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Abstract 

This case study examines key sampling techniques using Scilab for generating two-

dimensional samples, with a focus on applications in simulation, uncertainty quantification, 

and multidimensional integration. It explores methods such as Monte Carlo, Quasi-Monte 

Carlo (Sobol), Latin Hypercube Sampling (LHS), and advanced designs like Quadrature, 

Petras, and Smolyak. The study analyses each method's principles, computational efficiency, 

and suitability for different scenarios. Monte Carlo sampling produces uniformly distributed 

random points for general simulations, while Sobol sequences provide low-discrepancy 

samples suitable for multidimensional integration. LHS ensures even distribution, with the 

Maximin variant improving space-filling properties. 

Quadrature sampling achieves high-accuracy polynomial approximations using tensorized 

Gauss rules but involves significant computational costs. In contrast, Petras and Smolyak 

designs optimize sample size and efficiency while maintaining accuracy, making them 

effective for uncertainty quantification and polynomial integration. Comparative analysis 

highlights the computational advantages of Petras and Smolyak designs over traditional 

Quadrature methods. This study provides sample code, visualizations, and practical 

guidelines to help users select designs based on accuracy, efficiency, and specific application 

needs in fields such as engineering, finance, and scientific research. 



1. Introduction 

The Monte Carlo method is a statistical technique used for approximating the solutions to 

quantitative problems by generating random numbers and observing their behaviour through 

simulations. It is an invaluable tool used in fields such as physics, finance, and engineering, 

where analytical solutions may not be feasible due to complexity or uncertainty. This case 

study explores the application of Monte Carlo methods for simulation, focusing on their 

implementation in Scilab, an open-source computational software widely used for 

engineering and scientific computations. The report includes a discussion on basic concepts, 

the problem at hand (estimation of Pi), and the procedure for executing the simulation. 

In computational science and numerical analysis, achieving high-precision integration and 

efficient sampling techniques is critical for various applications, including uncertainty 

quantification, machine learning, and optimization. Traditional Monte Carlo methods, while 

widely used, often suffer from slow convergence and uneven distribution of sample points. 

Advanced techniques such as Sobol Sequences and Latin Hypercube Sampling (LHS) have 

been developed to enhance uniformity in sampling, leading to improved accuracy and 

efficiency in numerical integration. 

Beyond these sampling methods, higher-order integration approaches like Quadrature, Petras, 

and Smolyak methods offer further precision improvements, leveraging structured point 

distributions and hierarchical strategies. However, these methods come with increased 

computational costs, necessitating a trade-off between accuracy and efficiency. 

This case study explores the effectiveness of these advanced techniques in different 

computational scenarios, evaluating their impact on integration accuracy, convergence rates, 

and computational feasibility. By analysing their strengths and limitations, this report aims to 

provide insights into selecting the most suitable method based on specific application 

requirements. 

 

2. Problem Statement 

The primary problem addressed in this project is the estimation of a probabilistic outcome 

where direct computation is difficult or infeasible. The problem involves simulating random 

processes to approximate an unknown solution. In this case, we are tasked with estimating the 



value of π. More than just a geometry formula, the practical uses of π can be found 

everywhere. Scientists use π to understand anything that involves a circle, sphere or curve. 

Whether calculating the vastness of space or understanding the spiral of DNA, Pi is involved 

far and wide. In this case study we use the Monte Carlo simulation method, a Classique in 

computational mathematics, to compute π. 

Additionally, the method can be extended to more complex problems involving multiple 

dimensions and random sampling. Sampling techniques are vital in Monte Carlo simulations, 

ensuring representative samples from a probability distribution. The choice of method 

impacts accuracy and efficiency. Simple Random Sampling (SRS) offers simplicity but may 

lead to clustering. Stratified Sampling improves representation by dividing the population, 

while Importance Sampling focuses on critical regions for efficiency. Advanced techniques 

like Sobol Sequences and Latin Hypercube Sampling (LHS) enhance distribution uniformity 

and integration accuracy. Quadrature, Petras, and Smolyak methods further optimize 

precision but at higher computational costs. 

This study examines and compares these techniques in Scilab, evaluating their effectiveness 

in balancing accuracy and computational efficiency in Monte Carlo simulations. 

 

3. Basic Concepts Related to the Topic 

Monte Carlo Simulation: 

 Monte Carlo simulation is a computational algorithm that uses random sampling to obtain 

numerical results. The method is used to model systems with uncertainty, especially when 

analytical methods are not feasible. 

