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Experiment: 1

Compute Four Point DFT
Using Matrix Approach Only.

Scilab code Solution 1.0 Experiment Number 1

1 // AIM: Compute f o u r po i n t DFT us i ng matr ix approach
on ly .

2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6

7 // Let x ( n ) ={1 ,2 ,3 ,4}
8 // Let us f i r s t d e f i n e the W4 matr ix
9 W4=[1 1 1 1 ;1 -sqrt(-1) -1 sqrt(-1);1 -1 1 -1;1

sqrt(-1) -1 -sqrt(-1)];

10 disp(W4, ’W4= ’ )
11 //Now l e t us d e f i n e the input s equence
12 xn =[1;2;3;4]; //The input s equence x ( n ) has been

a r ranged as a column matr ix
13 //DFT i s ob ta i n ed by mu l t i p l y i n g the tw i dd l e matr ix

W4 and the input s equence
14 Xk=W4*xn;

15 disp(Xk, ’DFT : X( k )= ’ )
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Experiment: 2

Derive The [W4*] Matrix
Useful To Compute IDFT

Scilab code Solution 2.0 Experiment Number 2

1 //AIM: Der ive the [W4∗ ] matr ix u s e f u l to compute
IDFT .

2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6 W40_star=int(cos(0))+(sqrt(-1)*int(sin(0)));

7 W41_star=int(cos(%pi /2))+(sqrt(-1))*int((sin(%pi/2))

);

8 W42_star=int(cos(%pi))+(sqrt(-1))*int((sin(%pi)));

9 W43_star=int(cos ((3* %pi)/2))+(sqrt(-1))*int(sin ((3*

%pi)/2));

10

11 disp(W40_star , ’ W40 star= ’ )
12 disp(W41_star , ’ W41 star= ’ )
13 disp(W42_star , ’ W42 star= ’ )
14 disp(W43_star , ’ W43 star= ’ )
15

16 W44_star=W40_star;
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17 W49_star=W41_star;

18 W46_star=W42_star;

19

20 W4_star= [W40_star W40_star W40_star W40_star;

21 W40_star W41_star W42_star W43_star;

22 W40_star W42_star W44_star W46_star;

23 W40_star W43_star W46_star W49_star ];

24 disp(W4_star , ’ W4 star= ’ )
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Experiment: 3

IDFT Computation Using
Matrix Method

Scilab code Solution 3.0 Experiment Number 3

1 //AIM: IDFT computat ion u s i n g matr ix method .
2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6

7 // Let Y( k ) ={1 ,0 ,1 ,0}
8 // Computation f o r I n v e r s e D i s c r e t e Fou r i e r Transform

(IDFT)
9 // Let us f i r s t d e f i n e the W4∗ matr ix
10 W4_star =[1 1 1 1 ;1 sqrt(-1) -1 -sqrt(-1);1 -1 1

-1;1 -sqrt(-1) -1 sqrt(-1)];

11 disp(W4_star , ’W4∗= ’ )
12 Yk =[1;0;1;0]; //The input s equence Y( k ) has been

a r ranged as a column matr ix
13 yn =(1/4)*W4_star*Yk;

14 disp(yn, ’ IDFT : y ( n )= ’ )
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Experiment: 4

N=8; DIT-FFT Without Using
Inbuilt Scilab FFT Function

Scilab code Solution 4.0 Experiment Number 4

1 //AIM: N=8; DIT−FFT without u s i n g i n b u i l t S c i l a b FFT
f u n c t i o n

2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6 // Let x ( n ) ={1 , 2 , 1 , 2 , 0 , 2 , 1 , 2}
7 // Let us beg in with the programming . For

under s tand ing , l e t us w r i t e the g i v en data as
8 //x ( 0 ) =1;x ( 1 ) =2 ,x ( 2 ) =1 ,x ( 3 ) =2 ,x ( 4 ) =0 ,x ( 5 ) =2 ,x ( 6 ) =1 ,x

( 7 )=2
9 x0=1; //DIT−FFT, so a r r an g i n g the input i n b i t−

r e v e r s e d o rd e r
10 x4=0; //DIT−FFT, so a r r an g i n g the input i n b i t−

r e v e r s e d o rd e r
11 x2=1; //DIT−FFT, so a r r an g i n g the input i n b i t−

r e v e r s e d o rd e r
12 x6=1; //DIT−FFT, so a r r an g i n g the input i n b i t−

r e v e r s e d o rd e r
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13 x1=2; //DIT−FFT, so a r r an g i n g the input i n b i t−
r e v e r s e d o rd e r

14 x5=2; //DIT−FFT, so a r r an g i n g the input i n b i t−
r e v e r s e d o rd e r

15 x3=2; //DIT−FFT, so a r r an g i n g the input i n b i t−
r e v e r s e d o rd e r

16 x7=2; //DIT−FFT, so a r r an g i n g the input i n b i t−
r e v e r s e d o rd e r

17 // Stage I computat ion
18 x0a=x4+x0;//Computing Stage−I output at l i n e 1
19 disp(x0a , ’ Stage−I output at l i n e 1= ’ )
20 x4b=(x4 -x0)*(-1);//Computing Stage−I output at l i n e

2
21 disp(x4b , ’ Stage−I output at l i n e 2= ’ )
22 x2c=x6+x2;//Computing Stage−I output at l i n e 3
23 disp(x2c , ’ Stage−I output at l i n e 3= ’ )
24 x6d=(x6 -x2)*(-1);//Computing Stage−I output at l i n e

4
25 disp(x6d , ’ Stage−I output at l i n e 4= ’ )
26 x1e=x5+x1;//Computing Stage−I output at l i n e 5
27 disp(x1e , ’ Stage−I output at l i n e 5= ’ )
28 x5f=(x5 -x1)*(-1);//Computing Stage−I output at l i n e

6
29 disp(x5f , ’ Stage−I output at l i n e 6= ’ )
30 x3g=x7+x3;//Computing Stage−I output at l i n e 7
31 disp(x3g , ’ Stage−I output at l i n e 7 ’ )
32 x7h=(x7 -x3)*(-1);//Computing Stage−I output at l i n e

8
33 disp(x7h , ’ Stage−I output at l i n e 8= ’ )
34

35 // Stage−I output at l i n e 4 and l i n e 8 i s to be
mu l t i p l i e d by tw i dd l e f a c t o r hav ing va lu e (− j )

36 x6d1=(x6d)*(-sqrt(-1));

37 x7h1=(x7h)*(-sqrt(-1));

