

Optimization Toolbox using Bernstein Form

by

Mr. Dhiraj B. Magare IDP in Systems and Control Engineering IIT Bombay

Outline

- Introduction
- Bernstein form
- Vertex property
- Subdivision of the Bernstein form
- Cut-off Test
- Global optimization Flow Chart

Introduction

- Optimization: is study of how to find the best (optimum) solution to a problem.
- Objective Function: mathematical representation of a problem.

e.g. minimum function problem, which is expressed as $\min_{x} f(x)$

where f is the objective function

Global and Local Optima

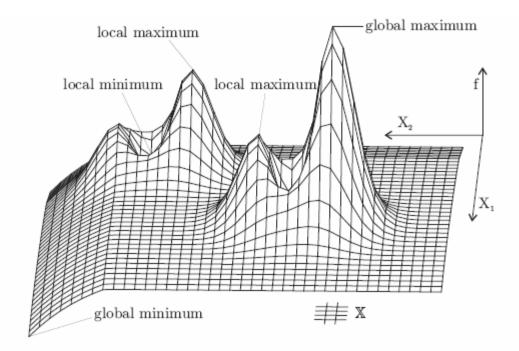
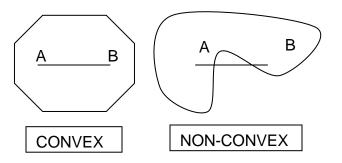


Fig.: Global and local optima of a two-dimensional function

Dhiraj B. Magare, SysCon, IIT Bombay

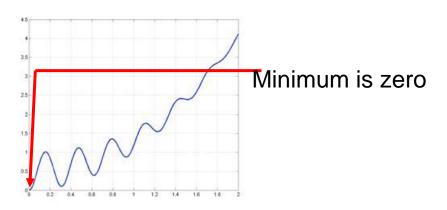
• Convex – Non Convex Function:

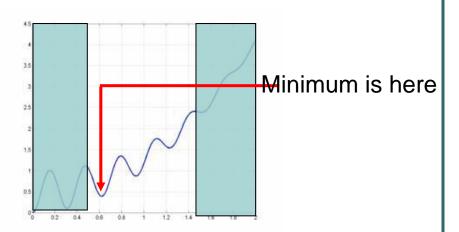
Convex if, every point on the straight line segment that joins them is within the set.



Cont...

Unconstrained - Constrained Problems





Univariate/Bivariate/Multivariate Problems
 Single Variable Objective Function = Univariate
 Two Variable Objective Function = Bivariate
 More than one Variable Objective Function = Multivariate

Cont...

- An optimization problem can be reduced to the problem of computing the sharp range of polynomials in several variables on box-like domains.
- We can solve the problem of finding the sharp range which encloses global minimum, using the Bernstein form of polynomials.
- The Bernstein coefficients of the expansion provide the lower and upper bounds for the range of the polynomial.
- We can perform subdivision of the original box for faster convergence of the range.

Bernstein Form

• Consider the n^{th} degree polynomial p in a single variable in power form $x \in U = [0,1]$

$$p(x) = \sum_{i=0}^{n} a_{i} x^{i} \quad a_{i} \in \mathbb{R} \quad n \in \mathbb{N}$$

• Bernstein form of order k is $p(x) = \sum_{j=0}^{k} b_j^k B_j^k(x) \quad \forall x \in [0, 1] \quad k \ge n$

where $B_j^k(x)$ the Bernstein basis polynomials of degree k and b_j^k Bernstein coefficients

• b_i^k are the Bernstein coefficients given by

$$b_{j}^{k} = \sum_{i=0}^{j} a_{i} \frac{\binom{j}{i}}{\binom{k}{i}}$$

 The Bernstein coefficients are collected in an array is called as Bernstein Patch.

