Introduction to Scilab

Scilab Talk

Department of Chemical Engineering,
IIT Bombay
One Day Teacher Training Programme Sant Gadge Baba
Amravati University Amravati

August 08, 2009
Introduction to Scilab

Basic Features

Ordinary Differential Equations Integration Examples
Software Issues

- Last 30-40 years: Significant (order of 10^3) advances in hardware technology
- Software: still the same time (improvement of order of $2 - 3$) to write programs as before
- Low programming productivity
- Scientific Computing?
 - No formal training to scientists and engineers in programming
 - Maybe one or max 2 courses in Fortran or C or C++.
 - Aim: To solve specific engineering problems without investing too much time or knowing "software programming".
Ideas and Implementation

- R&D Stage: Evaluation of ideas
 - Ability to rapidly test different ideas
- When ideas work, then production phase
 - Generalize code for repeated used
 - Use code repeatedly
 - Need efficient code
College Education = Idea Testing

- New things learnt in college
- Extensive idea testing phase
- Need a tool for idea testing
- Performance of code often does not matter
- All of us need to be able to do some basic computations to increase our teaching effectiveness

Scilab fits the bill
High productivity platform for idea testing
Support for “research” topics
Developing efficient codes for tested ideas

Scilab fits the bill
Scilab for numerical computer applications
Good mathematical library in compiled C code
Interpreted high level language
High productivity tool: Scilab:C=C:Assembly
Can work with Fortran, C: Transition to production phase possible
Good graphics capability
Large installed base
A lot of algorithms implemented in interpreted language as well
Free
Check out www.scilab.org
Mathematical Functions

- Special Functions
 - Bessel, gamma, error function, elliptic integral
- Polynomial Functions
 - Characteristic polynomial, roots, multiplication, division
- Matrix norms, ranks, condition number
- Equation Solving
 - System of linear and nonlinear equations, differential equations, differential algebraic equations
- Optimization
 - Linear Programming, Quadratic Programming
- Probability and Statistics
 - Distributions, random number generators, random system generators
Mathematical Functions Continued

- Matrix Decomposition and Factorization Tools
- Signal Processing Tools
- Control Related Tools
- Scicos: A block-diagram based environment
Scilab’s Language

- C like language
- Control flow
 - if
 - while
 - select
 - break
- Procedures
 - Scripts
 - Functions
- Other Features
 - Diary
 - Interface with C and Fortran routines
Features of Scilab

- Scilab made up of three distinct parts:
 - An interpreter
 - Libraries of functions (Scilab procedures)
 - Libraries of Fortran and C routines
- It includes hundreds of mathematical functions with the possibility to interactively add programs from various languages (C, Fortran).
- It has sophisticated data structures including polynomials, rational functions, linear systems, etc.
- Various contributed "toolboxes": eg. support vector machines (SVM).
Where do I get Scilab?

- Can be downloaded from: http://www.scilab.org
- Available for various platforms (binaries and source codes): Windows (XP, Vista), Linux, Mac
4+6+12

\[
\text{ans} = 22.
\]

\[a = 4, \quad b = 6; \quad c = 12\]

\[
a = 4. \\
c = 12. \\
a+b+c
\]

\[
\text{ans} = 22.
\]
Useful Commands

- demos
 - Gives demos on several different things
- apropos
 - Helps locate commands associated with a word
- help
- diary
 - Stores all commands and resulting outputs
Simple Arithmetic

```scilab
format('v',10)
e = 1/30

   e   =
       0.0333333

format('v',20)
e

   e   =
       0.03333333333333333

format('e',20)
e

   e   =
       3.3333333333333E-02
```
format('v',10)
x = sqrt(2)/2, y = asin(x)

x =

0.7071068

y =

0.7853982

y_deg = y * 180 / %pi

y_deg =
45.
Rounding, Truncation, etc.