38 disp(x6d1 , ’ Stage−I output ( i . e . i nput to s tage−I I )
a f t e r m u l t i p l i c a t i o n by tw i dd l e f a c t o r va l u e o f
(− j ) a t l i n e 4 = ’ )

39 disp(x7h1 , ’ Stage−I output ( i . e . i nput to s tage−I I )
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a f t e r m u l t i p l i c a t i o n by tw i dd l e f a c t o r va l u e o f
(− j ) a t l i n e 8 = ’ )

40

41 // Stage−I I Computations
42 x0a_stageII_output=x2c+x0a;//Computing Stage−I I

output at l i n e 1
43 disp(x0a_stageII_output , ’ Stage−I I output at l i n e 1= ’

)

44 x4b_stageII_output=x6d1+x4b;//Computing Stage−I I
output at l i n e 2

45 disp(x4b_stageII_output , ’ Stage−I I output at l i n e 2= ’
)

46 x2c_stageII_output =(x2c -x0a)*(-1);//Computing Stage−
I I output at l i n e 3

47 disp(x2c_stageII_output , ’ Stage−I I output at l i n e 3= ’
)

48 x6d_stageII_output =(x6d1 -x4b)*(-1);//Computing Stage
−I I output at l i n e 4

49 disp(x6d_stageII_output , ’ Stage−I I output at l i n e 4= ’
)

50 x1e_stageII_output=x3g+x1e;//Computing Stage−I I
output at l i n e 5

51 disp(x1e_stageII_output , ’ Stage−I I output at l i n e 5= ’
)

52 x5f_stageII_output=x7h1+x5f;//Computing Stage−I I
output at l i n e 6

53 disp(x5f_stageII_output , ’ Stage−I I output at l i n e 6= ’
)

54 x3g_stageII_output =(x3g -x1e)*(-1);//Computing Stage−
I I output at l i n e 7

55 disp(x3g_stageII_output , ’ Stage−I I output at l i n e 7= ’
)

56 x7h_stageII_output =(x7h1 -x5f)*(-1);//Computing Stage
−I I output at l i n e 8

57 disp(x7h_stageII_output , ’ Stage−I I output at l i n e 8= ’
)

58

59 // Stage−I I output at l i n e 6 , l i n e 7 and l i n e 8 a r e to
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be mu l t i p l i e d by tw i dd l e f a c t o r hav ing va lu e
(0.707 − j 0 . 7 0 7 ) ,(− j ) and (−0.707− j 0 . 7 0 7 )
r e s p e c t i v e l y

60 x5f_stgII_op_multi_by_tw =( x5f_stageII_output)

*(0.707 -( sqrt(-1))*(0.707));

61 disp(x5f_stgII_op_multi_by_tw , ’ Stage−I I output at
l i n e 6 a f t e r m u l t i p l i c a t i o n by tw i dd l e f a c t o r= ’ )

62 x3g_stgII_op_multi_by_tw =( x3g_stageII_output)*(-(

sqrt(-1)));

63 disp(x3g_stgII_op_multi_by_tw , ’ Stage−I I output at
l i n e 7 a f t e r m u l t i p l i c a t i o n by tw i dd l e f a c t o r= ’ )

64 x7h_stgII_op_multi_by_tw =( x7h_stageII_output)

*( -0.707 -( sqrt(-1))*(0.707));

65 disp(x7h_stgII_op_multi_by_tw , ’ Stage−I I output at
l i n e 8 a f t e r m u l t i p l i c a t i o n by tw i dd l e f a c t o r= ’ )

66

67 // Stage− I I I Computations ( i . e . Computations f o r the
f i n a l s t a g e )

68 X0=x1e_stageII_output+x0a_stageII_output;//Computing
X( 0 ) at l a s t s t a g e

69 X1=x5f_stgII_op_multi_by_tw+x4b_stageII_output;//
Computing X( 1 ) at l a s t s t a g e

70 X2=x3g_stgII_op_multi_by_tw+x2c_stageII_output;//
Computing X( 2 ) at l a s t s t a g e

71 X3=x7h_stgII_op_multi_by_tw+x6d_stageII_output;//
Computing X( 3 ) at l a s t s t a g e

72 X4=( x1e_stageII_output -x0a_stageII_output)*(-1);//
Computing X( 4 ) at l a s t s t a g e

73 X5=( x5f_stgII_op_multi_by_tw -x4b_stageII_output)

*(-1);//Computing X( 5 ) at l a s t s t a g e
74 X6=( x3g_stgII_op_multi_by_tw -x2c_stageII_output)

*(-1);//Computing X( 6 ) at l a s t s t a g e
75 X7=( x7h_stgII_op_multi_by_tw -x6d_stageII_output)

*(-1);//Computing X( 7 ) at l a s t s t a g e
76 disp(X0, ’X( 0 )= ’ )
77 disp(X1, ’X( 1 )= ’ )
78 disp(X2, ’X( 2 )= ’ )
79 disp(X3, ’X( 3 )= ’ )
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80 disp(X4, ’X( 4 )= ’ )
81 disp(X5, ’X( 5 )= ’ )
82 disp(X6, ’X( 6 )= ’ )
83 disp(X7, ’X( 7 )= ’ )
84 disp({,X0,X1,X2 ,X3,X4,X5 ,X6 ,X7 ,}, ’ So , the DFT o f x ( n )

u s i n g Decimation−in−Time Fast Fou r i e r Transform (
DIT−FFT) i s X( k )= ’ )
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Experiment: 5

N=8; IDIT-FFT Without Using
Inbuilt Scilab FFT Function

Scilab code Solution 5.0 Experiment Number 5

1 //AIM:N=8; IDIT−FFT without u s i n g i n b u i l t S c i l a b FFT
f u n c t i o n

2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6 // Let X( k ) ={11 ,1−1 ,1 ,−5 ,1 ,−1 ,1}
7 // Let us beg in with the programming . For

under s tand ing , l e t us w r i t e the g i v en data as
8 //X( 0 ) =11;X( 1 ) =1 ,X( 2 )=−1,X( 3 ) =1 ,X( 4 )=−5,X( 5 ) =1 ,X( 6 )

=−1,X( 7 )=1
9 X0_conj =11; // IDIT−FFT, so a r r an g i n g the input i n b i t−

r e v e r s e d o rd e r
10 X4_conj =-5; // IDIT−FFT, so a r r an g i n g the input i n b i t−

r e v e r s e d o rd e r
11 X2_conj =-1; // IDIT−FFT, so a r r an g i n g the input i n b i t−

r e v e r s e d o rd e r
12 X6_conj =-1; // IDIT−FFT, so a r r an g i n g the input i n b i t−

r e v e r s e d o rd e r
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13 X1_conj =1; // IDIT−FFT, so a r r an g i n g the input i n b i t−
r e v e r s e d o rd e r

