phase Response

Power Spectrum of Discrete PAM Signal

10 Power Spectrum of MSK & QPSK

10

13

17

19

21

23

25

27

List of Experiments

Solution 1.1
Solution 2.2
Solution 3.3
Solution 4.4
Solution 5.5
Solution 6.6
Solution 7.7
Solution 8.8
Solution 9.9
Solution 10.10
AP 1

AP 2

AP 3

AP 4

AP 5

AP 6

AP 7

AP 8

AP 9

sinc new
MSK QPSK new .
PS PAM new . ..

Duobinary Signalling new

Conv Code new . .
uniformpem
XOT & o oo
XOR new
ReedSolomonCodes

10
13
17
19
21
23
25
27
29
30
31
32
33
33
34
34
35

List of Figures

D.1 D L 18
8.1 8 24
9.1 9 . . 26
10.1 10 . o o o o 28

S U = W N~

© 00

10

12
13
14
15
16

Experiment: 1

Reed Solomon Codes

check Appendix AP 9 for dependency:

ReedSolomon_Codes.sci

Scilab code Solution 1.1 1

//Reed—Solomon Codes
//Windows 7
//Scilab 6.0.0

//Note: Please run the ReedSolomon_Codes. sci
dependency file before executing this program

n=16 //code word
k=4 //information bit
s=8 //no of bit symbols

ReedSolomon_Codes (n,k,s)

//n=16

// k=4

/ /=8

//ReedSolomon_Codes (n,k,s)

//parity bits length in s—bit byte n—k=

5

17
18
19
20
21
22
23
24
25
26
27
28
29
30

12.

Code rate:r = k/n =
0.25

[t can detect any error
12.

[t can correct any error

6.

upto

upto

N O O W N

10
11
12

Experiment: 2

Duobinary Encoder & Decoder

check Appendix AP 8 for dependency:

Xor_new.sci

Scilab code Solution 2.2 2

//Duobinary Encoding
//Windows 7
//Scilab 6.0.0

clc;

close;

//Note: Please run the xor.sci dependency file
before executing this program

//Note: Don’t run the clear command after running
the dependency(xor.sci) as it contains the
required funtion which will be cleared by the
clear command

b=[0 ,1 ,0 ,1 ,1 ,1 ,0]; // input binary sequence
precoder input

a(l)=xor_new(1,b(1));

if (a(1)==1)

a_volts(1l)=1;

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49

end
for k=2:1length(b)
a(k)=xor_new(a(k-1),b(k));
if (a(k)==1)
a_volts(k)=1;
else
a_volts(k)=-1;
end
end
a=a’;
a_volts=a_volts’;
disp(a, "Pre coder output in binary form
disp(a_volts, 'Pre coder output in volts
//Duobinary coder output in volts
c(1)=1+ a_volts(1);
for k =2:1ength(a)
c(k)=a_volts(k -1)+a_volts(k);
end
c=c’;
disp(c, "Duobinary coder output in volts
//Duobinary decoder output by applying decision
for k =1:1ength(c)
if (abs (c(k))>1)
b_r(k)=0;
else
b.r (k) = 1;
end
end
b_r=b_r’;
disp(b_r, "Recovered original sequence at detector
output :7)
//Output
// Pre coder output in binary form
//
// 1. 0. 0. 1. 0. 1. 1.

)
)

)

50
51
52
53
54
55
56
o7
58
99
60
61

Pre coder
1.
Duobinary
2.
Recovered

0.

—1.

0.

1.

sequence at detector

output in volts
—1. 1. —1. 1.
coder output in volts
—2. 0. 0. 0.
original
0. 1. 1. 1.

2.

0.

output

N O U = W N

10
11
12

Experiment: 3

Differential Phase Shift Keying

check Appendix AP 8 for dependency:

Xor_new.sci

Scilab code Solution 3.3 3

//Generation of Differential Phase Shift Keying
Signal

// Windows 7

//Scilab 6.0.0

clc;

close;

//Note: Please run the xor_new.sci dependency file
before executing this program

//Note: Don’t run the clear command after running
the dependency(xor_new.sci) as it contains the
required funtion which will be cleared by the
clear command

bk = [1,0,1,1,0,1,1,1];//input digital sequence

for i = 1:1length(bk)
if (bk(i)==1)

bk_not (i) =71;