Properties of Bernstein Coefficients

• Let $\overline{p(u)}$ denote the range of polynomial p on u. Then, by the range enclosing property of the Bernstein coefficients $\overline{p(u)} \subseteq [\min B(u), \max B(u)]$

which is called 'Range' lemma

Convex hull property

```
conv\{(x, p(x)): x \in u\} \subseteq conv\{(I / N, b_I(u)): I \in S_0\}
```

where

 $S_0 = \{0, n_1\} \times \{0, n_2\} \times ... \times \{0, n_l\}$ $l \in \mathbb{N}$ and *conv* p denotes convex hull of P

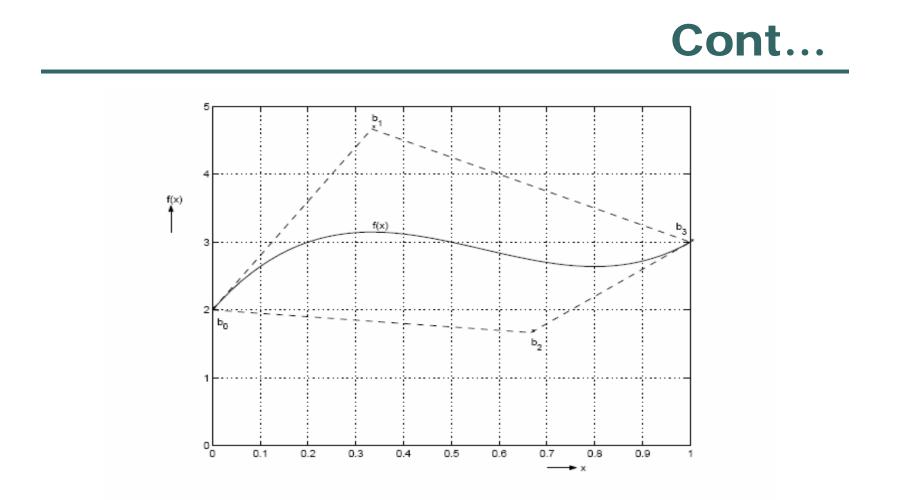


Figure : The polynomial function, its Bernstein coefficients, and the convex hull

Illustration

To illustrate the Bernstein approach for bounding the ranges of polynomials consider the simple polynomial

$$p\left(x\right) = x\left(1-x\right)$$

whose range $\bar{p}([0,1])$ is $\begin{bmatrix} 0, 1 \\ 4 \end{bmatrix}$.

 In the Bernstein approach, put polynomial in standard sums of power form

$$p\left(x\right) = \sum_{i=0}^{n} a_{i} x_{i}$$

where

$$n = 2, a_0 = 0, a_1 = 1, a_2 = -1$$

- For k = 2 this gives $b_0^2 = 0, \quad b_1^2 = \frac{1}{2}, \quad b_2^2 = 0$ so that $\min_j b_j^2 = 0, \quad \max_j b_j^2 = \frac{1}{2}$
- Range lemma implies $\bar{p}\left([0,1]\right) \subseteq \left[0,\frac{1}{2}\right]$

Assignment 1

Calculate Bernstein Coefficient for given polynomials

Vertex Property of Bernstein Form

- Remarkable feature: Bernstein Form provides us with a criterion to indicate if calculated estimation is range or not.
- Cargo and Shisha (1966) give such a criterion based on the vertex property.
- The *upper bound* or *lower bound* is sharp if and only if $\min b_j^k(U)_{I \in S_0}$ (resp. $\max b_j^k(U)_{I \in S_0}$) is attained at the indices of vertices of Bernstein coefficient array (B(U)).

Lemma 2 (Vertex lemma)

$$\bar{p}\left([0,1]\right) = \left[\min_{j} b_{j}^{k}, \max_{j} b_{j}^{k}\right]$$

if and only if

$$\min_{j} b_j^k = \min\left\{b_0^k, b_k^k\right\}$$

and

$$\max_{j} b_{j}^{k} = \max\left\{b_{0}^{k}, b_{k}^{k}\right\}$$

• Vertex lemma also holds for any subinterval of [0, 1].