The basic steps involved in Monte Carlo simulations include: 

a. Define the problem with a mathematical model. 

b. Generate random variables that follow the probability distribution of the inputs. 

c. Perform simulations by running the model with these random variables. 

d. Analyse the results to estimate the output. 

 

Monte Carlo methods used to create approximations of π:  
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• Buffon's needle method    

• To draw a circle inscribed in a square and randomly place dots in the square. The ratio 

of dots inside the circle to the total number of dots is used to calculate Pi. Larger the 

number of dots, more accurate will be the approximation. 

• Another way to calculate π using probability is to start with a random walk, generated 

by a sequence of fair coin tosses (discrete stochastic process). This Monte Carlo 

method is independent of any relation to circles and is a consequence of the central 

limit theorem. 

• To draw a circle inscribed in a square and randomly place dots in the square. The ratio 

of dots inside the circle to the total number of dots is used to calculate Pi. Larger the 

number of dots, more accurate will be the approximation. 

• Another way to calculate π using probability is to start with a random walk, generated 

by a sequence of fair coin tosses (discrete stochastic process). This Monte Carlo 

method is independent of any relation to circles and is a consequence of the central 

limit theorem. 

 

Sampling Techniques: In Monte Carlo simulations, random sampling is crucial. The method 

assumes that random sampling from a probability distribution represents the characteristics of 

the entire population. The most used sampling techniques are: 

a. Simple Random Sampling (SRS): Each point is selected independently and has an 

equal chance of being selected. 

E.g. A simple random sample would be to choose the names of 25 employees out of a 

hat from a company of 250 employees. In this case the population is all 250 



employees, and the sample is random because each employee has an equal chance of 

being chosen. 

b. Stratified Sampling: The population is divided into strata, and random samples are 

taken from each stratum. 

E.g. For research, the target market is split into two strata based on gender, where 

there are 2,000 males and 6,000 females. Then, for a sampling fraction of ¼, 500 

males and 1,500 females will be selected in the final sample population 

 

Mathematics of the Monte Carlo Method: In the case of estimating π, the concept is based 

on the ratio of points inside a quarter circle to the total number of points inside a square. 

Mathematically, this can be described as:

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Flowchart 

a) Monte Carlo Simulation for Estimating Pi: 

 

 

 

 

 



b) Methods of sampling: 

 

 

 

 



 

5. Software/Hardware Used 

• Operating System: Windows 10 (64-bit) 

• Scilab Version: 2024.0.0 

• Toolbox Used: No additional toolbox required. 

• Hardware Used: Intel Core i7 Processor, 16GB RAM, 512GB SSD 

 

6. Procedure of Execution 

I) Install Scilab: Download and install Scilab from the official website 

(https://www.scilab.org/). 

II) Open Scilab: Launch the Scilab application. 

III) Execute the Scilab file: Run the file called “Monte_Carlo_and_Sampling.sce” and 

observe the results. 

IV) Set the number of random points for Monte Carlo Simulation. 

V) Observe the estimated value of Pi on console. 

VI) Plot: Observe the plot on the graphic window. 

VII) Set the number of random points for Sobol design. 

VIII) Plot: Observe the plot on the graphic window.   

IX) Set the number of random points for Quadrature Sampling. 

X) Plot: Observe both the plots   

XI) Investigation: Run the code again to analyse the results with different sample sizes. 

XII) Execute next Scilab file: Run the files called “estimate__pi.sce”, “new.sce”, and 

“n_e_w.sce” observe the results. 

 

7. Result 

Monte Carlo method for estimating π 

The dots were randomly placed within a unit square that contained an inscribed circle. By 

calculating the ratio of dots that landed inside the circle to the total number of dots, an 

approximation of π/4 was obtained. The simulation was run with 10,000 random points and 

the estimated value of π was obtained to be close to the actual value of π. We shall see that as 



the number of points decreases; the accuracy of the estimate is more likely (though not 

guaranteed to be) deteriorated. 

 

The following plot shows the random points and the quarter circle, illustrating how the points 

are distributed inside and outside the circle. This is visualized by plotting the points inside the 

circle in green and those outside in red.

 

• With N=100,000 samples, π ≈ 3.1416 (error ~0.003%). 

• Sobol sequences showed better space-filling properties than random sampling. 

