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Experiment: 1

Compute Four Point DFT
Using Matrix Approach Only.

Scilab code Solution 1.0 Experiment Number 1

// AIM:Compute four point DFT using matrix approach
only .

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let x(n)={1,2,3,4}

//Let us first define the W4 matrix

Wa=[1 1 1 1 ;1 -sqrt(-1) -1 sqrt(-1);1 -1 1 -1;1
sqrt (-1) -1 -sqrt(-1)1;

disp (W4, 'Wi=")

//Now let us define the input sequence

xn=[1;2;3;4];//The input sequence x(n)has been
arranged as a column matrix

//DET is obtained by multiplying the twiddle matrix
W4 and the input sequence

Xk=W4*xn;

disp (Xk, 'DFT : X(k)=")
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Experiment: 2

Derive The [W4*] Matrix
Useful To Compute IDFT

Scilab code Solution 2.0 Experiment Number 2

//AIM: Derive the [Wi4x]| matrix useful to compute
IDFT.

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

W40_star=int (cos (0))+(sqrt(-1)*int (sin(0)));

W4al_star=int (cos(%pi/2))+(sqrt(-1))*int ((sin(%pi/2))
)

W42_star=int (cos (%pi) ) +(sqrt (-1))*int ((sin (%pi)));

W43_star=int (cos ((3*%pi) /2))+(sqrt(-1))*int (sin ((3%
hpid)/2));

disp (W40_star, W40 _star=")
disp(W41l_star, W41l _star=")
disp(W42_star, 'W42_star=")
disp(W43_star, 'W43_star=")

W44 _star=W40_star;
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W49 _star=W41_star;
W46 _star=W42_star;

[WA40_star
W40_star
W40_star
W40_star

W4 _star=

W40_star
W41l_star
W42_star
W43 _star

disp (W4_star, W4 _star=")

W40_star
W42_star
W44 _star
W46 _star

W40 _star;
W43_star;
W46 _star;
W49_star];
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Experiment: 3

IDFT Computation Using
Matrix Method

Scilab code Solution 3.0 Experiment Number 3

//AIM:IDFT computation using matrix method.
//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let Y(k)={1,0,1,0}

//Computation for Inverse Discrete Fourier Transform
(IDFT)

//Let us first define the Wix matrix

W4_star=[1 1 1 1 ;1 sqrt(-1) -1 -sqrt(-1);1 -1 1
-1;1 -sqrt(-1) -1 sqrt(-1)];

disp(W4_star, 'Wik=")

Yk=[1;0;1;0];//The input sequence Y(k) has been
arranged as a column matrix

yn=(1/4) *W4_star*Yk;

disp(yn, 'IDFT : y(n)=")
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Experiment: 4

N=8; DIT-FFT Without Using
Inbuilt Scilab FFT Function

Scilab code Solution 4.0 Experiment Number 4

//AIM: N=8; DIT-FFT without using inbuilt Scilab FFT
function

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let x(n)={1,2,1,2,0,2,1,2}

//Let us begin with the programming.For
understanding ,let us write the given data as

//x(0)=1;x(1)=2,x(2)=1,x(3)=2,x(4)=0,x(5)=2,x(6)=1,x
(7)=2

x0=1; //DIT-FFT,so arranging the input in bit—
reversed order

x4=0; //DIT-FFT,so arranging the input in bit—
reversed order

x2=1; //DIT-FFT,so arranging the input in bit—
reversed order

x6=1; //DIT-FFT,so arranging the input in bit—
reversed order
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x1=2; //DIT-FFT,so arranging the input in bit—
reversed order

x5=2; //DIT-FFT,so arranging the input in bit—
reversed order

x3=2; //DIT-FFT,so arranging the input in bit—
reversed order

x7=2; //DIT-FFT,so arranging the input in bit—
reversed order

//Stage I computation

x0a=x4+x0; //Computing Stage—I output at line 1

disp(x0a, 'Stage—I output at line 1=")

x4b=(x4-x0)*(-1); //Computing Stage—1 output at
2

disp (x4b, ’Stage—I output at line 2=")

x2c=x6+x2; //Computing Stage—I output at line 3

disp(x2c, 'Stage—I output at line 3=")

x6d=(x6-x2)*(-1);//Computing Stage—1 output at
4

disp(x6d, ’Stage—I output at line 4=")

xle=x5+x1; //Computing Stage—I output at line 5

disp(xle, ’Stage—I output at line 5=")

x6f=(x5-x1)*(-1);//Computing Stage—1 output at
6

disp (x5f, ’Stage—I output at line 6=")

x3g=x7+x3; //Computing Stage—I output at line 7

disp(x3g, 'Stage—I output at line 77)

x7h=(x7-x3)*(-1);//Computing Stage—1 output at
8

disp(x7h, ’Stage—I output at line 8=")

//Stage—I output at line 4 and line 8 is to be

line

line

line

line

multiplied by twiddle factor having value (—j)

x6d1=(x6d)*(-sqrt (-1));
x7h1=(x7h) *(-sqrt (-1));

disp(x6dl, ’Stage—I output(i.e. input to stage—II)
after multiplication by twiddle factor value of

