
 Scilab case study project on

Optimisation in Scilab Using the Gradient Descent

Algorithm

Naini Diwan

Indian Institute of Science Education and Research, Bhopal

Machine Learning, Statistical Modelling, Data Science

Date: 18-04-2025

Abstract

Gradient descent is an optimization technique designed to minimize a function by iteratively

moving in the direction of the steepest descent. The algorithm's simplicity and computational

efficiency make it a popular choice for a wide range of models, from linear regression to deep

learning networks. This project presents a comprehensive analysis of three gradient descent

optimization algorithms—Batch Gradient Descent (BGD), Stochastic Gradient Descent

(SGD), and Mini-Batch Gradient Descent (Mini-BGD)—applied to logistic regression for

binary classification. The study highlights the importance of carefully selecting

hyperparameters such as learning rate and batch size, as these can significantly impact the

convergence rate and the accuracy of the solution.

Moreover, the study investigates the convergence behaviour and stability of each

optimization method. Data standardization is used to enhance convergence speed and

stability. The significance of these findings extends to a variety of domains. In deep learning,

it is fundamental for optimizing neural network weights and biases. In fields such as

economics, game theory, and market equilibrium modelling, it supports the analysis and

resolution of complex systems. The findings provide practical insights and recommendations

for selecting appropriate gradient descent strategies in logistic regression tasks, emphasizing

the importance of algorithm choice, learning rate tuning, and data preprocessing in achieving

efficient and robust model training.

1. Introduction

Imagine you're standing at the top of a large, bumpy hill and want to reach the lowest

point, but you can't see the entire landscape. What would you do? You'd start by

taking small steps in the direction that feels steepest, hoping it leads you downhill.

With each step, you'd check if you're getting closer to the bottom, adjusting your path

based on the terrain underfoot. This is essentially how gradient descent works: it's a

method that takes repeated, careful steps in the direction that most quickly decreases a

value, aiming to find the lowest point—or minimum—of a function. Now, consider a

faster way to descend the hill. Instead of bringing your entire group of explorers (all

your data points) with you on every step, you might send just a few at a time, or even

just one. This approach lets you move faster and react more quickly to changes in the

landscape. In optimization, this is the idea behind stochastic gradient descent and

mini-batch gradient descent: by using only a subset of data for each update, these

methods can speed up the journey to the minimum and make the process more

efficient. By comparison of algorithms in context of logistic regression for binary

classification, the findings are intended to guide the selection of the most suitable

method based on dataset characteristics and computational needs.

2. Problem Statement

Many real-world functions encountered in machine learning are non-convex, meaning

they may have multiple local minima. For instance, the loss functions from a

Convolutional Neural Network (CNN) used in image recognition are so complicated

that it is not worthwhile to establish their global minimum. Optimizing the parameters

is critical, especially in binary classification tasks. The gradient descent algorithm is

an iterative optimization technique that adjusts model parameters to minimize a loss

function. The following gradient descent algorithms are exploited:

i) Batch Gradient Descent (BGD)

ii) Stochastic Gradient Descent (SGD)

iii) Mini-Batch Gradient Descent (Mini-BGD)

The convergence properties, computational efficiency, and prediction accuracy of

each optimization method are analysed. Finally, we investigate how factors such as

learning rate, iteration count, and data standardization affect model performance.

3. Basic concepts related to the topic

o Cost function

It measures the performance of an algorithm for given data set by quantifying the

error between predicted and expected values.

o Learning rate ()

The learning rate is a hyperparameter which determines the step size taken in each

iteration, influencing the speed and stability of convergence.

o Gradient Descent

Gradient descent is an optimization algorithm that seeks to minimize the cost

function by iteratively adjusting the parameters in the direction of steepest slope,

with the goal of finding the optimal set of parameters.

Consider the task of minimizing the value of ω for a given loss function. Initially,

ω is assigned random values (random initialization). From there, the algorithm

makes gradual improvements by taking small steps, each designed to reduce the

loss function, until it converges to the minimum value.

metaphysic.ai

Understanding the algorithm:

Repeat until convergence -

𝜔௪ = 𝜔ௗ −
𝑑𝐿

𝑑𝜔

o Convex functions

Convex functions have a unique global minimum. So, if a convex function is

optimised, the best solution is guaranteed by searching for the minimum value of

the function. This makes optimization easier and more reliable.

Graph of a convex function : https://en.wikipedia.org/wiki/Convex_function

Mathematically, a function f : R n → R is convex if its domain is a convex set and

for all x, y in its domain, and all λ ∈ [0, 1], we must have

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

o Types of Gradient Descent Algorithms

Batch gradient descent is ideal for small datasets, it can be computationally

expensive and slow, particularly for large datasets. Stochastic gradient descent is

better suited for large datasets. SGD randomly selects a training sample, computes

the gradient of the cost function for that sample, and adjusts the parameters

accordingly. It is computationally efficient and can converge more quickly than

batch gradient descent. However, it can be noisy and may not always converge to

the global minimum.

 Mini-batch gradient descent offers a balance between the two and is commonly

used in practice. Mini-batch gradient descent updates the model’s parameters by

calculating the gradient based on a small, randomly selected subset of the training

data, known as a mini-batch. It computes the average gradient for the mini-batch

and adjusts the parameters in the opposite direction.

