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Introduction

Various gualitative decision issues (min. cost, max. profit, etc), from
science and engineering can be perceived as optimization problems.

General optimization problem formulation is
min f(x)
X

st. h(x)=0,i=12,...m
gJ(X) < 01 j :1,2,...,n

Minimize above problem globally
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Cont...

An optimization problem can be reduced to the problem of computing
the sharp range of polynomials in several variables on box-like domains.

We solve the problem of finding the sharp range which encloses global
minimum using the Bernstein form of polynomials.

The Bernstein coefficients of the expansion provide the lower and
upper bounds for the range of the polynomial.

We can perform subdivision of the original box for faster convergence
of the range.
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Bernstein Form

Consider the nth degree polynomial p in a single variable X e U=][0,1]
n -
p(x) = Zaix'
i=0
Bernstein form of order K is
k
p(x) = Zb}‘B}‘(x) , k=>=n
j=0

B}‘(X) are the Bernstein basis polynomials of degree k
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b;( are the Bernstein coefficients

— —

by

Il
1M
S

~

The unit interval is not really a restriction as any finite interval X can be

linearly transformed to it.

/
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Properties of Bernstein Coefficients

The range enclosure property of the Bernstein Form

The Bernstein coefficients provide bounds for range P of over U=[0,1].

Lemma 1 (Range lemma) (Cargo and Shisha, 1966): The range P([0,1])
is bounded by the Bernstein coefficients as:

p([0,1]) < [mjin b;(,m?x bf}

Convex hull property:

conv{(X, p(x))} < conv{(I /N, b, (U)): 1 S,}
k where S, ={0,n}x{0,n}x..x{O,n}
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The polynomial function, its Bernstein coefficients, and the convex hull
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lHlustration

To illustrate the Bernstein approach for bounding the
ranges of polynomials consider the simple polynomaial

ple) =z (l -z

whose range 5 ([0, 1]) is [0, 7].

e In the Bernstein approach, put polynomial in
standard sums of power form

T
p(x) = Zazﬂ’fe
1=0
where

k n=2a=0a=1a =—1
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e For & = 2 this gives
be =10, bj=

(el ]

so that
1

5 ‘) . +)
minb: =0, maxbd: = —

e Range lemma implies

PP B |
pwﬂbgﬁﬁi

\_
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Vertex Property of Bernstein Form
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Remarkable feature: Bernstein from provides us with a criterion to
indicate if calculated estimation is range or not.

Cargo and Shisha (1966) give such a criterion based on the vertex
property.

The upper bound or lower bound is sharp if and only if min bk(U),eS
(resp. maxb (U),eS ) is attained at the indices of vertices of
Bernstein coeff|C|ent array ( B(U)).
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if and only if

J
and

J

Lemma 2 (Vertex lemma)

n (| Y — S N 1k
D ([(]j 1]) = {111111 bj , max bj]

J J

- ko : k 1.k
min b; = min {boj bk}

max bj? = max {b;, b, }

\ e Vertex lemma also holds for any subinterval of [0, 1].

/
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lHlustration
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Consider again the simple polynomial
pr)=xz(1—2x)
whose range p ([0, 1]) is [0,4].

e For &£ = 4, Bernstein coefficients are

| 1 1 1 |
by = 0, bf:l bé:aj b-‘%":l by =0

e Range lemma gives

I |
p([“? 1“ - {“?ﬁ]
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e How? Apply Vertex lemma
— Minimum Bernstein coefficient is b2 or b7 - occurs
at vertices j € {0,4}.

— Maximum Bernstein coefficient is b3, occurs at
J = 2 that is not a vertex.

— Vertex lemma is satisfied for the minimum,

— Vertex lemma is not satisfied for the maximum -
as max; bf # max {bé, bj}.

— So, by vertex lemma, above enclosure is not the

k range.

e Check if above enclosure is the range itself or not.
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Now, we check if any of the range enclosures obtained in previous
table for elevated degree of Bernstein form is range or not.

Table is reproduced below.

Degree | Range index j index j Range
k Enclosure | for min b | for max b | overestimation
2 0, 0.5] 0 1 0.2500
3 0, 5 0 1 0.0833
1 0. 0 2 0.0833
5 0,0.3] 0 2 0.0500
6 0.0.3] 0 3 0.0500
7 0,0.2857] |0 3 0.0357
10 0,02778] [ 0 5 0.0278
20 0,0.2632] | 0 10 0.0132
30 0,0.2586] |0 15 0.0086
100 0,0.2525] | 0 50 0.0025
1000 [0,02503] |0 500 0.00025
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e We find from the table that for any %, the index j
for max bj (in column 4) is not from the vertex set

{0, k}.

e By vertex lemma, none of the enclosures in column
2 Is the range !
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Subdivision of Bernstein Form
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e A generally more efficient approach than degree
elevation of the Bernstein form is subdivision.