(—j) at line 4 =7)

disp (x7hl, ’Stage—I output(i.e. input to stage—II)
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after multiplication by twiddle factor value of

(—j) at line 8 =7)

//Stage—II Computations

x0a_stagelIl_output=x2c+x0a;//Computing StageII
output at line 1

disp(x0Oa_stageII_output, Stage—Il output at line
)

x4b_stagell_output=x6d1+x4b;//Computing Stage—II
output at line 2

disp(x4b_stageII_output, Stage—Il output at line
)

1="

2=

x2c_stagelIl_output=(x2c-x0a)*(-1);//Computing Stage—

IT output at line 3
disp(x2c_stageII_output, Stage—Il output at line
)

3:7

x6d_stagelIIl_output=(x6dl-x4b)*(-1);//Computing Stage

—II output at line 4

disp(x6d_stageII_output, Stage—Il output at line
)

xle_stagelIl_output=x3g+xle;//Computing Stage 11
output at line 5

disp(xle_stageII_output, Stage—Il output at line
)

x5f_stagell_output=x7hl1+x5f;//Computing Stage—II
output at line 6

disp(xb6f_stageII_output, Stage—Il output at line
)

x3g_stagell_output=(x3g-xle)*(-1);//Computing Stage—

IT output at line 7
disp(x3g_stagelI_output, Stage—Il output at line
)

7:7

x7h_stagelIIl_output=(x7hl-x5f)*(-1);//Computing Stage

—II output at line 8
disp(x7h_stageII_output, Stage—Il output at line
)

8="

//Stage—1I1 output at line 6,line 7 and line 8 are to

12
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be multiplied by twiddle factor having value
(0.707—j0.707) ,(—j) and (—0.707—j0.707)
respectively
x5f_stgll_op_multi_by_tw=(x5f_stageII_output)
*(0.707-(sqrt(-1))*(0.707));
disp(x5f_stgII_op_multi_by_tw, Stage—II output at
line 6 after multiplication by twiddle factor=")
x3g_stgII_op_multi_by_tw=(x3g_stageII_output)*(-(
sqrt (-1)));
disp(x3g_stglI_op_multi_by_tw, Stage—II output at
line 7 after multiplication by twiddle factor=")
x7h_stglI_op_multi_by_tw=(x7h_stageIIl_output)
%(-0.707-(sqrt (1)) *(0.707));
disp(x7h_stgII_op_multi_by_tw, Stage—II output at
line 8 after multiplication by twiddle factor=")

//Stage—111 Computations(i.e. Computations for the
final stage)

XO0=xle_stageII_output+xOa_stageII_output;//Computing

X(0) at last stage
X1=x5f_stgll_op_multi_by_tw+x4b_stageIlIl_output;//
Computing X(1) at last stage
X2=x3g_stgIl_op_multi_by_tw+x2c_stageIlI_output;//
Computing X(2) at last stage
X3=x7h_stgIl_op_multi_by_tw+x6d_stageIIl_output;//
Computing X(3) at last stage
X4=(xle_stageIl_output-xOa_stagelIl_output)*(-1);//
Computing X(4) at last stage
X56=(x5f_stgIIl_op_multi_by_tw-x4b_stagelIl_output)
*(-1);//Computing X(5) at last stage
X6=(x3g_stgll_op_multi_by_tw-x2c_stagelIl_output)
*(-1);//Computing X(6) at last stage
X7=(x7h_stgIlI_op_multi_by_tw-x6d_stagelIIl_output)
*(-1); //Conqnnﬁng X(7) at last stage
disp (X0, 'X(0)=
disp (X1, 'X(1)=
disp (X2, 'X(2)=
disp (X3, 'X(3)=

13



disp (X4, ’'X(4)=")

disp (X5, 'X(5)=")

disp (X6, 'X(6)=")

disp (X7, 'X(7)=")

disp({,X0,X1,X2,X3,X4,X5,X6,X7,}, 'So,the DFT of x(n)
using Decimation—in—Time Fast Fourier Transform (

DIT-FFT) is X(k)=")

14
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Experiment: 5

N=8; IDIT-FFT Without Using
Inbuilt Scilab FFT Function

Scilab code Solution 5.0 Experiment Number 5

//AIM:N=8; IDIT-FFT without using inbuilt Scilab FFT
function

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let X(k)={11,1-1,1,-5,1,—-1,1}

//Let us begin with the programming.For
understanding ,let us write the given data as

//X(0)=11;X(1)=1,X(2)=-1,X(3)=1,X(4)=-5X(5)=1,X(6)
=—1X(7)=1

X0_conj=11; //IDIT-FFT,so arranging the input in bit—
reversed order

X4_conj=-5; //IDIT-FFT,so arranging the input in bit—
reversed order

X2_conj=-1;//IDIT-FFT,so arranging the input in bit—
reversed order

X6_conj=-1;//IDIT-FFT,so arranging the input in bit—
reversed order
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X1_conj=1; //IDIT-FFT, so the

reversed order
X5_conj=1; //IDIT-FFT, so
reversed order
X3_conj=1; //IDIT-FFT, so
reversed order
X7_conj=1; //IDIT-FFT, so
reversed order

arranging input in

arranging the input in

arranging the input in

arranging the input in

disp(X0_conj, 'X*(0)=")
disp(X4_conj, 'Xx(4)=")
disp(X2_conj, 'Xx(2)=")
disp(X6_conj, 'Xx(6)=")
disp(X1i_conj, 'Xx(1)=")
disp(X5_conj, 'Xx*(5)=")
disp(X3_conj, 'Xx*(3)=")
disp(X7_conj, 'Xx(7)=")

