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Experiment: 1

Reed Solomon Codes

check Appendix AP 9 for dependency:

ReedSolomon_Codes.sci

Scilab code Solution 1.1 1

//Reed—Solomon Codes
//Windows 7
//Scilab 6.0.0

//Note: Please run the ReedSolomon_Codes. sci
dependency file before executing this program

n=16 //code word
k=4 //information bit
s=8 //no of bit symbols

ReedSolomon_Codes (n,k,s)

//n=16

// k=4

/ /=8

//ReedSolomon_Codes (n,k,s)

//parity bits length in s—bit byte n—k=
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[t can detect any error
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6.

upto

upto
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Experiment: 2

Duobinary Encoder & Decoder

check Appendix AP 8 for dependency:

Xor_new.sci

Scilab code Solution 2.2 2

//Duobinary Encoding
//Windows 7
//Scilab 6.0.0

clc;

close;

//Note: Please run the xor.sci dependency file
before executing this program

//Note: Don’t run the clear command after running
the dependency(xor.sci) as it contains the
required funtion which will be cleared by the
clear command

b=[0 ,1 ,0 ,1 ,1 ,1 ,0]; // input binary sequence
precoder input

a(l)=xor_new(1,b(1));

if (a(1)==1)

a_volts(1l)=1;
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end
for k=2:1length(b)
a(k)=xor_new(a(k-1),b(k));
if (a(k)==1)
a_volts(k)=1;
else
a_volts(k)=-1;
end
end
a=a’;
a_volts=a_volts’;
disp(a, "Pre coder output in binary form
disp(a_volts, 'Pre coder output in volts
//Duobinary coder output in volts
c(1)=1+ a_volts(1);
for k =2:1ength(a)
c(k)=a_volts(k -1)+a_volts(k);
end
c=c’;
disp(c, "Duobinary coder output in volts
//Duobinary decoder output by applying decision
for k =1:1ength(c)
if (abs (c(k))>1)
b_r(k)=0;
else
b.r ( k) = 1;
end
end
b_r=b_r’;
disp(b_r, "Recovered original sequence at detector
output :7)
//Output
// Pre coder output in binary form
//
// 1. 0. 0. 1. 0. 1. 1.

)
)

)
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Experiment: 3

Differential Phase Shift Keying

check Appendix AP 8 for dependency:

Xor_new.sci

Scilab code Solution 3.3 3

//Generation of Differential Phase Shift Keying
Signal

// Windows 7

//Scilab 6.0.0

clc;

close;

//Note: Please run the xor_new.sci dependency file
before executing this program

//Note: Don’t run the clear command after running
the dependency(xor_new.sci) as it contains the
required funtion which will be cleared by the
clear command

bk = [1,0,1,1,0,1,1,1];//input digital sequence

for i = 1:1length(bk)
if (bk(i)==1)

bk_not (i) =71;

10



else
bk_not(i)= 1;
end
end
dk_1(1) = 1&bk(1); //initial value of differential
encoded sequence
dk_1_not (1) =0&bk_not (1) ;
dk (1) = xor_new(dk_1(1),dk_1_not(1))//first bit of
dpsk encoder
for i=2:1length(bk)
dk_1(i) = dk(i-1);
dk_1_not (i) = "dk(i-1);
dk (i) = xor_new((dk_1(i)&bk(i)),(dk_1_not(i)&
bk_not (i)));
end
for i =1:1length(dk)
if (dk(i)==1)
dk_radians (i) =0;
elseif (dk (i) ==0)
dk_radians (i)=%pi;
end
end
disp (bk, "(bk) ")
bk_not = bk_not’;
disp (bk_not, (bk_not)’)
dk = dk’;
disp(dk, 'Differentially encoded sequence (dk)’)
dk_radians = dk_radians’;
disp(dk_radians, 'Transmitted phase in radians’)

//Output

// (bk)

//

// 1. 0. 1. 1. 0. 1. 1. 1.
//

// (bk_not)

//

// 0. 1. 0. 0. 1. 0. 0. 0.

