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Abstract 

In this study, a methodology based on the Theory of Characteristics is presented for the design 

of two-dimensional rocket nozzle with minimum-length nozzle configuration. Such a  

configuration is determined to achieve an optimal Mach number at the exit while ensuring 

uniform flow in the diverging section. The study has been inspired by Hassan’s literature [1] 

which emphasis on this approach. This approach is then adapted by Fernandes’s work [2] who 

then utilizes a optimization process as a surrogate-based optimization to improve shape and 

reducing computational power. A numerical approach in Scilab using mathematical, semi-

empirical models is developed to solve the governing equations for steady, inviscid, 

irrotational, and supersonic flow in two dimensions. The analysis assumes that the flow remains 

consistent in the converging section, allowing for an arbitrary converging profile. 

Consequently, the primary design focus is placed on the diverging section to optimize 

performance. The proposed method provides an efficient and precise approach to supersonic 

nozzle design, ensuring both aerodynamic efficiency and flow uniformity at the exit. 

 

 

 
Figure 1. Minimum length nozzle design schematic, adapted from [2] 
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1. Introduction 

A rocket engine nozzle is a crucial component responsible for converting high-pressure, 

high-temperature combustion gases into a high-velocity jet, generating thrust through 

Newton’s Third Law. It operates on various types of nozzles as shown in Figure 1, but the 

convergent-divergent (C-D) nozzle, where gases accelerate to sonic speed at the throat and 

expand supersonically in the diverging section, maximizing exhaust velocity. The nozzle’s 

design, including its shape and expansion ratio, directly influences engine efficiency, specific 

impulse, and overall performance. Advanced nozzle designs, such as minimum-length nozzles 

optimized using the Method of Characteristics (MoC), ensure smooth supersonic expansion 

while minimizing shock losses, making them essential for space propulsion and high-speed 

atmospheric flight. 

 
Figure 1. Types of nozzles, adopted from [4] 

 

A convergent-divergent (C-D) nozzle is a fundamental component in high-speed 

propulsion systems, designed to efficiently accelerate gases from subsonic to supersonic 

speeds. The throat, the narrowest section of the nozzle, is critical as it governs the transition 

from subsonic to sonic flow. According to compressible flow theory, when the pressure ratio 

across the nozzle is sufficient, the flow reaches Mach 1 (sonic condition) at the throat. Beyond 

this point, the diverging section plays a key role in further accelerating the flow, expanding it 

to supersonic speeds. The shape of this section is not arbitrary—its contour must be carefully 

designed to ensure shock-free, isentropic expansion, maximizing efficiency. For a given exit 

Mach number, the area ratio between the exit and the throat is determined using isentropic flow 

relations, ensuring that the expansion process is optimized for thrust generation. 

The Method of Characteristics (MoC) is a powerful tool used to design the diverging 

section of a C-D nozzle, ensuring uniform supersonic flow at the exit. In a minimum-length 

nozzle, expansion occurs instantaneously at the throat via a centered Prandtl-Meyer expansion 

fan, replacing the need for a gradual expansion contour. The characteristic lines, defined by 

Mach waves, trace the paths of infinitesimal disturbances, allowing engineers to compute the 

nozzle wall shape iteratively. By solving the characteristic equations for left- and right-running 

waves, the method determines the exact contour needed to achieve a shock-free supersonic 

flow. This is particularly useful in rocket engines, wind tunnels, and scramjet propulsion, where 

controlling the expansion process ensures maximum thrust and minimal losses due to flow 

separation or shock formation. This work utilizes this method using Scilab 6.0.0.  
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2. Problem Statement and Literature Review 

Theory of Characteristics is used for the design of two-dimensional rocket nozzle with 

minimum-length nozzle configuration. Such a configuration is determined to achieve an 

optimal Mach number at the exit while ensuring uniform flow in the diverging section. The 

study has been inspired by Hassan’s et al literature [1] which emphasis on this approach. It 

builds upon classical compressible flow theories and numerical methods developed in previous 

studies, including those by Anderson, Rao, and the JANNAF TDK program, which have been 

widely used for predicting nozzle efficiency. The research focuses on refining the expansion 

and straightening sections, highlighting the role of Prandtl-Meyer expansion waves in shaping 

the diverging contour. Unlike traditional bell nozzles, which require gradual flow redirection, 

this approach condenses the expansion process into a centered expansion fan at the throat, 

reducing geometric and divergence losses. Theie study also evaluates how grid refinement 