10

else
bk_not(i)= 1;
end
end
dk_1(1) = 1&bk(1); //initial value of differential
encoded sequence
dk_1_not (1) =0&bk_not (1) ;
dk (1) = xor_new(dk_1(1),dk_1_not(1))//first bit of
dpsk encoder
for i=2:1length(bk)
dk_1(i) = dk(i-1);
dk_1_not (i) = "dk(i-1);
dk (i) = xor_new((dk_1(i)&bk(i)),(dk_1_not(i)&
bk_not (i)));
end
for i =1:1length(dk)
if (dk(i)==1)
dk_radians (i) =0;
elseif (dk (i) ==0)
dk_radians (i)=%pi;
end
end
disp (bk, "(bk) ")
bk_not = bk_not’;
disp (bk_not, (bk_not)’)
dk = dk’;
disp(dk, 'Differentially encoded sequence (dk)’)
dk_radians = dk_radians’;
disp(dk_radians, 'Transmitted phase in radians’)

//Output

// (bk)

//

// 1. 0. 1. 1. 0. 1. 1. 1.
//

// (bk_not)

//

// 0. 1. 0. 0. 1. 0. 0. 0.

11

48
49
50
o1
52
53
54
55
56
o7
58

59
60
61
62
63

Differentially encoded sequence (dk)

1.

Transmitted phase

0.

0. 0.

0.

in radians

column 1 to 7

3.1415927

column &

3.1415927

1. 1.

1. 1.

3.1415927

12

D UL W N =

© 00

10

12
13
14

Experiment: 4

PseudoNoise Sequence
Generator

check Appendix AP 7 for dependency:

XOor.sci

Scilab code Solution 4.4 4

//Generate Maximum Length Pseudo Noise Sequence
//Windows 7
//Scilab 6.0.0

//Note: Please run the xor.sci dependency file
before executing this program

//Assign Initial value for PN generator
x0= 1;
x1= 0;
x2 =0;
x3 =0;
x4= 0;
xb5= 0;
x6= 0;

13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

=
Il

input (’Enter the period of the signal’)
for i =1:N

x1 = x0;

x8 =x7

x7 =x6

x0 =xor (x7,x1)
x6 =xb5

x5 =x4

x0 =xor (x1,x5)
x4 =x3

x3 =x2;

x2 =x1;

x0 =xor (x1,x3);

disp (i, "The PN sequence at step’)
x = [x1 x2 x3 x4 x5 x6 x7 x8];
disp(x, 'x=")

end
m = [7,8,9,10,11,12,13,17,19];
N1 = 2°m-1;

disp(’Table Range of PN Sequence lengths’)
disp(’Length of shift register (m)’)
disp(m)

disp ('PN sequence Length (N)’)

disp (N1)

//Execution

//Enter the period of the signal
//5

//

//

// The PN sequence at step
//

// 1.

//

/] x=

//

14

53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

1 1. 0
The PN sequence
2.
X=
1 1. 1
The PN sequence
3.
X=
0 0. 1
The PN sequence
4.
X=
1. 1. 0.
The PN sequence
D.
X=
1. 1. 1.

Table Range of PN Sequence lengths

Length of shift

0. 0
at step
0. 0
at step
1 0.
at step
1. 1
at step
0. 1.

register

15

1.

(m)

0.

0 // 7. 8 9. 10. 11. 12. 13. 17.
19.

91 //

92 // PN sequence Length (N)

93 //

94 //

95 // column 1 to 7

9% //

97 // 127. 255. 511. 1023. 2047. 4095.
8191.

98 //

9 // column 8 to 9

100 //
101 // 131071. 524287.

16

© 00 J O U i W N+~

R e S e G = T T = S S et
© 00 J O U i WO NN = O

Experiment: 5

Unipolar NRZ

Scilab code Solution 5.5 5

// Unipolar NRZ
//Windows 7
//Scilab 6.0.0

clc;

clear;

close;

x=[0100010011];
binary_zero = [0 0 0 0 0 0 0 O O 0];

binary_one = [1 1 1 1 1 1 1 1 1 1];
L = length(x);

L1 = length(binary_zero);
total_duration = Lx*L;

//plotting

a =gca();

a.data_bounds =[0 -2;LxL1 2];
for i =1:L

17

20
21
22
23
24
25
26
27
28
29
30
31
32
33

Figure 5.1: 5

if (x(i)==0)
plot ([i*L-L+1:i*L],binary_zero);
polyl= a.children (1) .children(1);
polyl.thickness =3;
else
plot ([i*L-L+1:i*L],binary_one) ;
polyl= a.children(1l).children(1);
polyl.thickness =3;
end
end
xgrid (1)
title (’Unipolar NRZ’)
xlabel ("time ')
ylabel ("amplitude ")

