Scilab Manual for
DIGITAL SIGNAL PROCESSING &
PROCESSORS
by Prof Leena Govekar
Electronics Engineering
Pvppcoe/mumbai University!

Solutions provided by
Prof Rajiv Suhas Tawde
Others
Mumbai University /pvpp College Of Engineering

February 8, 2026

"Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”"Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions

1

2

Compute Four Point DFT Using Matrix Approach Only.
Derive The [W4*] Matrix Useful To Compute IDFT
IDFT Computation Using Matrix Method

N=8; DIT-FFT Without Using Inbuilt Scilab FFT Func-
tion

N=8; IDIT-FFT Without Using Inbuilt Scilab FFT Func-
tion

N=8; DIF-FFT Without Using Inbuilt Scilab FFT Func-
tion

N=&;IDIF-FFT Without Using Inbuilt Scilab FFT Func-
tion

Compute Kaiser Window Parameter Beta & Its Minimum
Length

Design High Pass Butterworth Filter Using Bilinear Trans-
formation

10 Overlap Add Method To Filter Long Sequences Using Lin-

ear Convolution

[S)

10

15

21

26

31

33

35

11 Overlap Save Method For Sectioned Convolution Using Ma-
trix Approach 38

List of Experiments

Solution 1.0 Experiment Number 1
Solution 2.0 Experiment Number 2
Solution 3.0 Experiment Number 3
Solution 4.0 Experiment Number 4
Solution 5.0 Experiment Number 5
Solution 6.0 Experiment Number 6
Solution 7.0 Experiment Number 7
Solution 8.0 Experiment Number 8
Solution 9.0 Experiment Number 9
Solution 10.0 Experiment Number 10
Solution 11.0 Experiment Number 11

10
15
21
26
31
33
35
38

© 00 N O U i W N

10
11
12

13

14
15

Experiment: 1

Compute Four Point DFT
Using Matrix Approach Only.

Scilab code Solution 1.0 Experiment Number 1

// AIM:Compute four point DFT using matrix approach
only .

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let x(n)={1,2,3,4}

//Let us first define the W4 matrix

Wa=[1 1 1 1 ;1 -sqrt(-1) -1 sqrt(-1);1 -1 1 -1;1
sqrt (-1) -1 -sqrt(-1)1;

disp (W4, 'Wi=")

//Now let us define the input sequence

xn=[1;2;3;4];//The input sequence x(n)has been
arranged as a column matrix

//DET is obtained by multiplying the twiddle matrix
W4 and the input sequence

Xk=W4*xn;

disp (Xk, 'DFT : X(k)=")

N O U = W N

co

10
11
12
13
14
15
16

Experiment: 2

Derive The [W4*] Matrix
Useful To Compute IDFT

Scilab code Solution 2.0 Experiment Number 2

//AIM: Derive the [Wi4x]| matrix useful to compute
IDFT.

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

W40_star=int (cos (0))+(sqrt(-1)*int (sin(0)));

W4al_star=int (cos(%pi/2))+(sqrt(-1))*int ((sin(%pi/2))
)

W42_star=int (cos (%pi)) +(sqrt (-1))*int ((sin (%pi)));

W43_star=int (cos ((3*%pi) /2))+(sqrt(-1))*int (sin ((3%
hpid)/2));

disp (W40_star, W40 _star=")
disp(W41l_star, W41l _star=")
disp(W42_star, 'W42_star=")
disp(W43_star, 'W43_star=")

W44 _star=W40_star;

17
18
19
20
21
22
23
24

W49 _star=W41_star;
W46 _star=W42_star;

[WA40_star
W40_star
W40_star
W40_star

W4 _star=

W40_star
W41l_star
W42_star
W43 _star

disp (W4_star, W4 _star=")

W40_star
W42_star
W44 _star
W46 _star

W40 _star;
W43_star;
W46 _star;
W49_star];

0 3 O O =~ W N

10

11
12

13
14

Experiment: 3

IDFT Computation Using
Matrix Method

Scilab code Solution 3.0 Experiment Number 3

//AIM:IDFT computation using matrix method.
//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let Y(k)={1,0,1,0}

//Computation for Inverse Discrete Fourier Transform
(IDFT)

//Let us first define the Wix matrix

W4_star=[1 1 1 1 ;1 sqrt(-1) -1 -sqrt(-1);1 -1 1
-1;1 -sqrt(-1) -1 sqrt(-1)];

disp(W4_star, 'Wik=")

Yk=[1;0;1;0];//The input sequence Y(k) has been
arranged as a column matrix

yn=(1/4) *W4_star*Yk;

disp(yn, 'IDFT : y(n)=")

N O U = W N

10

11

12

Experiment: 4

N=8; DIT-FFT Without Using
Inbuilt Scilab FFT Function

Scilab code Solution 4.0 Experiment Number 4

//AIM: N=8; DIT-FFT without using inbuilt Scilab FFT
function

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let x(n)={1,2,1,2,0,2,1,2}

//Let us begin with the programming.For
understanding ,let us write the given data as