Illustration

• Consider again the simple polynomial

$$p\left(x\right) = x\left(1-x\right)$$

whose range $\bar{p}([0,1])$ is $\left[0,\frac{1}{4}\right]$.

For k=2, Bernstein Coefficients are

$$b_0^2 = 0$$
 $b_1^2 = \frac{1}{2}or0.5$ $b_2^2 = 0$

Range Lemma: $\overline{p}([0,1]) \subseteq \left[0,\frac{1}{2}\right]$

- Check if above enclosure is the range itself or not.
- How? Apply Vertex lemma
- Minimum Bernstein coefficient is b_0^2 and b_2^2 occurs at vertices $j \in \{0,2\}$
- Maximum Bernstein coefficient is b_1^2 occurs at vertex j = 1.
- •Vertex lemma is satisfied for the minimum.
- •Vertex lemma is not satisfied for the maximum as,

 $\max_{j} b_j^k \neq \max\{b_0^2, b_2^2\}$

So, by vertex lemma, above enclosure is not the range.

Vertex Test Algorithm:

- 1. Calculate Bmin from current B (Bernstein patch).
- 2. Calculate minimum vertices of B. Bvermin.
- 3. Calculate vertices of B. Bvertex.
- 4. Check whether Bmin = = Bvermin ?
 - Then, update stored minimum, zcap = min(Bmin,Bvermin)
 // initial zcap = max(B) taken as worst case.
 - 2. Check Bmin = = Bvertex. ?
 - 3. Store current box in solution list, LXsol.
- 5. If no, go for box subdivision.

Assignment 3

 Write a simple program using Vertex Test Algorithm.

Subdivision of Bernstein Form

- Vertex Condition not satisfied then apply Subdivide test J. Garloff (1993).
 - Let D = [d, d] ⊆ U and assume we have already the Bernstein coefficients on D.
 - Suppose D is bisected to produce two sub boxes D_A and D_B

$$\mathbf{D}_{A} = [\underline{d}, m(\mathbf{D})]; \mathbf{D}_{B} = [m(\mathbf{D}), d]$$

• Then, the Bernstein coefficients on the sub boxes D_A and D_B can be obtained from those on D by executing the following algorithm.

Subdivision Algorithm

- Inputs: The box $D \subseteq U$ and its Bernstein coefficients { \overline{b}_{j}^{k} }.
- Outputs: Sub boxes D_A and D_B and their Bernstein coefficients \tilde{b}_j^k and \hat{b}_j^k

START

- Bisect **D** to produce the two sub boxes D_A and D_B .
- Compute the Bernstein coefficients on subinterval D_A as follows.

(a) Set:
$$b_j^k \leftarrow \overline{b}_j^k$$
, for $j = 0, 1, ..., k$
(b) For $i = 1, 2, ..., k$ DO
 $b_j^k = \begin{cases} b_j^{i-1} & \text{for } j < i \\ \frac{1}{2} \{ b_{j-1}^{i-1} + b_j^{i-1} \} & \text{for } j \ge i \end{cases}$

Cont...

- To obtain the new coefficients apply formula in (b) for j=0,1,...,k.
- Find the Bernstein coefficients on sub box D_A as

 $\tilde{b}_{j}^{k} = b_{j}^{k}$, for j = 0, 1, ..., k

• Find the Bernstein coefficients on sub box D_B from intermediate values in above step, as follows.

$$\hat{b}_{j}^{k} = b_{k}^{j}$$
, for $j = 0, 1, ..., k$

• Return D_A , D_B and the associated Bernstein coefficients \tilde{b}_j^k and \hat{b}_j^k . END

Illustration

Algorithm Subdivision for Example 1.

For k = 4, we have already the Bernstein coefficients \overline{b}_{j}^{k} for the interval D= [0,1].