//Stage I computation

X0a=X4_conj+X0_conj; //Computing Stage—I output
line 1

disp(X0Oa, 'Stage—I output at line 1=")

X4b=(X4_conj-X0_conj)*(-1);//Computing StageI
output at line 2

disp (X4b, 'Stage—I output at line 2=")

X2c=X6_conj+X2_conj; //Computing Stage—I output
line 3

disp(X2c, 'Stage—I output at line 3=")

X6d=(X6_conj-X2_conj)*(-1);//Computing Stage—I
output at line 4

disp(X6d, ’Stage—I output at line 4=")

Xle=X5_conj+X1_conj;//Computing Stage—I output
line 5

disp(Xle, 'Stage—I output at line 5=")

X6f=(X5_conj-X1_conj)*(-1);//Computing Stage—I
output at line 6

disp (X5f, ’Stage—I output at line 6=")

X3g=X7_conj+X3_conj;//Computing Stage—I output
line 7

disp (X3g, 'Stage—I output at line 77)
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X7h=(X7_conj-X3_conj)*(-1);//Computing Stage—I
output at line 8
disp (X7h, ’Stage—I output at line 8=")

//Stage—I output at line 4 and line 8 is to be
multiplied by twiddle factor having value (—j)

X6d’=(X6d)*(-sqrt (-1));

X7h’=(X7h)*(-sqrt (-1));

disp(X6d’, Stage—I output(i.e. input to stage—II)
after multiplication by twiddle factor value of
(—j) at line 4 =7)

disp (X7h’, ’Stage—I output(i.e. input to stage—II)
after multiplication by twiddle factor value of
(—j) at line 8 =7)

//Stage—II Computations

X0a_stagelIIl_output=X2c+X0a;//Computing Stage1II
output at line 1

disp(XOa_stageII_output, Stage—Il output at line 1=’
)

X4b_stagell_output=X6d°’+X4b;//Computing Stage—II
output at line 2

disp(X4b_stageII_output, Stage—Il output at line 2=’
)

X2c_stageII_output=(X2c-X0a)*(-1);//Computing Stage—
IT output at line 3

disp(X2c_stagelII_output, Stage—Il output at line 3=’
)

X6d_stageIl_output=(X6d’-X4b)*(-1);//Computing Stage
—II output at line 4

disp(X6d_stageII_output, Stage—Il output at line 4=’
)

Xle_stagelIl_output=X3g+Xle;//Computing Stage—II
output at line 5

disp(Xle_stageII_output, Stage—Il output at line 5=’
)

X5f_stagelIl_output=X7h’+X5f;//Computing Stage1I
output at line 6

17



61

62

63

64

65

66
67

68

69

70

71

72

73

74

75

76

7

disp(X6f_stageII_output, Stage—Il output at line 6=’
)

X3g_stagell_output=(X3g-Xle)*(-1);//Computing Stage—
IT output at line 7

disp(X3g_stagelI_output, Stage—Il output at line 7=’
)

X7h_stageII_output=(X7h’-X5f)*(-1);//Computing Stage
—II output at line 8

disp(X7h_stageII_output, Stage—II output at line 8=’
)

//Stage—II output at line 6,line 7 and line 8 are to
be multiplied by twiddle factor having value
(0.707—j0.707) ,(—j) and (—0.707—j0.707)
respectively
X5f_stageIIl_output_multiplied_by_twiddle=(
X5f_stageIIl_output)*(0.707-(sqrt(-1))*(0.707));
disp(X5f_stageIIl_output_multiplied_by_twiddle, 'Stage
—1II output at line 6 after multiplication by
twiddle factor=")
X3g_stagelIl_output_multiplied_by_twiddle=(
X3g_stagelI_output)*(-(sqrt(-1)));
disp(X3g_stagelIl_output_multiplied_by_twiddle, 'Stage
—1II output at line 7 after multiplication by
twiddle factor=")
X7h_stageIIl_output_multiplied_by_twiddle=(
X7h_stageIIl_output)*(-0.707-(sqrt(-1))*(0.707));
disp(X7h_stageIIl_output_multiplied_by_twiddle, 'Stage
—1II output at line 8 after multiplication by
twiddle factor=")

//Stage—IIl Computations(i.e. Computations for the
final stage)

x0_star=(1/8)*(Xle_stageII_output+XOa_stageIIl_output
);//Computing x*(0) at last stage

x1_star=(1/8) *(
Xbf_stagell_output_multiplied_by_twiddle+
X4b_stagelII_output);//Computing x*(1) at last