o letD = [Q(ﬂ C U and assume we have already
the Bernstein coefficients on D.

e Suppose D is bisected to produce two subintervals
D, and D g given by

D,y=[d,m(D):Dg=|m(D).d]

/
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e [hen, the Bernstein coefficients on the subintervals
D, and Dg can be obtained from those on D, by

executing the following algorithm.
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Subdivision Algorithm

Inputs: The interval D < U and its Bernstein coefficients ( b:.().
Outputs: Subintervals D, and D, and their Bernstein coefficients
b and b

START
Bisect D to produce the two subintervals D, and D,.
Compute the Bernstein coefficients on subinterval D, as follows.
(@) Set:bf «b, for j=0,1,...,k
() Fori=12,..,k DO
bi™ for j<i
bj=11

k E{b}j+b;—1} for j>i /
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To obtain the new coefficients apply formula in (b) for j=0,1,...,k.
Find the Bernstein coefficients on subinterval D, as

b¥=b¥, for j=0.1,..k

Find the Bernstein coefficients on subinterval D, from
iIntermediate values in above step, as follows.
b*=b!, for j=0,1..k

Return D,, D, and the associated Bernstein coefficients Bjk and Bjk.
END

\_ /
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lHlustration

e Let us run through Algorithm Subdivision for
Example 1.

e For it = 4, we have already the Bernstein coeffi-
cients 0/ for the interval D = [0, 1].

e With these as the inputs to Algorithm subdivision,
the results at the various steps are

\_ /
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e step 1: D is bisected to produce two subintervals
D, =[0,0.5and Dy = [0.5. 1].

e step 2: The Bernstein coefficients on subinterval
D 4 are computed as follows.
- step 2a: Set : b « b;, for j =0,...,4,
by = bg = 0;

by = b =

"
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N
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Cont...
— step 2b:
xfori=1":
by = by =0
1,6 o 1 1 1
b= (B 4+)==(0+=) ==
1 1 /1 1 7
I (R R e
2 = 5 (b8 2(4*3) 24
1 1 /1 1 7
b3 = = (bh+b3) ==(=+=] ==
’ 2( +bs) z(:z+4) 24
1 1 /1 1
by = = (ba+ b)) ==(-+0) ==
i =5 (b5 2(4+) 8
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cont...

 for ¢ = 2:

by = by =0

b = b :%

5= 500+ =5 (5+3) =

it =500 =5 (5rv 1) =3

t- 300 =3 (55) -
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* for ¢ =

by = b =0

by = bj = %

by = b = %

= 3 ~3 (o) <

- 3038 -3 (54 E) -

/

22 April 2010 Prof. P.S.V. Nataraj, IIT Bombay 25



Cont...
* for ¢ = ¢
by = b = (‘11
b = b = ¢
. 10)
b; = by = =
. 1
by = by = 2
1 1 /1 1 1
b (b= (242 —
: (03 + by) 2(4+4) 1
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— Step 2c: The Bernstein coefficients on the
subinterval D 4 are

. 1 ~ 10
4 4 - % 4 4 4
bt = b 1,b b ? by = by = —

e step 3: The Bernstein coefficients on the neighbor-
Ing subinterval Dg are

be = 00 =0; bi=0bi== =15
1

\ Eé‘zbz:? i’i:bjf—_, /
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Cont...

e step 4: Finally,
— For subinterval D 4, Bernstein coefficients are

0 1 10 1 1
'8748747 4

— For subinterval D 5, Bernstein coefficients are

. 1 10 1 1
87487474

— |t Is coincidental here that Bernstein coefficients
for both the subintervals are the same.

\_ /
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e By range lemma

p(Da4) € |0,

p(Ds) C |0,

22 April 2010

Prof. P.S.V. Nataraj, [IT Bombay

29




4 h

Bernstein Subdivision

e Consider the Bernstein coefficients given a few
slides earlier.

e For subinterval D 4, 3
— The minimum Bernstein coefficient is b;

— The maximum Bernstein coefficient is b1.
e Both these occur at the vertices, i.e., for j € {0, 4}.

e By the vertex lemma, the range of p (D) Is [{Lﬂ .

\_ /
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¢ An identical situation holds for other subinterval
D5.

e Thus, we obtain the range 5 ([0, 1]) = [0.5].

e In this example, using just one subdivision and
application of the vertex lemma to the subintervals,

we have been able to obtain the range of the given
polynomial.

e \We are also able to assert that obtained enclosure
Is Indeed the range.

\_
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Cont...

e |t was not possible to get the range through degree
elevation, even with Bernstein form of as high a
degree as k£ = 1000.

e From Table 1, this high degree Bernstein form still
produced an overestimation of about 2.5¢ — (4 |

\_ /
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