(increasing the number of characteristic lines) impacts nozzle length and contour smoothness, 

with results showing stabilization as the grid resolution increases. By comparing different 

numerical mesh densities, the paper provides insights into optimizing supersonic nozzle design 

for high-speed propulsion applications, laying a foundation for further computational 

validation and real-world implementation. Fernandes et al [2] presents a low-fidelity rocket 

nozzle optimization method using the MoC, integrating free-form deformation (FFD) and 

optimization algorithms to maximize thrust. The study compares MoC with high-fidelity CFD 

simulations (SU2 framework), using surrogate-based optimization (SBO) to reduce 

computational costs. While MoC slightly overestimates contour width and thrust, it remains a 

fast, reliable tool for preliminary nozzle design before high-fidelity CFD. Akhtar’s et al 

research [3] highlights the role of grid refinement in smoothing the nozzle contour and 

stabilizing the solution, making it valuable for high-speed propulsion applications. 

Mishra’s et al study [4] integrates MoC-based calculations with ANSYS validation, 

comparing theoretical predictions with CFD simulations to assess accuracy. Their results show 

that MoC slightly overestimates exit Mach numbers due to its ideal assumptions, but it remains 

a computationally efficient tool for preliminary nozzle design. Tarnacha’s et al research [5] is 

a MATLAB-based computational model is used to calculate flow properties such as pressure, 

density, velocity, and temperature at different nodal points. The nozzle design is further 

validated through CFD simulations in ANSYS, comparing numerical predictions with realistic 

flow conditions and their results are same as Mishra’s which indicate that while MoC slightly 

overestimates exit Mach numbers. Kumar’s et al study [6] shows the same result using the 

same methodology. 
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3. Basic Concepts related to the topic 

 

3.1 Governing Equations 

 For the pre-analysis, we assume a steady, isentropic, compressible, and one-

dimensional flow through the divergent section of a minimum-length nozzle. The contour is 

designed for a constant-property perfect gas by following the procedure introduced by [8]. 

However, the flow in a 2D nozzle is not one-dimensional and the method of the characteristics 

takes this aspect into account. The one-dimensional Navier-Stokes equations reduce to the 

form: 

• Continuity Equation 
𝜕

𝜕𝑥
(𝜌𝑢) = 0      (3.1) 

• Momentum Equation 

𝜌𝑢 (
𝜕𝑢

𝜕𝑥
) = −

𝜕𝑝

𝜕𝑥
         (3.2) 

• Energy Equation 

𝜕𝐻

𝜕𝑥
= 0           (3.3) 

 

By integrating the above equations one can get the mass conservation equation and the energy 

conservation equation: 

 

• Mass Conservation Equation  

ṁ =  (𝑝0
𝐴

√𝑅
) (

𝑀

𝑇0
) √𝛾𝑀 (1 + (

𝛾 − 1

2
) 𝑀2)

𝛾+1

2(𝛾−1)
   (3.4) 

• Energy Conservation Equation  

𝑇0

𝑇
 =  (1 +  (

𝛾 − 1

2
) 𝑀2)    (3.5)  

(H being the total enthalpy) which, for an isentropic flow, can be written as follows: 

• Isentropic Flow Relation 

𝑃0

𝑃
=  (1 + (

𝛾 − 1

2
) 𝑀2)

𝛾

𝛾−1
    (3.6) 

 

Provided that the pressure gradient across the nozzle is strong enough, the Navier-Stokes 

equations describe an accelerating subsonic (M < 1) supersonic (M > 1) isentropic (hence 

shock-free) flow in the convergent and divergent section, respectively. The throat experiences 

sonic conditions M = 1. In this case, the ratio between the exit and throat area is given by: 
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• Area-Mach ratio Relation 

(
𝐴

𝐴𝑡
)

2

=  (
1

𝑀𝑒𝑥𝑖𝑡
2 ) [ (

2

(𝛾 + 1)
) (1 +  (

𝛾 − 1

2
) 𝑀𝑒𝑥𝑖𝑡

2 )]

𝛾+1

𝛾−1
   (3.7) 

In a minimum-length nozzle the expansion takes place at the sharp corner throat, where the 

expansion waves emanate from. A two-dimensional minimum-length nozzle is symmetric with 

respect to its central plane (𝑦/𝑟_𝑡ℎ𝑟𝑜𝑎𝑡 = 0 in Figure 1). Waves generated at an angle intersect 

the waves generated from the opposite angles and form a complex web of expansion waves in 

the non-simple region. The increase in Mach number is related to the divergence of the flow 

through the Prandtl-Meyer function 𝜈 

 