18
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stage

x2_star=(1/8) *(

X3g_stagell_output_multiplied_by_twiddle+
X2c_stageII_output);//Computing x*(2)

stage

x3_star=(1/8) *(

X7h_stagell_output_multiplied_by_twiddle+
X6d_stageII_output);//Computing x*(3)

stage

x4_star=(1/8) x((Xle_stagelIl_output -
XOa_stageII_output)*(-1));//Computing xx(4)

last

stage

x5_star=(1/8) *((

Xb5f_stagell_output_multiplied_by_twiddle -
X4b_stageIIl_output)*(-1));//Computing x*(5)

last

stage

x6_star=(1/8) *((

X3g_stagell_output_multiplied_by_twiddle-
X2c_stageII_output)*(-1));//Computing xx*(6)

last

stage

x7_star=(1/8) *((

X7h_stagell_output_multiplied_by_twiddle-
X6d_stagelII_output)*(-1));//Computing xx*(7)

last

disp (x0_
disp(x1_
disp (x2_
disp (x3_
disp (x4_
disp (x5_
disp (x6_
disp (x7_
disp({,x0_star ,x1_star ,x2_star,x3_star,x4_star,
x5_star ,x6_star ,x7_star,}, 'x*x(n)=")

x0_star_real=real (x0O_star);
x0_star_imag_conj=(-1)*(imag(x0O_star));
x1l_star_real=real(xl_star);
x1l_star_imag_conj=(-1)*(imag(xl_star));

stage

star,
star,
star,
star,
star,
star,
star,
star,

"xx(0)=")
xx(1)=")
'xx(2)=")
x*(3)=")
xx(4)=")
"xx(5)=")
"xx(6)=")
xx(7)=")

last

last

at
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x2_star_real=real (x2_star) ;
x2_star_imag_conj=(-1)*(imag(x2_star));
x3_star_real=real (x3_star) ;
x3_star_imag_conj=(-1)*(imag(x3_star));
x4_star_real=real (x4_star) ;
x4_star_imag_conj=(-1)*(imag(x4_star));
x5_star_real=real (x5_star) ;
x5_star_imag_conj=(-1)*(imag(x5_star));
x6_star_real=real (x6_star);
x6_star_imag_conj=(-1)*(imag(x6_star));
x7_star_real=real (x7_star) ;
x7_star_imag_conj=(-1)*(imag(x7_star));
x0=x0_star_real+xO_star_imag_conj;
xl=xl_star_real+xl_star_imag_conj;
x2=x2_star_real+x2_star_imag_conj;
x3=x3_star_real+x3_star_imag_conj;
x4=x4_star_real+x4_star_imag_conj;
xb=x5_star_real+xb5_star_imag_conj;
x6=x6_star_real+x6_star_imag_conj;
X7=x7_star_real+x7_star_imag_conj;
disp({,x0,x1,x2,x3,x4,x5,%x6,x7,}, 'So,the IDFT of X(k
) using Inverse Decimation—in—Time Fast Fourier
Transform (IDIT-FFT) is x(n)=")

20
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Experiment: 6

N=8; DIF-FFT Without Using
Inbuilt Scilab FFT Function

Scilab code Solution 6.0 Experiment Number 6

//AIM :N=8; DIF-FFT without using inbuilt Scilab FFT
function

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let x(n)={1,2,1,2,0,2,1,2}

//Let us begin with the programming.For
understanding ,let us write the given data as

//x(0)=1;x(1)=2,x(2)=1,x(3)=2,x(4)=0,x(5)=2,x(6)=1,x
(7)=2

x0=1; //DIF-FFT,so arranging the input in natural
order

x1=2; //DIF-FFT,so arranging the input in natural
order

x2=1; //DIF-FFT,so arranging the input in natural
order

x3=2; //DIF-FFT,so arranging the input in natural
order
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x4=0; //DIF-FFT,so arranging the input in natural

order

x5=2; //DIF-FFT,so arranging the input in natural

order

x6=1; //DIF-FFT,so arranging the input in natural

order

x7=2; //DIF-FFT,so arranging the input in natural

order
//Stage I computation
x0a=x4+x0; //Computing Stage—I output at line 1
disp(x0a, 'Stage—I output at line 1=")
x1b=x5+x1; //Computing Stage—I output at line 2
disp(x1b, ’Stage—I output at line 2=")
x2c=x6+x2; //Computing Stage—I1 output at line 3
disp(x2c, 'Stage—1 output at line 3=")
x3d=x7+x3; //Computing Stage—I output at line 4
disp(x3d, 'Stage—I output at line 4=")
x4e=(x4-x0)*(-1); //Computing Stage—I output at
)
disp(x4de, ’Stage—I output at line 5=")
x6f=(x5-x1)*(-1); //Computing Stage—I output at
6
disp (x5f, ’Stage—I output at line 6=")
x6g=(x6-x2)*(-1); //Computing Stage—I output at
7
disp(x6g, 'Stage—I output at line 77)
x7h=(x7-x3)*(-1); //Computing Stage—1 output at
8
disp(x7h, ’Stage—I output at line 8=")

