
TVE-F 19004

Examensarbete 15 hp
Juni 2019

Development of real time audio
equalizer application using MATLAB
App Designer

Johannes Langelaar
Adam Strömme Mattsson
Filip Natvig

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Development of real time audio equalizer application
using MATLAB App Designer

Johannes Langelaar, Adam Strömme Mattsson, Filip Natvig

This paper outlines the design of a high-precision graphic audio
equalizer with digital filters in parallel, along with its
implementation in MATLAB App Designer. The equalizer is comprised of
31 bands separated with a one-third octave frequency ratio, and its
frequency response is controlled by 63 filters. Furthermore, the
application can process audio signals, in real time, recorded by
microphone and from audio files. While processing, it displays an FFT
plot of the output sound, also in real time, equipped with a knob by
which the refreshing pace can be adjusted. The actual frequency
response proved to match the desired one accurately, but the matching
is computationally demanding for the computer. An even higher
accuracy would entail a computational complexity beyond the power of
ordinary computers, and was thus concluded to be inappropriate. As a
result, the final application manages to provide most laptops with
both high precision and proper functionality.

Tryckt av: Uppsala Universitet
ISSN: 1401-5757, 19004
Examinator: Martin Sjödin
Ämnesgranskare: Christian Strietzel, Mikael Sternad
Handledare: Ping Wu

Sammanfattning

För m̊anga kan ordet “equalizer” l̊ata abstrakt och ovidkommande. Den
generella beskrivningen av en equalizer brukar lyda: “Ett verktyg som justerar
balansen mellan frekvenskomponenter hos en elektronisk signal.” Denna mening
tycks intetsägande för den mindre insatte. I generella termer må den l̊ata
högtravande, men equalizern förekommer icke desto mindre i de mest vardagliga
av sammanhang, och inte bara i publikationer av promoverade doktorer i sig-
nalbehandling. Equalizerns tillgänglighet kan belysas med ett kort praktiskt
exempel som följer.

P̊a en del musikhögtalare av den högre prisklassen hittar man bland annat tv̊a
vred avsedda för bas och diskant. Dessa vred till̊ater justering av ljudvolymen
p̊a det l̊aga och höga frekvensomr̊adet var för sig, till skillnad fr̊an en vanlig
volymratt som verkar p̊a hela frekvensspektrumet. Lyssnaren kan med andra
ord själv ställa in volymen p̊a bas och diskant efter behag. Detta verktyg är
inget mindre än en enkel s̊a kallad audio-equalizer. Ur ett inlärningsperspektiv
är just audio-equalizers tacksamma, d̊a de opererar p̊a signaler som vi är skapta
för att uppfatta och först̊a, nämligen ljud.

När det kommer till de signaler som framkallar v̊ara sinnesförnimmelser, före-
faller signalernas egenskaper plötsligt högst konkreta och reella. Innebörden
av b̊ade frekvens och intensitet blir glasklar. Även de som inte är bekanta med
begreppen kan enkelt skilja p̊a ett dovt buller och ett gällt skrik, s̊a väl som
p̊a rött och violett ljus. Lättheten i att först̊a sig p̊a signaler i form av ljud är
en stor anledning till att detta arbete är gjort i en s̊adan kontext.

Equalizern i högtalaren i exemplet ovan är en tv̊abandsequalizer: Antalet band
svarar för antalet frekvensintervall med manuellt justerbar volym. I detta
arbete konstrueras en equalizer med 31 band. Storleken och placeringen av
dessa band är logaritmiskt fördelade mellan 20 och 20000 Hz, där dessa gränser
är satta utifr̊an motsvarande p̊a frekvensomf̊anget av v̊ar perception.

Detaljreglering av l̊atar i strävan efter förstärkt musikupplevelse är inte det
enda syftet som audio-equalizern tjänar. Dess förmåga att p̊averka ljudet
i realtid banar väg för ytterligare användningsomr̊aden, s̊asom reglering av
ljud som tas in via mikrofon och önskas spelas upp direkt i högtalare. Det
kan exempelvis vara i syfte att de närvarande i en hörsal, l̊at säga under en
föreläsning, ska n̊as av ljud med högsta möjliga skärpa. Ett annat exempel
är för att minska eko i kyrkor, vars akustik annars ger upphov till en utdra-
gen efterklang. Sammanfattningsvis kan det konstateras att audio-equalizern
p̊averkar tillräckligt m̊anga människors vardag för att förtjäna att kallas för
just vardaglig. Den är med andra ord mycket mer än ett ämne för teoretiska
samtal och rapporter invigda signalbehandlare emellan.

2

Contents

1 Introduction 4
1.1 Background . 4
1.2 Objectives . 5
1.3 Theory . 6

1.3.1 Analog versus digital signals 6
1.3.2 Sampling and frames 6
1.3.3 The Z-transform . 7
1.3.4 FIR filters . 7
1.3.5 IIR filters . 8
1.3.6 Minimum phase and the Hilbert transform 8

2 Method 9
2.1 Filter design . 9

2.1.1 Filter structure . 9
2.1.2 Derivation of the denominators 10
2.1.3 Derivation of the numerators 11
2.1.4 Weighting . 12

2.2 Designing the equalizer . 13
2.2.1 Filter distribution and order 13
2.2.2 Target response . 14
2.2.3 Weighting of frequency points 15

2.3 Implementation . 15
2.3.1 Program structure . 15
2.3.2 Processing the frame 16
2.3.3 FFT plot . 17
2.3.4 Graphical User Interface 18
2.3.5 Frequency response . 18

3 Results 18
3.1 Functionality . 19
3.2 Accuracy . 20

4 Discussion 22

5 Conclusion 24

Appendix A 27

Appendix B 28

3

1 Introduction

1.1 Background

Audio equalization is the process of regulating the frequencies of an electronic
signal, and the tool that enables this process is called an equalizer. This tool
is employed in auditoriums to reduce undesirable noise and reverb, as well as
when recording and reproducing music. Its employment in the music industry
is supposedly the one that most people think of in relationship to equalizers.

In recording and reproducting sound, the most common kind of equalizer is
called graphic equalizer which is a set of manually adjustable volume sliders,
where each corresponds to a certain frequency. By using such a tool, the sound
can be shaped by the listener to a certain extent. By boosting the lower end
of the frequency spectrum of a signal, i.e., to increase its amplitude, the bass
will get more prominent. This effect will become even more pronounced if
the higher end of the same spectrum is cut, meaning that the amplitude of
those frequencies is lowered. Likewise, the treble (higher frequencies) can be
magnified by reversing this procedure.

In the music industry, much more sophisticated and flexible equalizers are used
in pursuit of the highest achievable sound quality. With knowledge of the cir-
cumstances under which the equalizer is supposed to operate, the producer
can choose a suitable setting. In a club for example, the mixer might want
to turn up the bass, whereas on a lecture in an auditorium, the technicians
would choose a configuration intensifying some of the higher frequencies.

There are two mutually independent ways of categorizing audio equalizers.
One way is to split them into digital and analog equalizers, and the other is
into parametric and graphic ones. The digital and analog categorization refers
to the type of signal that the equalizer operates on. The division into para-
metric and graphic, on the other hand, is related to the way and the degree
to which the bands can be controlled.

The bands of the parametric equalizer can be adjusted with respect to gain,
center frequency and bandwidth whereas the graphic equalizer, by contrast,
only allows for the altering of the gains. This makes the former superior to
the latter in terms of capacity and flexibility [1].

As to the user-friendly aspect however, the graphic equalizer can be consid-
ered superior. For non-professionals in particular, the parametric equalizer is
rather cumbersome to use. This is partly due to the fundamental trade-off be-
tween straightforwardness and capacity for high detail control: One can only
be attained at the cost of the other.

4

Another equally fundamental trade-off when implementing an equalizer, is be-
tween accuracy and computational speed. A tight match between the target
response (desired frequency response) and the actual frequency response re-
quires a filter of high order. The higher the order of the filter, the larger the
number of computations necessary to calculate it. When altering the target
response, i.e., changing the volume at one or more frequency points, the filter
will change accordingly. Thus these calculations are executed when, and only
when, doing so.

In relation to the users interaction with the equalizer and its impact on sound,
there are often a plethora of designing paths to relatively similar results. Two
equalizers of differing designs might appear indistinguishable from the per-
spective of the user. The frequency response, for example, is controlled in
the exact same way in a graphic equalizer with a cascaded filter design as in
one with filters arranged in parallel. Even with regard to their impact on the
output sound, granted a certain frequency response, it is hard to differentiate
between the two. As far as an amateur user is concerned, the two equalizers
might as well be the same.

In summary, there are numerous ways of constructing an audio equalizer, and
the optimal way depends on the purpose it is meant to serve. Each kind
of equalizer is characterized by inherent limitations, and each purpose makes
unique demands on the equalizer. Hence, knowing the specifics of the situa-
tion in which the equalizer is supposed to be applied, one can identify which
qualities to optimize for and which ones to forgo. Herein, due to the purpose
of making an equalizer simple enough for anyone to use, straightforwardness
and intuitiveness are the valued qualities. Therefore, as recently mentioned,
the graphic equalizer has been the natural choice of design.

1.2 Objectives

The main objective in this project is to implement a graphic equalizer in
MATLAB. The equalizer is intended to process audio signals in real time from
a number of audio file-types as well as recorded by a microphone. The ultimate
target is an equalizer with one-third octave frequency bands with 31 command
gains (sliders). In addition to the main objective, there are some ancillary aims
such as to make the equalizer maximally easy to use, to correct for potential
errors and bugs and to develop an original look.

MATLAB App Designer is used for the programming and the construction
of the graphical user interface (GUI), although the visual part of the GUI is
complemented by the image editor program Pixelmator.

5

1.3 Theory

In this section the essential theory necessary for designing the equalizer is
highlighted.

1.3.1 Analog versus digital signals

Physical audio signals that we can perceive can be modeled as analog signals,
which are continuous both in time and amplitude. However, a computer can
not store an infinite number of values which disallows the storing of a signal
continuous in time. In order for a discrete signal to be classified as digital, the
set of values that its magnitude is allowed to adopt must be finite. Thus, an
analog signal can be transformed into a digital one by first discretizing it and
then approximating the discretized values. Essentially, the discretization and
approximation are both inevitable when storing a signal into a computer, and
a prerequisite to digital signal processing [2].

1.3.2 Sampling and frames

The process by which an analog signal is converted into a digital is called
sampling. Sampling a continuous signal means to periodically measure it and
to round and store the measured values. When processing an audio signal,
an adequate sampling frequency must be chosen in order to avoid aliasing.
The Nyquist-Shannon sampling theorem states that the minimal sampling rate
required for perfect reconstruction of the original signal is twice the maximum
component frequency of the sampled signal [2]. As a consequence of this
theorem, audio signals are typically sampled over 44kHz in order to exceed
twice the upper limit of the human perception spectrum of sound by margin,
which lies around 20kHz.

In order to facilitate the handling of the sampled signal, the computer groups
the samples into arrays with predetermined lengths called data frames, de-
picted in figure 1. The processing of one frame is finished before the next
is acquired. This frame-based data format is more efficient regarding speed
and is therefore commonly used in real time systems. When choosing a suit-
able length of the frame, two properties must be balanced: Playback delay
and computational speed. A long frame implies more delay but requires less
computational power, and the reverse goes for a short frame [5].

6

fahad
Highlight

Figure 1: Illustration of the relationship between samples and frames. Here
using a frame size of 6.

1.3.3 The Z-transform

Regardless of weather a signal is analog or digital, filters are not designed in the
time domain. Instead, the signal is converted into a complex frequency-domain
representation in order to access and manipulate the frequency components.
For digital signals this conversion is done by the Z-transform. For a discrete
sequence x[k], its bilateral Z-transform is defined as

X(z) =
∞∑

k=−∞

x[k]z−k (1)

where k is an integer and z = Aejω for any real numbers A and ω such that
the sum in equation (1) converges [2]. A and ω denote the magnitude and the
complex argument (phase angle) of z respectively. The Z-transform is derived
such that x[k − n] in time domain is represented by z−nX(z) in the complex
z-domain. Consequently, difference equations in the time domain transform
into algebraic equations in the z-domain.

1.3.4 FIR filters

The term FIR (finite impulse response) refers to digital filters whose transfer
functions depend on a linear combination of previous input signals [2]. The
transfer function H(z) for a general FIR filter is given by

H(z) =
N−1∑
n=0

bnz
−n (2)

where bn is a coefficient for each n and N <∞. The output equation of a FIR
filter in the time domain is a corollary of equation (2), written as

y[k] =
N−1∑
n=0

bnx[k − n]. (3)

7

1.3.5 IIR filters

As opposed to FIR filters, the transfer function of an IIR (infinite impulse
response) filter depends on prior input and output signals [2]. The transfer
function of a general IIR filter is given by

H(z) =

∑N
n=0 bnz

−n

1 +
∑M

m=1 amz
−m

(4)

where am and bn are unique coefficients for each m and n. The corresponding
output equation can be produced by a transformation of equation (4) into the
time domain by applying the inverse Z-transform, which yields

y[k] =
N∑

n=0

bnx[k − n]−
M∑

m=1

amy[k −m]. (5)

1.3.6 Minimum phase and the Hilbert transform

A linear, time-invariant digital filter is called minimum phase if and only if it
is causal and its transfer function’s poles and zeros lies inside the unit circle
of the z-plane. An equivalent condition to the latter, is the requirement of
stability for the system and its inverse. Minimum phase filters are sometimes
also referred to as minimum delay filters due to the property of having the
energy of its impulse response maximally concentrated at the beginning. This
means that, for the set of all causal filters with impulse response hi[k] that
have identical magnitude response, the minimum phase filter with impulse
response hmp[k] ∈ hi[k] will always satisfy

K∑
k=0

∣∣hmp[k]
∣∣2 ≥ K∑

k=0

∣∣hk[k]
∣∣2, K = 0, 1, 2... (6)

for the first K + 1 samples [3]. Only for minimum phase filters, the phase
response and the magnitude response are uniquely related to one another [4].
In discrete-time, this relation is given by

arg[H(z)] = −H{log(|H(z)|)} (7)

where H denotes the Hilbert transform and H(z) represents the frequency
response of the minimum phase filter. This relation holds true for continuous-
time filters as well.

8

2 Method

This section outlines the sheer mathematical design of the equalizer on the one
hand, and its implementation in MATLAB on the other. The mathematical
design is further differentiated into filter design and equalizer design. The
procedure of the equalizer design adopted in this paper was first proposed by
Jussi Rämö, Vesa Välimäki and Balázs Bank in a paper released in 2014 titled
High-Precision Parallel Graphic Equalizer [6].

