Range Computation of Polynomial Problems using the Bernstein Form

by

Prof. P.S.V. Nataraj
IDP in Systems and Control Engineering
IIT Bombay

Outline

- Introduction
- Bernstein form
- Degree elevation of the Bernstein form
- Vertex property
- Subdivision of the Bernstein form

Introduction

- Various qualitative decision issues (min. cost, max. profit, etc), from science and engineering can be perceived as optimization problems.
- General optimization problem formulation is

$$\min_{x} f(x)$$

s.t.
$$h_i(x) = 0$$
, $i = 1, 2, ..., m$
 $g_j(x) \le 0$, $j = 1, 2, ..., n$

Minimize above problem globally

- An optimization problem can be reduced to the problem of computing the sharp range of polynomials in several variables on box-like domains.
- We solve the problem of finding the sharp range which encloses global minimum using the Bernstein form of polynomials.
- The Bernstein coefficients of the expansion provide the lower and upper bounds for the range of the polynomial.
- We can perform subdivision of the original box for faster convergence of the range.

Bernstein Form

• Consider the n^{th} degree polynomial p in a single variable $x \in U = [0,1]$

$$p(x) = \sum_{i=0}^{n} a_i x^i$$

Bernstein form of order k is

$$p(x) = \sum_{j=0}^{k} b_j^k B_j^k(x) , \quad k \ge n$$

• $B_j^k(x)$ are the Bernstein basis polynomials of degree k

• b_i^k are the Bernstein coefficients

$$b_{j}^{k} = \sum_{i=0}^{j} a_{i} \frac{\binom{j}{i}}{\binom{k}{i}}$$

 The unit interval is not really a restriction as any finite interval X can be linearly transformed to it.

Properties of Bernstein Coefficients

The range enclosure property of the Bernstein Form

- The Bernstein coefficients provide bounds for range **p** of over **U**=[0,1].
- Lemma 1 (**Range lemma**) (Cargo and Shisha, 1966): The range $\overline{p}([0,1])$ is bounded by the Bernstein coefficients as:

$$\overline{p}([0,1]) \subseteq \left[\min_{j} b_{j}^{k}, \max_{j} b_{j}^{k} \right]$$

Convex hull property:

$$conv\{(x, p(x))\} \subseteq conv\{(I/N, b_I(U)) : I \in S_0\}$$

where
$$S_0 = \{0, n_1\} \times \{0, n_2\} \times ... \times \{0, n_l\}$$

Figure: The polynomial function, its Bernstein coefficients, and the convex hull

Illustration

To illustrate the Bernstein approach for bounding the ranges of polynomials consider the simple polynomial

$$p\left(x\right) = x\left(1 - x\right)$$

whose range $\bar{p}([0,1])$ is $\left[0,\frac{1}{4}\right]$.

 In the Bernstein approach, put polynomial in standard sums of power form

$$p\left(x\right) = \sum_{i=0}^{n} a_i x_i$$

where

$$n = 2, a_0 = 0, a_1 = 1, a_2 = -1$$

• For k = 2 this gives

$$b_0^2 = 0, \quad b_1^2 = \frac{1}{2}, \quad b_2^2 = 0$$

so that

$$\min_{j} b_{j}^{2} = 0, \quad \max_{j} b_{j}^{2} = \frac{1}{2}$$

• Range lemma implies

$$\bar{p}\left([0,1]\right) \subseteq \left[0,\frac{1}{2}\right]$$

Vertex Property of Bernstein Form

- Remarkable feature: Bernstein from provides us with a criterion to indicate if calculated estimation is range or not.
- Cargo and Shisha (1966) give such a criterion based on the vertex property.
- The *upper bound* or *lower bound* is sharp if and only if $\min b_j^k(\mathbf{U})_{I \in S_0}$ (resp. $\max b_j^k(\mathbf{U})_{I \in S_0}$) is attained at the indices of vertices of Bernstein coefficient array ($B(\mathbf{U})$).