• Prandtl-Meyer Function Relationship 

𝜈(𝑀₂)  −  𝜈(𝑀₁)  =  𝜃    (3.8) 

• Prandtl-Meyer Function 

𝜈(𝑀, 𝛾) =  √
(𝛾 + 1)

(𝛾 − 1)
tan−1 (√

(𝛾 − 1)

(𝛾 + 1)
 (𝑀2 −  1)) − tan−1(√𝑀2 −  1) (3.9) 

 

3.2 Method of Characteristics 

The method of the characteristics permits the computation of the contour of a minimum-length 

nozzle 2D nozzle. In a minimum-length nozzle the flow expands from sonic conditions to the 

exit conditions immediately after crossing the throat (sonic) section. Hence, the expansion 

angle of the wall 𝜃𝑤𝑎𝑙𝑙,𝑀 downstream of the throat is one-half the Prandtl-Meyer function of 

the exit Mach number 𝑀𝑒𝑥𝑖𝑡. 

 

Figure 2. Left- and right- running characteristic lines through point A, 
adapted from [10] 
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• Wave Expansion Angle 

𝜃𝑤𝑎𝑙𝑙 , 𝑀 =
𝜈(𝑀𝑒𝑥𝑖𝑡)

2
     (3.10) 

Equations 3.7 and 3.10 can be used to determine the exit area and the initial angle of the nozzle 

contour for given values of 𝐴𝑡 and 𝑀𝑒𝑥𝑖𝑡. However, the nozzle contour and length need to be 

determined by constructing the characteristic lines. For a symmetric nozzle, the problem 

reduces computing the characteristic lines for one-half of the nozzle section [8]. The 

characteristic lines are the Mach lines, whose inclination is a function of the flow direction 𝜃 

and Mach angle 𝜇 = sin−1(
1

𝑀
). For a given characteristic  

 

• Characteristic Equation 

𝜃 ∓  𝜈(𝑀) =  𝐾±     (3.11) 

• Slope of a Characteristic Line 

𝑑𝑦

𝑑𝑥
|𝑐ℎ𝑎𝑟 = tan(𝜃 ∓  𝜇(𝑀))    (3.12) 

The method exposed in [8] consists in computing a finite number of characteristic curves for 

finite increments of 𝜃 point-by-point by solving the compatibility equations 3.11 and 3.12. The 

characteristic curves are approximated with small segments between points. In a  first step, the 

properties defining the characteristics are computed for points of unknown location. The 

location of each point is subsequently determined by intersecting two given characteristic lines 

whose slope is a given by average values of 𝜃 and 𝜇 between the two points. 

 

 

Figure 2. Characterisctic lines visualized in a wind tunnel, adapted from [10] 
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4. Flow Chart and Algorithm 

4.1 Points on the first left – running characteristic line 

For a given 𝑀𝑒𝑥𝑖𝑡, the total expansion angle downstream of the throat (that is, the angle 

between the yellow contour and the horizontal in  Figure 3) is computed from equation 3.10  

An initial guess value of 𝜃𝑔𝑢𝑒𝑠𝑠 is arbitrarly chosen in order to generate the first 

characteristic (the one impinging in the centerline at point 1, Figure 1). The right- running 

characteristic is symmetric to the left-running characteristic which crosses the centerline at 

point 1, and the remaining characteristics at points 2, 3, 4, 5, and 6. The remaining points are 

computed by increasing the amount of 𝜃 with a fixed step Δ𝜃 for an equal number of steps. For 

instance, in  Figure 3, a number of n = 5 increments (steps) was selected. After point 1, points 

2, 3, 4, 5, and 6 are drawn defined. Point 7 is located at the intersection between the left-running 

characteristic and the contour. Locations are still unknown at this moment.  

One needs to determine the values of 𝐾±, 𝜃, M, and 𝜇 at each point.  

By applying the Prandtl-Meyer function at the first characteristic line, and by assuming 

a normal sonic line at the throat, one gets: 

𝜈(𝑀1) −  𝜈(𝑀𝑡 =  1) =  𝜃𝑔𝑢𝑒𝑠𝑠 

𝑀1 and 𝜇 are computed from 𝜈(𝑀1), and so are the values of 𝐾−,𝐾+. Values of the right-

running 𝐾− are computed in this first step and will be used to compute the properties of the 

remaining points. 