14 X5_conj =1; // IDIT−FFT, so a r r an g i n g the input i n b i t−
r e v e r s e d o rd e r

15 X3_conj =1; // IDIT−FFT, so a r r an g i n g the input i n b i t−
r e v e r s e d o rd e r

16 X7_conj =1; // IDIT−FFT, so a r r an g i n g the input i n b i t−
r e v e r s e d o rd e r

17 disp(X0_conj , ’X∗ ( 0 )= ’ )
18 disp(X4_conj , ’X∗ ( 4 )= ’ )
19 disp(X2_conj , ’X∗ ( 2 )= ’ )
20 disp(X6_conj , ’X∗ ( 6 )= ’ )
21 disp(X1_conj , ’X∗ ( 1 )= ’ )
22 disp(X5_conj , ’X∗ ( 5 )= ’ )
23 disp(X3_conj , ’X∗ ( 3 )= ’ )
24 disp(X7_conj , ’X∗ ( 7 )= ’ )
25 // Stage I computat ion
26 X0a=X4_conj+X0_conj;//Computing Stage−I output at

l i n e 1
27 disp(X0a , ’ Stage−I output at l i n e 1= ’ )
28 X4b=(X4_conj -X0_conj)*(-1);//Computing Stage−I

output at l i n e 2
29 disp(X4b , ’ Stage−I output at l i n e 2= ’ )
30 X2c=X6_conj+X2_conj;//Computing Stage−I output at

l i n e 3
31 disp(X2c , ’ Stage−I output at l i n e 3= ’ )
32 X6d=(X6_conj -X2_conj)*(-1);//Computing Stage−I

output at l i n e 4
33 disp(X6d , ’ Stage−I output at l i n e 4= ’ )
34 X1e=X5_conj+X1_conj;//Computing Stage−I output at

l i n e 5
35 disp(X1e , ’ Stage−I output at l i n e 5= ’ )
36 X5f=(X5_conj -X1_conj)*(-1);//Computing Stage−I

output at l i n e 6
37 disp(X5f , ’ Stage−I output at l i n e 6= ’ )
38 X3g=X7_conj+X3_conj;//Computing Stage−I output at

l i n e 7
39 disp(X3g , ’ Stage−I output at l i n e 7 ’ )
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40 X7h=(X7_conj -X3_conj)*(-1);//Computing Stage−I
output at l i n e 8

41 disp(X7h , ’ Stage−I output at l i n e 8= ’ )
42

43 // Stage−I output at l i n e 4 and l i n e 8 i s to be
mu l t i p l i e d by tw i dd l e f a c t o r hav ing va lu e (− j )

44 X6d ’=( X6d)*(-sqrt(-1));

45 X7h ’=( X7h)*(-sqrt(-1));

46 disp(X6d ’, ’ Stage−I output ( i . e . i nput to s tage−I I )
a f t e r m u l t i p l i c a t i o n by tw i dd l e f a c t o r va l u e o f
(− j ) a t l i n e 4 = ’ )

47 disp(X7h ’, ’ Stage−I output ( i . e . i nput to s tage−I I )
a f t e r m u l t i p l i c a t i o n by tw i dd l e f a c t o r va l u e o f
(− j ) a t l i n e 8 = ’ )

48

49 // Stage−I I Computations
50 X0a_stageII_output=X2c+X0a;//Computing Stage−I I

output at l i n e 1
51 disp(X0a_stageII_output , ’ Stage−I I output at l i n e 1= ’

)

52 X4b_stageII_output=X6d ’+X4b;//Computing Stage−I I
output at l i n e 2

53 disp(X4b_stageII_output , ’ Stage−I I output at l i n e 2= ’
)

54 X2c_stageII_output =(X2c -X0a)*(-1);//Computing Stage−
I I output at l i n e 3

55 disp(X2c_stageII_output , ’ Stage−I I output at l i n e 3= ’
)

56 X6d_stageII_output =(X6d ’-X4b)*(-1);//Computing Stage
−I I output at l i n e 4

57 disp(X6d_stageII_output , ’ Stage−I I output at l i n e 4= ’
)

58 X1e_stageII_output=X3g+X1e;//Computing Stage−I I
output at l i n e 5

59 disp(X1e_stageII_output , ’ Stage−I I output at l i n e 5= ’
)

60 X5f_stageII_output=X7h ’+X5f;//Computing Stage−I I
output at l i n e 6
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61 disp(X5f_stageII_output , ’ Stage−I I output at l i n e 6= ’
)

62 X3g_stageII_output =(X3g -X1e)*(-1);//Computing Stage−
I I output at l i n e 7

63 disp(X3g_stageII_output , ’ Stage−I I output at l i n e 7= ’
)

64 X7h_stageII_output =(X7h ’-X5f)*(-1);//Computing Stage
−I I output at l i n e 8

65 disp(X7h_stageII_output , ’ Stage−I I output at l i n e 8= ’
)

66

67 // Stage−I I output at l i n e 6 , l i n e 7 and l i n e 8 a r e to
be mu l t i p l i e d by tw i dd l e f a c t o r hav ing va lu e

(0.707 − j 0 . 7 0 7 ) ,(− j ) and (−0.707− j 0 . 7 0 7 )
r e s p e c t i v e l y

68 X5f_stageII_output_multiplied_by_twiddle =(

X5f_stageII_output)*(0.707 -( sqrt(-1))*(0.707));

69 disp(X5f_stageII_output_multiplied_by_twiddle , ’ Stage
−I I output at l i n e 6 a f t e r m u l t i p l i c a t i o n by
tw i dd l e f a c t o r= ’ )

70 X3g_stageII_output_multiplied_by_twiddle =(

X3g_stageII_output)*(-(sqrt(-1)));

71 disp(X3g_stageII_output_multiplied_by_twiddle , ’ Stage
−I I output at l i n e 7 a f t e r m u l t i p l i c a t i o n by
tw i dd l e f a c t o r= ’ )

72 X7h_stageII_output_multiplied_by_twiddle =(

X7h_stageII_output)*( -0.707 -( sqrt(-1))*(0.707));

73 disp(X7h_stageII_output_multiplied_by_twiddle , ’ Stage
−I I output at l i n e 8 a f t e r m u l t i p l i c a t i o n by
tw i dd l e f a c t o r= ’ )

74

75 // Stage− I I I Computations ( i . e . Computations f o r the
f i n a l s t a g e )