18

S U = W N~

© 00

10

12
13
14
15
16

Experiment: 6

Uniform Quantization PCM

check Appendix AP 6 for dependency:

uniform_pcm.sci

Scilab code Solution 6.6 6

//Uniform Quantization — PCM
// Windows 7
//Scilab 6.0.0

//Note: Please run the uniform_pcm.sci dependency
file before executing this program

x=[1,0,1,0,1,0,1,0] //input sequence

L=3 //no of quantization levels

[SQNR ,xq,en_code] = uniform_pcm(x,L)

disp (SQNR, 'SQNR: ")

disp(xq, 'xq: ")

disp(en_code, "en_code: ’)

//Execution

// [SQNR, xq,en_code| = uniform_pcm (x,L)
// en_code =

19

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

column 1 to 4

0.6666667

0.

0.6666667

column 5 to 8

0.6666667
SQNR =

9.5424251

0.

0.6666667

20

N O U & W N

10

Experiment: 7

Convolutional Coding using
Transform Domain Approach

check Appendix AP 5 for dependency:

ConvolutionCode_TransDomain_new.sci

Scilab code Solution 7.7 7

// Convolutional Coding Using Transform Domain
Approach

//Windows 7

//Scilab 6.0.0

clc;

close;

//Note: Please run the ConvolutionCode_TransDomain.
sci dependency file before executing this program

//Note: Don’t run the clear command after running
the dependency (ConvolutionCode_TransDomain_new .
sci) as it contains the required funtion which
will be cleared by the clear command

//Execution

21

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

//Enter the generator polynomial 1=14+D"2+4D"3
//Enter the generator polynomial 2=14D"1

//Enter the message sequencel4+D 14D 24D 34+D"4

[x1D,x2D]=

// Output

//

//

//

//

// top output sequence
//

/) 1. 1. 0. 1.
//

// bottom output sequence
//

/) 1. 0. 0. 0.

ConvolutionCode_TransDomain_new ()

22

N O O e W N

Experiment: 8

Duobinary Signaling -
Amplitude & Phase Response

check Appendix AP 4 for dependency:

Duobinary_Signaling_new.sci

Scilab code Solution 8.8 8§

//Duobinary Signaling Scheme — Magnitude and Phase
Response

//Windows 7

//Scilab 6.0.0

clc;
close;

//Note: Please run the Duobinary_Singaling. sci
dependecy file before executing this program
//Note: Don’t run the clear command after running
the dependency(Duobinary_Signaling.sci) as it
contains the required funtion which will be

cleared by the clear command

23

10
11

12
13
14

Figure 8.1: 8

//Execution

[Amplitude_Response ,Phase_Response]=

Duobinary_Signaling_new ()

//Output
//Enter the bit rate= 8

24

N OO s W N

Experiment: 9

Power Spectrum of Discrete
PAM Signal

check Appendix AP 3 for dependency:
PowerSpectra_PAM_new.sci
check Appendix AP 1 for dependency:

sinc_newfunc_new.sci

Scilab code Solution 9.9 9

//Power Spectrum Of Discrete PAM Signals
//Windows 7
//Scilab 6.0.0

clc;

close;

//Note: Please run the sinc_newfunc.sci dependency
file before executing this program

//Note: Please run the PowerSpectra_.PAM. sci
dependency file before executing this program

25

10
11
12
13

14
15
16
17

Figure 9.1: 9

//Note: Don’t run the clear command after running
the dependencies(sinc_newfunc_new.sci
PowerSpectra.PAM new.sci) as it contains the
required funtion which will be cleared by the
clear command

//Execution
[Sxxf_NRZ_P,Sxxf_NRZ_BP,Sxxf_NRZ_UP,Sxxf_Manch]=
PowerSpectra_PAM_new ()

//Output
//Enter the Amplitude value:1
//Enter the bit rate:l

26

N OO s W N

Experiment: 10

Power Spectrum of MSK &
QPSK

check Appendix AP 2 for dependency:
PowerSpectra_MSK_QPSK_new.sci
check Appendix AP 1 for dependency:

sinc_newfunc_new.sci

Scilab code Solution 10.10 10

//Power Spectrums of QPSK and MSK
//Windows 7
//Scilab 6.0.0

clc;

close;

//Note: Please run the sinc_newfunc.sci dependency
file before executing this program

//Note: Please run the PowerSpectra MSK_QPSK. sci
dependency file before executing this program