Point 7 draws a simple region over which the properties remain constant. We can 

therefore assume that properties at point 6 are the same at point 7. 

Once the properties have been determined, the coordinates can be obtained by crossing 

the characteristics. We follow [8] and denote the origin of the expansion fan as point 𝑎(0,1). 

The coordinates of point 1 will be 

{
𝑥1 =  −

𝑦𝑎

tan(𝜃1 −  𝜇1)
𝑦1 =  0

 

Coordinates of points i = 2, 3, 4, 5, and 6: 

{
𝑥𝑖 =

(𝑦𝑖−1 −  1 − tan(𝜃𝑖,𝑖−1 +  𝜇𝑖,𝑖−1) 𝑥𝑖−1)

(tan(𝜃𝑖 − 𝜇𝑖) − tan(𝜃𝑖,𝑖−1 + 𝜇𝑖,𝑖−1))

𝑦𝑖 =  𝑦𝑖−1 + tan(𝜃𝑖,𝑖−1 +  𝜇𝑖,𝑖−1) ∗  (𝑥𝑖 −  𝑥𝑖−1)

 

The approximate location of point 7 is located at the intersection between the slopes 𝜃𝑎7 =
1

2
(𝜃𝑚𝑎𝑥 − 𝜃7) and the slope 𝜃6,7 + 𝜇6,7 [8, 9] 

{
𝑥7 =

𝑦6 −  1 − tan(𝜃6,7 +  𝜇6,7) ∗  𝑥6

tan(𝜃𝑎,7) − tan(𝜃6,7 +  𝜇6,7)

𝑦7 =  𝑦6 + tan(𝜃6,7 +  𝜇6,7) ∗  (𝑥7 − 𝑥6)
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4.2 Computation of the remaining points 

It is convenient to construct a number sequence to index the remaining centerline points (that 

is, with n = 5, point 8, 14, 19, 23, and 26 in Figure 3). Starting from point 8, we have n = 1 

steps in the non-simple region before getting to the contour at point 13. Point 14 is at the 

centerline, and after n - 2 steps the characteristic intersects the contour at point 18. This 

continues till the end. It is convenient to define a sequence of the type: 

𝑃0, (𝑛 − 1), 𝑃𝑐𝑜𝑛𝑡,0, 𝑃1, (𝑛 − 2), 𝑃𝑐𝑜𝑛𝑡,1, 𝑃2,   .  .  .  .   

Which results in  

𝑃 =  𝑃0 +  (𝑛 − 1) + 2 + (𝑛 − 2) + 2 + (𝑛 − 3) + .  .  .  . 

For the j-th point at the centerline one gets (𝑃0 = 𝑛 + 3) 

𝑃(𝑗) =  𝑛 +  3 + 𝑗𝑛 − ∑ 𝑘

𝑗

𝑘=1

+ 2𝑗 

 

𝑃(𝑗) =  𝑛 +  3 + 𝑗 (𝑛 + 2 −
𝑗+1

2
)    (4.1) 

For instance, for n = 5 as in the computational scheme in Figure 3 one ge 

ts 𝑃(𝑗 = 0) = 8, 𝑃(𝑗 = 1) = 14  and so on. 

Flow properties are computed starting from the values of 𝐾− and centerline 𝜃. One can 

compute the value of 𝐾+ for the left-running characteristic curve. The values of 𝑀 and 𝜇 are 

obtained as before. 

The coordinates of the j-th centerline point are defined from 𝑃(𝑗 − 1) + 1 

{
𝑥𝑃(𝑗) =  𝑥𝑃(𝑗−1)+1 −  (

𝑦𝑃(𝑗−1)+1

tan(𝜃𝑃(𝑗),𝑃(𝑗−1)+1 − 𝜇𝑃(𝑗),𝑃(𝑗−1)+1)
)

𝑦𝑃(𝑗) =  0

 

The coordinates of the points in the non-simple region are given by the intersection of the left-

running characteristic from the centreline and the right running characteristic from the throat 

angle. By denoting points 𝑝 =  𝑃(𝑗) + 𝑖 − 1, 𝑞 = 𝑃(𝑗) + 𝑖, and 𝑟 =  𝑃(𝑗 − 1) + 𝑖 + 1, we 

have: 