76 x0_star =(1/8) *( X1e_stageII_output+X0a_stageII_output

);//Computing x ∗ ( 0 ) at l a s t s t a g e
77 x1_star =(1/8) *(

X5f_stageII_output_multiplied_by_twiddle+

X4b_stageII_output);//Computing x ∗ ( 1 ) at l a s t
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s t a g e
78 x2_star =(1/8) *(

X3g_stageII_output_multiplied_by_twiddle+

X2c_stageII_output);//Computing x ∗ ( 2 ) at l a s t
s t a g e

79 x3_star =(1/8) *(

X7h_stageII_output_multiplied_by_twiddle+

X6d_stageII_output);//Computing x ∗ ( 3 ) at l a s t
s t a g e

80 x4_star =(1/8) *(( X1e_stageII_output -

X0a_stageII_output)*(-1));//Computing x ∗ ( 4 ) at
l a s t s t a g e

81 x5_star =(1/8) *((

X5f_stageII_output_multiplied_by_twiddle -

X4b_stageII_output)*(-1));//Computing x ∗ ( 5 ) at
l a s t s t a g e

82 x6_star =(1/8) *((

X3g_stageII_output_multiplied_by_twiddle -

X2c_stageII_output)*(-1));//Computing x ∗ ( 6 ) at
l a s t s t a g e

83 x7_star =(1/8) *((

X7h_stageII_output_multiplied_by_twiddle -

X6d_stageII_output)*(-1));//Computing x ∗ ( 7 ) at
l a s t s t a g e

84 disp(x0_star , ’ x ∗ ( 0 )= ’ )
85 disp(x1_star , ’ x ∗ ( 1 )= ’ )
86 disp(x2_star , ’ x ∗ ( 2 )= ’ )
87 disp(x3_star , ’ x ∗ ( 3 )= ’ )
88 disp(x4_star , ’ x ∗ ( 4 )= ’ )
89 disp(x5_star , ’ x ∗ ( 5 )= ’ )
90 disp(x6_star , ’ x ∗ ( 6 )= ’ )
91 disp(x7_star , ’ x ∗ ( 7 )= ’ )
92 disp({,x0_star ,x1_star ,x2_star ,x3_star ,x4_star ,

x5_star ,x6_star ,x7_star ,}, ’ x ∗ ( n )= ’ )
93 x0_star_real=real(x0_star);

94 x0_star_imag_conj =(-1)*(imag(x0_star));

95 x1_star_real=real(x1_star);

96 x1_star_imag_conj =(-1)*(imag(x1_star));
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97 x2_star_real=real(x2_star);

98 x2_star_imag_conj =(-1)*(imag(x2_star));

99 x3_star_real=real(x3_star);

100 x3_star_imag_conj =(-1)*(imag(x3_star));

101 x4_star_real=real(x4_star);

102 x4_star_imag_conj =(-1)*(imag(x4_star));

103 x5_star_real=real(x5_star);

104 x5_star_imag_conj =(-1)*(imag(x5_star));

105 x6_star_real=real(x6_star);

106 x6_star_imag_conj =(-1)*(imag(x6_star));

107 x7_star_real=real(x7_star);

108 x7_star_imag_conj =(-1)*(imag(x7_star));

109 x0=x0_star_real+x0_star_imag_conj;

110 x1=x1_star_real+x1_star_imag_conj;

111 x2=x2_star_real+x2_star_imag_conj;

112 x3=x3_star_real+x3_star_imag_conj;

113 x4=x4_star_real+x4_star_imag_conj;

114 x5=x5_star_real+x5_star_imag_conj;

115 x6=x6_star_real+x6_star_imag_conj;

116 x7=x7_star_real+x7_star_imag_conj;

117 disp({,x0,x1,x2 ,x3,x4,x5 ,x6 ,x7 ,}, ’ So , the IDFT o f X( k
) u s i n g I n v e r s e Decimation−in−Time Fast Fou r i e r
Transform ( IDIT−FFT) i s x ( n )= ’ )
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Experiment: 6

N=8; DIF-FFT Without Using
Inbuilt Scilab FFT Function

Scilab code Solution 6.0 Experiment Number 6

1 //AIM :N=8; DIF−FFT without u s i n g i n b u i l t S c i l a b FFT
f u n c t i o n

2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6 // Let x ( n ) ={1 , 2 , 1 , 2 , 0 , 2 , 1 , 2}
7 // Let us beg in with the programming . For

under s tand ing , l e t us w r i t e the g i v en data as
8 //x ( 0 ) =1;x ( 1 ) =2 ,x ( 2 ) =1 ,x ( 3 ) =2 ,x ( 4 ) =0 ,x ( 5 ) =2 ,x ( 6 ) =1 ,x

( 7 )=2
9 x0=1; //DIF−FFT, so a r r an g i n g the input i n n a t u r a l

o r d e r
10 x1=2; //DIF−FFT, so a r r an g i n g the input i n n a t u r a l

o r d e r
11 x2=1; //DIF−FFT, so a r r an g i n g the input i n n a t u r a l

o r d e r
12 x3=2; //DIF−FFT, so a r r an g i n g the input i n n a t u r a l

o r d e r
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13 x4=0; //DIF−FFT, so a r r an g i n g the input i n n a t u r a l
o r d e r

14 x5=2; //DIF−FFT, so a r r an g i n g the input i n n a t u r a l
o r d e r

15 x6=1; //DIF−FFT, so a r r an g i n g the input i n n a t u r a l
o r d e r

16 x7=2; //DIF−FFT, so a r r an g i n g the input i n n a t u r a l
o r d e r

17 // Stage I computat ion
18 x0a=x4+x0;//Computing Stage−I output at l i n e 1
19 disp(x0a , ’ Stage−I output at l i n e 1= ’ )
20 x1b=x5+x1;//Computing Stage−I output at l i n e 2
21 disp(x1b , ’ Stage−I output at l i n e 2= ’ )
22 x2c=x6+x2;//Computing Stage−I output at l i n e 3
23 disp(x2c , ’ Stage−I output at l i n e 3= ’ )
24 x3d=x7+x3;//Computing Stage−I output at l i n e 4
25 disp(x3d , ’ Stage−I output at l i n e 4= ’ )
26 x4e=(x4 -x0)*(-1);//Computing Stage−I output at l i n e

5
27 disp(x4e , ’ Stage−I output at l i n e 5= ’ )
28 x5f=(x5 -x1)*(-1);//Computing Stage−I output at l i n e

6
29 disp(x5f , ’ Stage−I output at l i n e 6= ’ )
30 x6g=(x6 -x2)*(-1);//Computing Stage−I output at l i n e