//x(0)=1;x(1)=2,x(2)=1,x(3)=2,x(4)=0,x(5)=2,x(6)=1,x
(7)=2

x0=1; //DIT-FFT,so arranging the input in bit—
reversed order

x4=0; //DIT-FFT,so arranging the input in bit—
reversed order

x2=1; //DIT-FFT,so arranging the input in bit—
reversed order

x6=1; //DIT-FFT,so arranging the input in bit—
reversed order

10

13

14

15

16

17
18
19
20

21
22
23
24

25
26
27
28

29
30
31
32

33
34
35

36

37
38

39

x1=2; //DIT-FFT,so arranging the input in bit—
reversed order

x5=2; //DIT-FFT,so arranging the input in bit—
reversed order

x3=2; //DIT-FFT,so arranging the input in bit—
reversed order

x7=2; //DIT-FFT,so arranging the input in bit—
reversed order

//Stage I computation

x0a=x4+x0; //Computing Stage—I output at line 1

disp(x0a, 'Stage—I output at line 1=")

x4b=(x4-x0)*(-1); //Computing Stage—1 output at
2

disp (x4b, ’Stage—I output at line 2=")

x2c=x6+x2; //Computing Stage—I output at line 3

disp(x2c, 'Stage—I output at line 3=")

x6d=(x6-x2)*(-1);//Computing Stage—1 output at
4

disp(x6d, ’Stage—I output at line 4=")

xle=x5+x1; //Computing Stage—I output at line 5

disp(xle, ’Stage—I output at line 5=")

x6f=(x5-x1)*(-1);//Computing Stage—1 output at
6

disp (x5f, ’Stage—I output at line 6=")

x3g=x7+x3; //Computing Stage—I output at line 7

disp(x3g, 'Stage—I output at line 77)

x7h=(x7-x3)*(-1);//Computing Stage—1 output at
8

disp(x7h, ’Stage—I output at line 8=")

//Stage—I output at line 4 and line 8 is to be

line

line

line

line

multiplied by twiddle factor having value (—j)

x6d1=(x6d)*(-sqrt (-1));
x7h1=(x7h) *(-sqrt (-1));

disp(x6dl, ’Stage—I output(i.e. input to stage—II)
after multiplication by twiddle factor value of

(—j) at line 4 =7)

disp (x7hl, ’Stage—I output(i.e. input to stage—II)

11

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

95

56

o7

58
59

after multiplication by twiddle factor value of

(—j) at line 8 =7)

//Stage—II Computations

x0a_stagelIl_output=x2c+x0a;//Computing StageII
output at line 1

disp(x0Oa_stageII_output, Stage—Il output at line
)

x4b_stagell_output=x6d1+x4b;//Computing Stage—II
output at line 2

disp(x4b_stageII_output, Stage—Il output at line
)

1="

2=

x2c_stagelIl_output=(x2c-x0a)*(-1);//Computing Stage—

IT output at line 3
disp(x2c_stageII_output, Stage—Il output at line
)

3:7

x6d_stagelIIl_output=(x6dl-x4b)*(-1);//Computing Stage

—II output at line 4

disp(x6d_stageII_output, Stage—Il output at line
)

xle_stagelIl_output=x3g+xle;//Computing Stage 11
output at line 5

disp(xle_stageII_output, Stage—Il output at line
)

x5f_stagell_output=x7hl1+x5f;//Computing Stage—II
output at line 6

disp(xb6f_stageII_output, Stage—Il output at line
)

x3g_stagell_output=(x3g-xle)*(-1);//Computing Stage—

IT output at line 7
disp(x3g_stagelI_output, Stage—Il output at line
)

7:7

x7h_stagelIIl_output=(x7hl-x5f)*(-1);//Computing Stage

—II output at line 8
disp(x7h_stageII_output, Stage—Il output at line
)

8="

//Stage—1I1 output at line 6,line 7 and line 8 are to

12

60

61

62

63

64

65

66
67

68

69

70

71

72

73

74

75

76

7

78
79

be multiplied by twiddle factor having value
(0.707—j0.707) ,(—j) and (—0.707—j0.707)
respectively
x5f_stgll_op_multi_by_tw=(x5f_stageII_output)
(0.707-(sqrt(-1))(0.707));
disp(x5f_stgII_op_multi_by_tw, Stage—II output at
line 6 after multiplication by twiddle factor=")
x3g_stgII_op_multi_by_tw=(x3g_stageII_output)*(-(
sqrt (-1)));
disp(x3g_stglI_op_multi_by_tw, Stage—II output at
line 7 after multiplication by twiddle factor=")
x7h_stglI_op_multi_by_tw=(x7h_stageIIl_output)
%(-0.707-(sqrt (1)) *(0.707));
disp(x7h_stgII_op_multi_by_tw, Stage—II output at
line 8 after multiplication by twiddle factor=")

//Stage—111 Computations(i.e. Computations for the
final stage)

XO0=xle_stageII_output+xOa_stageII_output;//Computing

X(0) at last stage
X1=x5f_stgll_op_multi_by_tw+x4b_stageIlIl_output;//
Computing X(1) at last stage
X2=x3g_stgIl_op_multi_by_tw+x2c_stageIlI_output;//
Computing X(2) at last stage
X3=x7h_stgIl_op_multi_by_tw+x6d_stageIIl_output;//
Computing X(3) at last stage
X4=(xle_stageIl_output-xOa_stagelIl_output)*(-1);//
Computing X(4) at last stage
X56=(x5f_stgIIl_op_multi_by_tw-x4b_stagelIl_output)
*(-1);//Computing X(5) at last stage
X6=(x3g_stgll_op_multi_by_tw-x2c_stagelIl_output)
*(-1);//Computing X(6) at last stage
X7=(x7h_stgIlI_op_multi_by_tw-x6d_stagelIIl_output)
*(-1); //Conqnnﬁng X(7) at last stage
disp (X0, 'X(0)=
disp (X1, 'X(1)=
disp (X2, 'X(2)=
disp (X3, 'X(3)=

13

disp (X4, ’'X(4)=")

disp (X5, 'X(5)=")

disp (X6, 'X(6)=")

disp (X7, 'X(7)=")

disp({,X0,X1,X2,X3,X4,X5,X6,X7,}, 'So,the DFT of x(n)
using Decimation—in—Time Fast Fourier Transform (