11
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Differentially encoded sequence (dk)

1.

Transmitted phase

0.

0. 0.

0.

in radians

column 1 to 7

3.1415927

column &

3.1415927

1. 1.

1. 1.

3.1415927
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Experiment: 4

PseudoNoise Sequence
Generator

check Appendix AP 7 for dependency:

XOor.sci

Scilab code Solution 4.4 4

//Generate Maximum Length Pseudo Noise Sequence
//Windows 7
//Scilab 6.0.0

//Note: Please run the xor.sci dependency file
before executing this program

//Assign Initial value for PN generator
x0= 1;
x1= 0;
x2 =0;
x3 =0;
x4= 0;
xb5= 0;
x6= 0;

13
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input (’Enter the period of the signal’)
for i =1:N

x1 = x0;

x8 =x7

x7 =x6

x0 =xor (x7,x1)
x6 =xb5

x5 =x4

x0 =xor (x1,x5)
x4 =x3

x3 =x2;

x2 =x1;

x0 =xor (x1,x3);

disp (i, "The PN sequence at step’)
x = [x1 x2 x3 x4 x5 x6 x7 x8];
disp(x, 'x=")

end
m = [7,8,9,10,11,12,13,17,19];
N1 = 2°m-1;

disp(’Table Range of PN Sequence lengths’)
disp(’Length of shift register (m)’)
disp(m)

disp ('PN sequence Length (N)’)

disp (N1)

//Execution

//Enter the period of the signal
//5

//

//

// The PN sequence at step
//

// 1.

//

/] x=

//

14
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1 1. 0
The PN sequence
2.
X=
1 1. 1
The PN sequence
3.
X=
0 0. 1
The PN sequence
4.
X=
1. 1. 0.
The PN sequence
D.
X=
1. 1. 1.

Table Range of PN Sequence lengths

Length of shift

0. 0
at step
0. 0
at step
1 0.
at step
1. 1
at step
0. 1.

register
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0 // 7. 8 9. 10. 11. 12. 13. 17.
19.

91 //

92 // PN sequence Length (N)

93 //

94 //

95 // column 1 to 7

9% //

97 // 127. 255. 511. 1023. 2047. 4095.
8191.

98 //

9 // column 8 to 9

100 //
101 // 131071. 524287.

16
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Experiment: 5

Unipolar NRZ

Scilab code Solution 5.5 5

// Unipolar NRZ
//Windows 7
//Scilab 6.0.0

clc;

clear;

close;

x=[0100010011];
binary_zero = [0 0 0 0 0 0 0 O O 0];

binary_one = [1 1 1 1 1 1 1 1 1 1];
L = length(x);

L1 = length(binary_zero);
total_duration = Lx*L;

//plotting

a =gca();

a.data_bounds =[0 -2;LxL1 2];
for i =1:L
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Figure 5.1: 5

if (x(i)==0)
plot ([i*L-L+1:i*L],binary_zero);
polyl= a.children (1) .children(1);
polyl.thickness =3;
else
plot ([i*L-L+1:i*L],binary_one) ;
polyl= a.children(1l).children(1);
polyl.thickness =3;
end
end
xgrid (1)
title (’Unipolar NRZ’)
xlabel ("time ')
ylabel ( "amplitude ")
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Experiment: 6

Uniform Quantization PCM

check Appendix AP 6 for dependency:

uniform_pcm.sci

Scilab code Solution 6.6 6

//Uniform Quantization — PCM
// Windows 7
//Scilab 6.0.0

//Note: Please run the uniform_pcm.sci dependency
file before executing this program

x=[1,0,1,0,1,0,1,0] //input sequence

L=3 //no of quantization levels

[SQNR ,xq,en_code] = uniform_pcm(x,L)

disp (SQNR, 'SQNR: ")

disp(xq, 'xq: ")

disp(en_code, "en_code: ’)

//Execution

// [SQNR, xq,en_code| = uniform_pcm (x,L)
// en_code =

19
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column 1 to 4

0.6666667

0.