7
31 disp(x6g , ’ Stage−I output at l i n e 7 ’ )
32 x7h=(x7 -x3)*(-1);//Computing Stage−I output at l i n e

8
33 disp(x7h , ’ Stage−I output at l i n e 8= ’ )
34

35 // Stage−I output at l i n e 6 , l i n e 7 and l i n e 8 a r e to
be mu l t i p l i e d by tw i dd l e f a c t o r hav ing va lu e
(0.707 − j 0 . 7 0 7 ) ,(− j ) and (−0.707− j 0 . 7 0 7 )
r e s p e c t i v e l y

36 x5f_stageI_output_multiplied_by_twiddle =(x5f)

*(0.707 -( sqrt(-1))*(0.707));

37 disp(x5f_stageI_output_multiplied_by_twiddle , ’ Stage−
I output at l i n e 6 a f t e r m u l t i p l i c a t i o n by
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tw i dd l e f a c t o r= ’ )
38 x6g_stageI_output_multiplied_by_twiddle =(x6g)*(-(

sqrt(-1)));

39 disp(x6g_stageI_output_multiplied_by_twiddle , ’ Stage−
I output at l i n e 7 a f t e r m u l t i p l i c a t i o n by
tw i dd l e f a c t o r= ’ )

40 x7h_stageI_output_multiplied_by_twiddle =(x7h)

*( -0.707 -( sqrt(-1))*(0.707));

41 disp(x7h_stageI_output_multiplied_by_twiddle , ’ Stage−
I output at l i n e 8 a f t e r m u l t i p l i c a t i o n by
tw i dd l e f a c t o r= ’ )

42

43 // Stage−I I Computations
44 x0a_stageII_output=x2c+x0a;//Computing Stage−I I

output at l i n e 1
45 disp(x0a_stageII_output , ’ Stage−I I output at l i n e 1= ’

)

46 x1b_stageII_output=x3d+x1b;//Computing Stage−I I
output at l i n e 2

47 disp(x1b_stageII_output , ’ Stage−I I output at l i n e 2= ’
)

48 x2c_stageII_output =(x2c -x0a)*(-1);//Computing Stage−
I I output at l i n e 3

49 disp(x2c_stageII_output , ’ Stage−I I output at l i n e 3= ’
)

50 x3d_stageII_output =(x3d -x1b)*(-1);//Computing Stage−
I I output at l i n e 4

51 disp(x3d_stageII_output , ’ Stage−I I output at l i n e 4= ’
)

52 x4e_stageII_output=x6g+x4e;//Computing Stage−I I
output at l i n e 5

53 disp(x4e_stageII_output , ’ Stage−I I output at l i n e 5= ’
)

54 x5f_stageII_output=

x7h_stageI_output_multiplied_by_twiddle+

x5f_stageI_output_multiplied_by_twiddle;//
Computing Stage−I I output at l i n e 6

55 disp(x5f_stageII_output , ’ Stage−I I output at l i n e 6= ’

23



)

56 x6g_stageII_output =(

x6g_stageI_output_multiplied_by_twiddle -x4e)*(-1)

;//Computing Stage−I I output at l i n e 7
57 disp(x6g_stageII_output , ’ Stage−I I output at l i n e 7= ’

)

58 x7h_stageII_output =(x7h ’-x5f)*(-1);//Computing Stage
−I I output at l i n e 8

59 disp(x7h_stageII_output , ’ Stage−I I output at l i n e 8= ’
)

60

61 // Stage−I I output at l i n e 4 and l i n e 8 a r e to be
mu l t i p l i e d by tw i dd l e f a c t o r hav ing va lu e (− j )

62 x3d_stageII_output_multiplied_by_twiddle =(

x3d_stageII_output)*(-(sqrt(-1)));

63 disp(x3d_stageII_output_multiplied_by_twiddle , ’ Stage
−I I output at l i n e 4 a f t e r m u l t i p l i c a t i o n by
tw i dd l e f a c t o r= ’ )

64 x7h_stageII_output_multiplied_by_twiddle =(

x7h_stageII_output)*(-(sqrt(-1)));

65 disp(x7h_stageII_output_multiplied_by_twiddle , ’ Stage
−I I output at l i n e 8 a f t e r m u l t i p l i c a t i o n by
tw i dd l e f a c t o r= ’ )

66

67 // Stage− I I I Computations ( i . e . Computations f o r the
f i n a l s t a g e )

68 X0=x1b_stageII_output+x0a_stageII_output;//Computing
X( 0 ) at l a s t s t a g e

69 X4=( x1b_stageII_output -x0a_stageII_output)*(-1);//
Computing X( 4 ) at l a s t s t a g e

70 X2=x3d_stageII_output_multiplied_by_twiddle+

x2c_stageII_output;//Computing X( 2 ) at l a s t s t a g e
71 X6=( x3d_stageII_output_multiplied_by_twiddle -

x2c_stageII_output)*(-1);//Computing X( 6 ) at l a s t
s t a g e

72 X1=( x5f_stageII_output+x4e_stageII_output);//
Computing X( 1 ) at l a s t s t a g e

73 X5=( x5f_stageII_output -x4e_stageII_output)*(-1);//
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Computing X( 5 ) at l a s t s t a g e
74 X3=x7h_stageII_output_multiplied_by_twiddle+

x6g_stageII_output;//Computing X( 3 ) at l a s t s t a g e
75 X7=( x7h_stageII_output_multiplid_by_twiddle -

x6g_stageII_output)*(-1);//Computing X( 7 ) at l a s t
s t a g e

76 disp(X0, ’X( 0 )= ’ )
77 disp(X4, ’X( 4 )= ’ )
78 disp(X2, ’X( 2 )= ’ )
79 disp(X6, ’X( 6 )= ’ )
80 disp(X1, ’X( 1 )= ’ )
81 disp(X5, ’X( 5 )= ’ )
82 disp(X3, ’X( 3 )= ’ )
83 disp(X7, ’X( 7 )= ’ )
84 disp({,X0,X1,X2 ,X3,X4,X5 ,X6 ,X7 ,}, ’ So , the DFT o f x ( n )

u s i n g Decimation−in−Frequency Fast Fou r i e r
Transform (DIF−FFT) i s X( k )= ’ )
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Experiment: 7

N=8;IDIF-FFT Without Using
Inbuilt Scilab FFT Function

Scilab code Solution 7.0 Experiment Number 7

1 //AIM:N=8; IDIF−FFT without u s i n g i n b u i l t S c i l a b FFT
f u n c t i o n