DIT-FFT) is X(k)=")

14

N O U = W N

Experiment: 5

N=8; IDIT-FFT Without Using
Inbuilt Scilab FFT Function

Scilab code Solution 5.0 Experiment Number 5

//AIM:N=8; IDIT-FFT without using inbuilt Scilab FFT
function

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let X(k)={11,1-1,1,-5,1,—-1,1}

//Let us begin with the programming.For
understanding ,let us write the given data as

//X(0)=11;X(1)=1,X(2)=-1,X(3)=1,X(4)=-5X(5)=1,X(6)
=—1X(7)=1

X0_conj=11; //IDIT-FFT,so arranging the input in bit—
reversed order

X4_conj=-5; //IDIT-FFT,so arranging the input in bit—
reversed order

X2_conj=-1;//IDIT-FFT,so arranging the input in bit—
reversed order

X6_conj=-1;//IDIT-FFT,so arranging the input in bit—
reversed order

15

13

14

15

16

17
18
19
20
21
22
23
24
25
26

27
28

29
30

31
32

33
34

35
36

37
38

39

X1_conj=1; //IDIT-FFT, so the

reversed order
X5_conj=1; //IDIT-FFT, so
reversed order
X3_conj=1; //IDIT-FFT, so
reversed order
X7_conj=1; //IDIT-FFT, so
reversed order

arranging input in

arranging the input in

arranging the input in

arranging the input in

disp(X0_conj, 'X*(0)=")
disp(X4_conj, 'Xx(4)=")
disp(X2_conj, 'Xx(2)=")
disp(X6_conj, 'Xx(6)=")
disp(X1i_conj, 'Xx(1)=")
disp(X5_conj, 'Xx*(5)=")
disp(X3_conj, 'Xx*(3)=")
disp(X7_conj, 'Xx(7)=")

//Stage I computation

X0a=X4_conj+X0_conj; //Computing Stage—I output
line 1

disp(X0Oa, 'Stage—I output at line 1=")

X4b=(X4_conj-X0_conj)*(-1);//Computing StageI
output at line 2

disp (X4b, 'Stage—I output at line 2=")

X2c=X6_conj+X2_conj; //Computing Stage—I output
line 3

disp(X2c, 'Stage—I output at line 3=")

X6d=(X6_conj-X2_conj)*(-1);//Computing Stage—I
output at line 4

disp(X6d, ’Stage—I output at line 4=")

Xle=X5_conj+X1_conj;//Computing Stage—I output
line 5

disp(Xle, 'Stage—I output at line 5=")

X6f=(X5_conj-X1_conj)*(-1);//Computing Stage—I
output at line 6

disp (X5f, ’Stage—I output at line 6=")

X3g=X7_conj+X3_conj;//Computing Stage—I output
line 7

disp (X3g, 'Stage—I output at line 77)

16

bit —

bit —

bit —

bit —

at

at

at

at

40
41
42
43
44

45
46

47

48

49

50

51

52

53

o4

55

56

o7

58

59

60

X7h=(X7_conj-X3_conj)*(-1);//Computing Stage—I
output at line 8
disp (X7h, ’Stage—I output at line 8=")

//Stage—I output at line 4 and line 8 is to be
multiplied by twiddle factor having value (—j)

X6d’=(X6d)*(-sqrt (-1));

X7h’=(X7h)*(-sqrt (-1));

disp(X6d’, Stage—I output(i.e. input to stage—II)
after multiplication by twiddle factor value of
(—j) at line 4 =7)

disp (X7h’, ’Stage—I output(i.e. input to stage—II)
after multiplication by twiddle factor value of
(—j) at line 8 =7)

//Stage—II Computations

X0a_stagelIIl_output=X2c+X0a;//Computing Stage1II
output at line 1

disp(XOa_stageII_output, Stage—Il output at line 1=’
)

X4b_stagell_output=X6d°’+X4b;//Computing Stage—II
output at line 2

disp(X4b_stageII_output, Stage—Il output at line 2=’
)

X2c_stageII_output=(X2c-X0a)*(-1);//Computing Stage—
IT output at line 3

disp(X2c_stagelII_output, Stage—Il output at line 3=’
)

X6d_stageIl_output=(X6d’-X4b)*(-1);//Computing Stage
—II output at line 4

disp(X6d_stageII_output, Stage—Il output at line 4=’
)

Xle_stagelIl_output=X3g+Xle;//Computing Stage—II
output at line 5

disp(Xle_stageII_output, Stage—Il output at line 5=’
)

X5f_stagelIl_output=X7h’+X5f;//Computing Stage1I
output at line 6

17

61

62

63

64

65

66
67

68

69

70

71

72

73

74

75

76

7

disp(X6f_stageII_output, Stage—Il output at line 6=’
)

X3g_stagell_output=(X3g-Xle)*(-1);//Computing Stage—
IT output at line 7

disp(X3g_stagelI_output, Stage—Il output at line 7=’
)

X7h_stageII_output=(X7h’-X5f)*(-1);//Computing Stage
—II output at line 8

disp(X7h_stageII_output, Stage—II output at line 8=’
)