line

line

line

line

//Stage—I output at line 6,line 7 and line 8 are to

be multiplied by twiddle factor having value
(0.707—30.707) ,(—j) and (—0.707—j0.707)
respectively
x5f_stagel_output_multiplied_by_twiddle=(x5f)
*(0.707-(sqrt(-1))*(0.707));

disp(x56f_stagel_output_multiplied_by_twiddle, Stage—

I output at line 6 after multiplication by
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twiddle factor=")
x6g_stagel_output_multiplied_by_twiddle=(x6g)*(-(
sqrt (-1)));
disp(x6g_stagel_output_multiplied_by_twiddle, Stage—
I output at line 7 after multiplication by
twiddle factor=")
x7h_stageIl_output_multiplied_by_twiddle=(x7h)
*(=0.707-(sqrt (-1))*(0.707));
disp(x7h_stagel_output_multiplied_by_twiddle, 'Stage—
I output at line 8 after multiplication by
twiddle factor=")

//Stage—I1 Computations

x0a_stagelIl_output=x2c+x0a;//Computing StageII
output at line 1

disp(x0Oa_stageII_output, Stage—Il output at line 1=’
)

x1b_stagell_output=x3d+x1lb;//Computing Stage—1II
output at line 2

disp(xlb_stageII_output, Stage—II output at line 2=’
)

x2c_stagelIl_output=(x2c-x0a)*(-1);//Computing Stage—
IT output at line 3

disp(x2c_stageII_output, Stage—Il output at line 3=’
)

x3d_stageII_output=(x3d-x1b)*(-1);//Computing Stage—
IT output at line 4

disp(x3d_stageII_output, Stage—Il output at line 4=’
)

x4e_stagell_output=x6g+xde;//Computing StageII
output at line 5

disp(x4e_stagelI_output, Stage—Il output at line 5=’
)

xbf_stagell_output=
xTh_stagel_output_multiplied_by_twiddle+
x5f_stagel_output_multiplied_by_twiddle;//
Computing Stage—II output at line 6

disp(x5f_stageII_output, Stage—Il output at line 6=’

23



56

o7

58

59

60
61

62

63

64

65

66

67

68

69

70

71

72

73

)

x6g_stagelIl_output=(
x6g_stagel_output_multiplied_by_twiddle-xde)*(-1)
; //Computing Stage—II output at line 7

disp(x6g_stagelI_output, Stage—Il output at line 7=’
)

xTh_stagelIl_output=(x7h’-x5f)*(-1);//Computing Stage
—II output at line 8

disp(x7h_stageII_output, Stage—II output at line 8=’
)

//Stage—II output at line 4 and line 8 are to be
multiplied by twiddle factor having value (—j)

x3d_stageIIl_output_multiplied_by_twiddle=(
x3d_stageII_output)*(-(sqrt(-1)));

disp(x3d_stageIIl_output_multiplied_by_twiddle, 'Stage
—II output at line 4 after multiplication by
twiddle factor=")

x7h_stageIIl_output_multiplied_by_twiddle=(
x7h_stageII_output)*(-(sqrt(-1)));

disp(x7h_stageIIl_output_multiplied_by_twiddle, 'Stage
—II output at line 8 after multiplication by
twiddle factor=")

//Stage—111 Computations(i.e. Computations for the
final stage)
X0=x1b_stageIIl_output+x0a_stageIIl_output;//Computing
X(0) at last stage
X4=(x1b_stagelIl_output-x0Oa_stageIlIl_output)*(-1);//
Computing X(4) at last stage
X2=x3d_stagell_output_multiplied_by_twiddle+
x2c_stagelIl_output;//Computing X(2) at last stage
X6=(x3d_stagelII_output_multiplied_by_twiddle-
x2c_stagelII_output)*(-1);//Computing X(6) at last
stage
X1=(x5f_stageIl_output+xde_stagelIl_output);//
Computing X (1) at last stage
X5=(x5f_stageIl_output-xde_stagelIl_output)*(-1);//
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Computing X(5) at last stage
X3=x7h_stagelIl_output_multiplied_by_twiddle+

x6g_stagell_output;//Computing X(3) at last
X7=(x7h_stagelIIl_output_multiplid_by_twiddle-

stage

x6g_stagelII_output)*(-1);//Computing X(7) at last
stage
disp (X0, 'X(0)=")
disp (X4, 'X(4)=")
disp (X2, ’'X(2)=")
disp (X6, 'X(6)=")
disp(X1,’'X(1)=")
disp (X5, 'X(5)=")
disp (X3, 'X(3)=")

disp (X7, 'X(7)=")
disp({,X0,X1,X2,X3,X4,X5,X6,X7,}, 'So,the DFT of x(n)
using Decimation—in—Frequency Fast Fourier
Transform (DIF-FFT) is X(k)=")
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Experiment: 7

