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Abstract 

Computational Fluid Dynamics (CFD) plays a crucial role in simulating and analysing fluid flow in 
engineering applications. This study presents the development and implementation of a two-
dimensional CFD solver in Scilab 2025 using the Finite Volume Method (FVM) and the Semi-Implicit 
Method for Pressure-Linked Equations (SIMPLE) algorithm. The solver is designed for incompressible, 
laminar flow in a rectangular channel, discretized using a structured Cartesian grid. Governing 
equations, including the Navier-Stokes and continuity equations, are discretized using a central 
difference scheme for diffusion terms and an upwind scheme for convection terms. The iterative 
solution process is validated by monitoring the convergence of velocity and pressure residuals. Results 
indicate smooth convergence, demonstrating the accuracy and stability of the numerical scheme. 
Divergence is also found when parameters are changed or provided abrupt, thus indicating the physics 
logic implemented is accurate. Simulation data, including velocity, pressure, and residuals, are 
exported in CSV format for further analysis. The solver provides a cost-effective and open-source 
alternative for CFD simulations, making it accessible for research and educational purposes. 

Keywords: Computational Fluid Dynamics, Finite Volume Method, SIMPLE Algorithm, Scilab, 
Incompressible Flow, Numerical Simulation 
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Chapter 1 : Introduction 
CFD Workflow: Key Stages 

Computational Fluid Dynamics (CFD) is a powerful numerical tool used to simulate and analyze fluid 
flow behavior across various engineering domains, including aerospace, mechanical, automotive, and 
biomedical applications. It provides an alternative to costly and time-consuming physical experiments 
by solving the governing equations of fluid motion, primarily the Navier-Stokes equations, along with 
additional transport equations for energy, turbulence, and chemical reactions when necessary. By 
leveraging advanced numerical techniques, CFD helps engineers optimize designs, improve efficiency, 
and gain deeper insights into complex flow phenomena. 

Pre-processing: Geometry, Meshing, and Boundary Conditions 

• The first step in any CFD simulation is pre-processing, which involves defining the problem 
and preparing it for numerical analysis. This stage begins with geometry creation, where a 
digital representation of the physical domain. Once the geometry is defined, the domain is 
discretized into smaller control volumes through a process called meshing or grid generation. 
The type of mesh used significantly impacts the accuracy and computational efficiency of the 
simulation. Structured meshes, with their uniform grid patterns, offer high precision but are 
often unsuitable for complex geometries. For the simplicity our solution will run on structured 
meshes. Finally, the boundary conditions and initial conditions are specified to define fluid 
interactions with its surroundings. These may include inlet velocity profiles, outlet pressure 
conditions, and no-slip conditions at solid walls, ensuring that the simulation accurately 
represents real-world behavior. 

Solution Process: Governing Equations and Numerical Methods 

After pre-processing, the solution process involves solving governing equations using 
discretization methods like FVM, FDM, or FEM, with FVM being the most common due to its 
conservation properties. For incompressible flows, velocity-pressure coupling is handled 
using algorithms like SIMPLE and PISO. Turbulence models such as k-ε, k-ω, and LES 
approximate chaotic fluid behavior. The solver iterates until convergence, monitored through 
residuals, while under-relaxation factors help maintain stability and prevent divergence. We’ll 
continue with FVM as mode of Discretization and SIMPLE will be the algorithm. 

Post-processing: Analysis and Validation of Results 

After convergence, post-processing involves analyzing simulation results through velocity and 
pressure distributions, identifying flow features like vortices and boundary layer separation. 
Visualization tools generate contour plots and streamlines for better interpretation. 
Performance metrics coefficients evaluate design effectiveness. Finally, validation and 
verification compare results with experiments or industry software like OpenFOAM and 
ANSYS to ensure accuracy and real-world applicability. 
 
 
 
 
 
 



The below figures help us in understanding physics of fluid dynamics in visualized manner. 
Fluid Flow is governed by Navier-Stokes condition. For simulation purposes, various terms of 
the same equation can be ignored like dynamic viscosity, etc for convergence, or faster 
convergence. A numerical model is convergent if and only if a sequence of model solutions 
with increasingly refined solution domains approaches a fixed value.   
 

 

Fig 2 : 2D Pipe Laminar Flow Visualization of Velocity 

 

 

Fig 3 : Flow Types 

 

  

Fig 4 : CFD Modelling of 3D Pipe 

  



Chapter 2 : Problem Statement 
Implementation of CFD Solver in Scilab 

Building upon the foundational concepts of CFD, this section focuses on implementing a solver in 
Scilab for incompressible, steady-state flow using the Finite Volume Method (FVM) and the SIMPLE 
algorithm. Scilab, an open-source numerical computation platform, provides robust matrix operations 
and scripting flexibility, making it well-suited for CFD development. 

