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Abstract  

Gradient descent is an optimization technique designed to minimize a function by iteratively 

moving in the direction of the steepest descent. The algorithm's simplicity and computational 

efficiency make it a popular choice for a wide range of models, from linear regression to deep 

learning networks. This project presents a comprehensive analysis of three gradient descent 

optimization algorithms—Batch Gradient Descent (BGD), Stochastic Gradient Descent 

(SGD), and Mini-Batch Gradient Descent (Mini-BGD)—applied to logistic regression for 

binary classification. The study highlights the importance of carefully selecting 

hyperparameters such as learning rate and batch size, as these can significantly impact the 

convergence rate and the accuracy of the solution.  

Moreover, the study investigates the convergence behaviour and stability of each 

optimization method. Data standardization is used to enhance convergence speed and 

stability. The significance of these findings extends to a variety of domains. In deep learning, 

it is fundamental for optimizing neural network weights and biases. In fields such as 

economics, game theory, and market equilibrium modelling, it supports the analysis and 

resolution of complex systems. The findings provide practical insights and recommendations 

for selecting appropriate gradient descent strategies in logistic regression tasks, emphasizing 

the importance of algorithm choice, learning rate tuning, and data preprocessing in achieving 

efficient and robust model training. 

 



1. Introduction 

Imagine you're standing at the top of a large, bumpy hill and want to reach the lowest 

point, but you can't see the entire landscape. What would you do? You'd start by 

taking small steps in the direction that feels steepest, hoping it leads you downhill. 

With each step, you'd check if you're getting closer to the bottom, adjusting your path 

based on the terrain underfoot. This is essentially how gradient descent works: it's a 

method that takes repeated, careful steps in the direction that most quickly decreases a 

value, aiming to find the lowest point—or minimum—of a function. Now, consider a 

faster way to descend the hill. Instead of bringing your entire group of explorers (all 

your data points) with you on every step, you might send just a few at a time, or even 

just one. This approach lets you move faster and react more quickly to changes in the 

landscape. In optimization, this is the idea behind stochastic gradient descent and 

mini-batch gradient descent: by using only a subset of data for each update, these 

methods can speed up the journey to the minimum and make the process more 

efficient. By comparison of algorithms in context of logistic regression for binary 

classification, the findings are intended to guide the selection of the most suitable 

method based on dataset characteristics and computational needs. 

 

2. Problem Statement 

Many real-world functions encountered in machine learning are non-convex, meaning 

they may have multiple local minima. For instance, the loss functions from a 

Convolutional Neural Network (CNN)  used in image recognition are so complicated 

that it is not worthwhile to establish their global minimum. Optimizing the parameters 

is critical, especially in binary classification tasks. The gradient descent algorithm is 

an iterative optimization technique that adjusts model parameters to minimize a loss 

function. The following gradient descent algorithms are exploited:  

i) Batch Gradient Descent (BGD) 

ii) Stochastic Gradient Descent (SGD) 

iii) Mini-Batch Gradient Descent (Mini-BGD) 

 

The convergence properties, computational efficiency, and prediction accuracy of 

each optimization method are analysed. Finally, we investigate how factors such as 

learning rate, iteration count, and data standardization affect model performance. 



3. Basic concepts related to the topic  

o Cost function 

It measures the performance of an algorithm for given data set by quantifying the 

error between predicted and expected values. 

 

o Learning rate () 

The learning rate is a hyperparameter which determines the step size taken in each 

iteration, influencing the speed and stability of convergence. 

 

o Gradient Descent 

Gradient descent is an optimization algorithm that seeks to minimize the cost 

function by iteratively adjusting the parameters in the direction of steepest slope, 

with the goal of finding the optimal set of parameters. 

 

Consider the task of minimizing the value of ω for a given loss function. Initially, 

ω is assigned random values (random initialization). From there, the algorithm 

makes gradual improvements by taking small steps, each designed to reduce the 

loss function, until it converges to the minimum value. 

 

 
metaphysic.ai 

 

Understanding the algorithm: 

Repeat until convergence - 
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o Convex functions 

Convex functions have a unique global minimum. So, if a convex function is 

optimised, the best solution is guaranteed by searching for the minimum value of 

the function. This makes optimization easier and more reliable.  

 
Graph of a convex function : https://en.wikipedia.org/wiki/Convex_function 

 

Mathematically, a function f : R n → R is convex if its domain is a convex set and 

for all x, y in its domain, and all λ ∈ [0, 1], we must have  

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) 

 

o Types of Gradient Descent Algorithms 

Batch gradient descent is ideal for small datasets, it can be computationally 

expensive and slow, particularly for large datasets. Stochastic gradient descent is 

better suited for large datasets. SGD randomly selects a training sample, computes 

the gradient of the cost function for that sample, and adjusts the parameters 

accordingly. It is computationally efficient and can converge more quickly than 

batch gradient descent. However, it can be noisy and may not always converge to 

the global minimum. 

 

 Mini-batch gradient descent offers a balance between the two and is commonly 

used in practice. Mini-batch gradient descent updates the model’s parameters by 

calculating the gradient based on a small, randomly selected subset of the training 

data, known as a mini-batch. It computes the average gradient for the mini-batch 

and adjusts the parameters in the opposite direction. 
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5. Software/Hardware used 

o Operating System: Windows 11 

o Toolbox: None 

o Hardware: Personal Computer with 12th Gen Intel Core Processor, 16GB RAM 

o Software: Scilab Version: 2024.0.0 and Microsoft Office 2021 

 

 

6. Procedure of execution  

i. Launch Scilab on the computer. 

ii. Open the SciNotes file “Grad_Descent_Alg.sce” on Scilab interface . 

iii. From the ribbon, select “Save and Execute”  . 

iv. Observe the plots on the graphic windows. 

v. From the console, note the optimum parameter values. 

vi. Repeat the process for different hyperparameter values and compare the 

results. 