N=8;IDIF-FFT Without Using
Inbuilt Scilab FFT Function

Scilab code Solution 7.0 Experiment Number 7

//AIM:N=8;IDIF-FFT without using inbuilt Scilab FFT
function

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let X(k)={11,1, 1,1, 5,1, 1,1}
//Let us begin with the programming.For
understanding ,let us write the given data as
//X(0)=11;X(1)=1,X(2)=-1,X(3)=1,X(4)=-5X(5)=1,X(6)
=—1X(7)=1

X0_conj=11; //IDIF-FFT,so arranging the input in
natural order

X1_conj=1;//IDIF-FFT,so arranging the input in
natural order

X2_conj=-1;//IDIF-FFT,so arranging the input in
natural order

X3_conj=1;//IDIF-FFT,so arranging the input in
natural order
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X4_conj=-5; //IDIF-FFT,so arranging the input in
natural order

X5_conj=1;//IDIF-FFT,so arranging the input in
natural order

X6_conj=-1;//IDIF-FFT,so arranging the input in
natural order

X7_conj=1;//IDIF-FFT,so arranging the input in
natural order

disp(X0_conj, 'Xx(0)

disp(X1_conj, 'Xx(1)

disp(X2_conj, 'Xx(2)

disp(X3_conj, 'Xx(3)

disp(X4_conj, 'Xx(4)=")

disp(X5_conj, 'Xx(5)

disp(X6_conj, 'Xx(6)

disp (X7_conj, 'Xx(7)

// Twiddle factor

WO=cos (((2*%pi)/8) *0) -(sqrt (-1))*sin (((2*%pi) /8) *0)
Wi=cos (((2*%pi)/8) *1)-sqrt (-1)*sin (((2*%pi) /8) *1)
W2=cos (((2*%pi)/8) *2) -sqrt (-1) *sin (((2*%pi) /8) *x2)
W3=cos (((2*%pi)/8) *3)-sqrt (-1)*sin (((2*%pi) /8) *3)

//Stage I computation
x0a=X0_conj+X4_conj
x1b=X1_conj+Xb_conj
x2c=X2_conj+X6_conj
x3d=X3_conj+X7_conj
x4e=X0_conj+(-1)*X4_conj
x6f=X1_conj+(-1)*X5_conj
x6g=X2_conj+(-1)*X6_conj
x7h=X3_conj+(-1)*X7_conj
disp(’Stage—1 values are’)
disp(x0a)

disp(x1b)

disp(x2c)

disp (x3d)

disp (x4de)
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disp (x5f)

disp (x6g)

disp (x7h)

//Stage I output at line 4,5,6 & 7 are to be
multiplied by factors W0, W1, W2, and W3
respectively

x4el=x4ex*WO

x5f1=xb5f*W1

x6gl=x6g*W2

x7Th1=x7h*W3

//Stage Il computation

x0a_stagelIl_output=x2c+x0a;//Computing Stage—II
output at line 1

disp(x0Oa_stageII_output, Stage—Il output at line
)

x1b_stageIIl_output=x3d+x1b;//Computing Stage-I
output at line 2

disp(xlb_stageII_output, Stage—IIl output at line
)

x2c_stagell_output=x0a-x2c;//Computing Stage—I
output at line 3

disp(x2c_stageII_output, Stage—Il output at line
)

x3d_stagelII_output=x1b-x3d;//Computing Stage—I
output at line 4

disp(x3d_stageII_output, Stage—Il output at line
)

x4e_stagell_output=x6g+xdel;//Computing Stage—II
output at line 5

disp(x4e_stagelI_output, Stage—Il output at line
)

x6f _stagell_output=x7h+x5f1//Computing Stage—II
output at line 6

disp(xb5f_stageII_output, Stage—Il output at line
)

x6g_stagell_output=xdel+(x6gl*(-1));//Computing
Stage—II output at line 7
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disp(x6g_stagelI_output, Stage—Il output at line 7=’

)
x7h_stageIIl_output=x5f1+(x7h1*(-1));//Computing
Stage—II output at line 8
disp(x7h_stageII_output, Stage—II output at
)

line 8=’

//Stage IIl computation
x0=x0a_stageII_output+xlb_stageII_output;//
x4=x0a_stagelI_output+(-1)*xlb_stagelI_output
x2=x3d_stageIIl_output*((-1)*sqrt(-1))+
x2c_stagell_output;//at line 2 x3d_stagell_output
is to be multiplied by factor —j
x6=x3d_stageII_output*((-1)*sqrt(-1))*(-1)+
x2c_stagelII_output;//at line 3 x3d_stagell_output
is to be multioplied by factor —jx*(—1)
xl=x4e_stagell_output+x5f_stagell_output
xb=x4e_stagelIl_output-x5f_stagell_output
x3=x7h_stagelII_output*((-1)*sqrt(-1))+
x6g_stagell_output;//at line 7 xT7h_stagell_output
is to b e multiplied by factor —j
x7=xTh_stageIIl_output*((-1)*sqrt(-1))*(-1)+
x6g_stagell_output;// at line 8
x7h_stagell _output is to be multiplied by factor
(—)+(~1)
//final computation
x0_star=(1/8) *(x0)
disp(xO_star, 'x*(0)=")
x4_star=(1/8) *(x4)
disp(x4_star, 'x*(4)=")
x2_star=(1/8) *(x2)
disp(x2_star, 'xx(2)=")
x6_star=(1/8) *(x6)
disp(x6_star, 'xx(6)=")
x1_star=(1/8) *(x1)
disp(xi_star, 'xx*(1)=")
x5_star=(1/8) *(x5)
disp(x5_star, 'xx(5)=")
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x3_star=(1/8) *(x3)
disp(x3_star, 'x*(3)=")
x7_star=(1/8) *(x7)
disp(x7_star, 'xx(7)=")