27

9

10
11
12
13
14

Figure 10.1: 10

//Note: Don’t run the clear command after running
the dependencies(sinc_newfunc_new.sci
PowerSpectra. MSK_QPSK _new.sci) as it contains the
required funtion which will be cleared by the
clear command

//Execution

[SB_MSK,SB_QPSK]= PowerSpectra_MSK_QPSK_new ()
//Enter the bit rate in bits per second:2
//Enter the Energy of bit:1

28

© 00 J O U = W N

w

© 00 N O

10
11
12
13

Appendix

Scilab code AP11 clc;
close;

function [y]l=sinc_newfunc_new(x)
i=find (x==0) ;

x(i)= 1;
y = sin(%pi*x) ./ (%pix*x);
y(i) = 1;

endfunction

sinc new

Scilab code AP12 clc;

close;

function [SB_MSK,SB_QPSK]= PowerSpectra_MSK_QPSK_new
Q)
rb = input(’Enter the bit rate in bits per second:’)
Eb = input (' Enter the Energy of bit:’);
f = 0:1/(100%rb) :(4/rb);
Tb = 1/rb; //bit duration in seconds
for i = 1:length(f)
if (£(1)==0.5)
SB_MSK (i) = 4*%xEbxf(i);
else
SB_MSK (1)

(32%Eb/(%pi~2))*x(cos (2% %pi*Tb*f (1))

29

14
15

16
17
18
19
20
21
22
23
24
25
26
27

- W

© 00 N O Ot

10

11

12
13

14

/ ((4xTbxf (1)) "2-1)) " 2;
end
SB_QPSK(i)= 4*Eb*sinc_newfunc_new ((2*Tbx*f (i)))
g
end
a = gca();
plot (£*Tb,SB_MSK/(4*Eb)) ;
plot (£*Tb,SB_QPSK/ (4%Eb)) ;
polyl= a.children(l).children (1) ;
polyl.foreground = 3;
xlabel ("Normalized Frequency >")
ylabel (' Normalized Power Spectral Density >")
title ("QPSK Vs MSK Power Spectra Comparison’)
legend (['Minimum Shift Keying’, 'QPSK’])
xgrid (1)
endfunction

MSK QPSK new

Scilab code AP13 clc;
close;

function [Sxxf_NRZ_P,Sxxf_NRZ_BP,Sxxf_NRZ_UP,
Sxxf_Manch]=PowerSpectra_PAM_new ()
a = input (’Enter the Amplitude value:’);
fb = input (' Enter the bit rate:’);
Tb = 1/fb; //bit duration
f = 0:1/(100%Tb) :2/Thb;
for i = 1:length(f)
Sxxf_NRZ_P(i) = (a"2)*Tb*(sinc_newfunc_new (f(i)*Tb
)"2);
Sxxf_NRZ_BP(i) = (a"2)*Tb*((sinc_newfunc_new (f (i) *
Tb)) "2) *((sin (%pi*f (i) *Tb)) ~2);
if (i==1)
Sxxf_NRZ_UP(i) = (a"2)*(Tb/4)*((sinc_newfunc_new
(£ (1) *Tb)) "2)+(a"2) /4;
else

30

15

16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38

39

Ot = W N

Sxxf_NRZ_UP(i) = (a~2)*(Tb/4)*((sinc_newfunc_new
(£(1)*Tb)) "2);
end
Sxxf_Manch (i) = (a"2)*Tb*(sinc_newfunc_new (f(i)*Tb
/2) "2)*(sin (%pi*f(i)*Tb/2) "2);
end

//Plotting

a = gca();

plot2d (f,Sxxf_NRZ_P)

polyl= a.children(l).children(1);

polyl.thickness = 2; // the thickness of a curve.

plot2d (f,Sxxf_NRZ_BP,2)

polyl= a.children(l).children(1);

polyl.thickness = 2; // the thickness of a curve.

plot2d (f,Sxxf_NRZ_UP,5)

polyl= a.children(l).children(1);

polyl.thickness = 2; // the thickness of a curve.

plot2d (f, Sxxf_Manch,9)

polyl= a.children(l).children (1) ;

polyl.thickness = 2; // the thickness of a curve.

xlabel (' f«Th——>"7)

ylabel ('Sxx(f)——>")

title ('Power Spectral Densities of Different Line
Coding Techniques’)

xgrid (1)

legend (['NRZ Polar Format’, 'NRZ Bipolar Format’, 'NRZ
Unipolar Format’, Manchester Format’]);

endfunction

PS PAM new

Scilab code APH4 clc;
clear;
close;

function [Amplitude_Response ,Phase_Responsel]=
Duobinary_Signaling_new ()