//Stage—II output at line 6,line 7 and line 8 are to
be multiplied by twiddle factor having value
(0.707—j0.707) ,(—j) and (—0.707—j0.707)
respectively
X5f_stageIIl_output_multiplied_by_twiddle=(
X5f_stageIIl_output)*(0.707-(sqrt(-1))*(0.707));
disp(X5f_stageIIl_output_multiplied_by_twiddle, 'Stage
—1II output at line 6 after multiplication by
twiddle factor=")
X3g_stagelIl_output_multiplied_by_twiddle=(
X3g_stagelI_output)*(-(sqrt(-1)));
disp(X3g_stagelIl_output_multiplied_by_twiddle, 'Stage
—1II output at line 7 after multiplication by
twiddle factor=")
X7h_stageIIl_output_multiplied_by_twiddle=(
X7h_stageIIl_output)*(-0.707-(sqrt(-1))*(0.707));
disp(X7h_stageIIl_output_multiplied_by_twiddle, 'Stage
—1II output at line 8 after multiplication by
twiddle factor=")

//Stage—IIl Computations(i.e. Computations for the
final stage)

x0_star=(1/8)*(Xle_stageII_output+XOa_stageIIl_output
);//Computing x*(0) at last stage

x1_star=(1/8) *(
Xbf_stagell_output_multiplied_by_twiddle+
X4b_stagelII_output);//Computing x*(1) at last

18

78

79

80

81

82

83

84
85
86
87
88
89
90
91
92

93
94
95
96

stage

x2_star=(1/8) *(

X3g_stagell_output_multiplied_by_twiddle+
X2c_stageII_output);//Computing x*(2)

stage

x3_star=(1/8) *(

X7h_stagell_output_multiplied_by_twiddle+
X6d_stageII_output);//Computing x*(3)

stage

x4_star=(1/8) x((Xle_stagelIl_output -
XOa_stageII_output)*(-1));//Computing xx(4)

last

stage

x5_star=(1/8) *((

Xb5f_stagell_output_multiplied_by_twiddle -
X4b_stageIIl_output)*(-1));//Computing x*(5)

last

stage

x6_star=(1/8) *((

X3g_stagell_output_multiplied_by_twiddle-
X2c_stageII_output)*(-1));//Computing xx*(6)

last

stage

x7_star=(1/8) *((

X7h_stagell_output_multiplied_by_twiddle-
X6d_stagelII_output)*(-1));//Computing xx*(7)

last

disp (x0_
disp(x1_
disp (x2_
disp (x3_
disp (x4_
disp (x5_
disp (x6_
disp (x7_
disp({,x0_star ,x1_star ,x2_star,x3_star,x4_star,
x5_star ,x6_star ,x7_star,}, 'x*x(n)=")

x0_star_real=real (x0O_star);
x0_star_imag_conj=(-1)*(imag(x0O_star));
x1l_star_real=real(xl_star);
x1l_star_imag_conj=(-1)*(imag(xl_star));

stage

star,
star,
star,
star,
star,
star,
star,
star,

"xx(0)=")
xx(1)=")
'xx(2)=")
x*(3)=")
xx(4)=")
"xx(5)=")
"xx(6)=")
xx(7)=")

last

last

at

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

x2_star_real=real (x2_star) ;
x2_star_imag_conj=(-1)*(imag(x2_star));
x3_star_real=real (x3_star) ;
x3_star_imag_conj=(-1)*(imag(x3_star));
x4_star_real=real (x4_star) ;
x4_star_imag_conj=(-1)*(imag(x4_star));
x5_star_real=real (x5_star) ;
x5_star_imag_conj=(-1)*(imag(x5_star));
x6_star_real=real (x6_star);
x6_star_imag_conj=(-1)*(imag(x6_star));
x7_star_real=real (x7_star) ;
x7_star_imag_conj=(-1)*(imag(x7_star));
x0=x0_star_real+xO_star_imag_conj;
xl=xl_star_real+xl_star_imag_conj;
x2=x2_star_real+x2_star_imag_conj;
x3=x3_star_real+x3_star_imag_conj;
x4=x4_star_real+x4_star_imag_conj;
xb=x5_star_real+xb5_star_imag_conj;
x6=x6_star_real+x6_star_imag_conj;
X7=x7_star_real+x7_star_imag_conj;
disp({,x0,x1,x2,x3,x4,x5,%x6,x7,}, 'So,the IDFT of X(k
) using Inverse Decimation—in—Time Fast Fourier
Transform (IDIT-FFT) is x(n)=")

20

N O U = W N

10

11

12

Experiment: 6

N=8; DIF-FFT Without Using
Inbuilt Scilab FFT Function

Scilab code Solution 6.0 Experiment Number 6

//AIM :N=8; DIF-FFT without using inbuilt Scilab FFT
function

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let x(n)={1,2,1,2,0,2,1,2}

//Let us begin with the programming.For
understanding ,let us write the given data as

//x(0)=1;x(1)=2,x(2)=1,x(3)=2,x(4)=0,x(5)=2,x(6)=1,x
(7)=2

x0=1; //DIF-FFT,so arranging the input in natural
order

x1=2; //DIF-FFT,so arranging the input in natural
order

x2=1; //DIF-FFT,so arranging the input in natural
order

x3=2; //DIF-FFT,so arranging the input in natural
order

21

13

14

15

16

17
18
19
20
21
22
23
24
25
26

27
28

29
30

31
32

33

34
35

36

37

x4=0; //DIF-FFT,so arranging the input in natural

order

x5=2; //DIF-FFT,so arranging the input in natural

order

x6=1; //DIF-FFT,so arranging the input in natural

order

x7=2; //DIF-FFT,so arranging the input in natural

order
//Stage I computation
x0a=x4+x0; //Computing Stage—I output at line 1
disp(x0a, 'Stage—I output at line 1=")
x1b=x5+x1; //Computing Stage—I output at line 2
disp(x1b, ’Stage—I output at line 2=")
x2c=x6+x2; //Computing Stage—I1 output at line 3
disp(x2c, 'Stage—1 output at line 3=")
x3d=x7+x3; //Computing Stage—I output at line 4
disp(x3d, 'Stage—I output at line 4=")
x4e=(x4-x0)*(-1); //Computing Stage—I output at
)
disp(x4de, ’Stage—I output at line 5=")
x6f=(x5-x1)*(-1); //Computing Stage—I output at
6
disp (x5f, ’Stage—I output at line 6=")
x6g=(x6-x2)*(-1); //Computing Stage—I output at
7
disp(x6g, 'Stage—I output at line 77)
x7h=(x7-x3)*(-1); //Computing Stage—1 output at
8
disp(x7h, ’Stage—I output at line 8=")