2.1 Filter design

The equalizer herein is composed of 62 second order filters and one static gain
filter, all arranged in parallel. The zeros of the filters are adjustable and the
poles are fixed. The filter structure in question was introduced by Balázs
Bank in 2007 and was not explicitly constructed for graphic equalizers [7].
However, this paper will devote no further assessment to the wider range of
purposes of the filter structure, but focus on its adequacy for this graphic
equalizer. The design of this filter structure is thoroughly walked through in
this subsection.

2.1.1 Filter structure

The transfer function of the resulting filter is given by

H(z) = c0 +
K∑
k=1

bk,0 + bk,1z
−1

1 + ak,1z−1 + ak,2z−2
(8)

where K decides the number of second order filters arranged in parallel and c0
represents the direct path gain. This is illustrated in a block diagram in figure
2 where X(z) denotes the input signal and Y (z) denotes the filtered output
signal.

9

Figure 2: Illustration of the parallel filter structure.

2.1.2 Derivation of the denominators

Primarily, to start the filter design, the frequencies to which the poles are fixed
have to be established. These frequencies were distributed logarithmically,
meaning that they were evenly distributed on a logarithmic scale. It appears
reasonable to set the pole radii |pk| such that the transfer functions of two
neighbouring filters intersect at the point where each have dropped 3dB [6].
This is obtained by

θk =
2πfk
fs

, k = 1, 2, ..., K (9a)

|pk| = e
−∆θk

2 (9b)

where fk and fs denote the predetermined center frequency series and the
sampling frequency respectively. By equation (9a) these two yield the series
of normalized center frequencies, referred to as pole frequencies and denoted
by θk. The bandwidths of the filter sections are obtained by the two adjacent
pole frequencies as follows

∆θk =
θk+1 − θk−1

2
, k = 2, 3, ... , K − 1 (10)

with the necessary exceptions for the two filters at the upper and lower edge:

∆θ1 = θ2 − θ1, (11a)

∆θK = θK − θK−1. (11b)

10

The coefficients in the denominator of each transfer function are given by

ak,1 = −2|pk| cos θk (12a)

ak,2 = |pk|2. (12b)

2.1.3 Derivation of the numerators

When the parameters have been set, the problem reduces to a linear system
which is a matrix representation of equation (8)

h = Mb, (13)

where M is a matrix comprised of the denominators of the filter sections and
their delayed counterparts, given by

M =


1

den(1, 1)

e−jω1

den(1, 1)
· · · 1

den(1, K)

e−jω1

den(1, K)
1

...
...

...
...

...
1

den(N, 1)

e−jωN

den(N, 1)
· · · 1

den(N,K)

e−jωN

den(N,K)
1

 (14)

where den(n, k) denote the denominators of the filter sections: 1 + ak,1e
−jωn +

ak,2e
−j2ωn . The last column is filled with ones due to multiplication by the

direct path gain. b is a column vector with the free numerator coefficients and
the direct path gain c0. Hence, as the numerators is multiplied by their corre-
sponding denominators, h becomes the vector with the resulting frequency re-

sponse. b and h is given by the column vectors
(
b1,0 b1,1 . . . bK,0 bK,1 c0

)T
and

(
H(ω1) . . . H(ωN)

)T
respectively, where N denotes the number of target

frequency points. The unit of ωn is 2π radians/sample.

Now, in case of an underdetermined system, there is at least one way to choose
b such that multiplication with M yields the exact frequency response vector
h. If the system is overdetermined however, i.e., when there are more equa-
tions than unknowns, it is probably inconsistent (insoluble). In that case the
optimal set of numerator coefficients bopt, making as tight match as possible
of the frequency response vector h and the target response vector ht, is next
to be calculated. This vector is obtained by the method of least-squares

bopt = M+ht (15a)

M+ = (MHM)−1MH (15b)

11

where ”+” denotes the Moore-Penrose pseudo-inverse and ”H” the conjugate
transpose. The least square method minimizes the error

eLS =
N∑

n=1

∣∣H(ejωn)−Ht(wn)
∣∣2. (16)

Since M is not affected by changes in ht, it can be precomputed and stored,
leaving the matrix multiplication as the only operation necessary for deter-
mining bopt. This alleviates the computational burden substantially.

All of the elements in equation (15a) are complex which makes the matrix
operations computationally demanding. However, equation (15a) can be ma-
nipulated so as to contain real elements only, and thus yield real numerator
coefficients. By separating the real and imaginary parts of each element in
M+ and ht when constructing the target response, demands are made on the
real and imaginary parts separately. This yields a linear system with the least
square solution

bopt = M+
r ht,r (17)

in which

Mr =

(
Re{M}
Im{M}

)
(18a)

ht,r =

(
Re{ht}
Im{ht}

)
(18b)

and where both contain real elements only. A transfer function with real
coefficients has a real impulse response, which makes the frequency response
conjugate symmetric [6]. Since the matrix Mr has its real and imaginary parts
placed in tandem, the new linear system obtains twice the number of demands
(equations) while retaining the same number of numerator coefficients (un-
knowns). The dimensions of the new matrix Mr are thus (2N, 2K + 1), in
contrast to those of the former unmanipulated one M, which are (N, 2K + 1).
In this particular filter design, 2N is always chosen to be a greater number
than 2K+1. Consequently, because of an overdetermined system, the solution
bopt is obtained by the least square method.

2.1.4 Weighting

Without weighting the frequency points, the least square method will mini-
mize the square sum of the deviations from the target response. This may
seem desired, but the scale for the magnitude - the y-axis - is not linear; it is
logarithmic. A certain absolute deviation makes a significantly larger deflec-
tion in the lower regions of the decibel scale than it does in the higher. If the

12

frequency points instead are weighted, a new error is obtained, given by

eLSW =
N∑

n=1

W (wn)
∣∣H(ejωn)−Ht(wn)

∣∣2. (19)

With regards to the computational complexity, the most efficient way of imple-
menting the weighting function W (wn) is to multiply all of the elements in the
modelling matrix M and in the target response vector ht by the square root
of their correspondent weighting factor

√
W (wn) before the matrix operations

are executed. The downside of weighting however, granted that the weighting
function depends on the target response, is that the modelling matrix can no
longer be precomputed and stored. Because if it does depend on the target re-
sponse, changing the target response requires recomputation of the modelling
matrix.

2.2 Designing the equalizer

2.2.1 Filter distribution and order

A good resemblance between the frequency and target response is chiefly made
by a high number of pole frequencies. However, in order not to dispense with
the computational efficiency, this number has to be kept within reasonable
limits. The equalizer presented in this paper is one with 31 command gains
logarithmically distributed on the frequency spectrum from 20Hz to 20kHz.
This seemingly obscure number, 31, is not at all chosen arbitrarily. In a third-
octave equalizer, the factor with which the bands are separated is 3

√
2. Hence,

the multiplications necessary to cover the span limited by 20Hz and 20kHz,
adds up to 31.

Now, having established the number of command gains, the number of poles is
next to be settled. Herein, this number is set to twice the number of command
gains by placing one pole frequency at each command frequency and one at
each respective upper band edge. There is no pole frequency at the upper band
edge of the 31th band though; it is instead placed below the lowest command
frequency, at 10Hz.

In the equalizer herein, the filter order exceeds the number of frequency points
with one, they are 124 and 123 respectively. In general, to prevent the fre-
quency response from oscillating between the frequency points of the target
response, the filter order has to be kept below the number of frequency points.
A minor transgression of the limit such as in this case however, won’t nec-
essarily create any redundant oscillations. See the full specification of the
command, pole and target frequency points in table 2 in appendix.

13

2.2.2 Target response

A graphic equalizer is characterized by a magnitude response controlled by
the command gains at a set of fixed command frequency points. In order to
find a suitable magnitude response, a target response must be computed from
the command gains prior to executing the matrix operations. The configu-
ration of the command gains constitutes a discrete function on a logarithmic
frequency grid, which the target magnitude response vector is supposed to
emulate. However, the target response has a higher frequency resolution than
the slider configuration, which is therefore obtained by interpolating it.

The interpolation can be done by first fitting a curve to the data points - con-
structing a target response - and then sampling it in the desired frequency
points. This curve is created with the MATLAB function pchip (shape-
preserving piecewise cubic interpolation), that takes the values and the their
derivatives into account, see figure 3.

Figure 3: Construction of target magnitude response (pchip-interpolation).

Now, having finished the magnitude response, the phase response is yet to
be constructed to complete the frequency response. With regard to a paral-
lel graphic equalizer, the appropriate way of determining the phase response
is such that the frequency response represents a minimum phase system [6].
Knowing the target magnitude response, as described in section 1.3.6, this
phase response can be distinctly determined by equation (7). An interpolated
curve on the whole frequency spectrum (−fs

2
to fs

2
), symmetric around the y-

14

axis, was sampled at 216 linearly distributed frequency points. This frequency
magnitude response vector is converted into a frequency phase response vector
by the Hilbert transformation, which is then resampled in the target frequency
points. The Hilbert transform is calculated with the built in MATLAB func-
tion hilbert.

2.2.3 Weighting of frequency points

The frequency response is enhanced by assigning the frequency points the

appropriate weighting function W (wn) = 1/
∣∣Ht(wn)

∣∣2 [6]. The modelling
matrix and the target response is thus multiplied by the weighting factor√
W (wn) = 1/

∣∣Ht(wn)
∣∣ prior to the execution of the matrix operations. This

choice of weighting derives from the higher sensitivity to deviations at low mag-
nitudes and it equates for this dissimilarity. This yields an error minimization
with respect to the frequency magnitude response’s relative deviation from the
target magnitude response.

2.3 Implementation

As the title suggests, this chapter outlines the implementation of the equalizer.
The code was written in MathWork’s application development environment
MATLAB App Designer with Audio Toolbox 2.0 installed.

2.3.1 Program structure

For educational purposes, a simplified model of the program will be illustrated
together with its functions. Figure 4 is a simplified scheme of the application
as a whole. This chart provides a schematic overview of the overall structure
of the program. However, most of the components require further clarification.
The operation ”Processing the frame” is particularly complex, and is therefore
illustrated by an ancillary flowchart, shown in the next few paragraphs.

15

Figure 4: Flowchart of the main loop.

2.3.2 Processing the frame

Frames are, as highlighted in the theory section, arrays of samples with a
certain length serving the purpose of enhancing the computational efficiency.
In this case the length of the frame array is 1024 which was concluded to be
a moderate compromise between delay and computational speed.

Shortly, the processing of frames is the intermediary between the input and
the output signals. It carries out the filtering of the signals, i.e., the oper-
ation of manipulating the input signals into the desired output signals. In
this context, the desired output signals are specified by manually customizing
the system’s frequency response through the use of 31 sliders. To make the
application more convenient, some predetermined configurations of the sliders
were implemented, called presets. Every music genre have a tailor-made slider
configuration ascribed to it, named by the genre they aspire to suit. When
selecting a preset, the current slider configuration shifts instantaneously and
so does the sound. However, the reason for the specifics of the configurations,
and why a given one suits a certain genre, is outside the domain of this paper
and is thus not delved into here.

Figure 5 displays a flowchart of the process where the big square in bright blue
is a closer look into the operation processing the frame. There is no difference
in the processing of the frames between audio files and recorded sound.

16

Figure 5: Flowchart of the operation processing the frame.

The second process from the bottom in figure 5 is denoted as “update filter
delays”. The term filter delay refers to an accumulation of previous values
of the input and the output signal. The “Filter frame” process is essentially
the operation that applies the calculated filters to the input signal, which in
this case was done by the MATLAB function filter. The algorithm in the
filter-function is an implementation of equation (5). See section 2.1 for a
more thorough explanation of the process “Calculating the new filter” in figure
5.

2.3.3 FFT plot

For aesthetic reasons, the equalizer’s GUI includes a plot of the frequency
content of the audio signal, displayed in real-time. This can be done using the
built in MATLAB function fft that calculates the Fast Fourier Transform of
a discrete vector. In this case, the FFT is applied to each processed frame and
then plotted before the next frame is acquired. However, updating a plot in
MATLAB is computationally demanding for most computers. So in order to
make the computational load of the application commensurate with the power
of the computer using it, the frequency with which the plot is updated has

17

fahad
Highlight

been made adjustable. The plot can be chosen to be updated every frame, all
the way down to every 50th frame, as well as completely turned off.

2.3.4 Graphical User Interface

The term GUI refers to the interface with which the user interact. It includes
all the buttons, sliders and knobs as well as the appearance of the application.
At first glance the interface may seem complex whereas, in fact, it was quite
straight forward to create. This is due to MATLAB App Designer which allows
the user to drag and drop visual components to lay out the design of the GUI.
Additionally, the behavior of the components can easily be defined. The vi-
sual features of the interface was complemented in the program Pixelmator, in
which two pictures were drawn: a background frame for the buttons and slid-
ers, and a frame for the ”FFT-screen”. However, the version of the application
with the two pictures is only compatible with MATLAB R2019a.

2.3.5 Frequency response

The equalizer is primarily evaluated on the basis of the match between the tar-
get magnitude response and the actual magnitude response. However, there is
no straight forward way of assessing this match. MATLAB lacks the built-in
function for plotting the frequency response of a large number of paralleled
filters. An alternative way of plotting has thus to be found in order to circum-
vented this obstacle.

The equalizer consists of IIR-filters, which can be approximated by a high order
FIR filter. The sample values of an IIR filter’s impulse response correspond to
the coefficients in its FIR-counterpart. The more samples (coefficients) taken
into account, the better the approximation. Furthermore, since the filters are
all linear, the impulse response of the whole filter structure is simply obtained
by adding them up. The impulse response was generated by the MATLAB
function impz, and the FIR filter approximation was then plotted by the
function freqz. In this case the system was approximated by a FIR filter
with 40000 coefficients, since a further increase in filter order would imply a
negligible enhancement in accuracy.

3 Results

The final version of the audio equalizer of this paper is a high-precision par-
allel graphic equalizer with fixed poles. In this section the finished equalizer

18

fahad
Highlight

is laid forth in its entirety. The results of the previous section (method) is
exhaustively accounted for here. Concisely, the method was outlining how the
equalizer was constructed, whereas this section declares what has been built,
as well as what has been observed in relationship to the equalizer and its fea-
tures. The next section, discussion, is in contrast contemplating why these
observations have been made.

3.1 Functionality

The application, depicted in figure 6, has an originally looking and straight
forward interface. In addition to the slider plate, i.e., the actual equalizer (at
the bottom of figure 6), the application is equipped with some other features
making it easier and more engaging. The music can be paused, stopped and
changed at any time. While at play, the intensities of all frequencies can be
displayed in real time, with an adjustable refreshing pace, in the window right
above the slider plate. Furthermore, 13 different presets were implemented
out of which three are named rock, hip-hop and pop by the genre they are
customized for.