2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6 // Let X( k ) ={11 ,1 ,−1 ,1 ,−5 ,1 ,−1 ,1}
7 // Let us beg in with the programming . For

under s tand ing , l e t us w r i t e the g i v en data as
8 //X( 0 ) =11;X( 1 ) =1 ,X( 2 )=−1,X( 3 ) =1 ,X( 4 )=−5,X( 5 ) =1 ,X( 6 )

=−1,X( 7 )=1
9 X0_conj =11; // IDIF−FFT, so a r r an g i n g the input i n

n a t u r a l o r d e r
10 X1_conj =1; // IDIF−FFT, so a r r an g i n g the input i n

n a t u r a l o r d e r
11 X2_conj =-1; // IDIF−FFT, so a r r an g i n g the input i n

n a t u r a l o r d e r
12 X3_conj =1; // IDIF−FFT, so a r r an g i n g the input i n

n a t u r a l o r d e r
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13 X4_conj =-5; // IDIF−FFT, so a r r an g i n g the input i n
n a t u r a l o r d e r

14 X5_conj =1; // IDIF−FFT, so a r r an g i n g the input i n
n a t u r a l o r d e r

15 X6_conj =-1; // IDIF−FFT, so a r r an g i n g the input i n
n a t u r a l o r d e r

16 X7_conj =1; // IDIF−FFT, so a r r an g i n g the input i n
n a t u r a l o r d e r

17 disp(X0_conj , ’X∗ ( 0 )= ’ )
18 disp(X1_conj , ’X∗ ( 1 )= ’ )
19 disp(X2_conj , ’X∗ ( 2 )= ’ )
20 disp(X3_conj , ’X∗ ( 3 )= ’ )
21 disp(X4_conj , ’X∗ ( 4 )= ’ )
22 disp(X5_conj , ’X∗ ( 5 )= ’ )
23 disp(X6_conj , ’X∗ ( 6 )= ’ )
24 disp(X7_conj , ’X∗ ( 7 )= ’ )
25

26 // Twiddle f a c t o r
27 W0=cos (((2* %pi)/8) *0) -(sqrt(-1))*sin (((2* %pi)/8)*0)

28 W1=cos (((2* %pi)/8) *1)-sqrt(-1)*sin (((2* %pi)/8)*1)

29 W2=cos (((2* %pi)/8) *2)-sqrt(-1)*sin (((2* %pi)/8)*2)

30 W3=cos (((2* %pi)/8) *3)-sqrt(-1)*sin (((2* %pi)/8)*3)

31

32 // Stage I computat ion
33 x0a=X0_conj+X4_conj

34 x1b=X1_conj+X5_conj

35 x2c=X2_conj+X6_conj

36 x3d=X3_conj+X7_conj

37 x4e=X0_conj +(-1)*X4_conj

38 x5f=X1_conj +(-1)*X5_conj

39 x6g=X2_conj +(-1)*X6_conj

40 x7h=X3_conj +(-1)*X7_conj

41 disp( ’ Stage−I v a l u e s a r e ’ )
42 disp(x0a)

43 disp(x1b)

44 disp(x2c)

45 disp(x3d)

46 disp(x4e)
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47 disp(x5f)

48 disp(x6g)

49 disp(x7h)

50 // Stage I output at l i n e 4 , 5 , 6 & 7 a r e to be
mu l t i p l i e d by f a c t o r s W0, W1, W2, and W3
r e s p e c t i v e l y

51 x4e1=x4e*W0

52 x5f1=x5f*W1

53 x6g1=x6g*W2

54 x7h1=x7h*W3

55

56 // Stage I I computat ion
57 x0a_stageII_output=x2c+x0a;//Computing Stage−I I

output at l i n e 1
58 disp(x0a_stageII_output , ’ Stage−I I output at l i n e 1= ’

)

59 x1b_stageII_output=x3d+x1b;//Computing Stage−I
output at l i n e 2

60 disp(x1b_stageII_output , ’ Stage−I I output at l i n e 2= ’
)

61 x2c_stageII_output=x0a -x2c;//Computing Stage−I
output at l i n e 3

62 disp(x2c_stageII_output , ’ Stage−I I output at l i n e 3= ’
)

63 x3d_stageII_output=x1b -x3d;//Computing Stage−I
output at l i n e 4

64 disp(x3d_stageII_output , ’ Stage−I I output at l i n e 4= ’
)

65 x4e_stageII_output=x6g+x4e1;//Computing Stage−I I
output at l i n e 5

66 disp(x4e_stageII_output , ’ Stage−I I output at l i n e 5= ’
)

67 x5f_stageII_output=x7h+x5f1 //Computing Stage−I I
output at l i n e 6

68 disp(x5f_stageII_output , ’ Stage−I I output at l i n e 6= ’
)

69 x6g_stageII_output=x4e1+(x6g1 *(-1));//Computing
Stage−I I output at l i n e 7
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70 disp(x6g_stageII_output , ’ Stage−I I output at l i n e 7= ’
)

71 x7h_stageII_output=x5f1+(x7h1 *(-1));//Computing
Stage−I I output at l i n e 8

72 disp(x7h_stageII_output , ’ Stage−I I output at l i n e 8= ’
)

73

74 // Stage I I I computat ion
75 x0=x0a_stageII_output+x1b_stageII_output;//
76 x4=x0a_stageII_output +(-1)*x1b_stageII_output

77 x2=x3d_stageII_output *((-1)*sqrt(-1))+

x2c_stageII_output;// at l i n e 2 x 3 d s t a g e I I o u t p u t
i s to be mu l t i p l i e d by f a c t o r − j

78 x6=x3d_stageII_output *((-1)*sqrt(-1))*(-1)+

x2c_stageII_output;// at l i n e 3 x 3 d s t a g e I I o u t p u t
i s to be mu l t i o p l i e d by f a c t o r − j ∗(−1)

79 x1=x4e_stageII_output+x5f_stageII_output

80 x5=x4e_stageII_output -x5f_stageII_output

81 x3=x7h_stageII_output *((-1)*sqrt(-1))+

x6g_stageII_output;// at l i n e 7 x 7 h s t a g e I I o u t p u t
i s to b e mu l t i p l i e d by f a c t o r − j

82 x7=x7h_stageII_output *((-1)*sqrt(-1))*(-1)+

x6g_stageII_output;// at l i n e 8
x 7 h s t a g e I I o u t p u t i s to be mu l t i p l i e d by f a c t o r
(− j ) ∗(−1)

83 // f i n a l computat ion
84 x0_star =(1/8) *(x0)