line

line

line

line

//Stage—I output at line 6,line 7 and line 8 are to

be multiplied by twiddle factor having value
(0.707—30.707) ,(—j) and (—0.707—j0.707)
respectively
x5f_stagel_output_multiplied_by_twiddle=(x5f)
(0.707-(sqrt(-1))(0.707));

disp(x56f_stagel_output_multiplied_by_twiddle, Stage—

I output at line 6 after multiplication by

22

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

twiddle factor=")
x6g_stagel_output_multiplied_by_twiddle=(x6g)*(-(
sqrt (-1)));
disp(x6g_stagel_output_multiplied_by_twiddle, Stage—
I output at line 7 after multiplication by
twiddle factor=")
x7h_stageIl_output_multiplied_by_twiddle=(x7h)
(=0.707-(sqrt (-1))(0.707));
disp(x7h_stagel_output_multiplied_by_twiddle, 'Stage—
I output at line 8 after multiplication by
twiddle factor=")

//Stage—I1 Computations

x0a_stagelIl_output=x2c+x0a;//Computing StageII
output at line 1

disp(x0Oa_stageII_output, Stage—Il output at line 1=’
)

x1b_stagell_output=x3d+x1lb;//Computing Stage—1II
output at line 2

disp(xlb_stageII_output, Stage—II output at line 2=’
)

x2c_stagelIl_output=(x2c-x0a)*(-1);//Computing Stage—
IT output at line 3

disp(x2c_stageII_output, Stage—Il output at line 3=’
)

x3d_stageII_output=(x3d-x1b)*(-1);//Computing Stage—
IT output at line 4

disp(x3d_stageII_output, Stage—Il output at line 4=’
)

x4e_stagell_output=x6g+xde;//Computing StageII
output at line 5

disp(x4e_stagelI_output, Stage—Il output at line 5=’
)

xbf_stagell_output=
xTh_stagel_output_multiplied_by_twiddle+
x5f_stagel_output_multiplied_by_twiddle;//
Computing Stage—II output at line 6

disp(x5f_stageII_output, Stage—Il output at line 6=’

23

56

o7

58

59

60
61

62

63

64

65

66

67

68

69

70

71

72

73

)

x6g_stagelIl_output=(
x6g_stagel_output_multiplied_by_twiddle-xde)*(-1)
; //Computing Stage—II output at line 7

disp(x6g_stagelI_output, Stage—Il output at line 7=’
)

xTh_stagelIl_output=(x7h’-x5f)*(-1);//Computing Stage
—II output at line 8

disp(x7h_stageII_output, Stage—II output at line 8=’
)

//Stage—II output at line 4 and line 8 are to be
multiplied by twiddle factor having value (—j)

x3d_stageIIl_output_multiplied_by_twiddle=(
x3d_stageII_output)*(-(sqrt(-1)));

disp(x3d_stageIIl_output_multiplied_by_twiddle, 'Stage
—II output at line 4 after multiplication by
twiddle factor=")

x7h_stageIIl_output_multiplied_by_twiddle=(
x7h_stageII_output)*(-(sqrt(-1)));

disp(x7h_stageIIl_output_multiplied_by_twiddle, 'Stage
—II output at line 8 after multiplication by
twiddle factor=")

//Stage—111 Computations(i.e. Computations for the
final stage)
X0=x1b_stageIIl_output+x0a_stageIIl_output;//Computing
X(0) at last stage
X4=(x1b_stagelIl_output-x0Oa_stageIlIl_output)*(-1);//
Computing X(4) at last stage
X2=x3d_stagell_output_multiplied_by_twiddle+
x2c_stagelIl_output;//Computing X(2) at last stage
X6=(x3d_stagelII_output_multiplied_by_twiddle-
x2c_stagelII_output)*(-1);//Computing X(6) at last
stage
X1=(x5f_stageIl_output+xde_stagelIl_output);//
Computing X (1) at last stage
X5=(x5f_stageIl_output-xde_stagelIl_output)*(-1);//

24

74

75

76
7
78
79
80
81
82
83
84

Computing X(5) at last stage
X3=x7h_stagelIl_output_multiplied_by_twiddle+

x6g_stagell_output;//Computing X(3) at last
X7=(x7h_stagelIIl_output_multiplid_by_twiddle-

stage

x6g_stagelII_output)*(-1);//Computing X(7) at last
stage
disp (X0, 'X(0)=")
disp (X4, 'X(4)=")
disp (X2, ’'X(2)=")
disp (X6, 'X(6)=")
disp(X1,’'X(1)=")
disp (X5, 'X(5)=")
disp (X3, 'X(3)=")

disp (X7, 'X(7)=")
disp({,X0,X1,X2,X3,X4,X5,X6,X7,}, 'So,the DFT of x(n)
using Decimation—in—Frequency Fast Fourier
Transform (DIF-FFT) is X(k)=")