disp({,x0_star ,x1_star,x2_star,x3_star,x4_star,
xb_star ,x6_star ,x7_star,}, 'x*x(n)=")
x0_star_real=real (x0O_star) ;
x0_star_imag_conj=(-1)*(imag(x0O_star));
x1l_star_real=real(xl_star);
x1l_star_imag_conj=(-1)*(imag(xl_star));
x2_star_real=real (x2_star) ;
x2_star_imag_conj=(-1)*(imag(x2_star));
x3_star_real=real (x3_star);
x3_star_imag_conj=(-1)*(imag(x3_star));
x4_star_real=real (x4_star) ;
x4_star_imag_conj=(-1)*(imag(x4_star));
x5_star_real=real (x5_star) ;
x5_star_imag_conj=(-1)*(imag(x5_star));
x6_star_real=real (x6_star) ;
x6_star_imag_conj=(-1)*(imag(x6_star));
x7_star_real=real (x7_star);
x7_star_imag_conj=(-1)*(imag(x7_star));
x0=x0_star_real+xO_star_imag_conj;
xl=x1_star_real+xl_star_imag_conj;
x2=x2_star_real+x2_star_imag_conj;
x3=x3_star_real+x3_star_imag_conj;
x4=x4_star_real+x4_star_imag_conj;
xb=x5_star_real+xb5_star_imag_conj;
x6=x6_star_real+x6_star_imag_conj;
Xx7=x7_star_real+x7_star_imag_conj;
disp({,x0,x1,x2,x3,x4,x5,x6,x7,}, 'So,the IDFT of X(k
) using Inverse Decimation—in—Frequency Fast
Fourier Transform (IDIF-FFT) is x(n)=")
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Experiment: 8

Compute Kaiser Window
Parameter Beta & Its
Minimum Length

Scilab code Solution 8.0 Experiment Number 8

//AIM: Compute Kaiser window parameter Beta & its
minimum length

//Software version Scilab 5.5.2

//OS windows 10

clc;
clear;
//Let us consider the following specifications :
/) H () 0 .01 0 0 .25
/095 H () 1 .05 0.35

0 .6
/) H () 0 01 0.65

//The magnitude specifications of the FIR filter is
given by

/] 1— pH () 1+ p for O p
// 0 H () S for S

//On comparing ,we get 1— p =0.95

del_p=0.05;
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del_s=0.01;

omega_p=0.6*(%pi);
omega_s=0.65*(%pi);
del_omega=omega_s-omega_p;

// ia minimum of p and minimum of
del=0.05;

//Attenuation A is given as
A=((-20)*(logl10(del)));

disp (7dB” ,A,” Attenuation (A)=")
//Calculating value of
beeta=(A-21) "(0.4)+0.07886+(A-21) ;
disp(beeta,” =")

//The length of filter is (M+1)

//The value of M is calculated as follows

M=((A-8)/(2.285+(del_omega)));
disp (M, M=")
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Experiment: 9

Design High Pass Butterworth

Filter Using Bilinear
Transformation

Scilab code Solution 9.0 Experiment Number 9

//AIM: Design High pass Butterworth filter
Bilinear Transformation.

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

s=poly(0,”s”)

T=1; //Assume T=1 second

Ap=0.8;//Attenuation in pass band

As=0.2;//Attenuation in stop band

wp=0.2*x(%pi)

ws=0.6*(%pi)

ohmp=2/T*(tan(wp/2))

ohms=2/T*(tan(ws/2))

//ORDER CALCULATION(N) ;

a=(1/As"2-1)

b=(1/Ap~2-1)
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c=log(a/b)

N=(1/2)*(c/(log(ohms/ohmp)))

Nr=int (N)

x=N-int (N)

if (x>0)

Nr=Nr+1

ohmc=(ohmp/(1/Ap~2-1) " (1/(2*Nr)))
//calculation of poles

i=0:1:Nr-1;

pi_plus=ohmc*exp (%i*(Nr+2*xi+1) *(%pi)/(2*Nr))
pi_minus=-ohmc*exp (%i*(2+2.%xi+1) *x(%pi)/(2xNr))
disp(wp,’ p =")

disp(ws,’ s =)

disp(ohmp,’ p =")

disp(ohms,’ s =")

disp(N’, ’Order (N)=")

disp(Nr, "Integer value of the order:(Nr)=")
disp (ohmc,’ ¢ =")

disp(pi_plus, "Poles=")

disp(pi_minus, "Poles=")
h=ohmc/(s-(-0.53-0.53%*%1i))
hi=ohmc/(s-(-0.53+0.53*%1i))

h2=h%*h1;

disp(h,hl, 'The analog transfer function will be the
multiplication of the following two terms:’);

disp(h2, 'The analog transfer function H(s)=")
Z=poly (0,”Z")
s=(ohmcx*xohmp) / ((2/T)*((Z-1) /(Z+1)));
h3=0.56/(s"2+1.06%s+0.56) ;

disp (h3,” Transfer function of digital filter H(Z)=")
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Experiment: 10