• Quadrature designs used deterministic grids but required larger sample sizes. 



 

Sobol Sequence Design 

The sobol samples were generated, which are deterministic sequences used for uniform 

sampling in multi-dimensional spaces. Sobol points were observed to be more uniformly 

spaced than purely random points. Unlike Monte Carlo random sampling, clustering and gaps 

in space are reduced by Sobol sequences. 

 

The scatter plot titled "Sobol Design" suggests a structured sampling approach, where the 

data points exhibit a clear positive correlation between X1 and X2. The presence of a 

diagonal line, likely a linear regression fit, indicates a consistent increasing trend. This 

suggests that as X1 increases, X2 also tends to increase in a systematic manner, which aligns 

with the properties of a Sobol sequence—a method often used for quasi-random sampling in 

numerical simulations and optimization. 



 

A statistical approach to estimating the average height of a population using 

Quadrature Design 

Suppose the average height of an individual, of India's population has to be calculated. Since 

measuring the height of every person is impractical, you decide to select a sample of 10,000 

people from the entire population. In this selection process, every individual in the population 

has an equal chance of being included in the sample. Sample average height will be 

considered as the average height of Indians. 

The Quadrature Design was the sampling method used here to generate random points within 

the unit square, and these were also visualized in the plot. The code further looped through 

various sampling methods (like Quadrature, Petras, Smolyak Gauss, Smolyak Fejer, Smolyak 

Trapeze, and Smolyak Clenshaw Curtis) for increasing values of maxdegree. Maxdegree is a 

toy model loop which can be further extrapolated to various applications. 





  

The graph titled "Quadrature Design," displayed a scatter plot of data points with "X1" on the 

horizontal axis and "X2" on the vertical axis. The following graph is not just a scatter plot but 

customized to the specific function y = x^2 as a random experiment. 



 

 



Revisiting Monte Carlo method for estimating π - this time with a smaller sample size 

The code was run again for 2000 sample points inside the unit square, and the following plot 

was obtained - 

Evidently, such a small sample size corresponds to a not-so-accurate value of Pi. This further 

confirmed the previous anticipation of accuracy of simulation being deteriorated. The results 

provided a comprehensive demonstration of Monte Carlo estimation and different sampling 

methods. Both visual and mathematical outputs were offered for a better understanding of the 

sampling techniques used in computational methods. 



Quasi-Monte Carlo methods using Sobol' sequences 

 These generally provide superior space-filling and convergence properties for high-

dimensional integration and uncertainty quantification, especially when the function of 

interest has low effective dimension. Latin Hypercube Sampling remains a robust choice for 

metamodel fitting and moderate-dimensional problems, particularly when optimized. For 

most practical high-dimensional applications, QMC (Sobol') is the safest and most efficient 

choice. 

 

Latin Hypercube Sampling (LHS) 

We investigated and compared the performance of Monte Carlo (MC) and methods in 

estimating the expected value of a benchmark test function (Function 1A). By 

analyzing the Root Mean Square Error (RMSE) across increasing sample sizes, we 

observed that LHS consistently achieved lower errors than MC, indicating better 

accuracy. Furthermore, the convergence rates calculated from log-log plots showed 

that LHS has a steeper convergence slope compared to MC, demonstrating its superior 



efficiency in sampling the input space. These results confirm that LHS offers a more 

reliable and computationally efficient alternative to standard Monte Carlo sampling 

for uncertainty quantification and numerical integration tasks involving high-

dimensional inputs. 

 

 

 

The graph is a Receiver Operating Characteristic (ROC) curve, which evaluates the 

performance of a binary classification model by plotting the True Positive Rate (Sensitivity) 

against the False Positive Rate at various threshold settings. A curve that bows towards the 

top-left corner indicates better model performance, while the diagonal line represents a 

random classifier. The Area Under the Curve (AUC) quantifies overall model performance, 

with values closer to 1.0 indicating excellent classification ability and 0.5 suggesting no 

better than random guessing. This graph helps compare models and choose optimal 

thresholds. 



 

 

Inference: 

• The Monte Carlo method provides an effective way to approximate π, even with 

relatively simple computational resources. 

• The accuracy improves with the increase in the number of simulations. 

• Quadrature methods (Smolyak-based) could be extended for higher-dimensional 

integration. 

• This method can be extended to more complex simulations in physics, finance, and 

other areas. 
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