85 disp(x0_star , ’ x ∗ ( 0 )= ’ )
86 x4_star =(1/8) *(x4)

87 disp(x4_star , ’ x ∗ ( 4 )= ’ )
88 x2_star =(1/8) *(x2)

89 disp(x2_star , ’ x ∗ ( 2 )= ’ )
90 x6_star =(1/8) *(x6)

91 disp(x6_star , ’ x ∗ ( 6 )= ’ )
92 x1_star =(1/8) *(x1)

93 disp(x1_star , ’ x ∗ ( 1 )= ’ )
94 x5_star =(1/8) *(x5)

95 disp(x5_star , ’ x ∗ ( 5 )= ’ )
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96 x3_star =(1/8) *(x3)

97 disp(x3_star , ’ x ∗ ( 3 )= ’ )
98 x7_star =(1/8) *(x7)

99 disp(x7_star , ’ x ∗ ( 7 )= ’ )
100

101 disp({,x0_star ,x1_star ,x2_star ,x3_star ,x4_star ,

x5_star ,x6_star ,x7_star ,}, ’ x ∗ ( n )= ’ )
102 x0_star_real=real(x0_star);

103 x0_star_imag_conj =(-1)*(imag(x0_star));

104 x1_star_real=real(x1_star);

105 x1_star_imag_conj =(-1)*(imag(x1_star));

106 x2_star_real=real(x2_star);

107 x2_star_imag_conj =(-1)*(imag(x2_star));

108 x3_star_real=real(x3_star);

109 x3_star_imag_conj =(-1)*(imag(x3_star));

110 x4_star_real=real(x4_star);

111 x4_star_imag_conj =(-1)*(imag(x4_star));

112 x5_star_real=real(x5_star);

113 x5_star_imag_conj =(-1)*(imag(x5_star));

114 x6_star_real=real(x6_star);

115 x6_star_imag_conj =(-1)*(imag(x6_star));

116 x7_star_real=real(x7_star);

117 x7_star_imag_conj =(-1)*(imag(x7_star));

118 x0=x0_star_real+x0_star_imag_conj;

119 x1=x1_star_real+x1_star_imag_conj;

120 x2=x2_star_real+x2_star_imag_conj;

121 x3=x3_star_real+x3_star_imag_conj;

122 x4=x4_star_real+x4_star_imag_conj;

123 x5=x5_star_real+x5_star_imag_conj;

124 x6=x6_star_real+x6_star_imag_conj;

125 x7=x7_star_real+x7_star_imag_conj;

126 disp({,x0,x1,x2 ,x3,x4,x5 ,x6 ,x7 ,}, ’ So , the IDFT o f X( k
) u s i n g I n v e r s e Decimation−in−Frequency Fast
Fou r i e r Transform ( IDIF−FFT) i s x ( n )= ’ )
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Experiment: 8

Compute Kaiser Window
Parameter Beta & Its
Minimum Length

Scilab code Solution 8.0 Experiment Number 8

1 //AIM: Compute Ka i s e r window parameter Beta & i t s
minimum l en g t h

2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6 // Let us c o n s i d e r the f o l l o w i n g s p e c i f i c a t i o n s :
7 // H ( ) 0 . 0 1 0 0 . 2 5
8 // 0 . 9 5 H ( ) 1 . 0 5 0 . 3 5

0 . 6
9 // H ( ) 0 . 0 1 0 . 6 5
10 //The magnitude s p e c i f i c a t i o n s o f the FIR f i l t e r i s

g i v en by
11 // 1− pH ( ) 1+ p f o r 0 p
12 // 0 H ( ) s f o r s
13 //On comparing , we ge t 1− p =0.95
14 del_p =0.05;
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15 del_s =0.01;

16 omega_p =0.6*( %pi);

17 omega_s =0.65*( %pi);

18 del_omega=omega_s -omega_p;

19 // i a minimum o f p and minimum o f s
20 del =0.05;

21 // At t enua t i on A i s g i v en as
22 A=(( -20)*(log10(del)));

23 disp(”dB”,A,” At t enua t i on (A)=”)
24 // Ca l c u l a t i n g va lu e o f
25 beeta=(A-21) ^(0.4) +0.07886+(A-21);

26 disp(beeta ,” =”)
27 //The l e n g t h o f f i l t e r i s (M+1)
28 //The va lu e o f M i s c a l c u l a t e d as f o l l o w s
29 M=((A-8) /(2.285*( del_omega)));

30 disp(M,”M=”)
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Experiment: 9

Design High Pass Butterworth
Filter Using Bilinear
Transformation

Scilab code Solution 9.0 Experiment Number 9

1 //AIM: Des ign High pas s Butte rworth f i l t e r u s i n g
B i l i n e a r Trans f o rmat i on .

2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6 s=poly(0,” s ”)
7 T=1; //Assume T=1 second
8 Ap=0.8; // At t enua t i on i n pa s s band
9 As=0.2; // At t enua t i on i n s t op band

10 wp =0.2*( %pi)

11 ws =0.6*( %pi)

12 ohmp =2/T*(tan(wp/2))

13 ohms =2/T*(tan(ws/2))

14 //ORDER CALCULATION(N) ;
15 a=(1/As^2-1)

16 b=(1/Ap^2-1)
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17 c=log(a/b)

18 N=(1/2) *(c/(log(ohms/ohmp)))

19 Nr=int (N)

20 x=N-int(N)

21 if(x>0)

22 Nr=Nr+1

23 ohmc=(ohmp /(1/Ap^2-1) ^(1/(2* Nr)))

24 // c a l c u l a t i o n o f p o l e s
25 i=0:1:Nr -1;

26 pi_plus=ohmc*exp(%i*(Nr+2*i+1)*(%pi)/(2*Nr))

27 pi_minus=-ohmc*exp(%i *(2+2.*i+1)*(%pi)/(2*Nr))

28 disp(wp, ’ p = ’ )
29 disp(ws, ’ s = ’ )
30 disp(ohmp , ’ p = ’ )
31 disp(ohms , ’ s = ’ )
32 disp(N’, ’ Order (N)= ’ )
33 disp(Nr, ’ I n t e g e r va l u e o f the o rd e r : ( Nr )= ’ )
34 disp(ohmc , ’ c = ’ )
35 disp(pi_plus , ’ Po l e s= ’ )
36 disp(pi_minus , ’ Po l e s= ’ )
37 h=ohmc/(s-( -0.53 -0.53*%i))

38 h1=ohmc/(s -( -0.53+0.53* %i))

39 h2=h*h1;