Figure 6: Interface of the application.

Various functionality tests highlighted some important limitations of the pro-
gram. Making additional demands on a computer, e.g., high frequent updating
of the FFT-plot, at real-time playback turned out to impair its performance
and cause playback lag. The higher the update frequency, the more vulnerable
to slider movements the computer became. Some of the most computationally

19

fahad
Highlight

demanding operations during playback were timed and the average results are
shown in table 1 for two different computers: MacBook Pro - 2.3 GHz Intel
Core i5 - 8GB RAM and ASUS ZenBook UX305CA - Intel(R) Core(TM) m3-
6Y30 CPU @ 0.90 GHz 1.51 GHz - 8 GB RAM. Table 1 indicates by part what
was already known: The Macbook Pro manages a higher update frequency of
the FFT plot, without playback lag, than the ASUS ZenBook.

Table 1: Computation time for some demanding operations for two different
computers.

Computer MacBook Pro ASUS ZenBook UX305CA
FFT plot update 8.5 ms 15 ms

Filter calculation (without weighting) 10 ms 20 ms
Filter calculation (with weighting) 70 ms 140 ms

3.2 Accuracy

With regards to the accuracy of the equalizer, everything has unfolded ac-
cording to plan. This equalizer design provided a tight match between the
actual frequency response and the target response, alluded to by its epithet
”high-precision”. This was partly comfirmed by the immediate response of the
equalizer in the form of a shift in output sound as the sliders were pulled while
music was played through it. Furthermore, with regards to the phase response
and its implications on the sound, no delays or other undesirable noise was
perceived.

An experiment was conducted with the quality of the filters, in which the
equalizer was exposed to an input signal in the form of a single sine wave,
whose frequency matched one of the center frequencies of a band. Then,
the sliders of the adjacent bands were moved, and the intensity of the sound
was monitored by listening and watching the FFT plot. No difference was
perceived during these movements. Fortunately, the slider corresponding to
the frequency of the sine wave did affect the output sound.

The frequency response of the system without implemented weighting, dis-
played in figure 7 where the command gains are set to either 13 or -13 dB,
exhibits the largest errors at the low gain frequency points with high gain
neighbors.

20

Figure 7: Frequency response without weighting from the 20th band.

The equalizer with implemented weighting on the other hand, displayed in fig-
ure 8, exhibited a tighter match between the frequency and target magnitude
response. The enhancement of the weighting was most evident at the fre-
quency points with low gain. At high gain in contrast, there was only modest
differences in magnitude response between the weighted and the unweighted
system.

Figure 8: Weighted frequency response from the 20th band.

21

Figure 9 displays the frequency response of the filters separately, by the same
slider configuration as in figure 7 and 8. The command band filters in blue
are the ones with pole frequencies corresponding to the centre frequencies
of the bands, whereas the slave filters in dashed pink are the auxiliary ones
with pole frequencies at the bands’ upper edges, all tabulated in table 2 in
appendix.

Figure 9: The filter sections plotted separately from the 20th band.

4 Discussion

This section is interpreting the findings of this project in the light of what is
already known in this domain. The conclusion by contrast - the next section
- is supposed to reconnect to the introduction as well as assessing the degree
to which the objectives have been achieved.

As experimented with and presented in the previous section, moving a slider
during playback proved sometimes to cause playback lag, especially when re-
freshing the FFT at a high pace simultaneously. When a slider is moved the
target response changes, whereupon new numerator coefficients have to be
generated in order for the frequency response to fit the new target response.
This requires matrix operations and recomputation of the matrix M+

r . The
need for recomputation is because the matrix is weighted with a factor de-
pendent on the target response. The time required to execute such complex
calculations might be sufficient to cause perceivable delay, depending on the

22

computational power of the computer. This means that these calculations is
the source of the playback lag, which also explains why it is caused by pulling
the sliders.

Furthermore, this playback lag is the price to pay for high accuracy. As out-
lined in the introduction, an appropriate compromise between accuracy and
computational speed is imperative to find. However, slider movements followed
by lag may indicate that the compromise is skewed: Too much computational
speed has been traded off for accuracy. Therefore, In spite of the enhancement
in accuracy introduced by the weighting, it might be worth to consider omit-
ting. Since the equalizer is dedicated to the typical person rather than to sound
engineers, it would be more appropriate to skew the trade-off in the other di-
rection (i.e., towards low computation time). If the equalizer is supposed to
be available for anyone, the running time must be low enough so that even a
slower computer can use it without playback lag. Herein, the weighted system
is nevertheless concluded to be sufficiently fast for this purpose. As a means
of reducing running time in case of lag, the program is instead constructed to
allow the user to manually disable the FFT-plot.

With regards to the weighting W (wn) = 1/
∣∣Ht(wn)

∣∣2 and its impact on the fre-
quency response, the weighted system exhibited a significantly tighter match
between the magnitude response and the target response, than did the un-
weighted system. With this particular weighting, the deviation (error) subject
to minimization is a relative one, as opposed to the system without weighting,
wherein it is absolute. Instead of minimizing the square sum of the absolute
deviations, the weighted system minimizes the square sum of the factors with
which the frequency response deviates from the target response. As is well
known, a difference in decibel is nothing other than a factor, which hence
makes the weighting factor proposed herein the optimal one for error mini-
mization on a decibel scale.

As laid forth in the results, the minimum phase system created an output
sound free from perceivable noise. Since the impulse responses of a minimum
phase systems has their maximal energy at the beginning, as outlined in section
1.3.6, all the unwanted noise will be preceded by a sound peak. Such an
impulse response is shown in figure 10. By virtue of this, the human ear will
barely apprehend the noise because of the deafening effect of the sound peak
preceding it. The reverse to this, i.e., when the noise comes before the sound
peaks, is called preringing. In such cases, the ears have conversely not been
deafened by some intense sound and are hence, as by default, susceptible to
the most modest of noises. Thus, in a phase system lacking this property, the
output sound would perhaps contain perceivable distortions.

23

Figure 10: The first 18 values in the impulse response of the whole filter
structure for the ”rock” preset.

Ultimately, since minimizing the errors of the entire parallel filter structure
instead of the filters one by one, the filter structure is jointly optimized to fit
the target response. Such filter structures prevent interaction between adjacent
filters and does hence outperform the ones with filters optimized separately.
This property, vague as it might seem, is key to a high accuracy and has thus
played a fundamental role in propelling this equalizer to the advanced tool it
now has become.

5 Conclusion

In this paper, a graphic equalizer with 31 bands has been constructed with an
intuitive interface, in complete keeping with the objectives. Additionally, the
equalizer is to be found in MathWorks, free to download [8]. 31 band equalizers
with high precision are at large quite scarce, let alone such equalizers free of
charge.

The application includes a number of presets, i.e., beforehand programmed
configurations of the volume sliders. These offers the user to swiftly, with
one button, customize the frequency response for the genre of the track at
play. Furthermore, the high frequency resolution and accuracy of the equalizer
makes it a good subject for experimentation. For example, one can try to move

24

a slider and pay attention to the subsequent shift of the output sound. Or why
not create an own configuration of the sliders according to preferences. because
of a manually adjustable frequency magnitude response, the equalizer enables
enhancement of the music experience irrespective of the genre or style.

The subject of this paper is a graphic equalizer with parallel filters. The for-
mer epithet denotes a frequency magnitude response regulated with frequency-
specific sliders, and the latter means a frequency response formed by the sum
of the individual filters. The other main type of equalizer is called parametric
equalizer, which enables manual control over more parameters but does conse-
quently take a professional to handle. The altering of the frequency response
is faster, but not as straight forward as in graphic ones. As to the filters,
the alternative to a parallel filter structure is a cascaded one, in which the
frequency response is obtained by the product of the individual filters.

The two sorts of equalizers as well as filter structures have their own specialties
and shortcomings. The specifics of the equalizer in this paper are chosen such
as to widen the range of potential users. For example, straightforwardness
has been prioritized over detail control and possibility for quick altering of the
target response.

A generic description of the multifaceted term audio equalizer is a tool enabling
regulation and adjustment of electronic signals. Reproduction of music is only
one of the facets which too, in its turn, can be more nuanced. For the sake
of an example different from music reproduction, the tool is also applied to
correct frequency responses of telephone lines [1].

For deep insight into the process of creating a functioning equalizer, this pa-
per as a whole has to be read. Nonetheless, the overarching structure of the
process can be laid out briefly. The filter structure is the foundation upon
which the equalizer has been built. In its essential, the structure was made
by first placing all of the denominators of the individual filter sections into a
matrix. Then, a vector of their corresponding numerators was calculated such
that multiplication with the denominator matrix yielded the desired frequency
response. Somewhat simplified, the discrete function that constitutes the de-
sired frequency response is an interpolated version of the one made up by the
slider configuration. Consequently, the filters are controlled by the sliders, and
thus, so is the output sound.

Essentially, the epithet audio means sound, which is something we are familiar
with and can apprehend. Audio equalizer means an equalizer operating on
sound. This virtue dispels part of the obscurity with regards to the properties
of a signal, e.g., frequency and intensity. People with unimpaired hearing
can easily distinguish between different frequency levels. A high frequency is
recognized as shrill, and a low as deep. A trained ear can apprehend even
a tiny offset of a tone from its key. This sensitivity to frequencies makes us

25

capable of appreciating an equalizer with a high frequency resolution, and the
freedom that comes along with it, i.e., the enablement of the user to experiment
his or her way to a favorite configuration as well as to just play around with
the frequency response. The equalizer herein is therefore constructed with 31
bands, which is a large number in comparison to other audio equalizers.

Differences in the intensity of the sound manifest as different volumes, which
after all is the only adjustable property in audio equalizers. The bass preset
for example, does not lower any frequencies, but turns up the volume on the
ones that are already low, and vice versa. A high tone is thus not made low
by such a preset; it is made weak.

For some computers, the complexity of the calculations followed by the slider
movements were high enough to cause playback lag. To overcome this, a due
subject for future studies might be to evaluate a similar equalizer constructed
in a low-level programming language. Specific code that calculates little but
what is necessary could thus be written, which could improve the efficiency
of the application. Such a study could for example include a comparison of
computational efficiency between the equalizer constructed in the low-level
language and an identical one designed in MATLAB. That would be a natural
extension of this study.

Holistic presentations of the designing procedure of advanced equalizers is
something prior research falls short of. This paper outlines the filter design,
sketches the design of the equalizer and also, ultimately, demonstrates the
implementation of the equalizer. The overview, rendered by presenting the
construction of an equalizer from scratch, enables researchers and students
to design one themselves as well as to understand the procedure. It helps
the reader to see the big picture, which is somewhat unique to this paper.
Furthermore, designing an equalizer is an excellent gateway into the realm of
signal processing, which otherwise may be daunting to enter. This paper could
thus play an important role in bridging that gap. After all, the more brains
operating in a domain the higher the probability for a breakthrough.

26

Appendix A

Table 2: Fixed frequency points specification in Hz where fg, fk and fn denote
the command, pole and target frequency points respectively.

Band 1 2 3
fg 20 25 31.5
fk 10 20 22.4 25 28.2 31.5
fn 10 14 20 21.2 22.4 23.7 25 26.6 28.2 29.9 31.5 33.5

Band 4 5 6
fg 40 50 63
fk 35.5 40 44.7 50 56.2 63
fn 35.5 37.6 40 42.2 44.7 47.3 50 53.1 56.2 59.6 63 66.9

Band 7 8 9
fg 80 100 125
fk 70.8 80 89.1 100 112 125
fn 70.8 75 80 84.2 89.1 94.5 100 106 112 119 125 133

Band 10 11 12
fg 160 200 250
fk 141 160 178 200 224 250
fn 141 150 160 168 178 188 200 211 224 237 250 266

Band 13 14 15
fg 315 400 500
fk 282 315 355 400 447 500
fn 282 299 315 335 355 376 400 422 447 473 500 531

Band 16 17 18
fg 630 800 1k
fk 562 630 708 800 891 1k
fn 562 596 630 669 708 750 800 842 891 945 1k 1.06k

Band 19 20 21
fg 1.25k 1.6k 2k
fk 1.12k 1.25k 1.41k 1.6k 1.78k 2k
fn 1.12k 1.19k 1.25k 1.33k 1.41k 1.5k 1.6k 1.68k 1.78k 1.88k 2k 2.11k

Band 22 23 24
fg 2.5k 3.15k 4k
fk 2.24k 2.5k 2.82k 3.15k 3.55k 4k
fn 2.24k 2.37k 2.5k 2.66k 2.82k 2.99k 3.15k 3.35k 3.55k 3.76k 4k 4.22k

Band 25 26 27
fg 5k 6.3k 8k
fk 4.47k 5k 5.62k 6.3k 7.08k 8k
fn 4.47k 4.73k 5k 5.31k 5.62k 5.96k 6.3k 6.69k 7.08k 7.5k 8k 8.42k

Band 28 29 30
fg 10k 12.5k 16k
fk 8.91k 10k 11.2k 12.5k 14.1k 16k
fn 8.91k 9.45k 10k 10.6k 11.2k 11.9k 12.5k 13.3k 14.1k 15k 16k 16.8k

Band 31
fg 20k
fk 17.8k 20k
fn 17.8k 18.8k 20k

27

Appendix B

MATLAB App Designer code:

1 classdef app1gui < matlab.apps.AppBase
2

3 % Properties that correspond to app components
4 properties (Access = public)
5 UIFigure matlab.ui.Figure
6 Image matlab.ui.control.Image
7 Slider 1 matlab.ui.control.Slider
8 Slider 2 matlab.ui.control.Slider
9 Slider 3 matlab.ui.control.Slider

10 Slider 4 matlab.ui.control.Slider
11 Slider 5 matlab.ui.control.Slider
12 Slider 6 matlab.ui.control.Slider
13 Slider 7 matlab.ui.control.Slider
14 Slider 8 matlab.ui.control.Slider
15 Slider 9 matlab.ui.control.Slider
16 Slider 10 matlab.ui.control.Slider
17 Slider 11 matlab.ui.control.Slider
18 Slider 12 matlab.ui.control.Slider
19 Slider 13 matlab.ui.control.Slider
20 Slider 14 matlab.ui.control.Slider
21 Slider 15 matlab.ui.control.Slider
22 Slider 16 matlab.ui.control.Slider
23 Slider 17 matlab.ui.control.Slider
24 Slider 18 matlab.ui.control.Slider
25 Slider 19 matlab.ui.control.Slider
26 Slider 20 matlab.ui.control.Slider
27 Slider 21 matlab.ui.control.Slider
28 Slider 22 matlab.ui.control.Slider
29 Slider 23 matlab.ui.control.Slider
30 Slider 24 matlab.ui.control.Slider
31 Slider 25 matlab.ui.control.Slider
32 Slider 26 matlab.ui.control.Slider
33 Slider 27 matlab.ui.control.Slider
34 Slider 28 matlab.ui.control.Slider
35 Slider 29 matlab.ui.control.Slider
36 Slider 30 matlab.ui.control.Slider
37 Slider 31 matlab.ui.control.Slider
38 UIAxes matlab.ui.control.UIAxes
39 TrackDropDown matlab.ui.control.DropDown
40 PlayButton matlab.ui.control.Button
41 StopButton matlab.ui.control.Button
42 DropDown matlab.ui.control.DropDown
43 RecButton matlab.ui.control.Button
44 Lamp matlab.ui.control.Lamp
45 Switch matlab.ui.control.RockerSwitch
46 Knob matlab.ui.control.Knob
47 Image2 matlab.ui.control.Image
48 end

28

49

50 %Properties that corresponds to app functionality
51 properties (Access = private)
52

53 isRec = 0;
54 isPlay = 0;
55 fs = 44100;
56 fk = [10 20 22.4 25 28.2 31.5 35.5 40 44.7 50 56.2 ...