4. Flowchart

Generate data
compatible with
the real-world

Initialize
parameters

Standardize the
data

Declare the
number of
iterations

Enter the learning
rates

Train the learned
models

Parameter values
printed on the

console

Observe the
different graphs

Repeat the process
for different

learning rates

5. Software/Hardware used

o Operating System: Windows 11

o Toolbox: None

o Hardware: Personal Computer with 12th Gen Intel Core Processor, 16GB RAM

o Software: Scilab Version: 2024.0.0 and Microsoft Office 2021

6. Procedure of execution

i. Launch Scilab on the computer.

ii. Open the SciNotes file “Grad_Descent_Alg.sce” on Scilab interface .

iii. From the ribbon, select “Save and Execute” .

iv. Observe the plots on the graphic windows.

v. From the console, note the optimum parameter values.

vi. Repeat the process for different hyperparameter values and compare the

results.

7. Results

a) Dataset Overview and Model Implementation

The study utilized a dataset containing 100 records, each with two test scores as its

features. We implemented a logistic regression model using three different gradient

descent methods: Batch Gradient Descent (BGD), Stochastic Gradient Descent

(SGD), and Mini-Batch Gradient Descent (Mini-BGD).

A sample of the dataset is shown below:

b) Parameter Convergence Analysis

After running 8000 iterations for each algorithm, we obtained the following parameter

values:

i) SGD with high learning rate introduced significant parameter fluctuations,

deviating more from the optimal path compared to its low-rate counterpart.

ii) Standardized data improved parameter consistency across the methods, with Mini-

BGD smoother convergence.

iii) BGD maintained the steadiest parameter trajectory, aligning with its deterministic

nature, while Mini-BGD balanced stability and speed by averaging mini-batch

gradients.

c) Convergence Speed and Stability Analysis

i) Batch Gradient Descent (BGD)

BGD demonstrated stable convergence with a smooth, monotonic decrease in the

loss function. The loss function decreased steadily but slowly, requiring the full

dataset for each parameter update. This resulted in a more predictable

optimization path but with higher computational cost per iteration.

ii) Stochastic Gradient Descent (SGD)

SGD showed faster initial convergence but with notable fluctuations in the loss

function:

The noisy optimization path is a consequence of updating parameters based on

individual samples. Despite the fluctuations, SGD reached lower loss values more

quickly than BGD in terms of iterations, though the final result had slightly higher

variance.

iii) Mini-Batch Gradient Descent (Mini-BGD)

Mini-BGD with a batch size of 10 demonstrated a balanced approach between

BGD and SGD:

The convergence pattern showed moderate fluctuations—less pronounced than

SGD but more than BGD—while maintaining a faster convergence rate than

BGD.

d) Impact of Learning Rate

We experimented with different learning rates for SGD to observe their effects:

e) Effect of Data Standardisation

We also evaluated the impact of standardizing the feature data:

Standardization significantly improved the convergence rate and stability for both

SGD and Mini-BGD methods. With standardized data, Mini-BGD achieved lower

loss values with fewer iterations compared to non-standardized data.

f) Computational Efficiency Comparison

While SGD required the fewest iterations to reach the target loss value, it had

higher computational cost per iteration, as compared to BGD due to the overhead

of frequent parameter updates. Mini-BGD offered the best balance, requiring

fewer iterations than BGD while maintaining reasonable computational efficiency

per iteration.

8. Conclusion

Our case study demonstrated that while all three gradient descent variants eventually

converge to similar parameter values, they differ significantly in their convergence

paths, stability, and computational efficiency. Mini-BGD emerges as a practical

compromise between the stability of BGD and the speed of SGD, making it a

preferred choice for many machine learning applications, particularly those involving

moderately sized datasets

Based on the results, we can make the following recommendations:

1. For small datasets: BGD provides stable convergence and may be preferred

when computational resources are not a limiting factor.

2. For large datasets: Mini-BGD with an appropriate batch size (10-100) typically

offers the best balance between convergence speed and stability.

3. For very large datasets: SGD with a carefully tuned learning rate can provide

efficient training, particularly when computational resources are limited.

4. Data preprocessing: Standardization of features is highly recommended as it

significantly improves convergence speed and stability for all methods, but

especially for SGD and Mini-BGD.

5. Learning rate selection: Use larger learning rates for BGD (around 0.01),

moderate rates for Mini-BGD (0.001-0.01), and carefully tuned rates for SGD

(typically 0.0001-0.001) to balance convergence speed and stability.

The results underscore the importance of algorithm selection based on dataset

characteristics, computational constraints, and the specific requirements of the

application. By understanding these tradeoffs, practitioners can make informed

decisions about which gradient descent variant to use for logistic regression and other

machine learning tasks.

9. Challenges encountered

Although gradient descent is an effective optimization algorithm, it comes with trade-

offs which include:

o Local Optima: Gradient descent may converge to local optima rather than the

global optimum, particularly when the cost function contains multiple peaks and

valleys.

o Learning Rate Selection: The choice of learning rate plays a crucial role in the

performance of gradient descent. A learning rate that is too high may cause the

algorithm to overshoot the minimum, while a rate that is too low may result in

excessively slow convergence.

o Overfitting: Gradient descent can lead to overfitting, particularly if the model is

overly complex or the learning rate is too large. This can degrade the model’s

ability to generalize to new, unseen data.

o Convergence Rate: For large datasets or high-dimensional spaces, gradient

descent can exhibit slow convergence, making it computationally expensive and

time-consuming.

o Saddle Points: In high-dimensional spaces, the presence of saddle points can

cause the gradient of the cost function to become zero, resulting in a plateau where

gradient descent fails to move towards a minimum.

To address these challenges, researchers have developed various modifications of the

gradient descent algorithm, such as adaptive learning rate methods, momentum-based

approaches, and second-order techniques. Additionally, selecting appropriate

regularization methods, model architectures, and hyperparameters can significantly

enhance the performance of the gradient descent algorithm.

10. References

• https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9603742

• SGDLibrary: For stochastic gradient descent algorithms

• https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0012475&ty

pe=printable