Lemma 2 (Vertex lemma)

$$\bar{p}\left([0,1]\right) = \left[\min_{j} b_{j}^{k}, \max_{j} b_{j}^{k}\right]$$

if and only if

$$\min_{j} b_j^k = \min\left\{b_0^k, b_k^k\right\}$$

and

$$\max_{j} b_j^k = \max \left\{ b_0^k, b_k^k \right\}$$

 \bullet Vertex lemma also holds for any subinterval of [0,1].

Illustration

Consider again the simple polynomial

$$p\left(x\right) = x\left(1 - x\right)$$

whose range $\bar{p}([0,1])$ is $\left[0,\frac{1}{4}\right]$.

• For k = 4, Bernstein coefficients are

$$b_0^4 = 0, \quad b_1^4 = \frac{1}{4}, \quad b_2^4 = \frac{1}{3}, \quad b_3^4 = \frac{1}{4}, \quad b_4^4 = 0$$

Range lemma gives

$$\bar{p}\left([0,1]\right) \subseteq \left[0,\frac{1}{3}\right]$$

- Check if above enclosure is the range itself or not.
- How? Apply Vertex lemma
 - Minimum Bernstein coefficient is b_0^4 or b_4^4 occurs at vertices $j \in \{0,4\}$.
 - Maximum Bernstein coefficient is b_2^4 , occurs at j=2 that is not a vertex.
 - Vertex lemma is satisfied for the minimum,
 - Vertex lemma is not satisfied for the maximum as $\max_j b_j^k \neq \max \left\{ b_0^4, b_4^4 \right\}$.
 - So, by vertex lemma, above enclosure is not the range.

- •Now, we check if any of the range enclosures obtained in previous table for elevated degree of Bernstein form is range or not.
- Table is reproduced below.

Degree	Range	index j	index j	Range
k	Enclosure	for min b_j^k	for $\max b_j^k$	overestimation
2	[0, 0.5]	0	1	0.2500
3	$[0, \frac{1}{3}]$	0	1	0.0833
4	$[0,\frac{1}{3}]$	0	2	0.0833
5	[0, 0.3]	0	2	0.0500
6	[0, 0.3]	0	3	0.0500
7	[0, 0.2857]	0	3	0.0357
10	[0, 0.2778]	0	5	0.0278
20	[0, 0.2632]	0	10	0.0132
30	[0, 0.2586]	0	15	0.0086
100	[0, 0.2525]	0	50	0.0025
1000	[0, 0.2503]	0	500	0.00025

- We find from the table that for any k, the index j for $\max b_j^k$ (in column 4) is not from the vertex set $\{0, k\}$.
- By vertex lemma, none of the enclosures in column
 2 is the range!

Subdivision of Bernstein Form

- A generally more efficient approach than degree elevation of the Bernstein form is subdivision.
- Let $\mathbf{D} = [\underline{d}, \overline{d}] \subseteq \mathbf{U}$ and assume we have already the Bernstein coefficients on \mathbf{D} .
- Suppose \mathbf{D} is bisected to produce two subintervals \mathbf{D}_A and \mathbf{D}_B given by

$$\mathbf{D}_{A} = \left[\underline{d}, m\left(\mathbf{D}\right)\right]; \mathbf{D}_{B} = \left[m\left(\mathbf{D}\right), \overline{d}\right]$$

Then, the Bernstein coefficients on the subintervals
 D_A and D_B can be obtained from those on D, by executing the following algorithm.

