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Abstract 
 

The Lattice Boltzmann Method (LBM) has emerged as a powerful mesoscopic numerical 

approach for simulating fluid flows, offering advantages in handling complex boundary 

conditions and parallelization. This study explores the implementation of LBM for the 

classical 2dimensional lid-driven cavity problem using Scilab, an open-source numerical 

computation tool. The lid-driven cavity flow serves as a benchmark to evaluate LBM's 

capability in modeling fluid dynamics, particularly in simulating vortices and flow stability. 

The study employs a D2Q9 lattice model, where the Boltzmann equation is discretized using 

the Bhatnagar-Gross-Krook (BGK) collision model. Key parameters such as Reynolds 

number, relaxation time, and velocity distribution are analyzed to validate the simulation. 

Scilab’s built-in matrix operations facilitate efficient implementation, visualization, and 

analysis. The results demonstrate LBM’s effectiveness in capturing flow characteristics, 

highlighting its advantages over traditional CFD techniques. This study underscores the 

potential of Scilab in fluid flow research, offering a cost-effective alternative for LBM-based 

simulations. 

 

1.Introduction 

 
The Lattice Boltzmann Method (LBM) has gained prominence as a mesoscopic numerical 

approach for fluid flow simulations, providing a robust alternative to traditional 

computational fluid dynamics (CFD) methods. Unlike conventional Navier-Stokes solvers, 

LBM operates on a discrete lattice, evolving particle distribution functions over time. This 

approach inherently supports complex boundary conditions, parallel processing, and multi- 



physics coupling, making it ideal for diverse applications, including microfluidics, porous 

media, aerodynamics, and thermal transport. Implementing LBM in Scilab, an open-source 

numerical computing platform, offers several advantages. Scilab’s efficient matrix 

operations, built-in visualization tools, and scripting flexibility allow for rapid prototyping 

and performance optimization of LBM models. Compared to commercial software, Scilab 

provides a cost-effective alternative without compromising computational accuracy. 

This project focuses on simulating the lid-driven cavity flow, a classical benchmark problem 

in fluid dynamics, using LBM in Scilab. The study highlights LBM’s capability to capture 

key flow phenomena, such as vortex formation and recirculating regions, demonstrating the 

effectiveness of Scilab in implementing high-performance numerical simulations. 

 

2.Problem Statement 

 
The objective of this study is to reproduce the results of the 2D square Lattice Boltzmann 

Method (LBM) implementation as presented by Rene Fink [1] from Wismar University of 

Applied Sciences in MATLAB, using Scilab. The study employs the D2Q9 lattice model and 

Bhatnagar-Gross-Krook (BGK) collision operator to simulate the well-known lid-driven 

cavity flow problem[2]. The bounce-back boundary condition is applied at solid walls, 

ensuring no-slip conditions, while a moving wall boundary at the top enforces constant 

velocity, replicating the classic benchmark case. Through this study, the effectiveness of 

Scilab has to be the demonstrated for LBM-based flow simulations while ensuring 

consistency with established results. 

 

3.Basic Concepts 

 
The lid-driven cavity flow is a classical benchmark problem in CFD, where a fluid-filled 

square domain has a moving top lid inducing recirculating vortices. It is widely used for 

validating numerical methods due to well-documented analytical and numerical solutions. 

The Lattice Boltzmann Method (LBM) is a mesoscopic numerical technique used to simulate 

fluid flows. Unlike conventional computational fluid dynamics (CFD) methods that solve the 

Navier-Stokes equations, LBM models fluid dynamics using the Boltzmann transport 

equation at a discrete lattice scale. This approach provides advantages in handling complex 

geometries, multiphase flows, and parallel computations.  

 

 

 

 



The D2Q9 LB model is a two- dimensional, nine-velocity lattice structure where each fluid particle 

moves in predefined directions. The directions include one central (rest particle), four axial (E, W, N, 

S), and four diagonal (NE, NW, SE, SW) components. The distribution function evolution follows 

collision and streaming steps, simulating macroscopic fluid behavior.   

 

The D2Q9 model employs 9 discrete velocities 𝑒𝑖defined as: 

 

 

 

Each direction has an associated weight 𝑤𝑖 : 

  

  

 

 

 

The major Governing-equation which handles streaming and Collision is given by 

 

 

   

 

where LHS is responsible for streaming and RHS for collision with i=0, 1,..18 and τ is the 

dimensionless single relaxation time in the Bhatnagar-Groos-Krook (BGK) collision operator 

approximation. he kinematic viscosity relates to the relaxation time as: 

 

 

  

where, cs or c is the velocity of sound. The macroscopic density and the macroscopic velocity at each 

lattice node is defined in terms of above particle distribution function as 

 

 

  

 

 

 

 

 

 

The equilibrium distribution function is only a function of local density and velocity and is given by 
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approximation is a simplified collision operator used in LBM. The equilibrium distribution 

function is computed based on macroscopic fluid density and velocity. Two essential 

boundary conditions in this project are known as Bounce-Back Boundary Condition which 

is used for no-slip walls, ensuring zero velocity at solid boundaries. 

 

 

where 𝑓𝑖
∗ is the post collision distribution and fopp(i) denotes the direction opposite to i. 

The second boundary condition is Moving Wall Boundary Condition (Ux, Uy)=(U0,0)  which 

is applied at the top boundary to impose a constant velocity, replicating the lid-driven cavity 

flow problem. 

 

 

4.Flow chart 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5.Software/Hardware used 

 
  Scilab 2025.0.0 , Windows 11 Pro, AMD Ryzen 7 Desktop PC. 

 

6.Procedure of execution 

 
 Open Scilab → Open the file " Lid_Driven_Cavity_LBM" → ‘Save and Execute” 

 

7.Result 

 
The case setup was run on Windows 11 Pro with AMD Ryzen 7 5700 machine. The chosen 

dimension was 257 x 257 with 350000 iterations and simulation lasted approximately for 8 hours to 

reproduce the results reported in Rene Fink [1]. In case user wants to simulate the faster version, they 

can reduce the grid size and iterations for example 120 x 120 with 2000 iterations could be 

reasonably accurate. 

 

 

2D LDC Results obtained by Fink[1], 2D LDC Results obtained by this 

work using Scilab 



In this case study, the Lattice Boltzmann Method (LBM) was successfully implemented in 

Scilab for simulating lid-driven cavity flow. Enhancing 3D rendering, color mapping, and 

customizable colorbars improved visualization quality, while better debugging tools, error 

messages, and a built-in profiler aided code optimization. The simulation produced accurate 

and reproducible results, demonstrating Scilab's capability as a reliable tool for fluid 

dynamics modeling. These findings highlight Scilab's effectiveness for LBM simulations 

while also identifying areas for further improvement to enhance usability and performance.  
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