25

N O U = W N

10

11

12

Experiment: 7

N=8;IDIF-FFT Without Using
Inbuilt Scilab FFT Function

Scilab code Solution 7.0 Experiment Number 7

//AIM:N=8;IDIF-FFT without using inbuilt Scilab FFT
function

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

//Let X(k)={11,1, 1,1, 5,1, 1,1}
//Let us begin with the programming.For
understanding ,let us write the given data as
//X(0)=11;X(1)=1,X(2)=-1,X(3)=1,X(4)=-5X(5)=1,X(6)
=—1X(7)=1

X0_conj=11; //IDIF-FFT,so arranging the input in
natural order

X1_conj=1;//IDIF-FFT,so arranging the input in
natural order

X2_conj=-1;//IDIF-FFT,so arranging the input in
natural order

X3_conj=1;//IDIF-FFT,so arranging the input in
natural order

26

13

14

15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

X4_conj=-5; //IDIF-FFT,so arranging the input in
natural order

X5_conj=1;//IDIF-FFT,so arranging the input in
natural order

X6_conj=-1;//IDIF-FFT,so arranging the input in
natural order

X7_conj=1;//IDIF-FFT,so arranging the input in
natural order

disp(X0_conj, 'Xx(0)

disp(X1_conj, 'Xx(1)

disp(X2_conj, 'Xx(2)

disp(X3_conj, 'Xx(3)

disp(X4_conj, 'Xx(4)=")

disp(X5_conj, 'Xx(5)

disp(X6_conj, 'Xx(6)

disp (X7_conj, 'Xx(7)

// Twiddle factor

WO=cos (((2*%pi)/8) *0) -(sqrt (-1))*sin (((2*%pi) /8) *0)
Wi=cos (((2*%pi)/8) *1)-sqrt (-1)*sin (((2*%pi) /8) *1)
W2=cos (((2*%pi)/8) *2) -sqrt (-1) *sin (((2*%pi) /8) *x2)
W3=cos (((2*%pi)/8) *3)-sqrt (-1)*sin (((2*%pi) /8) *3)

//Stage I computation
x0a=X0_conj+X4_conj
x1b=X1_conj+Xb_conj
x2c=X2_conj+X6_conj
x3d=X3_conj+X7_conj
x4e=X0_conj+(-1)*X4_conj
x6f=X1_conj+(-1)*X5_conj
x6g=X2_conj+(-1)*X6_conj
x7h=X3_conj+(-1)*X7_conj
disp(’Stage—1 values are’)
disp(x0a)

disp(x1b)

disp(x2c)

disp (x3d)

disp (x4de)

27

47
48
49
50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

disp (x5f)

disp (x6g)

disp (x7h)

//Stage I output at line 4,5,6 & 7 are to be
multiplied by factors W0, W1, W2, and W3
respectively

x4el=x4ex*WO

x5f1=xb5f*W1

x6gl=x6g*W2

x7Th1=x7h*W3

//Stage Il computation

x0a_stagelIl_output=x2c+x0a;//Computing Stage—II
output at line 1

disp(x0Oa_stageII_output, Stage—Il output at line
)

x1b_stageIIl_output=x3d+x1b;//Computing Stage-I
output at line 2

disp(xlb_stageII_output, Stage—IIl output at line
)

x2c_stagell_output=x0a-x2c;//Computing Stage—I
output at line 3

disp(x2c_stageII_output, Stage—Il output at line
)

x3d_stagelII_output=x1b-x3d;//Computing Stage—I
output at line 4

disp(x3d_stageII_output, Stage—Il output at line
)

x4e_stagell_output=x6g+xdel;//Computing Stage—II
output at line 5

disp(x4e_stagelI_output, Stage—Il output at line
)

x6f _stagell_output=x7h+x5f1//Computing Stage—II
output at line 6

disp(xb5f_stageII_output, Stage—Il output at line
)

x6g_stagell_output=xdel+(x6gl*(-1));//Computing
Stage—II output at line 7

28

70

71

72

73
74
75
76
7

78

79
80
81

82

83
84
85
86
87
88
89
90
91
92
93
94
95

disp(x6g_stagelI_output, Stage—Il output at line 7=’

)
x7h_stageIIl_output=x5f1+(x7h1*(-1));//Computing
Stage—II output at line 8
disp(x7h_stageII_output, Stage—II output at
)

line 8=’

//Stage IIl computation
x0=x0a_stageII_output+xlb_stageII_output;//
x4=x0a_stagelI_output+(-1)*xlb_stagelI_output
x2=x3d_stageIIl_output*((-1)*sqrt(-1))+
x2c_stagell_output;//at line 2 x3d_stagell_output
is to be multiplied by factor —j
x6=x3d_stageII_output*((-1)*sqrt(-1))*(-1)+
x2c_stagelII_output;//at line 3 x3d_stagell_output
is to be multioplied by factor —jx*(—1)
xl=x4e_stagell_output+x5f_stagell_output
xb=x4e_stagelIl_output-x5f_stagell_output
x3=x7h_stagelII_output*((-1)*sqrt(-1))+
x6g_stagell_output;//at line 7 xT7h_stagell_output
is to b e multiplied by factor —j
x7=xTh_stageIIl_output*((-1)*sqrt(-1))*(-1)+
x6g_stagell_output;// at line 8
x7h_stagell _output is to be multiplied by factor
(—)+(~1)
//final computation
x0_star=(1/8) *(x0)
disp(xO_star, 'x*(0)=")
x4_star=(1/8) *(x4)
disp(x4_star, 'x*(4)=")
x2_star=(1/8) *(x2)
disp(x2_star, 'xx(2)=")
x6_star=(1/8) *(x6)
disp(x6_star, 'xx(6)=")
x1_star=(1/8) *(x1)
disp(xi_star, 'xx*(1)=")
x5_star=(1/8) *(x5)
disp(x5_star, 'xx(5)=")