With these as the inputs to Algorithm subdivision, the results are: Bisect D to produce the two sub boxes $D_A = [1,0.5]$ and $D_B = [0.5,1]$.

	Cont
The Bernstein coefficients on the sub box D_A a	are $\left(0, \frac{1}{8}, \frac{10}{48}, \frac{1}{4}, \frac{1}{4}\right)$
The Bernstein coefficients on the sub box D_B	are $\left(0, \frac{1}{8}, \frac{10}{48}, \frac{1}{4}, \frac{1}{4}\right)$

• By range lemma

$$\bar{p}\left(\mathbf{D}_{A}\right) \subseteq \left[0, \frac{1}{4}\right]$$
$$\bar{p}\left(\mathbf{D}_{B}\right) \subseteq \left[0, \frac{1}{4}\right]$$

In this example, using just *one* subdivision and application of the vertex lemma to the sub boxes we have been able to obtain the range of the given polynomial.

Assignment 4

 Calculate Bernstein Coefficients on subdivided boxes using a scilab code that already implemented in assignment 2.
 (Test above example.)

Cut-off Test

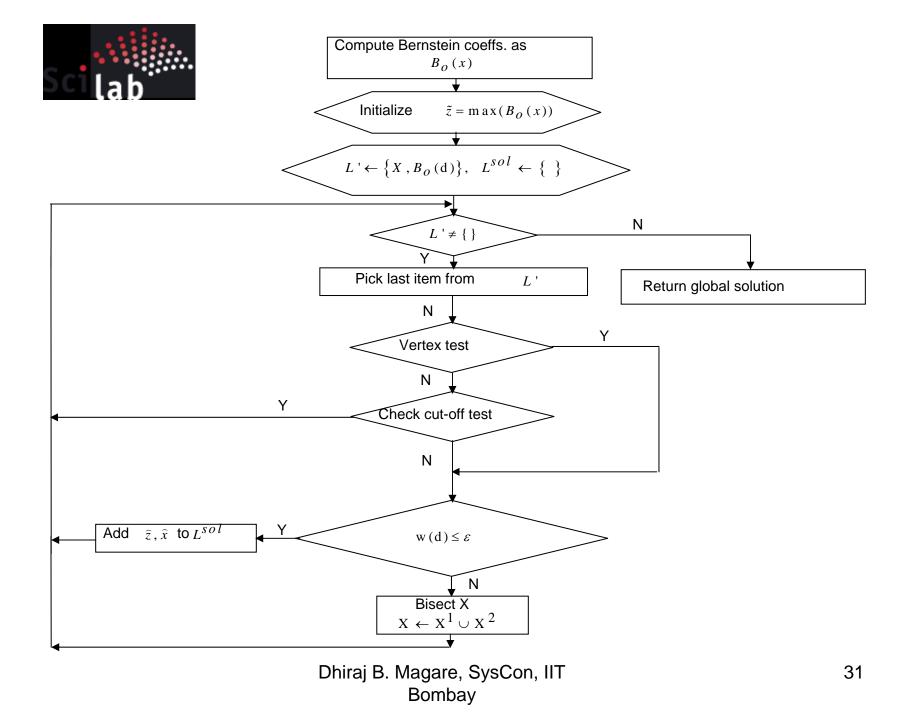
Cut-off Test Algorithm

- 1. Calculate minimum of B: Bmin
- 2. Use latest updated zcap
- 3. Check IF Bmin > zcap, THEN delete or discard current box. END
- 4. Update zcap=min(zcap,Bvermin)

Global Optimization Algorithm

Inputs: Degree N of all variables, polynomial coefficient matrices A for the objective function and specified box X

Output: Global minimum zcap to the specified tolerance \in and all global minimizers $X^{(i)}$



Examples

Univariate and Unconstrained Examples with their Global minimum and minimizer