0.6666667

column 5 to 8

0.6666667
SQNR =

9.5424251

0.

0.6666667
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Experiment: 7

Convolutional Coding using
Transform Domain Approach

check Appendix AP 5 for dependency:

ConvolutionCode_TransDomain_new.sci

Scilab code Solution 7.7 7

// Convolutional Coding Using Transform Domain
Approach

//Windows 7

//Scilab 6.0.0

clc;

close;

//Note: Please run the ConvolutionCode_TransDomain.
sci dependency file before executing this program

//Note: Don’t run the clear command after running
the dependency (ConvolutionCode_TransDomain_new .
sci) as it contains the required funtion which
will be cleared by the clear command

//Execution

21
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//Enter the generator polynomial 1=14+D"2+4D"3
//Enter the generator polynomial 2=14D"1

//Enter the message sequencel4+D 14D 24D 34+D"4

[x1D,x2D]=

// Output

//

//

//

//

// top output sequence
//

/) 1. 1. 0. 1.
//

// bottom output sequence
//

/) 1. 0. 0. 0.

ConvolutionCode_TransDomain_new ()

22
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Experiment: 8

Duobinary Signaling -
Amplitude & Phase Response

check Appendix AP 4 for dependency:

Duobinary_Signaling_new.sci

Scilab code Solution 8.8 8§

//Duobinary Signaling Scheme — Magnitude and Phase
Response

//Windows 7

//Scilab 6.0.0

clc;
close;

//Note: Please run the Duobinary_Singaling. sci
dependecy file before executing this program
//Note: Don’t run the clear command after running
the dependency(Duobinary_Signaling.sci) as it
contains the required funtion which will be

cleared by the clear command

23
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Figure 8.1: 8

//Execution

[Amplitude_Response ,Phase_Response]=

Duobinary_Signaling_new ()

//Output
//Enter the bit rate= 8

24
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Experiment: 9

Power Spectrum of Discrete
PAM Signal

check Appendix AP 3 for dependency:
PowerSpectra_PAM_new.sci
check Appendix AP 1 for dependency:

sinc_newfunc_new.sci

Scilab code Solution 9.9 9

//Power Spectrum Of Discrete PAM Signals
//Windows 7
//Scilab 6.0.0

clc;

close;

//Note: Please run the sinc_newfunc.sci dependency
file before executing this program

//Note: Please run the PowerSpectra_.PAM. sci
dependency file before executing this program

25
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Figure 9.1: 9

//Note: Don’t run the clear command after running
the dependencies(sinc_newfunc_new.sci
PowerSpectra.PAM new.sci) as it contains the
required funtion which will be cleared by the
clear command

//Execution
[Sxxf_NRZ_P,Sxxf_NRZ_BP,Sxxf_NRZ_UP,Sxxf_Manch]=
PowerSpectra_PAM_new ()

//Output
//Enter the Amplitude value:1
//Enter the bit rate:l

26
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Experiment: 10

Power Spectrum of MSK &
QPSK

check Appendix AP 2 for dependency:
PowerSpectra_MSK_QPSK_new.sci
check Appendix AP 1 for dependency:

sinc_newfunc_new.sci

Scilab code Solution 10.10 10

//Power Spectrums of QPSK and MSK
//Windows 7
//Scilab 6.0.0

clc;

close;

//Note: Please run the sinc_newfunc.sci dependency
file before executing this program

//Note: Please run the PowerSpectra MSK_QPSK. sci
dependency file before executing this program

27
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Figure 10.1: 10

//Note: Don’t run the clear command after running
the dependencies(sinc_newfunc_new.sci
PowerSpectra. MSK_QPSK _new.sci) as it contains the
required funtion which will be cleared by the
clear command