\[x = 2.6, \ y_2 = \text{floor}(x), \ y_3 = \text{ceil}(x), \ldots \]
\[y_4 = \text{round}(x) \]

\[
\begin{align*}
x &= 2.6 \\
y_2 &= 2.6 \\
y_3 &= 2. \\
y_4 &= 3. \\
\end{align*}
\]
The following three commands produce identical result:

```plaintext
x = [0 .1*%pi .2*%pi .3*%pi .4*%pi .5*%pi .6*%pi ..
   .7*%pi .8*%pi .9*%pi %pi];

x = (0:0.1:1)*%pi;

x = linspace(0,%pi,11);
```
Vector Operation - 1

--->x = (0:0.1:1)*%pi;

--->y = sin(x)

y =

 column 1 to 6
 ! 0. 0.3090170 .5877853 0.8090170 0.9510565 1. !

 column 7 to 11
 ! 0.9510565 0.8090170 0.5877853 0.3090170 1.225E-16 !

--->y(5)

ans =

 0.9510565
-->a = 1:5, b = 1:2:7

a =
! 1. 2. 3. 4. 5. !
b =
! 1. 3. 5. 7. !

-->c = [b a]

c =
! 1. 3. 5. 7. 1. 2. 3. 4. 5. !

-->d = [b(1:2:4) 1 0 1]

d =
! 1. 5. 1. 0. 1. !
--> a, b

a =
! 1. 2. 3. 4. 5. !
b =
! 1. 3. 5. 7. !

--> a - 2

ans =
! -1. 0. 1. 2. 3. !

--> 2 * a - [b 1]

ans =
! 1. 1. 1. 1. 1. 9. !
--->a

a =
! 1. 2. 3. 4. 5. !

--->a.^2

ans =
! 1. 4. 9. 16. 25. !

--->a.^a

ans =
! 1. 4. 27. 256. 3125. !
Transpose

-->c = [1;2;3]

c =
! 1. !
! 2. !
! 3. !

-->a=1:3

a =
! 1. 2. 3. !

-->b = a'

b =
! 1. !
! 2. !
! 3. !
Submatrix -1

-->A=[1 2 3; 4 5 6; 7 8 9]

A =

! 1. 2. 3. !
! 4. 5. 6. !
! 7. 8. 9. !

-->A(3,3)=0

A =

! 1. 2. 3. !
! 4. 5. 6. !
! 7. 8. 0. !

\[A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{bmatrix} \]

\[B = A(3:-1:1,1:3) \]

\[B = \begin{bmatrix} 7 & 8 & 0 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix} \]
-->A

A =
! 1. 2. 3. !
! 1. 4. 7. !
! 7. 8. 0. !

-->B=A(:,2)

B =
! 2. !
! 4. !
! 8. !
Logical Operators

== equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to
<> or ~= not equal to
--> b = [5 -3; 2 -4]

b =
[5. -3.]
[2. -4.]

--> x = abs(b) > 2

x =
[T T]
[F T]

--> y = b (abs(b) > 2)

y =
[5.]
[-3.]
[-4.]
---> zeros(3,3)

ans =
! 0. 0. 0. !
! 0. 0. 0. !
! 0. 0. 0. !

---> ones(2,4)

ans =
! 1. 1. 1. 1. !
! 1. 1. 1. 1. !

---> rand(2,1)

ans =
! 0.2113249 !
! 0.7560439 !
-->a = ones(10000,1);
-->timer()

ans =
 0.02

-->for i = 1:10000, b(i)=a(i)+a(i); end
-->timer()

ans =
 0.31

-->c = a+a;
-->timer()

ans =
 0.03
- Diary to keep record of all executed commands
- Script file: write all working commands
 - When required, simply execute script file
 - No need to work on command prompt
Go through the **Demos!**
t = (0:0.1:6*%pi);
plot2d(t', sin(t)');
xtile('plot2d and xgrid', 't', 'sin(t)');
xgrid();
Weight Reduction Model

- Weight of person = x kg
- Tries to reduce weight
- Weight loss per month = 10% of weight
- Starting weight = 100 kg

\[
\frac{dx}{dt} = -0.1x
\]

Initial conditions:

\[x = 100 \quad \text{at } t=0\]