Problem Definition and Discretization 

The solver is designed to simulate 2D flow in a channel with prescribed inlet velocity and outlet 
pressure. The governing equations—the continuity and Navier-Stokes equations—are discretized using 
FVM. A structured grid is employed for simplicity, with control volumes centered around grid points. 
Central differencing is used for diffusion terms to maintain accuracy, while an upwind scheme ensures 
numerical stability for convection-dominated flows. 

Staggered Grid: 

In a staggered grid, velocity components are stored at the cell faces, while pressure and scalar 
quantities are stored at the cell centers. This arrangement reduces pressure-velocity decoupling and 
improves numerical stability. It is commonly used in structured grid solvers like SIMPLE and MAC 
methods. 

Collocated Grid: 

In a collocated grid, all flow variables (pressure, velocity, and temperature) are stored at the same 
location, typically the cell center. This simplifies data storage but can lead to numerical issues like 
pressure-velocity decoupling. Special interpolation techniques, such as the Rhie-Chow correction, are 
used to address these issues. 

 

Fig 5a : SIMPLE Algorithm 

 

The figure illustrates the difference between staggered and collocated grids in the SIMPLE algorithm for 
computational fluid dynamics (CFD). On the left, the staggered grid arrangement shows pressure 
stored at the cell center, while velocity components are stored at the faces of the control volume. This 
setup helps in avoiding pressure-velocity decoupling and improves numerical stability. On the right, the 
collocated grid stores all variables, including velocity and pressure at the same cell center, requiring 
special interpolation techniques to prevent oscillations in the solution. 

 



 

Numerical Implementation in Scilab 

The solver follows a modular approach, breaking down the process into distinct functions: 

- Grid Generation: Constructs a structured mesh with user-defined grid resolution. 
- Boundary Condition Enforcement: Implements Dirichlet conditions for velocity and Neumann 

conditions for pressure where required. 
- Pressure-Velocity Coupling: The SIMPLE algorithm iteratively corrects pressure and velocity 

fields to satisfy mass conservation. 
- Solver Execution: Residuals are monitored, and under-relaxation factors are applied to 

enhance stability and ensure convergence. 

Scilab’s built-in solvers handle the matrix equations efficiently, and iterative loops refine the solution 
until the residuals drop below a predefined threshold. 

Post-Processing and Validation 

Since Scilab primarily supports text-based output, velocity and pressure distributions are exported for 
visualization in external tools like spreadsheets or Python-based libraries. Validation is performed by 
comparing the results with established CFD solvers such as ANSYS, ensuring accuracy and reliability. 
This implementation highlights the feasibility of using Scilab for CFD simulations, demonstrating its 
capabilities in solving real-world fluid dynamics problems. Future work could extend the solver to 
handle turbulence modeling, transient flows, and complex geometries. 

 

Fig 5b : SIMPLE Algorithm  



Chapter 3 : Basic Concepts Related to Topic 
Computational Fluid Dynamics (CFD) is a numerical approach to solving and analyzing 
problems involving fluid flow by applying the governing equations of motion—namely the 
Navier-Stokes equations and the continuity equation. These equations describe the 
conservation of mass and momentum in a fluid and are fundamental to understanding flow 
behavior. 

In this project, the Finite Volume Method (FVM) is employed as the discretization technique. 
FVM is preferred in CFD for its conservation properties—it ensures that fluxes entering and 
exiting a control volume are balanced, which is critical in fluid mechanics. The computational 
domain is divided into structured Cartesian grid cells, and the governing equations are 
integrated over each cell. 

To couple pressure and velocity in incompressible flows, we use the SIMPLE (Semi-Implicit 
Method for Pressure-Linked Equations) algorithm. The SIMPLE algorithm is an iterative 
method that starts by solving momentum equations to obtain intermediate velocity fields, 
then solves a pressure correction equation to enforce mass conservation, and finally updates 
the pressure and velocity fields accordingly. This pressure-velocity coupling is essential 
because, in incompressible flows, the pressure does not have its own governing equation and 
must be inferred indirectly. 

The central difference scheme is used for discretizing the diffusive terms, providing second-
order accuracy, while the upwind scheme is used for convective terms to ensure numerical 
stability in advection-dominated flows. 

The solver is based on a collocated grid layout, where all variables—pressure, velocity, and 
temperature—are stored at the same cell center. Although simpler to implement than a 
staggered grid, this arrangement can lead to pressure-velocity decoupling, which is mitigated 
using interpolation techniques such as the Rhie-Chow correction. 