40 disp(h,h1, ’ The ana l og t r a n s f e r f u n c t i o n w i l l be the
m u l t i p l i c a t i o n o f the f o l l o w i n g two terms : ’ );

41 disp(h2, ’ The ana l og t r a n s f e r f u n c t i o n H( s )= ’ )
42 Z=poly(0,”Z”)
43 s=(ohmc*ohmp)/((2/T)*((Z-1)/(Z+1)));

44 h3 =0.56/(s^2+1.06*s+0.56);

45 disp(h3,” T ran s f e r f u n c t i o n o f d i g i t a l f i l t e r H(Z)=”)
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Experiment: 10

Overlap Add Method To Filter
Long Sequences Using Linear
Convolution

Scilab code Solution 10.0 Experiment Number 10

1 //AIM: Over lap add method to f i l t e r l ong s e qu en c e s
u s i n g l i n e a r c o nv o l u t i o n

2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6 // Let x ( n ) ={1 , 2 , 3 , 4 , 5 , 6 , 7 , 8} and h ( n ) ={1 ,2}
7 xn =[1 2 3 4 5 6 7 8]; //Nx=8
8 xon =[1 2];

9 xono =1;

10 xon1 =2;

11 x1n =[3 4];

12 x1no =3;

13 x1n1 =4;

14 x2n =[5 6];

15 x2no =5;

16 x2n1 =6;
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17 x3n =[7 8];

18 x3no =7;

19 x3n1 =8;

20 hn =[1 2]; //Here l e n g t h o f impu l s e r e s p on s e a r r ay h
( n ) i s 2 ( i . e . M=2) or Nh=2

21 // Length o f each p a r t i t i o n e d input i . e x0n to x3n i s
2( i . e . L=2)

22 // S i n c e Nx=8 ,Nh=2 and we know Nx=m∗Nh( so 8=m∗2)
g i v i n g m=4; and so x ( n ) has been p a r t i t i o n e d i n t o
4 b l o c k s o f l e n g t h Nh=2

23 hno =1;

24 hn1 =2;

25

26 a=xono*hno;

27 b=xon1*hno;

28 c=xono*hn1;

29 d=xon1*hn1;

30 yon=[a c+b d];

31 disp(yon , ’ yon= ’ )
32

33 e=x1no*hno;

34 f=x1n1*hno;

35 g=x1no*hn1;

36 h=x1n1*hn1;

37 y1n=[e g+f h];

38 disp(y1n , ’ y1n= ’ )
39

40 i=x2no*hno;

41 j=x2n1*hno;

42 k=x2no*hn1;

43 l=x2n1*hn1;

44 y2n=[i k+j l];

45 disp(y2n , ’ y2n= ’ )
46

47 m=x3no*hno;

48 n=x3n1*hno;

49 o=x3no*hn1;

50 p=x3n1*hn1;
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51 y3n=[m o+n p];

52 disp(y3n , ’ y3n= ’ )
53

54 yon =[yon ,0,0,0,0,0,0]

55 y1n =[0,0,y1n ,0,0,0,0]

56 y2n =[0,0,0,0,y2n ,0,0]

57 y3n =[0,0,0,0,0,0,y3n ]

58

59 yn=yon+ y1n+y2n+y3n

60 disp(yn, ’ So , the output u s i n g ov e r l a p add method (
wi thout u s i n g i n b u i l t f u n c t i o n s ) i s y ( n )= ’ )
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Experiment: 11

Overlap Save Method For
Sectioned Convolution Using
Matrix Approach

Scilab code Solution 11.0 Experiment Number 11

1 //AIM: Over lap save method f o r s e c t i o n e d c onv o l u t i o n
u s i n g matr ix approach .

2 // So f twar e v e r s i o n S c i l a b 5 . 5 . 2
3 //OS windows 10
4 clc;

5 clear;

6 xn =[1 2 -1 2 3 -2 -3 -1 1 1 2 -1]; //Nx=12
7 hn =[1 2 3]; //Nh=3
8 //L( approx .=) 2∗Nh , so L( approx .=) 2∗3
9 //So ( approx=)6
10 //We c o n s i d e r the l e n g t h as 5
11 //Nh−1=3−1=2
12 //So Nh−1 number o f l e a d i n g z e r o s to be added to x ( n

)
13 //So xn=[0 0 1 2 −1 2 3 −2 −3 −1 1 1 2 −1]
14 x0n =[0 0 1 2 -1]; // P a r t i t i o n e d input s equence
15 x1n =[2 -1 2 3 -2]; // P a r t i t i o n e d input s equence
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16 x2n =[3 -2 -3 -1 1]; // P a r t i t i o n e d input s equence
17 x3n=[-1 1 1 2 -1]; // P a r t i t i o n e d input s equence
18 x4n =[2 -1 0 0 0 ]; // P a r t i t i o n e d input s equence
19 // Convo lv ing each p a r t i t i o n e d input s equence with hn
20 y0n =[0 -1 2 1 0; 0 0 -1 2 1; 1 0 0 -1 2; 2 1 0 0

-1; -1 2 1 0 0]*[1;2;3;0;0];

21 disp(y0n ,”y0n=”)
22 y1n =[2 -2 3 2 -1; -1 2 -2 3 2; 2 -1 2 -2 3; 3 2 -1

2 -2; -2 3 2 -1 2]*[1;2;3;0;0];

23 disp(y1n ,”y1n=”)
24 y2n =[3 1 -1 -3 -2; -2 3 1 -1 -3; -3 -2 3 1 -1;-1 -3

-2 3 1; 1 -1 -3 -2 3]*[1;2;3;0;0];

25 disp(y2n ,”y2n=”)
26 y3n=[-1 -1 2 1 1;1 -1 -1 2 1; 1 1 -1 -1 2;2 1 1 -1

-1; -1 2 1 1 -1]*[1;2;3;0;0];

27 disp(y3n ,”y3n=”)
28 y4n =[2 0 0 0 -1; -1 2 0 0 0; 0 -1 2 0 0; 0 0 -1 2 0;

0 0 0 -1 2]*[1;2;3;0;0];

29 disp(y4n ,”y4n=”)
30 yn0 = y0n (3:5)

31 // ( 3 : 5 ) means tha t from yon , s e l e c t the e l ement from
3 rd to 5 th

32 yn1 = y1n (3:5)

33 yn2 = y2n (3:5)

34 yn3 = y3n (3:5)

35 yn4 = y4n (3:5)

36 yn =[yn0;yn1;yn2;yn3;yn4] // Concatena t ing yno , yn1 ,
yn2 , yn3 and yn4

37 disp(yn,”y ( n )=”)
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