Determine $x(t)$ as a function of t.
Analytical Solution of Simple Model

Recall the model:
\[
\frac{dx}{dt} = -0.1x; \quad x(t = 0) = 100
\]

Cross multiplying,
\[
\frac{dx}{x} = -0.1 \, dt
\]

Integrating both sides from 0 to \(t \),
\[
\int \frac{dx}{x} = -0.1 \int dt
\]
\[
C + \ln x(t) = -0.1t
\]

Using initial conditions,
\[
C = -\ln 100
\]

Thus, the final solution is,
\[
\ln \left(\frac{x(t)}{100} \right) = -0.1t \quad \text{or} \quad x(t) = 100e^{-0.1t}
\]
Solution, Continued

- Weight of person = x kg
- Tries to reduce weight
- Weight loss per month = 10% of weight
- Starting weight = 100 kg

\[x(t) = 100e^{-0.1t} \]

Compute and plot for two years, i.e. for 24 months:

```scilab
1 T=0:0.1:24;
2 plot2d(T,100*exp(-0.1*T));
3 xtitle(’Weight vs. month’,’Time in months’,’Weight (kg)’)
```
Weight vs. month

Time, in month

Weight (kg)
Need for Numerical Solution

- Exact solution is ok for simple models
- What if the model is complicated?
- Consider integrating the more difficult problem:

\[
\frac{dx}{dt} = \frac{2 + 18t + 68t^2 + 180t^3 + 250t^4 + 250t^5}{x^2}
\]

with initial condition,

\[x(t = 0) = 1\]

- Analytical (i.e. exact) solution difficult to find
Suppose that we want to integrate the following system:

\[\frac{dx}{dt} = g(x, t) \]

with initial condition:

\[x(t = 0) = x_0 \]

Approximate numerical method - divide time into equal intervals: \(t_0, t_1, t_2, \) etc.

\[\frac{x_n - x_{n-1}}{\Delta t} = g(x_{n-1}, t_{n-1}) \]

Simplifying,

\[x_n - x_{n-1} = \Delta t g(x_{n-1}, t_{n-1}) \]

\[x_n = x_{n-1} + \Delta t g(x_{n-1}, t_{n-1}) \]

Given \(x_0 \), march forward and determine \(x_n \) for all future \(n \).
Online function definition

```plaintext
deff ( '[y]=avgfnc(x1,x2)' , 'y=(x1+x2)/2' )
a=avgfnc(3,5)
```

Answer will be 4
Create a file `myavgfunc.sci` with the following three lines:

```plaintext
function y=myavgfunc(x1,x2)
y=(x1+x2)/2;
endfunction
```

usage

```plaintext
--> getf('myavgfunc.sci') \n---> a=myavgfunc(3,5);
Answer: a=4
```
Example revisited

Recall the problem statement for numerical solution:

\[
\frac{dx}{dt} = \frac{2 + 18t + 68t^2 + 180t^3 + 250t^4 + 250t^5}{x^2}
\]

with initial condition,

\[x(t = 0) = 1\]

Recall the Euler method:

\[
\frac{dx}{dt} = g(x, t)
\]

Solution for initial condition, \(x(t = 0) = x_0\) is,

\[x_n = x_{n-1} + \Delta t g(x_{n-1}, t_{n-1})\]
```plaintext
1  getf("diff1.sci");
2  getf("Euler.sci");
3  x0=1; t0=0; T=0:0.1:24;
4  sol = Euler(x0,t0,T,diff1);
5  // sol = ode(x0,t0,T,diff1);
6  plot2d(T,sol)
7  xtitle(’x_vs_t: Polynomial Problem’,’t’,’x’)

function x = Euler(x0,t0,t,g)
1  n = length(t), x = x0;
2  for j = 1:n-1
3    x0 = x0 + (t(j+1)-t(j))*g(t(j),x0);
4  x = [x x0];
5  end;

function xdot = diff1(t,x)
1  xdot = (2+18*t+68*t^2+180*t^3+250*t^4+250*t^5)/x^2;
```
Numerical Solution