29

96
97
98
99
100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

x3_star=(1/8) *(x3)
disp(x3_star, 'x*(3)=")
x7_star=(1/8) *(x7)
disp(x7_star, 'xx(7)=")

disp({,x0_star ,x1_star,x2_star,x3_star,x4_star,
xb_star ,x6_star ,x7_star,}, 'x*x(n)=")
x0_star_real=real (x0O_star) ;
x0_star_imag_conj=(-1)*(imag(x0O_star));
x1l_star_real=real(xl_star);
x1l_star_imag_conj=(-1)*(imag(xl_star));
x2_star_real=real (x2_star) ;
x2_star_imag_conj=(-1)*(imag(x2_star));
x3_star_real=real (x3_star);
x3_star_imag_conj=(-1)*(imag(x3_star));
x4_star_real=real (x4_star) ;
x4_star_imag_conj=(-1)*(imag(x4_star));
x5_star_real=real (x5_star) ;
x5_star_imag_conj=(-1)*(imag(x5_star));
x6_star_real=real (x6_star) ;
x6_star_imag_conj=(-1)*(imag(x6_star));
x7_star_real=real (x7_star);
x7_star_imag_conj=(-1)*(imag(x7_star));
x0=x0_star_real+xO_star_imag_conj;
xl=x1_star_real+xl_star_imag_conj;
x2=x2_star_real+x2_star_imag_conj;
x3=x3_star_real+x3_star_imag_conj;
x4=x4_star_real+x4_star_imag_conj;
xb=x5_star_real+xb5_star_imag_conj;
x6=x6_star_real+x6_star_imag_conj;
Xx7=x7_star_real+x7_star_imag_conj;
disp({,x0,x1,x2,x3,x4,x5,x6,x7,}, 'So,the IDFT of X(k
) using Inverse Decimation—in—Frequency Fast
Fourier Transform (IDIF-FFT) is x(n)=")

30

O O U i W N

10

11
12
13
14

Experiment: 8

Compute Kaiser Window
Parameter Beta & Its
Minimum Length

Scilab code Solution 8.0 Experiment Number 8

//AIM: Compute Kaiser window parameter Beta & its
minimum length

//Software version Scilab 5.5.2

//OS windows 10

clc;
clear;
//Let us consider the following specifications :
/) H () 0 .01 0 0 .25
/095 H () 1 .05 0.35

0 .6
/) H () 0 01 0.65

//The magnitude specifications of the FIR filter is
given by

/] 1— pH () 1+ p for O p
// 0 H () S for S

//On comparing ,we get 1— p =0.95

del_p=0.05;

31

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

del_s=0.01;

omega_p=0.6*(%pi);
omega_s=0.65*(%pi);
del_omega=omega_s-omega_p;

// ia minimum of p and minimum of
del=0.05;

//Attenuation A is given as
A=((-20)*(logl10(del)));

disp (7dB” ,A,” Attenuation (A)=")
//Calculating value of
beeta=(A-21) "(0.4)+0.07886+(A-21) ;
disp(beeta,” =")

//The length of filter is (M+1)

//The value of M is calculated as follows

M=((A-8)/(2.285+(del_omega)));
disp (M, M=")

32

—

© 00 J O U = W N

Experiment: 9

Design High Pass Butterworth

Filter Using Bilinear
Transformation

Scilab code Solution 9.0 Experiment Number 9

//AIM: Design High pass Butterworth filter
Bilinear Transformation.

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

s=poly(0,”s”)

T=1; //Assume T=1 second

Ap=0.8;//Attenuation in pass band

As=0.2;//Attenuation in stop band

wp=0.2*x(%pi)

ws=0.6*(%pi)

ohmp=2/T*(tan(wp/2))

ohms=2/T*(tan(ws/2))

//ORDER CALCULATION(N) ;

a=(1/As"2-1)

b=(1/Ap~2-1)

33

using

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45

c=log(a/b)

N=(1/2)*(c/(log(ohms/ohmp)))

Nr=int (N)

x=N-int (N)

if (x>0)

Nr=Nr+1

ohmc=(ohmp/(1/Ap~2-1) " (1/(2*Nr)))
//calculation of poles

i=0:1:Nr-1;

pi_plus=ohmc*exp (%i*(Nr+2*xi+1) *(%pi)/(2*Nr))
pi_minus=-ohmc*exp (%i*(2+2.%xi+1) *x(%pi)/(2xNr))
disp(wp,’ p =")

disp(ws,’ s =)

disp(ohmp,’ p =")

disp(ohms,’ s =")

disp(N’, ’Order (N)=")

disp(Nr, "Integer value of the order:(Nr)=")
disp (ohmc,’ ¢ =")

disp(pi_plus, "Poles=")

disp(pi_minus, "Poles=")
h=ohmc/(s-(-0.53-0.53%*%1i))
hi=ohmc/(s-(-0.53+0.53*%1i))

h2=h%*h1;

disp(h,hl, 'The analog transfer function will be the
multiplication of the following two terms:’);

disp(h2, 'The analog transfer function H(s)=")
Z=poly (0,”Z")
s=(ohmcx*xohmp) / ((2/T)*((Z-1) /(Z+1)));
h3=0.56/(s"2+1.06%s+0.56) ;

disp (h3,” Transfer function of digital filter H(Z)=")

34

Experiment: 10

Overlap Add Method To Filter
Long Sequences Using Linear
Convolution

Scilab code Solution 10.0 Experiment Number 10

//AIM: Overlap add method to filter long sequences
using linear convolution

//Software version Scilab 5.5.2
//OS windows 10

clc;

clear;