63 ...
57 70.8 80 89.1 100 112 125 141 160 178 200 224 ...

250 ...
58 282 315 355 400 447 500 562 630 708 800 891 ...

1000 ...
59 1120 1250 1410 1600 1780 2000 2240 2500 2820 ...
60 3150 3550 4000 4470 5000 5620 6300 7080 8000 ...
61 8910 10000 11200 12500 14100 16000 17800 20000];
62

63 wn = 2*pi*[10 14 20 21.2 22.4 23.7 25 26.6 28.2 ...
29.9 ...

64 31.5 33.5 35.5 37.6 40 42.2 44.7 47.3 50 53.1 ...
65 56.2 59.6 63 66.9 70.8 75 80 84.2 89.1 94.5 ...

100 ...
66 106 112 119 125 133 141 150 160 168 178 188 200 ...
67 211 224 237 250 266 282 299 315 335 355 376 ...
68 400 422 447 473 500 531 562 596 630 669 708 ...
69 750 800 842 891 945 1000 1060 1120 1190 1250 ...
70 1330 1410 1500 1600 1680 1780 1880 2000 2110 ...
71 2240 2370 2500 2660 2820 2990 3150 3350 ...
72 3550 3760 4000 4220 4470 4730 5000 5310 5620 ...

5960 ...
73 6300 6690 7080 7500 8000 8420 8910 9450 10000 ...
74 10600 11200 11900 12500 13300 14100 15000 16000 ...
75 16800 17800 18800 20000];
76

77 fg = [20 25 31.5 40 50 63 80 100 125 160 200 250 ...
78 315 400 500 630 800 1000 1250 1600 2000 2500 ...
79 3150 4000 5000 6300 8000 ...
80 10000 12500 16000 20000];
81

82 isStop = 0;
83

84 end
85

86 methods (Access = private)
87

88 %Calculation of the denominator of the k:th filter
89 function a = den(app,k,Fs)
90 thetak = 2*pi*app.fk(k)/Fs;
91 if k>1 && k<62
92 dthetak = ...

(2*pi*app.fk(k+1)/Fs-2*pi*app.fk(k-1)/Fs)/2;
93 elseif k == 1
94 dthetak = 2*pi*app.fk(2)/Fs-2*pi*app.fk(1)/Fs;
95 else

29

96 dthetak = ...
2*pi*app.fk(62)/Fs-2*pi*app.fk(61)/Fs;

97 end
98 pk = exp(-dthetak/2);
99 a = [1 -2*pk*cos(thetak) pkˆ2];

100

101 end
102

103 %Calculation of the modelling matrix
104 function Mrplus = Mrp(app,Fs)
105

106 M = zeros(123,124);
107 M(:,125) = ones(123,1);
108 sqW = Weight(app,app.Slider 1.Value,...
109 app.Slider 2.Value,...
110 app.Slider 3.Value,app.Slider 4.Value,...
111 app.Slider 5.Value,app.Slider 6.Value,...
112 app.Slider 7.Value,app.Slider 8.Value,...
113 app.Slider 9.Value,app.Slider 10.Value,...
114 app.Slider 11.Value,app.Slider 12.Value,...
115 app.Slider 13.Value,app.Slider 14.Value,...
116 app.Slider 15.Value,app.Slider 16.Value,...
117 app.Slider 17.Value,app.Slider 18.Value,...
118 app.Slider 19.Value,app.Slider 20.Value,...
119 app.Slider 21.Value,app.Slider 22.Value,...
120 app.Slider 23.Value,app.Slider 24.Value,...
121 app.Slider 25.Value,app.Slider 26.Value,...
122 app.Slider 27.Value,app.Slider 28.Value,...
123 app.Slider 29.Value,app.Slider 30.Value,...
124 app.Slider 31.Value);
125

126 for n = 1:123
127 for k = 1:62
128 M(n,2*k-1) = 1/(den(app,k,Fs)*...
129 [1; exp(-app.wn(n)/Fs*1i); ...
130 exp(-2*app.wn(n)/Fs*1i)]);
131 M(n,2*k) = exp(-app.wn(n)/Fs*1i)/...
132 (den(app,k,Fs)*[1; ...

exp(-app.wn(n)/Fs*1i);...
133 exp(-2*app.wn(n)/Fs*1i)]);
134 end
135 M(n,:) = M(n,:)*sqW(n);
136 end
137

138 Mr = [real(M);imag(M)];
139

140 Mrplus = (transpose(Mr)*Mr)\transpose(Mr);
141

142 end
143

144 %Calculation of the target response vector
145 function htr = target(app,G1,G2,G3,G4,G5,G6,G7,...
146 G8,G9,G10,G11,G12,G13,G14,G15,G16,G17,G18,G19,...
147 G20,G21,G22,G23,G24,G25,G26,G27,G28,G29,G30,G31)

30

148

149 y = 10.ˆ(1/20*pchip([-flip(app.fg) app.fg],...
150 [flip([G1,G2,G3,G4,G5,G6,G7,G8,G9,G10,...
151 G11,G12,G13,G14,G15,G16,G17,G18,G19,G20,...
152 G21,G22,G23,G24,G25,G26,G27,...
153 G28,G29,G30,G31])...
154 [G1,G2,G3,G4,G5,G6,G7,G8,G9,G10,G11,G12,...
155 G13,G14,G15,G16,G17,G18,G19,G20,G21,G22,...
156 G23,G24,G25,G26,G27,G28,G29,G30,G31]],...
157 linspace(-app.fs/2,app.fs/2,2ˆ16)))';
158

159 phase = unwrap(imag(-hilbert(log(y))));
160 phase = phase(32769:64124);
161

162 i = 1;
163 fi = zeros(1,123);
164 for w = app.wn/(2*pi)
165 if round(w*length(phase)/21100) > length(phase)
166 fi(i) = phase(length(phase));
167 else
168 fi(i) = phase(round(w*length(phase)/21100));
169 end
170 i=i+1;
171 end
172

173 htr = [real(exp(1i*fi'));imag(exp(1i*fi'))];
174

175 end
176

177 %Calculation of the optimal numerator coefficients
178 function popt = num(app,htr,Mrplus)
179 popt = Mrplus*htr;
180

181 end
182

183 %Filtering process algorithm
184 function yk = filterNew(app,bWithIndex,xk1,...
185 ybuffer,xbuffer,Fs,n)
186 yk = filter(bWithIndex',den(app,n,Fs),...
187 xk1,filtic(bWithIndex',den(app,n,Fs),...
188 ybuffer,xbuffer));
189

190

191 end
192

193 %Calculation of the Weighting factors
194 function sqW = ...

Weight(app,G1,G2,G3,G4,G5,G6,G7,G8,G9,...
195 G10,G11,G12,G13,G14,G15,G16,G17,G18,G19,G20,G21,...
196 G22,G23,G24,G25,G26,G27,G28,G29,G30,G31)
197 ht = 10.ˆ(1/20*pchip([10 app.fg],[G1 ...

G1,G2,G3,G4,...
198 G5,G6,G7,G8,G9,G10,G11,G12,G13,G14,G15,G16,...
199 G17,G18,G19,G20,G21,G22,G23,G24,G25,G26,G27,...

31

200 G28,G29,G30,G31],app.wn/(2*pi)))';
201 sqW1 = zeros(123,1);
202 for i = 1:123
203 sqW1(i) = 1/ht(i);
204 end
205 sqW = sqW1;
206 end
207 end
208

209

210 % Callbacks that handle component events
211 methods (Access = private)
212

213 % Code that executes after component creation
214 function Start(app)
215

216 app.Lamp.Enable = 'off';
217 tracks = struct2cell(dir('*.mp3'));
218 tracks = tracks(1,:);
219 app.TrackDropDown.Items = tracks;
220 wav = struct2cell(dir('*.wav'));
221 wav = wav(1,:);
222 for i = 1:length(wav)
223 app.TrackDropDown.Items(i+...
224 length(tracks(1,:))) = wav(i);
225 end
226 if isempty(app.TrackDropDown.Items) == 1
227 uialert(app.UIFigure,...
228 ['Your current folder does not contain any ...

audio files'],...
229 'Info','Icon','info');
230 end
231

232 end
233

234 % Button pushed function: PlayButton
235 function play(app, event)
236 if isempty(app.TrackDropDown.Items) == 1
237 uialert(app.UIFigure,'No audio file found',...
238 'Error','Icon','error');
239 elseif app.isRec == 1
240 uialert(app.UIFigure,...
241 'Stop recording before playback of a file',...
242 'Tip','Icon','warning');
243

244 elseif strcmp(app.PlayButton.Text,'Play') && ...
245 app.isPlay == 0 && app.isRec == 0
246

247 %Acquiring the audio file
248 fileReader = dsp.AudioFileReader(...
249 char(app.TrackDropDown.Value),...
250 'SamplesPerFrame',1024);
251 deviceWriter = audioDeviceWriter('SampleRate',...
252 fileReader.SampleRate);

32

253

254 app.PlayButton.Text = 'Pause';
255 app.isPlay = 1;
256 app.fs = fileReader.SampleRate;
257 Fs = app.fs;
258

259 %Initializing the delays
260 xbuffer1 = 0;
261 xbuffer2 = 0;
262 ybuffer1 = zeros(62,3);
263 ybuffer2 = zeros(62,3);
264

265

266 S1 = app.Slider 1.Value;
267 S2 = app.Slider 2.Value;
268 S3 = app.Slider 3.Value;
269 S4 = app.Slider 4.Value;
270 S5 = app.Slider 5.Value;
271 S6 = app.Slider 6.Value;
272 S7 = app.Slider 7.Value;
273 S8 = app.Slider 8.Value;
274 S9 = app.Slider 9.Value;
275 S10 = app.Slider 10.Value;
276 S11 = app.Slider 11.Value;
277 S12 = app.Slider 12.Value;
278 S13 = app.Slider 13.Value;
279 S14 = app.Slider 14.Value;
280 S15 = app.Slider 15.Value;
281 S16 = app.Slider 16.Value;
282 S17 = app.Slider 17.Value;
283 S18 = app.Slider 18.Value;
284 S19 = app.Slider 19.Value;
285 S20 = app.Slider 20.Value;
286 S21 = app.Slider 21.Value;
287 S22 = app.Slider 22.Value;
288 S23 = app.Slider 23.Value;
289 S24 = app.Slider 24.Value;
290 S25 = app.Slider 25.Value;
291 S26 = app.Slider 26.Value;
292 S27 = app.Slider 27.Value;
293 S28 = app.Slider 28.Value;
294 S29 = app.Slider 29.Value;
295 S30 = app.Slider 30.Value;
296 S31 = app.Slider 31.Value;
297

298 Mrplus = Mrp(app,Fs);
299

300 b = num(app,target(app,S1,S2,S3,S4,S5,S6,S7,...
301 S8,S9,S10,S11,S12,S13,S14,S15,S16,S17,S18,...
302 S19,S20,S21,S22,S23,S24,S25,S26,S27,S28,...
303 S29,S30,S31),Mrplus);
304

305 dF = Fs/1024;
306 f = -Fs/2:dF:Fs/2-dF;

33

307

308 i = 0;
309 %Playback loop
310 while ~isDone(fileReader)
311 %Acquiring the succeeding frame
312 xk = fileReader();
313

314 if length(xk(1,:))~=2
315 xk = [xk,xk];
316 xk1 = xk(:,1)';
317 xk2 = xk(:,2)';
318 else
319 xk1 = xk(:,1)';
320 xk2 = xk(:,2)';
321 end
322

323 if strcmp(app.PlayButton.Text,'Play') == 1
324 %Pause loop
325 while strcmp(app.PlayButton.Text,'Play') == 1 && ...
326 app.isStop == 0
327 pause(1);
328 end
329 end
330

331 pause(0);
332

333 %Checking if slider configuration changed
334 if app.Slider 1.Value ~= S1 | | app.Slider 2.Value ~= S2 ...

| | ...
335 app.Slider 3.Value ~= S3 | | ...
336 S4 ~= app.Slider 4.Value | | ...
337 S5 ~= app.Slider 5.Value | | ...
338 app.Slider 6.Value ~= S6 | | ...
339 app.Slider 7.Value ~= S7 | | ...
340 app.Slider 8.Value ~= S8 | | ...
341 S9 ~= app.Slider 9.Value | | ...
342 S10 ~= app.Slider 10.Value | | ...
343 app.Slider 11.Value ~= S11 | | ...
344 app.Slider 12.Value ~= S12 | | ...
345 app.Slider 13.Value ~= S13 | | ...
346 S14 ~= app.Slider 14.Value | | ...
347 S15 ~= app.Slider 15.Value | | ...
348 app.Slider 16.Value ~= S16 | | ...
349 app.Slider 17.Value ~= S17 | | ...
350 app.Slider 18.Value ~= S18 | | ...
351 S19 ~= app.Slider 19.Value | | ...
352 S20 ~= app.Slider 20.Value | | ...
353 app.Slider 21.Value ~= S21 | | ...
354 app.Slider 22.Value ~= S22 | | ...
355 app.Slider 23.Value ~= S23 | | ...
356 S24 ~= app.Slider 24.Value | | ...
357 S25 ~= app.Slider 25.Value | | ...
358 app.Slider 26.Value ~= S26 | | ...
359 app.Slider 27.Value ~= S27 | | ...