Subdivision Algorithm

- Inputs: The interval $D \subseteq U$ and its Bernstein coefficients (b_i^k).
- Outputs: Subintervals D_A and D_B and their Bernstein coefficients \tilde{b}^k_i and \hat{b}^k_i

START

- Bisect **D** to produce the two subintervals D_A and D_B .
- Compute the Bernstein coefficients on subinterval D_A as follows.
 - (a) Set: $b_j^k \leftarrow \overline{b}_j^k$, for j = 0, 1, ..., k
 - (b) For i = 1, 2, ..., k DO

$$\mathbf{b}_{j}^{k} = \begin{cases} b_{j}^{i-1} & \text{for } j < i \\ \frac{1}{2} \{b_{j-1}^{i-1} + b_{j}^{i-1}\} & \text{for } j \ge i \end{cases}$$

To obtain the new coefficients apply formula in (b) for j = 0, 1, ..., k.

Find the Bernstein coefficients on subinterval D_A as

$$\tilde{b}_{j}^{k} = b_{j}^{k}$$
, for $j = 0, 1, ..., k$

• Find the Bernstein coefficients on subinterval D_B from intermediate values in above step, as follows.

$$\hat{b}_{j}^{k} = b_{k}^{j}$$
, for $j = 0, 1, ..., k$

• Return D_A , D_B and the associated Bernstein coefficients $\tilde{b}_j^{\ k}$ and $\hat{b}_j^{\ k}$. END

Illustration

- Let us run through Algorithm Subdivision for Example 1.
- For k=4, we have already the Bernstein coefficients \bar{b}_j^k for the interval $\mathbf{D}=[0,1].$
- With these as the inputs to Algorithm subdivision, the results at the various steps are

- step 1: **D** is bisected to produce two subintervals $\mathbf{D}_A = [0, 0.5]$ and $\mathbf{D}_B = [0.5, 1]$.
- step 2: The Bernstein coefficients on subinterval
 D_A are computed as follows.

- step 2a: Set :
$$b_j^0 \leftarrow \bar{b}_j^4$$
, for $j=0,\dots,4$, $b_0^0 = \bar{b}_0^4 = 0$; $b_1^0 = \bar{b}_1^4 = \frac{1}{4}$; $b_2^0 = \bar{b}_2^4 = \frac{1}{3}$; $b_3^0 = \bar{b}_3^4 = \frac{1}{4}$; $b_4^0 = \bar{b}_4^4 = 0$

- step 2b:

* for
$$i = 1$$
:
$$b_0^1 = b_0^0 = 0$$

$$b_1^1 = \frac{1}{2} \left(b_0^0 + b_1^0 \right) = \frac{1}{2} \left(0 + \frac{1}{4} \right) = \frac{1}{8}$$

$$b_2^1 = \frac{1}{2} \left(b_1^0 + b_2^0 \right) = \frac{1}{2} \left(\frac{1}{4} + \frac{1}{3} \right) = \frac{7}{24}$$

$$b_3^1 = \frac{1}{2} \left(b_2^0 + b_3^0 \right) = \frac{1}{2} \left(\frac{1}{3} + \frac{1}{4} \right) = \frac{7}{24}$$

$$b_4^1 = \frac{1}{2} \left(b_3^0 + b_4^0 \right) = \frac{1}{2} \left(\frac{1}{4} + 0 \right) = \frac{1}{8}$$

* for
$$i = 2$$
:

$$b_0^2 = b_0^1 = 0$$

$$b_1^2 = b_1^1 = \frac{1}{8}$$

$$b_2^2 = \frac{1}{2} \left(b_1^1 + b_2^1 \right) = \frac{1}{2} \left(\frac{1}{8} + \frac{7}{24} \right) = \frac{10}{48}$$

$$b_3^2 = \frac{1}{2} \left(b_2^1 + b_3^1 \right) = \frac{1}{2} \left(\frac{7}{24} + \frac{7}{24} \right) = \frac{7}{24}$$

$$b_4^2 = \frac{1}{2} \left(b_3^1 + b_4^1 \right) = \frac{1}{2} \left(\frac{7}{24} + \frac{1}{8} \right) = \frac{10}{48}$$