//Let x(n)={1,2,3,4,5,6,7,8} and h(n)={1,2}
xn =[1 2 3 456 7 8]; //Nx=8
xon =[1 2];

xono=1;

xonl=2;

xln =[3 4];

x1no=3;

x1nl1=4;

x2n =[5 6];

x2no0=5;

x2n1=6;

35

17
18
19
20

21

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

x3n =[7 8];
x3no=7;
x3n1=8;

hn =[1 2]; //Here length of impulse response array h
(n) is 2 (i.e.
//Length of each partitioned input

2(i.c. L=2)

M=2) or Nh=2

1.e xOn to x3n

//Since Nx=8 Nh=2 and we know Nx=mxNh(so 8=mx2)
giving m=4;and so x(n) has been partitioned into
4 blocks of length Nh=2

hno=1;
hnl1=2;

a=xonox*hno;
b=xonl*hno;
c=xonox*xhnl;
d=xonlx*xhnl;
yon=[a c+b d];
disp(yon, 'yon=")

e=x1lnox*xhno;
f=x1nl1x*hno;
g=x1lnoxhnl;
h=x1nl1%*hnl;
yln=[e g+f h];
disp(yln, 'yln=")

i=x2no*hno;
j=x2nlx*hno;
k=x2no*hnl;
1=x2n1x*hni;
y2n=[i k+j 1];
disp(y2n, 'y2n=")

m=x3no*hno;
n=x3nl*hno;
o=x3nox*xhnl;
p=x3nl*hnl;

36

18

51
52
53
o4
95
56
57
58
59
60

y3n=[m o+n pl;
disp(y3n, 'y3n=")

yon =[yon,0,0,0,0,0,0]
yln =[0,0,y1n,0,0,0,0]
y2n =[0,0,0,0,y2n,0,0]
y3n =[0,0,0,0,0,0,y3n]

yn=yon+ yln+y2n+y3n

disp(yn, 'So,the output using overlap add method(
without using inbuilt functions)

37

© 00 J O Ut i W N

— =
N = O

13
14
15

Experiment: 11

Overlap Save Method For
Sectioned Convolution Using
Matrix Approach

Scilab code Solution 11.0 Experiment Number 11

//AIM: Overlap save method for sectioned convolution
using matrix approach.

//Software version Scilab 5.5.2

//OS windows 10

clc;

clear;

xn =[1 2 -1 23 -2 -3 -111 2 -1]; //NX:12
hn =[1 2 3]; //Nh=3

//L(approx.=)2«Nh,so L(approx.=)2x3

//So(approx=)6

//We consider the length as 5

//Nh—1=3 1=2

//So Nh—1 number of leading zeros to be added to x(n

//So xn=[0 01 2 -123 -2 -3-1112 —1]

xOn =[0 0 1 2 -1]; //Partitioned input sequence
xin =[2 -1 2 3 -2];//Partitioned input sequence

38

16
17
18
19
20

21
22

23
24

25
26

27
28

29
30
31

32
33
34
35
36

37

x2n =[3 -2 -3 -1 1];//Partitioned input sequence

x3n=[-1 1 1 2 -1];//Partitioned input sequence

x4n=[2 -1 0 0 0];//Partitioned input sequence

//Convolving each partitioned input sequence with hn

yOn =[0 -1 2 1 0; 00 -1 2 1; 1 00 -12; 2100
-1; -1 2 1 0 01%[1;2;3;0;0];

disp(yOn,”yOn=")

yln =[2 -2 3 2 -1; -1 2 -2 3 2; 2 -12 -23; 32 -1
2 -2; -2 3 2 -1 2]1%[1;2;3;0;0];

disp(yln,”’yln=")

y2n =[3 1 -1 -3 -2; -2 31 -1 -3; -3 -231 -1;-1 -3

-2 31; 1 -1 -3 -2 3]%[1;2;3;0;0];

disp(y2n,”y2n=")

y3n=[-1 -1 2 1 1;1 -1 -1 2 1; 11 -1 -1 2;2 11 -1
-1; -1 211 -11%[1;2;3;0,0];

disp(y3n,”y3n=")

y4n=[2 0 0 O -1; -1 2 0 0 O0; 0 -1 2 0 O0; 0 O -1 2 03
0 00 -1 2]%[1;2;3;0;0];

disp(y4n,”y4n=")

yn0 = yOn (3:5)

//(3:5) means that from yon,select the element from
3rd to 5th

ynl = yin (3:5)

yn2 = y2n (3:5)

yn3 = y3n (3:5)

yn4d = y4n (3:5)

yn =[yn0;ynl;yn2;yn3;yn4] //Concatenating yno,ynl,
yn2 ,yn3 and yn4

disp(yn,”y(n)=")

39

	
	Compute Four Point DFT Using Matrix Approach Only.
	Derive The [W4*] Matrix Useful To Compute IDFT
	IDFT Computation Using Matrix Method
	N=8; DIT-FFT Without Using Inbuilt Scilab FFT Function
	N=8; IDIT-FFT Without Using Inbuilt Scilab FFT Function
	N=8; DIF-FFT Without Using Inbuilt Scilab FFT Function
	N=8;IDIF-FFT Without Using Inbuilt Scilab FFT Function
	Compute Kaiser Window Parameter Beta & Its Minimum Length
	Design High Pass Butterworth Filter Using Bilinear Transformation
	Overlap Add Method To Filter Long Sequences Using Linear Convolution
	Overlap Save Method For Sectioned Convolution Using Matrix Approach