34

360 app.Slider 28.Value ~= S28 | | ...
361 S29 ~= app.Slider 29.Value | | ...
362 S30 ~= app.Slider 30.Value | | ...
363 app.Slider 31.Value ~= S31
364

365 S1 = app.Slider 1.Value;
366 S2 = app.Slider 2.Value;
367 S3 = app.Slider 3.Value;
368 S4 = app.Slider 4.Value;
369 S5 = app.Slider 5.Value;
370 S6 = app.Slider 6.Value;
371 S7 = app.Slider 7.Value;
372 S8 = app.Slider 8.Value;
373 S9 = app.Slider 9.Value;
374 S10 = app.Slider 10.Value;
375 S11 = app.Slider 11.Value;
376 S12 = app.Slider 12.Value;
377 S13 = app.Slider 13.Value;
378 S14 = app.Slider 14.Value;
379 S15 = app.Slider 15.Value;
380 S16 = app.Slider 16.Value;
381 S17 = app.Slider 17.Value;
382 S18 = app.Slider 18.Value;
383 S19 = app.Slider 19.Value;
384 S20 = app.Slider 20.Value;
385 S21 = app.Slider 21.Value;
386 S22 = app.Slider 22.Value;
387 S23 = app.Slider 23.Value;
388 S24 = app.Slider 24.Value;
389 S25 = app.Slider 25.Value;
390 S26 = app.Slider 26.Value;
391 S27 = app.Slider 27.Value;
392 S28 = app.Slider 28.Value;
393 S29 = app.Slider 29.Value;
394 S30 = app.Slider 30.Value;
395 S31 = app.Slider 31.Value;
396

397 %Calculating the new filters
398 Mrplus = Mrp(app,Fs);
399 b = num(app,target(app,S1,S2,S3,S4,S5,S6,S7,S8,S9, ...
400 S10,S11,S12,S13,S14,S15,S16,S17,S18,S19,S20,...
401 S21,S22, ...

S23,S24,S25,S26,S27,S28,S29,S30,S31),...
402 Mrplus);
403

404

405 end
406

407 %Filtering process
408 for n=1:63
409 if n<63
410 ykNew1(n,:) = filterNew(app,b((2*n-1):(2*n)),...
411 xk1,ybuffer1(n,:),xbuffer1,Fs,n);
412 ykNew2(n,:) = filterNew(app,b((2*n-1):(2*n)),...

35

413 xk2,ybuffer2(n,:),xbuffer2,Fs,n);
414 else
415 ykNew1(n,:) = xk1*b(125);
416 ykNew2(n,:) = xk2*b(125);
417 end
418

419 end
420

421 yk1=0;
422 yk2=0;
423 for n=1:63
424 yk1=yk1 + ykNew1(n,:);
425

426 yk2=yk2 + ykNew2(n,:);
427 end
428

429 %Playback of frame
430 deviceWriter([0.25*yk1',0.25*yk2']);
431

432 %Delay updates
433 xbuffer1 = flip(xk1(length(xk1)-1:length(xk1)));
434 xbuffer2 = flip(xk2(length(xk2)-1:length(xk2)));
435 for n=1:62
436

437 ybuffer1(n,:)=flip(ykNew1(n,...
438 (length(ykNew1(n,:))-2):(length(ykNew1(n,:)))));
439

440 ybuffer2(n,:)=flip(ykNew2(n,...
441 (length(ykNew2(n,:))-2):(length(ykNew2(n,:)))));
442

443 end
444

445 %FFT plot update if allowed
446 if mod(i,51-round(app.Knob.Value))==0 && ...
447 strcmp(app.Switch.Value,'On') == 1
448 z = fftshift(fft(yk1));
449 area(app.UIAxes,f,abs(z)/1024)
450 drawnow limitrate;
451

452 end
453 if app.isStop == 1
454 release(fileReader);
455 release(deviceWriter);
456 app.PlayButton.Text = 'Play';
457 app.isPlay = 0;
458 app.isStop = 0;
459 end
460

461 i = i+1;
462

463 end
464

465 release(fileReader);
466 release(deviceWriter);

36

467 app.PlayButton.Text = 'Play';
468 app.isPlay = 0;
469

470 elseif strcmp(app.PlayButton.Text,'Play') && ...
471 app.isPlay == 1
472 app.PlayButton.Text = 'Pause';
473 elseif app.isStop == 1
474 release(fileReader);
475 release(deviceWriter);
476 app.PlayButton.Text = 'Play';
477 app.isPlay = 0;
478 app.isStop = 0;
479

480 else
481

482 app.PlayButton.Text = 'Play';
483 end
484

485 end
486

487 % Button pushed function: RecButton
488 function Rec(app, event)
489 if app.isPlay == 1
490 uialert(app.UIFigure,...
491 'Stop playback before recordning',...
492 'Tip','Icon','warning');
493 elseif app.isRec == 0
494 %Initializing the microphone
495 deviceReader = audioDeviceReader(44100,1024,...
496 'NumChannels',2);
497 deviceWriter = ...

audioDeviceWriter('SampleRate',...
498 deviceReader.SampleRate);
499 app.Lamp.Enable = 'on';
500 app.isRec = 1;
501 app.RecButton.Text = 'Stop';
502

503 %Initializing the delays
504 xbuffer1 = 0;
505 xbuffer2 = 0;
506 ybuffer1 = zeros(62,3);
507 ybuffer2 = zeros(62,3);
508

509

510

511

512

513 S1 = app.Slider 1.Value;
514 S2 = app.Slider 2.Value;
515 S3 = app.Slider 3.Value;
516 S4 = app.Slider 4.Value;
517 S5 = app.Slider 5.Value;
518 S6 = app.Slider 6.Value;
519 S7 = app.Slider 7.Value;

37

520 S8 = app.Slider 8.Value;
521 S9 = app.Slider 9.Value;
522 S10 = app.Slider 10.Value;
523 S11 = app.Slider 11.Value;
524 S12 = app.Slider 12.Value;
525 S13 = app.Slider 13.Value;
526 S14 = app.Slider 14.Value;
527 S15 = app.Slider 15.Value;
528 S16 = app.Slider 16.Value;
529 S17 = app.Slider 17.Value;
530 S18 = app.Slider 18.Value;
531 S19 = app.Slider 19.Value;
532 S20 = app.Slider 20.Value;
533 S21 = app.Slider 21.Value;
534 S22 = app.Slider 22.Value;
535 S23 = app.Slider 23.Value;
536 S24 = app.Slider 24.Value;
537 S25 = app.Slider 25.Value;
538 S26 = app.Slider 26.Value;
539 S27 = app.Slider 27.Value;
540 S28 = app.Slider 28.Value;
541 S29 = app.Slider 29.Value;
542 S30 = app.Slider 30.Value;
543 S31 = app.Slider 31.Value;
544

545 Fs=44100;
546 app.fs = Fs;
547 Mrplus = Mrp(app,Fs);
548

549 b = num(app,target(app,S1,S2,S3,S4,...
550 S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15,...
551 S16,S17,S18,S19,S20,S21,S22,S23,...
552 S24,S25,S26,S27,S28,S29,S30,S31),...
553 Mrplus);
554

555 dF = Fs/1024;
556 f = -Fs/2:dF:Fs/2-dF;
557

558 i = 1;
559

560 %Record and playback loop
561 while app.isRec == 1
562

563 %Acquiring the next frame
564 xk = deviceReader();
565

566 xk1 = xk(:,1)';
567 xk2 = xk(:,2)';
568

569 pause(0);
570

571 %Checking if slider configuration changed
572 if app.Slider 1.Value ~= S1 | | app.Slider 2.Value ~= ...

S2 | | ...

38

573 app.Slider 3.Value ~= S3 | | S4 ~= ...
app.Slider 4.Value | | ...

574 S5 ~= app.Slider 5.Value | | app.Slider 6.Value ~= ...
S6 | | ...

575 app.Slider 7.Value ~= S7 | | app.Slider 8.Value ~= ...
S8 | | ...

576 S9 ~= app.Slider 9.Value | | S10 ~= ...
app.Slider 10.Value | | ...

577 app.Slider 11.Value ~= S11 | | ...
578 app.Slider 12.Value ~= S12 | | ...
579 app.Slider 13.Value ~= S13 | | ...
580 S14 ~= app.Slider 14.Value | | ...
581 S15 ~= app.Slider 15.Value | | ...
582 app.Slider 16.Value ~= S16 | | ...
583 app.Slider 17.Value ~= S17 | | ...
584 app.Slider 18.Value ~= S18 | | ...
585 S19 ~= app.Slider 19.Value | | ...
586 S20 ~= app.Slider 20.Value | | ...
587 app.Slider 21.Value ~= S21 | | ...
588 app.Slider 22.Value ~= S22 | | ...
589 app.Slider 23.Value ~= S23 | | ...
590 S24 ~= app.Slider 24.Value | | ...
591 S25 ~= app.Slider 25.Value | | ...
592 app.Slider 26.Value ~= S26 | | ...
593 app.Slider 27.Value ~= S27 | | ...
594 app.Slider 28.Value ~= S28 | | ...
595 S29 ~= app.Slider 29.Value | | ...
596 S30 ~= app.Slider 30.Value | | ...
597 app.Slider 31.Value ~= S31
598

599 S1 = app.Slider 1.Value;
600 S2 = app.Slider 2.Value;
601 S3 = app.Slider 3.Value;
602 S4 = app.Slider 4.Value;
603 S5 = app.Slider 5.Value;
604 S6 = app.Slider 6.Value;
605 S7 = app.Slider 7.Value;
606 S8 = app.Slider 8.Value;
607 S9 = app.Slider 9.Value;
608 S10 = app.Slider 10.Value;
609 S11 = app.Slider 11.Value;
610 S12 = app.Slider 12.Value;
611 S13 = app.Slider 13.Value;
612 S14 = app.Slider 14.Value;
613 S15 = app.Slider 15.Value;
614 S16 = app.Slider 16.Value;
615 S17 = app.Slider 17.Value;
616 S18 = app.Slider 18.Value;
617 S19 = app.Slider 19.Value;
618 S20 = app.Slider 20.Value;
619 S21 = app.Slider 21.Value;
620 S22 = app.Slider 22.Value;
621 S23 = app.Slider 23.Value;
622 S24 = app.Slider 24.Value;

39

623 S25 = app.Slider 25.Value;
624 S26 = app.Slider 26.Value;
625 S27 = app.Slider 27.Value;
626 S28 = app.Slider 28.Value;
627 S29 = app.Slider 29.Value;
628 S30 = app.Slider 30.Value;
629 S31 = app.Slider 31.Value;
630

631 %Calculating the new filters
632 Mrplus = Mrp(app,Fs);
633 b = num(app,target(app,S1,S2,S3,S4,S5,...
634 S6,S7,S8,S9,S10,S11,S12,S13,S14,S15,...
635 S16,S17,S18,S19,S20,S21,S22,...
636 S23,S24,S25,S26,S27,S28,S29,S30,S31),...
637 Mrplus);
638

639 end
640

641 %Filtering process
642 for n=1:63
643 if n<63
644 ykNew1(n,:) = filterNew(app,...
645 b((2*n-1):(2*n)),xk1,ybuffer1(n,:),...
646 xbuffer1,Fs,n);
647 ykNew2(n,:) = filterNew(app,...
648 b((2*n-1):(2*n)),xk2,ybuffer2(n,:),...
649 xbuffer2,Fs,n);
650 else
651 ykNew1(n,:) = xk1*b(125);
652 ykNew2(n,:) = xk2*b(125);
653

654 end
655

656 end
657

658 yk1=0;
659 yk2=0;
660 for n=1:63
661 yk1=yk1 + ykNew1(n,:);
662

663 yk2=yk2 + ykNew2(n,:);
664 end
665

666 %Playback of frame
667 deviceWriter([0.25*yk1',0.25*yk2']);
668

669 %Updating the delays
670 xbuffer1 = flip(xk1(length(xk1)-1:length(xk1)));
671 xbuffer2 = flip(xk2(length(xk2)-1:length(xk2)));
672 for n=1:62
673 ybuffer1(n,:)=flip(ykNew1(n,...
674 (length(ykNew1(n,:))-2):(length(ykNew1(n,:)))));
675 ybuffer2(n,:)=flip(ykNew2(n,...
676 (length(ykNew2(n,:))-2):(length(ykNew2(n,:)))));

40

677 end
678

679 %FFT plot update if allowed
680 if mod(i,51-round(app.Knob.Value))==0 && ...
681 strcmp(app.Switch.Value,'On') == 1
682 z = fftshift(fft(yk1));
683 area(app.UIAxes,f,abs(z)/1024)
684 drawnow limitrate;
685 end
686

687 %Blinking of the lamp
688 if mod(i,15) == 0
689 if strcmp(app.Lamp.Enable,'on') == 1
690 app.Lamp.Enable = 'off';
691 else
692 app.Lamp.Enable = 'on';
693 end
694 end
695

696 i = i+1;
697

698 end
699 release(deviceReader);
700 release(deviceWriter);
701 else
702 app.isRec = 0;
703 app.RecButton.Text = 'Rec';
704 end
705

706 end
707

708 % Button pushed function: StopButton
709 function Stop(app, event)
710 app.isStop = 1;
711 end
712

713 % Value changed function: DropDown
714 %Setting the slider presets
715 function Preset(app, event)
716 value = app.DropDown.Value;
717 if strcmp('Rock',value) == 1
718 app.Slider 1.Value = 7;
719 app.Slider 2.Value = 7;app.Slider 3.Value = 6;
720 app.Slider 4.Value = 6;app.Slider 5.Value = 5;
721 app.Slider 6.Value = 5;app.Slider 7.Value = 5;
722 app.Slider 8.Value = 3;app.Slider 9.Value = 2;
723 app.Slider 10.Value = 1;app.Slider 11.Value = 0;
724 app.Slider 12.Value = 0;app.Slider 13.Value = -1;
725 app.Slider 14.Value = -1;app.Slider 15.Value = -2;
726 app.Slider 16.Value = -3;app.Slider 17.Value = -3;
727 app.Slider 18.Value = -4;app.Slider 19.Value = -3;
728 app.Slider 20.Value = -3;app.Slider 21.Value = -2;
729 app.Slider 22.Value = -1;app.Slider 23.Value = 0;
730 app.Slider 24.Value = 2;app.Slider 25.Value = 3;

41

731 app.Slider 26.Value = 4;app.Slider 27.Value = 5;
732 app.Slider 28.Value = 5;app.Slider 29.Value = 5;
733 app.Slider 30.Value = 5;app.Slider 31.Value = 4;
734