//Execution

[SB_MSK,SB_QPSK]= PowerSpectra_MSK_QPSK_new ()
//Enter the bit rate in bits per second:2
//Enter the Energy of bit:1

28
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Appendix

Scilab code AP11 clc;
close;

function [y]l=sinc_newfunc_new(x)
i=find (x==0) ;

x(i)= 1;
y = sin(%pi*x) ./ (%pix*x);
y(i) = 1;

endfunction

sinc new

Scilab code AP12 clc;

close;

function [SB_MSK,SB_QPSK]= PowerSpectra_MSK_QPSK_new
Q)
rb = input(’Enter the bit rate in bits per second:’)
Eb = input (' Enter the Energy of bit:’);
f = 0:1/(100%rb) :(4/rb);
Tb = 1/rb; //bit duration in seconds
for i = 1:length(f)
if (£(1)==0.5)
SB_MSK (i) = 4*%xEbxf(i);
else
SB_MSK (1)

(32%Eb/(%pi~2))*x(cos (2% %pi*Tb*f (1))

29
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/ ((4xTbxf (1)) "2-1)) " 2;
end
SB_QPSK(i)= 4*Eb*sinc_newfunc_new ((2*Tbx*f (i)))
g
end
a = gca();
plot (£*Tb,SB_MSK/(4*Eb)) ;
plot (£*Tb,SB_QPSK/ (4%Eb)) ;
polyl= a.children(l).children (1) ;
polyl.foreground = 3;
xlabel ("Normalized Frequency >")
ylabel (' Normalized Power Spectral Density >")
title ("QPSK Vs MSK Power Spectra Comparison’)
legend ([ 'Minimum Shift Keying’, 'QPSK’])
xgrid (1)
endfunction

MSK QPSK new

Scilab code AP13 clc;
close;

function [Sxxf_NRZ_P,Sxxf_NRZ_BP,Sxxf_NRZ_UP,
Sxxf_Manch]=PowerSpectra_PAM_new ()
a = input (’Enter the Amplitude value:’);
fb = input (' Enter the bit rate:’);
Tb = 1/fb; //bit duration
f = 0:1/(100%Tb) :2/Thb;
for i = 1:length(f)
Sxxf_NRZ_P(i) = (a"2)*Tb*(sinc_newfunc_new (f(i)*Tb
)"2);
Sxxf_NRZ_BP(i) = (a"2)*Tb*((sinc_newfunc_new (f (i) *
Tb)) "2) *((sin (%pi*f (i) *Tb)) ~2);
if (i==1)
Sxxf_NRZ_UP(i) = (a"2)*(Tb/4)*((sinc_newfunc_new
(£ (1) *Tb)) "2)+(a"2) /4;
else
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Sxxf_NRZ_UP(i) = (a~2)*(Tb/4)*((sinc_newfunc_new
(£(1)*Tb)) "2);
end
Sxxf_Manch (i) = (a"2)*Tb*(sinc_newfunc_new (f(i)*Tb
/2) "2)*(sin (%pi*f(i)*Tb/2) "2);
end

//Plotting

a = gca();

plot2d (f,Sxxf_NRZ_P)

polyl= a.children(l).children(1);

polyl.thickness = 2; // the thickness of a curve.

plot2d (f,Sxxf_NRZ_BP,2)

polyl= a.children(l).children(1);

polyl.thickness = 2; // the thickness of a curve.

plot2d (f,Sxxf_NRZ_UP,5)

polyl= a.children(l).children(1);

polyl.thickness = 2; // the thickness of a curve.

plot2d (f, Sxxf_Manch,9)

polyl= a.children(l).children (1) ;

polyl.thickness = 2; // the thickness of a curve.