$$\begin{array}{l} * \text{ for } i=3: \\ b_0^3 = b_0^2 = 0 \\ b_1^3 = b_1^2 = \frac{1}{8} \\ b_2^3 = b_2^2 = \frac{10}{48} \\ b_3^3 = \frac{1}{2} \left(b_2^2 + b_3^2 \right) = \frac{1}{2} \left(\frac{10}{48} + \frac{7}{24} \right) = \frac{1}{4} \\ b_4^3 = \frac{1}{2} \left(b_3^2 + b_4^2 \right) = \frac{1}{2} \left(\frac{7}{24} + \frac{10}{48} \right) = \frac{1}{4} \end{array}$$

$$\begin{array}{l} * \text{ for } i=4: \\ b_0^4 = b_0^3 = 0 \\ b_1^4 = b_1^3 = \frac{1}{8} \\ b_2^4 = b_2^3 = \frac{10}{48} \\ b_3^4 = b_3^3 = \frac{1}{4} \\ b_4^4 = \frac{1}{2} \left(b_3^3 + b_4^3 \right) = \frac{1}{2} \left(\frac{1}{4} + \frac{1}{4} \right) = \frac{1}{4} \end{array}$$

 Step 2c: The Bernstein coefficients on the subinterval D_A are

$$\tilde{b}_0^4 = b_0^4 = 0;$$
 $\tilde{b}_1^4 = b_1^4 = \frac{1}{8};$ $\tilde{b}_2^4 = b_2^4 = \frac{10}{48}$
 $\tilde{b}_3^4 = b_3^4 = \frac{1}{4};$ $\tilde{b}_4^4 = b_4^4 = \frac{1}{4}$

 step 3: The Bernstein coefficients on the neighboring subinterval D_B are

$$\hat{b}_{0}^{4} = b_{4}^{0} = 0;$$
 $\hat{b}_{1}^{4} = b_{4}^{1} = \frac{1}{8};$ $\hat{b}_{2}^{4} = b_{4}^{2} = \frac{10}{48};$ $\hat{b}_{3}^{4} = b_{4}^{3} = \frac{1}{4};$ $\hat{b}_{4}^{4} = b_{4}^{4} = \frac{1}{4}$

- step 4: Finally,
 - For subinterval \mathbf{D}_A , Bernstein coefficients are

$$\left(0, \frac{1}{8}, \frac{10}{48}, \frac{1}{4}, \frac{1}{4}\right)$$

– For subinterval \mathbf{D}_B , Bernstein coefficients are

$$\left(0, \frac{1}{8}, \frac{10}{48}, \frac{1}{4}, \frac{1}{4}\right)$$

 It is coincidental here that Bernstein coefficients for both the subintervals are the same.

By range lemma

$$\bar{p}(\mathbf{D}_A) \subseteq \left[0, \frac{1}{4}\right]$$

$$\bar{p}(\mathbf{D}_B) \subseteq \left[0, \frac{1}{4}\right]$$

Bernstein Subdivision

- Consider the Bernstein coefficients given a few slides earlier.
- For subinterval D_A,
 - The minimum Bernstein coefficient is \tilde{b}_0^4
 - The maximum Bernstein coefficient is \hat{b}_4^4 .
- Both these occur at the vertices, i.e., for $j \in \{0, 4\}$.
- By the vertex lemma, the range of $\bar{p}(\mathbf{D}_A)$ is $\left[0,\frac{1}{4}\right]$.

- An identical situation holds for other subinterval
 D_B.
- Thus, we obtain the range $\bar{p}([0,1]) = [0,\frac{1}{4}]$.
- In this example, using just one subdivision and application of the vertex lemma to the subintervals, we have been able to obtain the range of the given polynomial.
- We are also able to assert that obtained enclosure is indeed the range.

- It was not possible to get the range through degree elevation, even with Bernstein form of as high a degree as k = 1000.
- From Table 1, this high degree Bernstein form still produced an overestimation of about 2.5e-04!