In summary, this project integrates key CFD concepts: 

• Navier-Stokes and continuity equations for modeling fluid flow. 

• Finite Volume Method for spatial discretization. 

• SIMPLE algorithm for pressure-velocity coupling. 

• Numerical schemes like central difference and upwind. 

• Structured, collocated grid layout for domain representation. 

These foundational principles enable the development of a robust, open-source CFD solver in 
Scilab. 

  



Chapter 4 : Flowchart 

 

Fig 5c : Flowchart 



The main.sci script executes a sequence of Scilab files necessary for running the CFD simulation. It 
first loads fluid_mesh.sci, which generates the computational grid, ensuring a proper domain setup for 
the collocated scheme. Next, functions.sci is executed, containing numerical methods and helper 
functions used throughout the simulation. The residuals_plot.sci script is then called to monitor 
convergence by plotting residuals for velocity and pressure. The core solver, simple.sci, is executed 
next, implementing the SIMPLE algorithm to iteratively solve the Navier-Stokes equations while 
ensuring mass conservation. Finally, output.sci is run to process and visualize the simulation results, 
including velocity, pressure, and temperature distributions. 

a) User Input for Default or Custom Values 
 
This section of the code allows the user to either use default values or input their own custom 
parameters for a simulation. The user is first prompted to choose whether they want to use 
default settings or provide their own values. If they choose custom inputs, they are asked to enter 
values for various parameters related to the channel's dimensions and grid points. After selecting 
or entering values, the program displays the chosen parameters for confirmation. This setup 
ensures flexibility while giving the user control over the simulation's configuration. 

 

b) Global Variables Used in Function 
➢ Fw, Fe, Fn, and Fs represent the convective mass flux at the west, east, north, and south 

faces of a computational cell, crucial for mass flow calculations across grid boundaries. 
➢ DF is the diffusion coefficient that accounts for viscosity effects, modeling the diffusion of 

momentum or heat within the fluid. 
➢ aW, aE, aS, aN, and aP are coefficients for the west, east, south, north, and central terms in 

the finite volume method (FVM), used to discretize the governing equations. 
➢ bP is the source term in the discretized equation, accounting for sources or sinks of the 

modeled quantity. 
➢ dU and dV are velocity correction factors in the SIMPLE method, used for pressure-velocity 

coupling to ensure mass conservation. 
 

c) Function Definitions 
 
- FVM_GS_ext_mesh - This section defines the Gauss-Seidel solver for solving a finite 

volume method (FVM) problem on an external mesh, using the iterative approach. 
- FVM_pcorr - This section sets up the pressure-correction equation coefficients for the 

finite volume method, using velocity components and adjusting for boundary conditions. 
- FVM_phi - This section assembles the temperature (or scalar field) equation coefficients, 

accounting for advection, diffusion, and boundary conditions using hybrid upwinding. 
- FVM_u - This function computes the x-momentum (u-velocity) equation coefficients, 

including convection fluxes, face values, and boundary conditions, and adjusts the 
pressure-velocity coupling. 

- FVM_v - This function computes the y-momentum (v-velocity) equation coefficients, 
calculating convection fluxes, face values, and boundary conditions, and adjusts for 
pressure-velocity coupling. 
 

d) Main Program - This section defines the geometry and grid for the simulation by calculating 
grid spacings in both x and y directions, creating grid locations for cell centers and velocity 



nodes, and defining the index ranges for the interior nodes used in the momentum and 
pressure equations. 
 

e) Fluid Properties and Other Parameters - This section sets fluid properties, flow parameters, 
boundary conditions, and relaxation factors, either by default or user input, for the simulation. 
 

f) Iniialize Fields - This section initializes the velocity, temperature, and pressure fields, along 
with other necessary variables for the simulation. It sets the inlet velocity, wall temperature, 
and the initial pressure distribution across the grid. Additionally, it defines the coefficients for 
momentum equations related to fluid viscosity. The temperature field is initialized at the inlet 
and the walls, and the pressure field is set with a linear drop to simulate fully developed flow. 
 

g) SIMPLE Algorithm Iterations - This section implements the SIMPLE algorithm for 
solving momentum and pressure correction equations iteratively. It optionally includes 
solving the temperature equation within the loop, based on user input, updating the 
temperature field using thermal properties and heat flux. The loop continues until 
convergence is achieved, with progress displayed in each iteration. 
 