735 elseif strcmp('Flat',value) == 1
736 app.Slider 1.Value = 0;
737 app.Slider 2.Value = 0;app.Slider 3.Value = 0;
738 app.Slider 4.Value = 0;app.Slider 5.Value = 0;
739 app.Slider 6.Value = 0;app.Slider 7.Value = 0;
740 app.Slider 8.Value = 0;app.Slider 9.Value = 0;
741 app.Slider 10.Value = 0;app.Slider 11.Value = 0;
742 app.Slider 12.Value = 0;app.Slider 13.Value = 0;
743 app.Slider 14.Value = 0;app.Slider 15.Value = 0;
744 app.Slider 16.Value = 0;app.Slider 17.Value = 0;
745 app.Slider 18.Value = 0;app.Slider 19.Value = 0;
746 app.Slider 20.Value = 0;app.Slider 21.Value = 0;
747 app.Slider 22.Value = 0;app.Slider 23.Value = 0;
748 app.Slider 24.Value = 0;app.Slider 25.Value = 0;
749 app.Slider 26.Value = 0;app.Slider 27.Value = 0;
750 app.Slider 28.Value = 0;app.Slider 29.Value = 0;
751 app.Slider 30.Value = 0;app.Slider 31.Value = 0;
752

753 elseif strcmp('Pop',value) == 1
754 app.Slider 1.Value = 0;
755 app.Slider 2.Value = 0;app.Slider 3.Value = 0;
756 app.Slider 4.Value = 0;app.Slider 5.Value = 1;
757 app.Slider 6.Value = 1;app.Slider 7.Value = 2;
758 app.Slider 8.Value = 3;app.Slider 9.Value = 4;
759 app.Slider 10.Value = 4;app.Slider 11.Value = 4;
760 app.Slider 12.Value = 3;app.Slider 13.Value = 2;
761 app.Slider 14.Value = 1;app.Slider 15.Value = 0;
762 app.Slider 16.Value = 0;app.Slider 17.Value = 0;
763 app.Slider 18.Value = -1;app.Slider 19.Value = -1;
764 app.Slider 20.Value = -2;app.Slider 21.Value = -2;
765 app.Slider 22.Value = -2;app.Slider 23.Value = -2;
766 app.Slider 24.Value = -1;app.Slider 25.Value = -1;
767 app.Slider 26.Value = 0;app.Slider 27.Value = 1;
768 app.Slider 28.Value = 0;app.Slider 29.Value = -1;
769 app.Slider 30.Value = -1;app.Slider 31.Value = -1;
770

771 elseif strcmp('Bass',value) == 1
772 app.Slider 1.Value = 12;
773 app.Slider 2.Value = 12;app.Slider 3.Value = 12;
774 app.Slider 4.Value = 12;app.Slider 5.Value = 12;
775 app.Slider 6.Value = 12;app.Slider 7.Value = 12;
776 app.Slider 8.Value = 12;app.Slider 9.Value = 11;
777 app.Slider 10.Value = 10;app.Slider 11.Value = 9;
778 app.Slider 12.Value = 8;app.Slider 13.Value = 7;
779 app.Slider 14.Value = 6;app.Slider 15.Value = 5;
780 app.Slider 16.Value = 4;app.Slider 17.Value = 3;
781 app.Slider 18.Value = 2;app.Slider 19.Value = 1;
782 app.Slider 20.Value = 0;app.Slider 21.Value = -1;
783 app.Slider 22.Value = -2;app.Slider 23.Value = -3;
784 app.Slider 24.Value = -4;app.Slider 25.Value = -5;

42

785 app.Slider 26.Value = -6;app.Slider 27.Value = -7;
786 app.Slider 28.Value = -8;app.Slider 29.Value = -9;
787 app.Slider 30.Value = -10;app.Slider 31.Value = ...

-11;
788

789 elseif strcmp('Treble',value) == 1
790 app.Slider 1.Value = -12;
791 app.Slider 2.Value = -11;app.Slider 3.Value = -10;
792 app.Slider 4.Value = -10;app.Slider 5.Value = -10;
793 app.Slider 6.Value = -10;app.Slider 7.Value = -9;
794 app.Slider 8.Value = -8;app.Slider 9.Value = -7;
795 app.Slider 10.Value = -7;app.Slider 11.Value = -7;
796 app.Slider 12.Value = -6;app.Slider 13.Value = -6;
797 app.Slider 14.Value = -5;app.Slider 15.Value = -5;
798 app.Slider 16.Value = -3;app.Slider 17.Value = -2;
799 app.Slider 18.Value = 0;app.Slider 19.Value = 3;
800 app.Slider 20.Value = 5;app.Slider 21.Value = 6;
801 app.Slider 22.Value = 8;app.Slider 23.Value = 9;
802 app.Slider 24.Value = 9;app.Slider 25.Value = 10;
803 app.Slider 26.Value = 11;app.Slider 27.Value = 12;
804 app.Slider 28.Value = 12;app.Slider 29.Value = 12;
805 app.Slider 30.Value = 12;app.Slider 31.Value = 12;
806

807 elseif strcmp('Vocal',value) == 1
808 app.Slider 1.Value = -8;
809 app.Slider 2.Value = -7;app.Slider 3.Value = -6;
810 app.Slider 4.Value = -5;app.Slider 5.Value = -5;
811 app.Slider 6.Value = -4;app.Slider 7.Value = -3;
812 app.Slider 8.Value = -3;app.Slider 9.Value = 0;
813 app.Slider 10.Value = 0;app.Slider 11.Value = 2;
814 app.Slider 12.Value = 5;app.Slider 13.Value = 6;
815 app.Slider 14.Value = 7;app.Slider 15.Value = 7;
816 app.Slider 16.Value = 7;app.Slider 17.Value = 7;
817 app.Slider 18.Value = 7;app.Slider 19.Value = 7;
818 app.Slider 20.Value = 6;app.Slider 21.Value = 4;
819 app.Slider 22.Value = 3;app.Slider 23.Value = 2;
820 app.Slider 24.Value = 0;app.Slider 25.Value = -2;
821 app.Slider 26.Value = -5;app.Slider 27.Value = -5;
822 app.Slider 28.Value = -5;app.Slider 29.Value = -5;
823 app.Slider 30.Value = -5;app.Slider 31.Value = -7;
824

825 elseif strcmp('Classical',value) == 1
826 app.Slider 1.Value = -3;
827 app.Slider 2.Value = -2;app.Slider 3.Value = -1;
828 app.Slider 4.Value = 0;app.Slider 5.Value = 1;
829 app.Slider 6.Value = 1;app.Slider 7.Value = 1;
830 app.Slider 8.Value = 2;app.Slider 9.Value = 2;
831 app.Slider 10.Value = 3;app.Slider 11.Value = 3;
832 app.Slider 12.Value = 2;app.Slider 13.Value = 1;
833 app.Slider 14.Value = 0;app.Slider 15.Value = -1;
834 app.Slider 16.Value = -2;app.Slider 17.Value = -4;
835 app.Slider 18.Value = -6;app.Slider 19.Value = -8;
836 app.Slider 20.Value = -8;app.Slider 21.Value = -5;
837 app.Slider 22.Value = -3;app.Slider 23.Value = -1;

43

838 app.Slider 24.Value = 0;app.Slider 25.Value = 1;
839 app.Slider 26.Value = 2;app.Slider 27.Value = 4;
840 app.Slider 28.Value = 3;app.Slider 29.Value = 1;
841 app.Slider 30.Value = 0;app.Slider 31.Value = -1;
842

843 elseif strcmp('Hip-Hop',value) == 1
844 app.Slider 1.Value = 4;
845 app.Slider 2.Value = 4;app.Slider 3.Value = 4;
846 app.Slider 4.Value = 4;app.Slider 5.Value = 3;
847 app.Slider 6.Value = 3;app.Slider 7.Value = 2;
848 app.Slider 8.Value = 1;app.Slider 9.Value = 1;
849 app.Slider 10.Value = 1;app.Slider 11.Value = 0;
850 app.Slider 12.Value = 0;app.Slider 13.Value = -1;
851 app.Slider 14.Value = -1;app.Slider 15.Value = -2;
852 app.Slider 16.Value = -2;app.Slider 17.Value = -3;
853 app.Slider 18.Value = -3;app.Slider 19.Value = -2;
854 app.Slider 20.Value = -2;app.Slider 21.Value = -1;
855 app.Slider 22.Value = 0;app.Slider 23.Value = 1;
856 app.Slider 24.Value = 1;app.Slider 25.Value = 2;
857 app.Slider 26.Value = 3;app.Slider 27.Value = 3;
858 app.Slider 28.Value = 3;app.Slider 29.Value = 4;
859 app.Slider 30.Value = 3;app.Slider 31.Value = 2;
860

861 elseif strcmp('Dance',value) == 1
862 app.Slider 1.Value = 6;
863 app.Slider 2.Value = 6;app.Slider 3.Value = 6;
864 app.Slider 4.Value = 6;app.Slider 5.Value = 6;
865 app.Slider 6.Value = 7;app.Slider 7.Value = 6;
866 app.Slider 8.Value = 4;app.Slider 9.Value = 2;
867 app.Slider 10.Value = 1;app.Slider 11.Value = 1;
868 app.Slider 12.Value = 0;app.Slider 13.Value = -1;
869 app.Slider 14.Value = -2;app.Slider 15.Value = -2;
870 app.Slider 16.Value = -1;app.Slider 17.Value = -1;
871 app.Slider 18.Value = 0;app.Slider 19.Value = 1;
872 app.Slider 20.Value = 1;app.Slider 21.Value = 2;
873 app.Slider 22.Value = 3;app.Slider 23.Value = 2;
874 app.Slider 24.Value = 2;app.Slider 25.Value = 1;
875 app.Slider 26.Value = 0;app.Slider 27.Value = -1;
876 app.Slider 28.Value = -1;app.Slider 29.Value = -2;
877 app.Slider 30.Value = -2;app.Slider 31.Value = -2;
878

879 elseif strcmp('Jazz',value) == 1
880 app.Slider 1.Value = -3;
881 app.Slider 2.Value = -2;app.Slider 3.Value = -2;
882 app.Slider 4.Value = 0;app.Slider 5.Value = 2;
883 app.Slider 6.Value = 3;app.Slider 7.Value = 1;
884 app.Slider 8.Value = -2;app.Slider 9.Value = -6;
885 app.Slider 10.Value = -3;app.Slider 11.Value = -1;
886 app.Slider 12.Value = 0;app.Slider 13.Value = 1;
887 app.Slider 14.Value = 3;app.Slider 15.Value = 6;
888 app.Slider 16.Value = 5;app.Slider 17.Value = 4;
889 app.Slider 18.Value = 3;app.Slider 19.Value = 2;
890 app.Slider 20.Value = 2;app.Slider 21.Value = 1;
891 app.Slider 22.Value = 1;app.Slider 23.Value = 0;

44

892 app.Slider 24.Value = 0;app.Slider 25.Value = 0;
893 app.Slider 26.Value = 0;app.Slider 27.Value = 0;
894 app.Slider 28.Value = 0;app.Slider 29.Value = -1;
895 app.Slider 30.Value = -1;app.Slider 31.Value = -1;
896

897 elseif strcmp('Powerfull',value) == 1
898 app.Slider 1.Value = 9;
899 app.Slider 2.Value = 8;app.Slider 3.Value = 8;
900 app.Slider 4.Value = 8;app.Slider 5.Value = 8;
901 app.Slider 6.Value = 7;app.Slider 7.Value = 7;
902 app.Slider 8.Value = 6;app.Slider 9.Value = 4;
903 app.Slider 10.Value = 1;app.Slider 11.Value = -1;
904 app.Slider 12.Value = -2;app.Slider 13.Value = -3;
905 app.Slider 14.Value = -4;app.Slider 15.Value = -4;
906 app.Slider 16.Value = -4;app.Slider 17.Value = -4;
907 app.Slider 18.Value = -4;app.Slider 19.Value = -3;
908 app.Slider 20.Value = -2;app.Slider 21.Value = 0;
909 app.Slider 22.Value = 1;app.Slider 23.Value = 3;
910 app.Slider 24.Value = 5;app.Slider 25.Value = 6;
911 app.Slider 26.Value = 8;app.Slider 27.Value = 8;
912 app.Slider 28.Value = 8;app.Slider 29.Value = 8;
913 app.Slider 30.Value = 8;app.Slider 31.Value = 8;
914

915 elseif strcmp('Shitty music',value) == 1
916 app.Slider 1.Value = -13;
917 app.Slider 2.Value = -13;app.Slider 3.Value = -13;
918 app.Slider 4.Value = -13;app.Slider 5.Value = -13;
919 app.Slider 6.Value = -13;app.Slider 7.Value = -13;
920 app.Slider 8.Value = -13;app.Slider 9.Value = -13;
921 app.Slider 10.Value = -13;app.Slider 11.Value = ...

-13;
922 app.Slider 12.Value = -13;app.Slider 13.Value = ...

-13;
923 app.Slider 14.Value = -13;app.Slider 15.Value = ...

-13;
924 app.Slider 16.Value = -13;app.Slider 17.Value = ...

-13;
925 app.Slider 18.Value = -13;app.Slider 19.Value = ...

-13;
926 app.Slider 20.Value = -13;app.Slider 21.Value = ...

-13;
927 app.Slider 22.Value = -13;app.Slider 23.Value = ...

-13;
928 app.Slider 24.Value = -13;app.Slider 25.Value = ...

-13;
929 app.Slider 26.Value = -13;app.Slider 27.Value = ...

-13;
930 app.Slider 28.Value = -13;app.Slider 29.Value = ...

-13;
931 app.Slider 30.Value = -13;app.Slider 31.Value = ...

-13;
932

933 elseif strcmp('MUU',value) == 1
934 app.Slider 1.Value = -12;

45

935 app.Slider 2.Value = -3;app.Slider 3.Value = 4;
936 app.Slider 4.Value = 12;app.Slider 5.Value = 6;
937 app.Slider 6.Value = 3;app.Slider 7.Value = 6;
938 app.Slider 8.Value = 12;app.Slider 9.Value = 4;
939 app.Slider 10.Value = -3;app.Slider 11.Value = -12;
940 app.Slider 12.Value = 12;app.Slider 13.Value = 3;
941 app.Slider 14.Value = -5;app.Slider 15.Value = -9;
942 app.Slider 16.Value = -11;app.Slider 17.Value = ...

-11;
943 app.Slider 18.Value = -9;app.Slider 19.Value = -5;
944 app.Slider 20.Value = 3;app.Slider 21.Value = 12;
945 app.Slider 22.Value = 12;app.Slider 23.Value = 3;
946 app.Slider 24.Value = -5;app.Slider 25.Value = -9;
947 app.Slider 26.Value = -11;app.Slider 27.Value = ...