xlabel (' f«Th——>"7)

ylabel ('Sxx(f)——>")

title ('Power Spectral Densities of Different Line
Coding Techniques’)

xgrid (1)

legend ([ 'NRZ Polar Format’, 'NRZ Bipolar Format’, 'NRZ
Unipolar Format’, Manchester Format’]);

endfunction

PS PAM new

Scilab code APH4 clc;
clear;
close;

function [Amplitude_Response ,Phase_Responsel]=
Duobinary_Signaling_new ()
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rb = input(’Enter the bit rate=’);
Tb =1/rb; //Bit duration

f = -rb/2:1/100:rb/2;

Amplitude_Response = abs (2*cos (}%pi*f.*xTb));
Phase_Response = -(%pix*f.*Tb);
subplot(2,1,1)

a=gca();

a.x_location ="origin”;

a.y_location ="origin”;

plot (f,Amplitude_Response)

xlabel ('Frequency f >")

ylabel (7 |H(f) | >7)

title(’Amplitude Response of Duobinary Signaling )
subplot(2,1,2)

a=gca();

a.x_location ="origin”;

a.y_location ="origin”;

plot (f,Phase_Response)

xlabel (’ Frequency f >")
ylabel (’ <H(f) >7)

title(’Phase Response of Duobinary Signaling ')
endfunction

Duobinary Signalling new

Scilab code AP clc;
clear;
close;

function [x1D,x2D]= ConvolutionCode_TransDomain_new

O

//glD = generator polynomial 1

//g2D = generator polynomial 2

//x1D = top output sequence polynomial
//x2D = bottom output sequence polynomial

D = poly (0, 'D’);
giD = input (’Enter the generator polynomial 1=") //
generator polynomial 1
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g2D = input (’Enter the generator polynomial 2=") //
generator polynomial 2

mD = input(’Enter the message sequence’)//message
sequence polynomial representation

x1D = giD#*mD; //top output polynomial

x2D = g2D*mD; //bottom output polynomial

x1 = coeff (x1D);

x2 = coeff (x2D);

disp(modulo(x1,2), top output sequence’)

disp(modulo (x2,2), "bottom output sequence’)

endfunction

Conv Code new

Scilab code AP6 clc;

clear;

close;

function [SQNR,xq,en_code] = uniform_pcm(x,L)
//x = input sequence
//L = number of qunatization levels

xmax = max (abs(x));

Xxq = x/xmax;

en_code = xq;

d = 2/L;

q = dx[0:L-1];

q = q-((L-1)/2)*4d;

for i = 1:L
xq(find (((q(i)-d/2) <= xq)&(xq<=(q(i)+d/2))))=...
q(i) .*ones(1l,length(find (((q(i)-d/2)<=xq)&(xq<=(

q(i)+d/2)))));
en_code(find(xq == q(i)))= (i-1) .xones(1l,length(
find(xq == q(i))));
end
Xq = XQg*Xmax;

SQNR = 20*x1logl0(norm(x)/norm(x-xq));
endfunction
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uniformpcem

Scilab code AP 17 clc;
clear;
close;

// Function to perform XOR operation on the operands
function [value] = xor(A,B)
if (A==B)
value
else

0;

value 1;
end

endfunction

Xor

Scilab code APR® clc;
clear;
close;

// Function to perform XOR operation on the operands
function [value] = xor_new(A,B)
if (A==B)
value
else

0;

value 1;
end

endfunction

XOR new

Scilab code AP clc;
clear;
close;

function[n,p,r] = ReedSolomon_Codes(n,k,s)
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//Single —error —correcting RS code with a s—bit byte
//n=code word

//k=information bit

//s=no of bit symbols

t =(n-k)/2; //single bit error correction

//n = 2"s—1; //code word length in 2—bit byte

p = n-k; //parity bits length in 2—bit byte

r = k/n; //code rate

//disp (n,’ code word length in s—bit byte n =)
disp(p, 'parity bits length in s—bit byte n—k=")
disp(r, 'Code rate:r = k/n =")

disp(2*t, It can detect any error upto =’)
disp(t, It can correct any error upto =7)
endfunction

ReedSolomonCodes

35
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