Apply Outlet Boundary Conditions: Ensure consistency at the boundaries (du/dx = 0, 
dv/dx = 0). 
Initialization :  Store initial velocity and pressure values. 
Step 1a: Solve x-momentum equation for uStar (predicted u-velocity). 
Step 1b: Solve y-momentum equation for vStar (predicted v-velocity). 
Step 2: Solve pressure correction equation for pPrime. 
Step 3: Update pressure and velocity fields with pressure correction. 
Step 4: Check convergence; if residuals are small, stop iteration. If divergence occurs, 
stop iteration. 
 

h) Output Section - This section handles the final output of the simulation by exporting 
the results to CSV and .txt files. It defines the path where the files will be stored and 
ensures the directory exists by creating it if necessary. The results, including residuals, 
pressure, velocity components (u and v), and temperature, are saved into separate 
CSV files. Once the export process is complete, a message confirming the successful 
export is displayed. 

  



Chapter 5 : Software/Hardware Used 

This project was developed and executed using the following software and hardware 
resources: 

Software: 

• Operating System: Windows 11 (64-bit) 

• Scilab Version: Scilab 2025 (Open-source numerical computation platform) 

• Toolboxes/Modules: No external toolboxes were used; the solver was built using 
native Scilab functions and scripts. 

Scripts and Files Used: 

• main.sci – master script to execute the full simulation sequence. 

• fluid_mesh.sci – script for grid generation and domain discretization. 

• functions.sci – includes helper functions and numerical schemes. 

• simple.sci – core solver implementing the SIMPLE algorithm. 

• residuals_plot.sci – script for monitoring convergence behavior. 

• output.sci – script for exporting simulation results to .csv format. 

Hardware: 

• Processor: Intel® Core™ i5-1135G7 @ 2.40GHz 

• RAM: 16 GB DDR4 

• Storage: 512 GB SSD 

• Display: 15.6”, 1920x1080 resolution 

No additional hardware such as GPUs or sensors was required for this project, as the 
computation was entirely numerical and performed on a standard personal laptop. The solver 
is lightweight and capable of running efficiently on low to mid-range machines, making it 
suitable for educational and research use in resource-constrained environments. 

  



Chapter 6 : Procedure of Execution 
 
The main.sci is executed and step-by-step explanation is highlighted below. 
 

 
 

Fig 6 : Output of Terminal / Console of mesh.sci 
 

 
 

   Fig 7 : Computational Mesh (default values) 
 

 
Fig 8 : Final Output of Terminal / Console 

 

Fig. 8 shows output achieved when default values are obtained. It also shows .csv files are 
successfully saved in the mentioned.  The simulation is converged in 83 iterations only. Number of 
iterations vary for different input / user values. There is chance of simulation getting divergent. 
Divergence may occur due to factors like poor mesh resolution, incorrect boundary conditions, 
numerical instability, or inappropriate solver settings. Proper parameter selection and monitoring are 
key to achieving convergence and reliable results. Once the simulation converges, results are saved in 
.csv files for further analysis. 

 

 



Chapter 7 : Results & Discussion 

The solution process follows the SIMPLE algorithm. It starts by solving the u-momentum equation 
using hybrid differencing scheme where velocities are interpolated at faces (Fw, Fe, Fs, Fn) and 
pressure gradient acts as a source term. The equation is solved using Gauss-Seidel iteration to get 
uStar. Similarly, v-momentum is solved with interpolated velocities and pressure gradient as source 
term to get vStar. Then, the pressure correction equation is constructed using mass imbalance as the 
source term, with coefficients based on velocity corrections dU and dV, and zero pressure enforced at 
the outlet boundary. This produces pPrime which is used directly with uStar, vStar to get final 
corrected velocities. For temperature, it's solved after the pressure-velocity coupling, using hybrid 
differencing with convection terms interpolated at faces and appropriate wall boundary conditions. 
The entire process iterates until convergence is achieved based on the residuals of u, v and p 
equations. 
 

 
                                                             Fig 10 : Convergence Plot 

 
From Fig. 10, the convergence history plot represents the evolution of residuals over multiple 
iterations for U-velocity (blue), V-velocity (red), and pressure (green). Initially, the velocity residuals 
are high, but they drop sharply within the first few iterations, indicating rapid error reduction in the early 
stages of the solution process. As the iterations progress, the rate of decrease slows down, and the 
residuals exhibit a gradual decline, suggesting that the solution is approaching a stable state. The 
pressure residual, represented by the green line, remains nearly constant throughout the iterations, 
indicating that pressure corrections are not changing significantly. The overall trend of the velocity 
residuals suggests that the solver is converging toward a steady-state solution. 