-11;
948 app.Slider 28.Value = -9;app.Slider 29.Value = -5;
949 app.Slider 30.Value = 3;app.Slider 31.Value = 12;
950

951 end
952

953 end
954

955 % Value changing function: Slider 1
956 function Custom(app, event)
957 app.DropDown.Value = 'Custom';
958 end
959

960 % Value changing function: Slider 2
961 function Custom2(app, event)
962 app.DropDown.Value = 'Custom';
963 end
964

965 % Value changing function: Slider 3
966 function Custom3(app, event)
967 app.DropDown.Value = 'Custom';
968 end
969

970 % Value changing function: Slider 4
971 function Custom4(app, event)
972 app.DropDown.Value = 'Custom';
973 end
974

975 % Value changing function: Slider 5
976 function Custom5(app, event)
977 app.DropDown.Value = 'Custom';
978 end
979

980 % Value changing function: Slider 6
981 function Custom6(app, event)
982 app.DropDown.Value = 'Custom';
983 end
984

985 % Value changing function: Slider 7
986 function Custom7(app, event)

46

987 app.DropDown.Value = 'Custom';
988 end
989

990 % Value changing function: Slider 8
991 function Custom8(app, event)
992 app.DropDown.Value = 'Custom';
993 end
994

995 % Value changing function: Slider 9
996 function Custom9(app, event)
997 app.DropDown.Value = 'Custom';
998 end
999

1000 % Value changing function: Slider 10
1001 function Custom10(app, event)
1002 app.DropDown.Value = 'Custom';
1003 end
1004

1005 % Value changing function: Slider 11
1006 function Custom11(app, event)
1007 app.DropDown.Value = 'Custom';
1008 end
1009

1010 % Value changing function: Slider 12
1011 function Custom12(app, event)
1012 app.DropDown.Value = 'Custom';
1013 end
1014

1015 % Value changing function: Slider 13
1016 function Custom13(app, event)
1017 app.DropDown.Value = 'Custom';
1018 end
1019

1020 % Value changing function: Slider 14
1021 function Custom14(app, event)
1022 app.DropDown.Value = 'Custom';
1023 end
1024

1025 % Value changing function: Slider 15
1026 function Custom15(app, event)
1027 app.DropDown.Value = 'Custom';
1028 end
1029

1030 % Value changing function: Slider 16
1031 function Custom16(app, event)
1032 app.DropDown.Value = 'Custom';
1033 end
1034

1035 % Value changing function: Slider 17
1036 function Custom17(app, event)
1037 app.DropDown.Value = 'Custom';
1038 end
1039

1040 % Value changing function: Slider 18

47

1041 function Custom18(app, event)
1042 app.DropDown.Value = 'Custom';
1043 end
1044

1045 % Value changing function: Slider 19
1046 function Custom19(app, event)
1047 app.DropDown.Value = 'Custom';
1048 end
1049

1050 % Value changing function: Slider 20
1051 function Custom20(app, event)
1052 app.DropDown.Value = 'Custom';
1053 end
1054

1055 % Value changing function: Slider 21
1056 function Custom21(app, event)
1057 app.DropDown.Value = 'Custom';
1058 end
1059

1060 % Value changing function: Slider 22
1061 function Custom22(app, event)
1062 app.DropDown.Value = 'Custom';
1063 end
1064

1065 % Value changing function: Slider 23
1066 function Custom23(app, event)
1067 app.DropDown.Value = 'Custom';
1068 end
1069

1070 % Value changing function: Slider 24
1071 function Custom24(app, event)
1072 app.DropDown.Value = 'Custom';
1073 end
1074

1075 % Value changing function: Slider 25
1076 function Custom25(app, event)
1077 app.DropDown.Value = 'Custom';
1078 end
1079

1080 % Value changing function: Slider 26
1081 function Custom26(app, event)
1082 app.DropDown.Value = 'Custom';
1083 end
1084

1085 % Value changing function: Slider 27
1086 function Custom27(app, event)
1087 app.DropDown.Value = 'Custom';
1088 end
1089

1090 % Value changing function: Slider 28
1091 function Custom28(app, event)
1092 app.DropDown.Value = 'Custom';
1093 end
1094

48

1095 % Value changing function: Slider 29
1096 function Custom29(app, event)
1097 app.DropDown.Value = 'Custom';
1098 end
1099

1100 % Value changing function: Slider 30
1101 function Custom30(app, event)
1102 app.DropDown.Value = 'Custom';
1103 end
1104

1105 % Value changing function: Slider 31
1106 function Custom31(app, event)
1107 app.DropDown.Value = 'Custom';
1108 end
1109 end
1110

1111 % Component initialization
1112 methods (Access = private)
1113

1114 % Create UIFigure and components
1115 function createComponents(app)
1116

1117 % Create UIFigure and hide until all components ...
are created

1118 app.UIFigure = uifigure('Visible', 'off');
1119 app.UIFigure.Color = [0.8 0.8 0.8];
1120 app.UIFigure.Position = [150 80 990 600];
1121 app.UIFigure.Name = 'UI Figure';
1122

1123 % Create Image
1124 app.Image = uiimage(app.UIFigure);
1125 app.Image.Position = [0 0 990 600];
1126 app.Image.ImageSource = 'GUI.png';
1127

1128 % Create Slider 1
1129 app.Slider 1 = uislider(app.UIFigure);
1130 app.Slider 1.Limits = [-13 13];
1131 app.Slider 1.MajorTicks = [];
1132 app.Slider 1.MajorTickLabels = {''};
1133 app.Slider 1.Orientation = 'vertical';
1134 app.Slider 1.ValueChangingFcn = ...

createCallbackFcn(app, @Custom, true);
1135 app.Slider 1.MinorTicks = [];
1136 app.Slider 1.Position = [59 69 3 112];
1137

1138 % Create Slider 2
1139 app.Slider 2 = uislider(app.UIFigure);
1140 app.Slider 2.Limits = [-13 13];
1141 app.Slider 2.MajorTicks = [];
1142 app.Slider 2.MajorTickLabels = {''};
1143 app.Slider 2.Orientation = 'vertical';
1144 app.Slider 2.ValueChangingFcn = ...

createCallbackFcn(app, @Custom2, true);
1145 app.Slider 2.MinorTicks = [];

49

1146 app.Slider 2.Position = [89 69 3 113];
1147

1148 % Create Slider 3
1149 app.Slider 3 = uislider(app.UIFigure);
1150 app.Slider 3.Limits = [-13 13];
1151 app.Slider 3.MajorTicks = [];
1152 app.Slider 3.MajorTickLabels = {''};
1153 app.Slider 3.Orientation = 'vertical';
1154 app.Slider 3.ValueChangingFcn = ...

createCallbackFcn(app, @Custom3, true);
1155 app.Slider 3.MinorTicks = [];
1156 app.Slider 3.Position = [118 69 3 113];
1157

1158 % Create Slider 4
1159 app.Slider 4 = uislider(app.UIFigure);
1160 app.Slider 4.Limits = [-13 13];
1161 app.Slider 4.MajorTicks = [];
1162 app.Slider 4.MajorTickLabels = {''};
1163 app.Slider 4.Orientation = 'vertical';
1164 app.Slider 4.ValueChangingFcn = ...

createCallbackFcn(app, @Custom4, true);
1165 app.Slider 4.MinorTicks = [];
1166 app.Slider 4.Position = [146 69 3 113];
1167

1168 % Create Slider 5
1169 app.Slider 5 = uislider(app.UIFigure);
1170 app.Slider 5.Limits = [-13 13];
1171 app.Slider 5.MajorTicks = [];
1172 app.Slider 5.MajorTickLabels = {''};
1173 app.Slider 5.Orientation = 'vertical';
1174 app.Slider 5.ValueChangingFcn = ...

createCallbackFcn(app, @Custom5, true);
1175 app.Slider 5.MinorTicks = [];
1176 app.Slider 5.Position = [174 69 3 113];
1177

1178 % Create Slider 6
1179 app.Slider 6 = uislider(app.UIFigure);
1180 app.Slider 6.Limits = [-13 13];
1181 app.Slider 6.MajorTicks = [];
1182 app.Slider 6.MajorTickLabels = {'', ' ', ' ', ' ...

', ' ', ' ', ' ', ' ', ' '};
1183 app.Slider 6.Orientation = 'vertical';
1184 app.Slider 6.ValueChangingFcn = ...

createCallbackFcn(app, @Custom6, true);
1185 app.Slider 6.MinorTicks = [];
1186 app.Slider 6.Position = [204 69 3 113];
1187

1188 % Create Slider 7
1189 app.Slider 7 = uislider(app.UIFigure);
1190 app.Slider 7.Limits = [-13 13];
1191 app.Slider 7.MajorTicks = [];
1192 app.Slider 7.MajorTickLabels = {'', ' ', ' ', ' ...

', ' ', ' ', ' ', ' ', ' '};
1193 app.Slider 7.Orientation = 'vertical';

50

1194 app.Slider 7.ValueChangingFcn = ...
createCallbackFcn(app, @Custom7, true);

1195 app.Slider 7.MinorTicks = [];
1196 app.Slider 7.Position = [233 69 3 113];
1197

1198 % Create Slider 8
1199 app.Slider 8 = uislider(app.UIFigure);
1200 app.Slider 8.Limits = [-13 13];
1201 app.Slider 8.MajorTicks = [];
1202 app.Slider 8.MajorTickLabels = {'', ' ', ' ', ' ...

', ' ', ' ', ' ', ' ', ' '};
1203 app.Slider 8.Orientation = 'vertical';
1204 app.Slider 8.ValueChangingFcn = ...

createCallbackFcn(app, @Custom8, true);
1205 app.Slider 8.MinorTicks = [];
1206 app.Slider 8.Position = [262 69 3 113];
1207

1208 % Create Slider 9
1209 app.Slider 9 = uislider(app.UIFigure);
1210 app.Slider 9.Limits = [-13 13];
1211 app.Slider 9.MajorTicks = [];
1212 app.Slider 9.MajorTickLabels = {'', ' ', ' ', ' ...

', ' ', ' ', ' ', ' ', ' '};
1213 app.Slider 9.Orientation = 'vertical';
1214 app.Slider 9.ValueChangingFcn = ...

createCallbackFcn(app, @Custom9, true);
1215 app.Slider 9.MinorTicks = [];
1216 app.Slider 9.Position = [291 69 3 113];
1217

1218 % Create Slider 10
1219 app.Slider 10 = uislider(app.UIFigure);
1220 app.Slider 10.Limits = [-13 13];
1221 app.Slider 10.MajorTicks = [];
1222 app.Slider 10.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1223 app.Slider 10.Orientation = 'vertical';
1224 app.Slider 10.ValueChangingFcn = ...

createCallbackFcn(app, @Custom10, true);
1225 app.Slider 10.MinorTicks = [];
1226 app.Slider 10.Position = [321 69 3 113];
1227

1228 % Create Slider 11
1229 app.Slider 11 = uislider(app.UIFigure);
1230 app.Slider 11.Limits = [-13 13];
1231 app.Slider 11.MajorTicks = [];
1232 app.Slider 11.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1233 app.Slider 11.Orientation = 'vertical';
1234 app.Slider 11.ValueChangingFcn = ...

createCallbackFcn(app, @Custom11, true);
1235 app.Slider 11.MinorTicks = [];
1236 app.Slider 11.Position = [350 69 3 113];
1237

1238 % Create Slider 12

51

1239 app.Slider 12 = uislider(app.UIFigure);
1240 app.Slider 12.Limits = [-13 13];
1241 app.Slider 12.MajorTicks = [];
1242 app.Slider 12.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1243 app.Slider 12.Orientation = 'vertical';
1244 app.Slider 12.ValueChangingFcn = ...

createCallbackFcn(app, @Custom12, true);
1245 app.Slider 12.MinorTicks = [];
1246 app.Slider 12.Position = [378 69 3 113];
1247

1248 % Create Slider 13
1249 app.Slider 13 = uislider(app.UIFigure);
1250 app.Slider 13.Limits = [-13 13];
1251 app.Slider 13.MajorTicks = [];
1252 app.Slider 13.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1253 app.Slider 13.Orientation = 'vertical';
1254 app.Slider 13.ValueChangingFcn = ...

createCallbackFcn(app, @Custom13, true);
1255 app.Slider 13.MinorTicks = [];
1256 app.Slider 13.Position = [406 69 3 113];
1257

1258 % Create Slider 14
1259 app.Slider 14 = uislider(app.UIFigure);
1260 app.Slider 14.Limits = [-13 13];
1261 app.Slider 14.MajorTicks = [];
1262 app.Slider 14.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1263 app.Slider 14.Orientation = 'vertical';
1264 app.Slider 14.ValueChangingFcn = ...

createCallbackFcn(app, @Custom14, true);
1265 app.Slider 14.MinorTicks = [];
1266 app.Slider 14.Position = [436 69 3 113];
1267

1268 % Create Slider 15
1269 app.Slider 15 = uislider(app.UIFigure);
1270 app.Slider 15.Limits = [-13 13];
1271 app.Slider 15.MajorTicks = [];
1272 app.Slider 15.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1273 app.Slider 15.Orientation = 'vertical';
1274 app.Slider 15.ValueChangingFcn = ...

createCallbackFcn(app, @Custom15, true);
1275 app.Slider 15.MinorTicks = [];
1276 app.Slider 15.Position = [464 69 3 113];
1277

1278 % Create Slider 16
1279 app.Slider 16 = uislider(app.UIFigure);
1280 app.Slider 16.Limits = [-13 13];
1281 app.Slider 16.MajorTicks = [];
1282 app.Slider 16.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1283 app.Slider 16.Orientation = 'vertical';

52

1284 app.Slider 16.ValueChangingFcn = ...
createCallbackFcn(app, @Custom16, true);

1285 app.Slider 16.MinorTicks = [];
1286 app.Slider 16.Position = [493 69 3 113];
1287

1288 % Create Slider 17
1289 app.Slider 17 = uislider(app.UIFigure);
1290 app.Slider 17.Limits = [-13 13];
1291 app.Slider 17.MajorTicks = [];
1292 app.Slider 17.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1293 app.Slider 17.Orientation = 'vertical';
1294 app.Slider 17.ValueChangingFcn = ...

createCallbackFcn(app, @Custom17, true);
1295 app.Slider 17.MinorTicks = [];
1296 app.Slider 17.Position = [522 69 3 113];
1297

1298 % Create Slider 18
1299 app.Slider 18 = uislider(app.UIFigure);
1300 app.Slider 18.Limits = [-13 13];
1301 app.Slider 18.MajorTicks = [];
1302 app.Slider 18.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1303 app.Slider 18.Orientation = 'vertical';
1304 app.Slider 18.ValueChangingFcn = ...

createCallbackFcn(app, @Custom18, true);
1305 app.Slider 18.MinorTicks = [];
1306 app.Slider 18.Position = [551 69 3 113];
1307