31

© 00 N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

U = W N

© 00 N O

10
11

rb = input(’Enter the bit rate=’);
Tb =1/rb; //Bit duration

f = -rb/2:1/100:rb/2;

Amplitude_Response = abs (2*cos (}%pi*f.*xTb));
Phase_Response = -(%pix*f.*Tb);
subplot(2,1,1)

a=gca();

a.x_location ="origin”;

a.y_location ="origin”;

plot (f,Amplitude_Response)

xlabel ('Frequency f >")

ylabel (7 |H(f) | >7)

title(’Amplitude Response of Duobinary Signaling)
subplot(2,1,2)

a=gca();

a.x_location ="origin”;

a.y_location ="origin”;

plot (f,Phase_Response)

xlabel (’ Frequency f >")
ylabel (’ <H(f) >7)

title(’Phase Response of Duobinary Signaling ')
endfunction

Duobinary Signalling new

Scilab code AP clc;
clear;
close;

function [x1D,x2D]= ConvolutionCode_TransDomain_new

O

//glD = generator polynomial 1

//g2D = generator polynomial 2

//x1D = top output sequence polynomial
//x2D = bottom output sequence polynomial

D = poly (0, 'D’);
giD = input (’Enter the generator polynomial 1=") //
generator polynomial 1

32

12

13

14
15
16
17
18
19
20

© 00 N O Ot = W N

[S e S e S S G SO S S
S U W NN = O

17

18
19
20
21

g2D = input (’Enter the generator polynomial 2=") //
generator polynomial 2

mD = input(’Enter the message sequence’)//message
sequence polynomial representation

x1D = giD#*mD; //top output polynomial

x2D = g2D*mD; //bottom output polynomial

x1 = coeff (x1D);

x2 = coeff (x2D);

disp(modulo(x1,2), top output sequence’)

disp(modulo (x2,2), "bottom output sequence’)

endfunction

Conv Code new

Scilab code AP6 clc;

clear;

close;

function [SQNR,xq,en_code] = uniform_pcm(x,L)
//x = input sequence
//L = number of qunatization levels

xmax = max (abs(x));

Xxq = x/xmax;

en_code = xq;

d = 2/L;

q = dx[0:L-1];

q = q-((L-1)/2)*4d;

for i = 1:L
xq(find (((q(i)-d/2) <= xq)&(xq<=(q(i)+d/2))))=...
q(i) .*ones(1l,length(find (((q(i)-d/2)<=xq)&(xq<=(

q(i)+d/2)))));
en_code(find(xq == q(i)))= (i-1) .xones(1l,length(
find(xq == q(i))));
end
Xq = XQg*Xmax;

SQNR = 20*x1logl0(norm(x)/norm(x-xq));
endfunction

33

© 00 J O U i W N

— = =
N = O

© 00 J O U i W N

— = =
N = O

Ot = W N

uniformpcem

Scilab code AP 17 clc;
clear;
close;

// Function to perform XOR operation on the operands
function [value] = xor(A,B)
if (A==B)
value
else

0;

value 1;
end

endfunction

Xor

Scilab code APR® clc;
clear;
close;

// Function to perform XOR operation on the operands
function [value] = xor_new(A,B)
if (A==B)
value
else

0;

value 1;
end

endfunction

XOR new

Scilab code AP clc;
clear;
close;

function[n,p,r] = ReedSolomon_Codes(n,k,s)

34

© o g O

10
11
12
13
14
15
16
17
18
19

//Single —error —correcting RS code with a s—bit byte
//n=code word

//k=information bit

//s=no of bit symbols

t =(n-k)/2; //single bit error correction

//n = 2"s—1; //code word length in 2—bit byte

p = n-k; //parity bits length in 2—bit byte

r = k/n; //code rate

//disp (n,’ code word length in s—bit byte n =)
disp(p, 'parity bits length in s—bit byte n—k=")
disp(r, 'Code rate:r = k/n =")

disp(2*t, It can detect any error upto =’)
disp(t, It can correct any error upto =7)
endfunction

ReedSolomonCodes

35

	
	Reed Solomon Codes
	Duobinary Encoder & Decoder
	Differential Phase Shift Keying
	PseudoNoise Sequence Generator
	Unipolar NRZ
	Uniform Quantization PCM
	Convolutional Coding using Transform Domain Approach
	Duobinary Signaling - Amplitude & Phase Response
	Power Spectrum of Discrete PAM Signal
	Power Spectrum of MSK & QPSK