We are transposing the data to align it correctly with the computational grid, ensuring that each value 
corresponds to the appropriate cell location. This helps in accurate visualization and interpretation of 
flow variables within the 4×9 mesh.  
The given U-Velocity Data in Fig. 11 represents the velocity distribution in an axisymmetric pipe flow, 
where only half of the domain (below the centerline) is solved due to symmetry. The velocity profile 
varies in the radial direction, with values decreasing as they approach the bottom boundary, indicating 
the no-slip condition at the pipe wall. The highest velocity occurs near the centerline, which aligns with 
the expected parabolic velocity distribution in fully developed laminar or transitional flow regimes. The 
transposed data ensures correct alignment with computational cells, preserving the spatial 
representation of velocity variations. Since the number of computational cells is very low, the velocity 
gradients are not well-resolved, leading to higher velocity values compared to a finer mesh. The figure 
presents numerical simulation data for a pipe flow problem, showing computed values of U-Velocity, 
V-Velocity, Pressure, and Temperature across a structured computational grid. Each dataset is 
displayed in a tabular format, representing flow field variations over the mesh. 



The first and last rows in each dataset contain zero values, which are redundant in the context of 
mapping to computational cells. These zeros represent boundary conditions or extrapolated values 
outside the main region of interest. Since only the internal computational cells are significant for final 
iterations, these redundant rows should be ignored to ensure accurate representation of flow 
properties. 

 
Fig 11 : Final Data 

The V-Velocity Data represents the vertical velocity component in the axisymmetric pipe flow, 
showing small negative values that indicate the influence of radial momentum exchange. Since the 
primary flow direction is axial, the magnitude of v-velocity remains much lower than u-velocity, with 
values approaching zero at the boundaries due to the imposed no-slip condition. These small 
variations help in capturing the effect of pressure-driven flow and secondary motion. The transposed 
data ensures that each value corresponds accurately to its respective computational cell, maintaining 
spatial accuracy in velocity mapping. 

The Pressure Data illustrates the pressure field within the computational domain, showing a gradual 
decrease due to frictional effects and energy dissipation along the pipe length. Higher values near the 
inlet and lower values downstream indicate the expected pressure gradient that drives the flow. The 
structured variation ensures continuity and convergence in the numerical scheme. Since the number 
of computational cells is limited, the pressure gradient may not be well-refined, leading to a more 
abrupt transition. The transposed format ensures that pressure values are correctly mapped to their 
corresponding grid locations for accurate pressure field representation. 

The Temperature Data depicts the thermal distribution within the flow, reflecting the combined 
effects of conduction and convection. Temperature values increase as energy is transferred from the 
heated pipe walls to the fluid, leading to higher temperatures near the boundaries and a more uniform 
distribution in the core region due to convective mixing. The presence of a structured mesh influences 
the resolution of thermal gradients, meaning that a finer mesh would capture more detailed 
temperature variations. The transposed data allows for proper alignment with the computational cells, 
ensuring that thermal gradients and variations are mapped correctly within the final solution. 

  



This study successfully developed and implemented a 2D Computational Fluid Dynamics (CFD) solver 
in Scilab for incompressible, laminar flow using the Finite Volume Method (FVM) and the SIMPLE 
algorithm. The solver was designed to handle structured Cartesian grids and employed a collocated 
scheme for variable storage. The governing equations—Navier-Stokes and continuity—were 
discretized using a central difference scheme for diffusion terms and an upwind scheme for 
convection terms. 

The solver's performance was validated by monitoring residuals of velocity and pressure, ensuring 
convergence and numerical stability. Simulation results showed smooth convergence in most cases, 
with divergence occurring under inappropriate parameter selection, highlighting the accuracy of the 
implemented numerical scheme. The solver successfully exported key flow field variables—velocity, 
pressure, and residuals—in CSV format for further analysis. 

Visualization of results, including convergence plots and velocity distributions, confirmed the 
expected flow behavior in a rectangular channel. The velocity profile demonstrated the expected 
parabolic shape, while pressure corrections aligned with theoretical predictions. The study 
demonstrates the feasibility of using Scilab as a cost-effective and open-source alternative for CFD 
simulations. 

Future work can extend the solver's capabilities to include turbulence modeling, transient flows, and 
complex geometries. Additionally, improving grid resolution and implementing adaptive meshing 
techniques could enhance accuracy and computational efficiency. This implementation serves as a 
foundation for further research and educational applications in fluid dynamics. 

The future work under same domain can be done by :  

a) Implementation of PISO, PIMPLE, SIMPLEC algorithms 
b) Running Unstructured Mesh / Grid 
c) GUI Based Visualization of Results 
d) Modelling Turbulence 
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