 

 

7. Results 

a) Dataset Overview and Model Implementation 

The study utilized a dataset containing 100 records, each with two test scores as  its 

features. We implemented a logistic regression model using three different gradient 

descent methods: Batch Gradient Descent (BGD), Stochastic Gradient Descent 

(SGD), and Mini-Batch Gradient Descent (Mini-BGD). 

 

A sample of the dataset is shown below:  

 

 



 

 

b) Parameter Convergence Analysis 

After running 8000 iterations for each algorithm, we obtained the following parameter 

values:  

 

 

 

i) SGD with high learning rate introduced significant parameter fluctuations, 

deviating more from the optimal path compared to its low-rate counterpart. 

 

ii) Standardized data improved parameter consistency across the methods, with Mini-

BGD smoother convergence. 

 

iii) BGD maintained the steadiest parameter trajectory, aligning with its deterministic 

nature, while Mini-BGD balanced stability and speed by averaging mini-batch 

gradients. 

 

 

c) Convergence Speed and Stability Analysis 

 

i) Batch Gradient Descent (BGD) 

BGD demonstrated stable convergence with a smooth, monotonic decrease in the 

loss function. The loss function decreased steadily but slowly, requiring the full 

dataset for each parameter update. This resulted in a more predictable 

optimization path but with higher computational cost per iteration. 



 

 

ii) Stochastic Gradient Descent (SGD) 

SGD showed faster initial convergence but with notable fluctuations in the loss 

function: 

 



 

 

The noisy optimization path is a consequence of updating parameters based on 

individual samples. Despite the fluctuations, SGD reached lower loss values more 

quickly than BGD in terms of iterations, though the final result had slightly higher 

variance. 

 

iii) Mini-Batch Gradient Descent (Mini-BGD) 

Mini-BGD with a batch size of 10 demonstrated a balanced approach between 

BGD and SGD:  

 

 

The convergence pattern showed moderate fluctuations—less pronounced than 

SGD but more than BGD—while maintaining a faster convergence rate than 

BGD. 

 

 

 



d) Impact of Learning Rate 

We experimented with different learning rates for SGD to observe their effects: 

 

 



 

 

e) Effect of Data Standardisation 

We also evaluated the impact of standardizing the feature data: 

 

 

Standardization significantly improved the convergence rate and stability for both 

SGD and Mini-BGD methods. With standardized data, Mini-BGD achieved lower 

loss values with fewer iterations compared to non-standardized data. 

 

f) Computational Efficiency Comparison 

While SGD required the fewest iterations to reach the target loss value, it had 

higher computational cost per iteration, as compared to BGD due to the overhead 

of frequent parameter updates. Mini-BGD offered the best balance, requiring 

fewer iterations than BGD while maintaining reasonable computational efficiency 

per iteration. 

 

 



 

 

8. Conclusion 

Our case study demonstrated that while all three gradient descent variants eventually 

converge to similar parameter values, they differ significantly in their convergence 

paths, stability, and computational efficiency. Mini-BGD emerges as a practical 

compromise between the stability of BGD and the speed of SGD, making it a 

preferred choice for many machine learning applications, particularly those involving 

moderately sized datasets 

 

Based on the results, we can make the following recommendations: 

1. For small datasets: BGD provides stable convergence and may be preferred 

when computational resources are not a limiting factor. 

2. For large datasets: Mini-BGD with an appropriate batch size (10-100) typically 

offers the best balance between convergence speed and stability. 

3. For very large datasets: SGD with a carefully tuned learning rate can provide 

efficient training, particularly when computational resources are limited. 

4. Data preprocessing: Standardization of features is highly recommended as it 

significantly improves convergence speed and stability for all methods, but 

especially for SGD and Mini-BGD. 

5. Learning rate selection: Use larger learning rates for BGD (around 0.01), 

moderate rates for Mini-BGD (0.001-0.01), and carefully tuned rates for SGD 

(typically 0.0001-0.001) to balance convergence speed and stability. 

 

The results underscore the importance of algorithm selection based on dataset 

characteristics, computational constraints, and the specific requirements of the 

application. By understanding these tradeoffs, practitioners can make informed 

decisions about which gradient descent variant to use for logistic regression and other 

machine learning tasks. 

 

 

 

 



 

 

9. Challenges encountered 

Although gradient descent is an effective optimization algorithm, it comes with trade-

offs which include: 

o Local Optima: Gradient descent may converge to local optima rather than the 

global optimum, particularly when the cost function contains multiple peaks and 

valleys. 

o Learning Rate Selection: The choice of learning rate plays a crucial role in the 

performance of gradient descent. A learning rate that is too high may cause the 

algorithm to overshoot the minimum, while a rate that is too low may result in 

excessively slow convergence. 

o Overfitting: Gradient descent can lead to overfitting, particularly if the model is 

overly complex or the learning rate is too large. This can degrade the model’s 

ability to generalize to new, unseen data. 

o Convergence Rate: For large datasets or high-dimensional spaces, gradient 

descent can exhibit slow convergence, making it computationally expensive and 

time-consuming. 

o Saddle Points: In high-dimensional spaces, the presence of saddle points can 

cause the gradient of the cost function to become zero, resulting in a plateau where 

gradient descent fails to move towards a minimum. 

To address these challenges, researchers have developed various modifications of the 

gradient descent algorithm, such as adaptive learning rate methods, momentum-based 

approaches, and second-order techniques. Additionally, selecting appropriate 

regularization methods, model architectures, and hyperparameters can significantly 

enhance the performance of the gradient descent algorithm. 
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