Overlap Add Method To Filter
Long Sequences Using Linear
Convolution

Scilab code Solution 10.0 Experiment Number 10

//AIM: Overlap add method to filter long sequences
using linear convolution

//Software version Scilab 5.5.2
//OS windows 10

clc;

clear;

//Let x(n)={1,2,3,4,5,6,7,8} and h(n)={1,2}
xn =[1 2 3 456 7 8]; //Nx=8
xon =[1 2];

xono=1;

xonl=2;

xln =[3 4];

x1no=3;

x1nl1=4;

x2n =[5 6];

x2no0=5;

x2n1=6;
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x3n =[7 8];
x3no=7;
x3n1=8;

hn =[1 2]; //Here length of impulse response array h
(n) is 2 (i.e.
//Length of each partitioned input

2(i.c. L=2)

M=2) or Nh=2

1.e xOn to x3n

//Since Nx=8 Nh=2 and we know Nx=mxNh(so 8=mx2)
giving m=4;and so x(n) has been partitioned into
4 blocks of length Nh=2

hno=1;
hnl1=2;

a=xonox*hno;
b=xonl*hno;
c=xonox*xhnl;
d=xonlx*xhnl;
yon=[a c+b d];
disp(yon, 'yon=")

e=x1lnox*xhno;
f=x1nl1x*hno;
g=x1lnoxhnl;
h=x1nl1%*hnl;
yln=[e g+f h];
disp(yln, 'yln=")

i=x2no*hno;
j=x2nlx*hno;
k=x2no*hnl;
1=x2n1x*hni;
y2n=[i k+j 1];
disp(y2n, 'y2n=")

m=x3no*hno;
n=x3nl*hno;
o=x3nox*xhnl;
p=x3nl*hnl;
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y3n=[m o+n pl;
disp(y3n, 'y3n=")

yon =[yon,0,0,0,0,0,0]
yln =[0,0,y1n,0,0,0,0]
y2n =[0,0,0,0,y2n,0,0]
y3n =[0,0,0,0,0,0,y3n ]

yn=yon+ yln+y2n+y3n

disp(yn, 'So,the output using overlap add method(
without using inbuilt functions)
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Experiment: 11

Overlap Save Method For
Sectioned Convolution Using
Matrix Approach

Scilab code Solution 11.0 Experiment Number 11

//AIM: Overlap save method for sectioned convolution
using matrix approach.

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

xn =[1 2 -1 23 -2 -3 -111 2 -1]; //NX:12
hn =[1 2 3]; //Nh=3

//L(approx.=)2«Nh,so L(approx.=)2x3

//So(approx=)6

//We consider the length as 5

//Nh—1=3 1=2

//So Nh—1 number of leading zeros to be added to x(n

//So xn=[0 01 2 -123 -2 -3-1112 —1]

xOn =[0 0 1 2 -1]; //Partitioned input sequence
xin =[2 -1 2 3 -2];//Partitioned input sequence
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x2n =[3 -2 -3 -1 1];//Partitioned input sequence

x3n=[-1 1 1 2 -1];//Partitioned input sequence

x4n=[2 -1 0 0 0 ];//Partitioned input sequence

//Convolving each partitioned input sequence with hn

yOn =[0 -1 2 1 0; 00 -1 2 1; 1 00 -12; 2100
-1; -1 2 1 0 01%[1;2;3;0;0];

disp(yOn,”yOn=")

yln =[2 -2 3 2 -1; -1 2 -2 3 2; 2 -12 -23; 32 -1
2 -2; -2 3 2 -1 2]1%[1;2;3;0;0];

disp(yln,”’yln=")

y2n =[3 1 -1 -3 -2; -2 31 -1 -3; -3 -231 -1;-1 -3

-2 31; 1 -1 -3 -2 3]%[1;2;3;0;0];

disp(y2n,”y2n=")

y3n=[-1 -1 2 1 1;1 -1 -1 2 1; 11 -1 -1 2;2 11 -1
-1; -1 211 -11%[1;2;3;0,0];

disp(y3n,”y3n=")

y4n=[2 0 0 O -1; -1 2 0 0 O0; 0 -1 2 0 O0; 0 O -1 2 03
0 00 -1 2]%[1;2;3;0;0];

disp(y4n,”y4n=")

yn0 = yOn (3:5)

//(3:5) means that from yon,select the element from
3rd to 5th

ynl = yin (3:5)

yn2 = y2n (3:5)

yn3 = y3n (3:5)

yn4d = y4n (3:5)

yn =[yn0;ynl;yn2;yn3;yn4] //Concatenating yno,ynl,
yn2 ,yn3 and yn4

disp(yn,”y(n)=")
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