x vs. t: Polynomial Problem

Kannan+Mani

Introduction to Scilab

Kannan+Mani

Introduction to Scilab
Predator-Prey Problem

- Population dynamics of predator-prey
- Prey can find food, but gets killed on meeting predator
- Examples: parasites and certain hosts; wolves and rabbits
- $x_1(t)$ - number of prey; $x_2(t)$ - number of predator at time t
- Prey, if left alone, grows at a rate proportional to x_1
- Predator, on meeting prey, kills it \Rightarrow proportional to $x_1 x_2$

$$\frac{dx_1}{dt} = 0.25x_1 - 0.01x_1 x_2$$

- Predator, if left alone, decrease by natural causes
- Predators increase their number on meeting prey

$$\frac{dx_2}{dt} = -x_2 + 0.01x_1 x_2$$

- Determine $x_1(t)$, $x_2(t)$ when $x_1(0) = 80$, $x_2(0) = 30$
Explicit Euler for a System of Equations

\[
\frac{dx_1}{dt} = g_1(x_1, \ldots, x_n, t)
\]

\[
\vdots
\]

\[
\frac{dx_n}{dt} = g_n(x_1, \ldots, x_n, t)
\]

\[
\begin{bmatrix}
\frac{d}{dt}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}
=
\begin{bmatrix}
g_1(x_1, \ldots, x_n, t - 1) \\
\vdots \\
g_n(x_1, \ldots, x_n, t - 1)
\end{bmatrix}
\]

\[
\begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}_t
=
\begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}_{t-1}
+ \Delta t
\begin{bmatrix}
g_1((x_1, \ldots, x_n)|_{t-1}, t - 1) \\
\vdots \\
g_N((x_1, \ldots, x_n)|_{t-1}, t - 1)
\end{bmatrix}
\]

Solution in vector form:

\[
x_t = x_{t-1} + \Delta t \overline{g}(x_{t-1})
\]
Scilab Code for Predator-Prey Problem

```scilab
getf("pred.sci");
getf("Euler.sci");
x0=[80,30]; t0=0; T=0:0.1:20; T=T';
sol = Euler(x0,t0,T,pred);
// sol = ode(x0,t0,T,pred);
plot2d(T,sol')
xset('window',1)
plot2d(sol(2,:),sol(1,:))

function x = Euler(x0,t0,t,g)
n = length(t), x = x0;
for j = 1:n-1
    x0 = x0 + (t(j+1)-t(j))*g(t(j),x0);
    x = [x x0];
end;

function xdot = pred(t,x)
xdot(1) = 0.25*x(1)-0.01*x(1)*x(2);
xdot(2) = -x(2)+0.01*x(1)*x(2);
```

Kannan+Mani

Introduction to Scilab
As step size increases, solution diverges more from actual.
Better Integration Techniques

- Use other integration techniques (Runge-Kutta 4).
- Use Scilab’s ode integrator: "ode" (has various integration routines)
 - It's derived from ODEPACK which has been widely used for last several years
Execute the following code, after commenting out Euler and uncommenting ode:

```plaintext
1  getf("pred.sci");
2  getf("Euler.sci");
3  x0=[80,30]'; t0=0; T=0:0.1:20; T=T';
4  // sol = Euler(x0,t0,T,pred);
5  sol = ode(x0,t0,T,pred);
6  plot2d(T,sol')
7  xset('window',1)
8  plot2d(sol(2,:),sol(1,:))

function xdot = pred(t,x)
1  xdot(1) = 0.25*x(1)−0.01*x(1)*x(2);
2  xdot(2) = −x(2)+0.01*x(1)*x(2);
```

Kannan+Mani
Introduction to Scilab

Kannan+Mani
Introduction to Scilab
Use the Scilab built-in integrator to get the correct solution
Conclusions

- Scilab is ideal for educational institutions, including schools
- Built on a sound numerical platform
- It has especially good integrators for differential equations
- It is especially good for polynomial matrix computations
- It is free
- Also suitable for industrial applications
- Scilab:Matlab= Linux:Windows
Thank you