{
𝑥𝑞 =

𝑦𝑝 − 𝑦𝑟 − tan(𝜃𝑝,𝑞 +  𝜇𝑝,𝑞) 𝑥𝑝 + tan(𝜃𝑞,𝑟 −  𝜇𝑞,𝑟) 𝑥𝑟

tan(𝜃𝑞,𝑟 −  𝜇𝑞,𝑟) − tan(𝜃𝑝,𝑞 +  𝜇𝑝,𝑞)

𝑦𝑞 =  𝑦𝑝 + tan(𝜃𝑝,𝑞 +  𝜇𝑝,𝑞) (𝑥𝑞 −  𝑥𝑝)

 

Finally, the contour points are computed from (we denote 𝑝 =  𝑃(𝑗 + 1) − 2,  𝑞 =  𝑃(𝑗 + 1) −

1𝑟 = 𝑃(𝑗) = 1) 

{
𝑥𝑞 =

𝑦𝑝 −  𝑦𝑞 − tan(𝜃𝑝,𝑞 +  𝜇𝑝,𝑞) 𝑥𝑝 + tan(𝜃𝑞,𝑟 −  𝜇𝑞,𝑟) 𝑥𝑟

tan(𝜃𝑞,𝑟) − tan(𝜃𝑝,𝑞 +  𝜇𝑝,𝑞)

𝑦𝑞 =  𝑦𝑝 + tan(𝜃𝑝,𝑞 +  𝜇𝑝,𝑞) (𝑥𝑞 −  𝑥𝑝)
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4.3 Flowchart 

 

 

Figure 3. Flowchart explaining the algorithm 
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Figure 4 Numerical output for 10 characteristic line 

 

 
Figure 5 Numerical output for 30 characteristic lines 

  

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7

H
ei

gh
t 

o
f 

N
o

zz
le

Length of Nozzle

Nozzle Contour with Characteristic Lines = 10

Scilab Hassan's results

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7

H
ei

gh
t 

o
f 

N
o

zz
le

Length of Nozzle

Nozzle Contour with Characteristic Lines = 30

Scilab Hassan's results



 
10 

 

 
Figure 6 Numerical output for 50 characteristic lines 

 

 
Figure 7 Numerical output for 100 characteristic lines 
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Figure 4. Minimum-length nozzle Contour 

 

As for the inputs required for the code, the exit Mach no. should be defined, the ratio of 

specific heats (assumed to be 1.4) ,  an arbitrary guess value for  𝜃𝑔𝑢𝑒𝑠𝑠 (0.375 radians as 

default).  
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5. Software/Hardware used 

The current computional resource utilizes Windows 11 with 6 cores with 16 GB ram. The 

scilab version used is Scilab-6.0.0 (64-bit). 

 

6. Procedure of Execution 

For executing the code, Open Scilab > Open the file “MinRocketNozzle.sci” and input the 

necessary parameters required to run the code. If not available, just press enter and the code 

will run on its default values. 

 

7. Results 

 A comparison of Hassan’s results and our results our shown below. Note: the x and y 

points are non- dimensionized by dividing by the nozzle throat radius. The mesh has been made 

finer by increasing the number of characteristic lines 10 to 200 in five stages. Throughout the 

mesh increment process, it has become apparent that finer mesh produces rectified result. The 

evidence of the result rectification is set by nozzle contour smoothening. 

 
Figure 8 Minimum Length nozzle contour (Scilab result for n = 50) 
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8. Conclusion 

 

 A numerical study was conducted for a computational approach for designing 
minimum-length supersonic nozzles using the Method of Characteristics (MoC), 
implemented in Scilab. By assuming isentropic, compressible, and steady flow, the 
methodology effectively generates a shock-free nozzle contour, ensuring optimal 
supersonic expansion. The algorithm constructs characteristic lines and computes the 
flow properties at intersection points, allowing precise determination of the nozzle’s 
diverging section. A literature review of such approach was conducted to confirm that the 
MoC-based approach provides an efficient, computationally inexpensive tool for 
preliminary supersonic nozzle design, with the ability to refine accuracy by increasing 
the number of characteristic lines and which has been used for CFD simulations in other 
literatures. The study was compared with Hassan’s results [1] which showed that the 
current work not only validates the results but is more optimized to deliver a smaller 
length nozzle in the same conditions. The simulation program of the practical supersonic 
nozzle can be developed depending on this design with the considerations of the losses 
take place in real time. 
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