1308 % Create Slider 19
1309 app.Slider 19 = uislider(app.UIFigure);
1310 app.Slider 19.Limits = [-13 13];
1311 app.Slider 19.MajorTicks = [];
1312 app.Slider 19.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1313 app.Slider 19.Orientation = 'vertical';
1314 app.Slider 19.ValueChangingFcn = ...

createCallbackFcn(app, @Custom19, true);
1315 app.Slider 19.MinorTicks = [];
1316 app.Slider 19.Position = [579 69 3 113];
1317

1318 % Create Slider 20
1319 app.Slider 20 = uislider(app.UIFigure);
1320 app.Slider 20.Limits = [-13 13];
1321 app.Slider 20.MajorTicks = [];
1322 app.Slider 20.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1323 app.Slider 20.Orientation = 'vertical';
1324 app.Slider 20.ValueChangingFcn = ...

createCallbackFcn(app, @Custom20, true);
1325 app.Slider 20.MinorTicks = [];
1326 app.Slider 20.FontWeight = 'bold';
1327 app.Slider 20.Position = [609 69 3 113];
1328

53

1329 % Create Slider 21
1330 app.Slider 21 = uislider(app.UIFigure);
1331 app.Slider 21.Limits = [-13 13];
1332 app.Slider 21.MajorTicks = [];
1333 app.Slider 21.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1334 app.Slider 21.Orientation = 'vertical';
1335 app.Slider 21.ValueChangingFcn = ...

createCallbackFcn(app, @Custom21, true);
1336 app.Slider 21.MinorTicks = [];
1337 app.Slider 21.Position = [637 69 3 113];
1338

1339 % Create Slider 22
1340 app.Slider 22 = uislider(app.UIFigure);
1341 app.Slider 22.Limits = [-13 13];
1342 app.Slider 22.MajorTicks = [];
1343 app.Slider 22.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1344 app.Slider 22.Orientation = 'vertical';
1345 app.Slider 22.ValueChangingFcn = ...

createCallbackFcn(app, @Custom22, true);
1346 app.Slider 22.MinorTicks = [];
1347 app.Slider 22.Position = [667 69 3 113];
1348

1349 % Create Slider 23
1350 app.Slider 23 = uislider(app.UIFigure);
1351 app.Slider 23.Limits = [-13 13];
1352 app.Slider 23.MajorTicks = [];
1353 app.Slider 23.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1354 app.Slider 23.Orientation = 'vertical';
1355 app.Slider 23.ValueChangingFcn = ...

createCallbackFcn(app, @Custom23, true);
1356 app.Slider 23.MinorTicks = [];
1357 app.Slider 23.Position = [695 69 3 113];
1358

1359 % Create Slider 24
1360 app.Slider 24 = uislider(app.UIFigure);
1361 app.Slider 24.Limits = [-13 13];
1362 app.Slider 24.MajorTicks = [];
1363 app.Slider 24.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1364 app.Slider 24.Orientation = 'vertical';
1365 app.Slider 24.ValueChangingFcn = ...

createCallbackFcn(app, @Custom24, true);
1366 app.Slider 24.MinorTicks = [];
1367 app.Slider 24.Position = [725 69 3 113];
1368

1369 % Create Slider 25
1370 app.Slider 25 = uislider(app.UIFigure);
1371 app.Slider 25.Limits = [-13 13];
1372 app.Slider 25.MajorTicks = [];
1373 app.Slider 25.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};

54

1374 app.Slider 25.Orientation = 'vertical';
1375 app.Slider 25.ValueChangingFcn = ...

createCallbackFcn(app, @Custom25, true);
1376 app.Slider 25.MinorTicks = [];
1377 app.Slider 25.Position = [753 69 3 113];
1378

1379 % Create Slider 26
1380 app.Slider 26 = uislider(app.UIFigure);
1381 app.Slider 26.Limits = [-13 13];
1382 app.Slider 26.MajorTicks = [];
1383 app.Slider 26.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1384 app.Slider 26.Orientation = 'vertical';
1385 app.Slider 26.ValueChangingFcn = ...

createCallbackFcn(app, @Custom26, true);
1386 app.Slider 26.MinorTicks = [];
1387 app.Slider 26.Position = [782 69 3 113];
1388

1389 % Create Slider 27
1390 app.Slider 27 = uislider(app.UIFigure);
1391 app.Slider 27.Limits = [-13 13];
1392 app.Slider 27.MajorTicks = [];
1393 app.Slider 27.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1394 app.Slider 27.Orientation = 'vertical';
1395 app.Slider 27.ValueChangingFcn = ...

createCallbackFcn(app, @Custom27, true);
1396 app.Slider 27.MinorTicks = [];
1397 app.Slider 27.Position = [811 69 3 113];
1398

1399 % Create Slider 28
1400 app.Slider 28 = uislider(app.UIFigure);
1401 app.Slider 28.Limits = [-13 13];
1402 app.Slider 28.MajorTicks = [];
1403 app.Slider 28.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1404 app.Slider 28.Orientation = 'vertical';
1405 app.Slider 28.ValueChangingFcn = ...

createCallbackFcn(app, @Custom28, true);
1406 app.Slider 28.MinorTicks = [];
1407 app.Slider 28.Position = [841 69 3 113];
1408

1409 % Create Slider 29
1410 app.Slider 29 = uislider(app.UIFigure);
1411 app.Slider 29.Limits = [-13 13];
1412 app.Slider 29.MajorTicks = [];
1413 app.Slider 29.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1414 app.Slider 29.Orientation = 'vertical';
1415 app.Slider 29.ValueChangingFcn = ...

createCallbackFcn(app, @Custom29, true);
1416 app.Slider 29.MinorTicks = [];
1417 app.Slider 29.Position = [869 69 3 113];
1418

55

1419 % Create Slider 30
1420 app.Slider 30 = uislider(app.UIFigure);
1421 app.Slider 30.Limits = [-13 13];
1422 app.Slider 30.MajorTicks = [];
1423 app.Slider 30.MajorTickLabels = {'', ' ', ' ', ...

' ', ' ', ' ', ' ', ' ', ' '};
1424 app.Slider 30.Orientation = 'vertical';
1425 app.Slider 30.ValueChangingFcn = ...

createCallbackFcn(app, @Custom30, true);
1426 app.Slider 30.MinorTicks = [];
1427 app.Slider 30.Position = [897 69 3 113];
1428

1429 % Create Slider 31
1430 app.Slider 31 = uislider(app.UIFigure);
1431 app.Slider 31.Limits = [-13 13];
1432 app.Slider 31.MajorTicks = [];
1433 app.Slider 31.MajorTickLabels = {'', '', '', ''};
1434 app.Slider 31.Orientation = 'vertical';
1435 app.Slider 31.ValueChangingFcn = ...

createCallbackFcn(app, @Custom31, true);
1436 app.Slider 31.MinorTicks = [];
1437 app.Slider 31.Position = [926 68 3 113];
1438

1439 % Create UIAxes
1440 app.UIAxes = uiaxes(app.UIFigure);
1441 title(app.UIAxes, '')
1442 xlabel(app.UIAxes, '')
1443 ylabel(app.UIAxes, '')
1444 app.UIAxes.PlotBoxAspectRatio = ...

[4.10230179028133 1 1];
1445 app.UIAxes.XLim = [50 14000];
1446 app.UIAxes.YLim = [0 0.1];
1447 app.UIAxes.ClippingStyle = 'rectangle';
1448 app.UIAxes.ColorOrder = [0.9216 0.3373 0;0.851 ...

0.3255 0.098;0.9294 0.6941 0.1255;0.4941 ...
0.1843 0.5569;0.4667 0.6745 0.1882;0.302 ...
0.7451 0.9333;0.6353 0.0784 0.1843];

1449 app.UIAxes.GridColor = [1 1 1];
1450 app.UIAxes.MinorGridColor = [1 1 1];
1451 app.UIAxes.XTickLabel = '';
1452 app.UIAxes.XMinorTick = 'on';
1453 app.UIAxes.YTick = [];
1454 app.UIAxes.Color = [0 0 0];
1455 app.UIAxes.XMinorGrid = 'on';
1456 app.UIAxes.XScale = 'log';
1457 app.UIAxes.BackgroundColor = [0 0 0];
1458 app.UIAxes.Position = [78 325 771 260];
1459

1460 % Create TrackDropDown
1461 app.TrackDropDown = uidropdown(app.UIFigure);
1462 app.TrackDropDown.Items = {};
1463 app.TrackDropDown.FontName = 'Batang';
1464 app.TrackDropDown.BackgroundColor = [0.651 ...

0.651 0.651];

56

1465 app.TrackDropDown.Position = [88 253 124 30];
1466 app.TrackDropDown.Value = {};
1467

1468 % Create PlayButton
1469 app.PlayButton = uibutton(app.UIFigure, 'push');
1470 app.PlayButton.ButtonPushedFcn = ...

createCallbackFcn(app, @play, true);
1471 app.PlayButton.BackgroundColor = [0.651 0.651 ...

0.651];
1472 app.PlayButton.FontName = 'Batang';
1473 app.PlayButton.Position = [235 253 69 30];
1474 app.PlayButton.Text = 'Play';
1475

1476 % Create StopButton
1477 app.StopButton = uibutton(app.UIFigure, 'push');
1478 app.StopButton.ButtonPushedFcn = ...

createCallbackFcn(app, @Stop, true);
1479 app.StopButton.BackgroundColor = [0.651 0.651 ...

0.651];
1480 app.StopButton.FontName = 'Batang';
1481 app.StopButton.Position = [326 253 68 30];
1482 app.StopButton.Text = 'Stop';
1483

1484 % Create DropDown
1485 app.DropDown = uidropdown(app.UIFigure);
1486 app.DropDown.Items = {'Flat', 'Rock', 'Pop', ...

'Bass', 'Treble', 'Vocal', 'Classical', ...
'Hip-Hop', 'Dance', 'Jazz', 'Powerfull', ...
'Shitty music', 'MUU', 'Custom'};

1487 app.DropDown.ValueChangedFcn = ...
createCallbackFcn(app, @Preset, true);

1488 app.DropDown.FontName = 'Batang';
1489 app.DropDown.BackgroundColor = [0.651 0.651 0.651];
1490 app.DropDown.Position = [520 254 125 30];
1491 app.DropDown.Value = 'Flat';
1492

1493 % Create RecButton
1494 app.RecButton = uibutton(app.UIFigure, 'push');
1495 app.RecButton.ButtonPushedFcn = ...

createCallbackFcn(app, @Rec, true);
1496 app.RecButton.BackgroundColor = [0.651 0.651 ...

0.651];
1497 app.RecButton.FontName = 'Batang';
1498 app.RecButton.Position = [769 253 65 30];
1499 app.RecButton.Text = 'Rec';
1500

1501 % Create Lamp
1502 app.Lamp = uilamp(app.UIFigure);
1503 app.Lamp.Position = [842 253 29 29];
1504 app.Lamp.Color = [1 0 0];
1505

1506 % Create Switch
1507 app.Switch = uiswitch(app.UIFigure, 'rocker');
1508 app.Switch.Orientation = 'horizontal';

57

1509 app.Switch.Visible = 'off';
1510 app.Switch.Tooltip = {'FFT off/on'};
1511 app.Switch.Position = [910 385 54 24];
1512 app.Switch.Value = 'On';
1513

1514 % Create Knob
1515 app.Knob = uiknob(app.UIFigure, 'continuous');
1516 app.Knob.Limits = [1 50];
1517 app.Knob.MajorTicks = [1 50];
1518 app.Knob.MajorTickLabels = {''};
1519 app.Knob.MinorTicks = [10 20 30 40];
1520 app.Knob.Tooltip = {'FFT update frequency'};
1521 app.Knob.Position = [901 440 72 72];
1522 app.Knob.Value = 25;
1523

1524 % Create Image2
1525 app.Image2 = uiimage(app.UIFigure);
1526 app.Image2.Position = [59 299 831 310];
1527 app.Image2.ImageSource = 'GUI frame.png';
1528

1529 % Show the figure after all components are created
1530 app.UIFigure.Visible = 'on';
1531 end
1532 end
1533

1534 % App creation and deletion
1535 methods (Access = public)
1536

1537 % Construct app
1538 function app = app1gui
1539

1540 % Create UIFigure and components
1541 createComponents(app)
1542

1543 % Register the app with App Designer
1544 registerApp(app, app.UIFigure)
1545

1546 % Execute the startup function
1547 runStartupFcn(app, @Start)
1548

1549 if nargout == 0
1550 clear app
1551 end
1552 end
1553

1554 % Code that executes before app deletion
1555 function delete(app)
1556

1557 % Delete UIFigure when app is deleted
1558 delete(app.UIFigure)
1559 end
1560 end
1561 end

58

References

[1] Vesa Välimäki, Joshua D. Reiss, All About Audio Equalization: Solutions
and Frontier, Department of Signal Processing and Acoustics, Aalto Uni-
versity, May 2016.

[2] Steffi Knorn, Signals and Systems, Signals and Systems at department of
engineering sciences at Uppsala University, 2018.

[3] Julius O. Smith III, Introduction to Digital Filters with Audio Applica-
tions, Center for Computer Research in Music and Acoustics (CCRMA),
September 2007 edition.

[4] Alan V. Oppenheim and Ronald W. Schafer, Discrete-Time Signal Pro-
cessing - second edition, Prentice-Hall, 1999.

[5] Sample- and Frame-Based Concepts, https://www.mathworks.com/help/dsp/ug/sample-
and-frame-based-concepts.html. Accessed: 2019-05-07.

[6] J. Rämö, V. Välimäki, and B. Bank. High-Precision Parallel Graphic
Equalizer. IEEE/ACM Transactions on Audio, Speech and Language
Processing, Vol. 22, No. 12, pp. 1894-1904, December 2014. DOI:
10.1109/TASLP.2014.2354241

[7] Balázs Bank,Direct design of parallel second-order filters for instrument
body modeling, Laboratory of Acoustics and Audio Signal Processing at
Helsinki University of Technology, 2007.

[8] Johannes Langelaar (2019). One third octave graphic equalizer
(https://www.mathworks.com/matlabcentral/fileexchange/71618-one-
third-octave-graphic-equalizer), MATLAB Central File Exchange.
Retrieved May 23, 2019.

59

	Introduction
	Background
	Objectives
	Theory
	Analog versus digital signals
	Sampling and frames
	The Z-transform
	FIR filters
	IIR filters
	Minimum phase and the Hilbert transform

	Method
	Filter design
	Filter structure
	Derivation of the denominators
	Derivation of the numerators
	Weighting

	Designing the equalizer
	Filter distribution and order
	Target response
	Weighting of frequency points

	Implementation
	Program structure
	Processing the frame
	FFT plot
	Graphical User Interface
	Frequency response

	Results
	Functionality
	Accuracy

	Discussion
	Conclusion
	Appendix
	Appendix

