r
Li.e! r? e!F . - Scim
s oo Scilab case study project on a |

Design and Analysis of an Audio Equalizer

Vishesh Vinod Munghate

Visvesvaraya National Institute of Technology Nagpur
Digital Signal Processing

August 28, 2024
Abstract

The objective of this case study is to develop a comprehensive understanding of digital signal
processing within a computational environment. This study involves the detailed analysis of
digital audio signals using a logic-driven approach grounded in mathematical principles. The
primary focus is on analyzing audio signals in both the time and frequency domains,
ultimately leading to the creation of a Scilab-based graphical user interface (GUI) for an
audio equalizer. This equalizer is designed to perform key operations such as reading and
playing audio files, visualizing signals in time and frequency domains, and applying various

filters to manipulate the audio signal.

1. Introduction

In the field of digital signal processing, it’s important to understand how audio signals can
be analyzed and adjusted. This case study explores the process of converting an analog
audio signal into a digital one, allowing for detailed examination in both time and
frequency domains. Using the concepts of Fourier transform and discrete Fourier
transform, the project focuses on creating a Scilab-based graphical user interface (GUI)
that functions as an audio equalizer. This equalizer can read and play audio files, as well
as apply different filters to change the sound. By combining theory with practical
application, this study aims to provide a clear understanding of how digital signal

processing techniques can be used in everyday situations.

2. Problem Statement

The problem at hand involves the analysis of a given audio file through digital signal
processing techniques. The goal is to examine the audio file in both the time and
frequency domains and develop a Scilab-based graphical user interface (GUI) that
functions as an audio equalizer. The equalizer should be capable of performing the
following tasks:

1. Reading the audio file.

2. Playing the audio file.

3. Displaying the input signal in both the time and frequency domains.

4. Designing five filters: one low-pass filter, one high-pass filter, and three band-pass

filters.

5. Applying these filters to the input signal.

6. Displaying the filtered signal in the frequency domain.

This problem requires a comprehensive understanding of digital signal processing
principles and the ability to implement them effectively within a computational

environment.

3. Basic concepts related to the topic

The concepts of Fourier transform and discrete Fourier transform are fundamental to
understanding digital signal processing. A signal can be defined as the variability of any
physical value that can be represented as a function of one or more variables. In this context,
we focus on one-dimensional time functions. In the real world, time functions typically exist
in the continuous domain. However, with advancements in computer science, analog signal
processing has become less common. It is now more cost-effective to develop, implement,
and test signal processing algorithms in the digital realm than to design and create analog

(electronic) devices.

From Continuous to Discrete Domain: To digitally represent an analog signal, it must be
converted into the discrete-time domain and quantized. The Nyquist-Shannon sampling
theorem serves as the connection between continuous-time signals and discrete-time signals.
This theorem addresses how to sample a continuous-time signal to obtain a discrete-time

signal, from which the original continuous-time signal can be accurately reconstructed.

According to the theorem, to achieve a properly sampled discrete-time signal, the sampling

frequency must be at least twice the highest frequency present in the original signal.

If a function f(x) is periodic with a period T and integrable (i.e., its integral is finite) over the

interval [x0, x0 + T] it can be expressed as a series.
fl@) =% + oLy (an - cos (3372) + by - sin (7 z))

where

ay = 2 ﬂ::?JrTf(:z:) cos (22z) dx
b, = 2 ;O°+T f(x) - sin (2z) dx

Discrete Fourier Transform:

The Fourier series is considered the precursor to the Fourier Transform. For digital signals,

the Discrete Fourier Transform (DFT) is described by the following formula:

X(k) = § Ynsp a(n) -e 7

Fourier transformation is reversible, allowing us to return to the time domain using the

formula:
z(n) = g:BIX(k) el ¥ hn

The DFT converts a finite sequence of equally spaced samples of a function into a sequence
of equally spaced samples of the Discrete-Time Fourier Transform (DTFT), which is a
complex-valued function of frequency. The sampling interval of the DTFT is the reciprocal of

the duration of the input sequence.

4. Flowchart

Plot audio in Filter Audio

frequency file
domain

Read Audio Plot Audio in
File time domain

Store audio
file

Play audio file

5. Software/Hardware used

Operating System: Windows 10 Home

Scilab Version: 2024.1.0

Toolbox Used: None

Hardware: MacBook Air 2019 with Windows 10 Home installed via Boot Camp

6. Procedure of execution

No dependency files have been used. All three “.sce’ files are independent of each other.
They are as follows:

1. main.sce: GUI-based equalizer.

2. reverse.sce: Reverses the chosen audio file and plays the reversed audio.

3. fft.sce: Plots the frequency domain of the chosen audio file using the FFT function and

the "plot2d” function.

Steps to Execute ‘main.sce” Code:
1. Click on the “Read File” button and select the audio file of your choice.
2. Click on the “Play” button to play the selected audio file.
3. Click on the “input (time domain)” button to view the amplitude vs. time graph of the
input signal.
4. Click on the “input (frequency domain)” button to view the amplitude vs. frequency

graph of the input signal.

5. Click on the “Low pass” button to hear the audio file after it has been processed
through a low-pass filter that cuts off frequencies above 2000 Hz.

6. Click on the “bandpass1” button to hear the audio file after it has been processed
through a band-pass filter allowing frequencies in the range 2000 Hz to 3000 Hz.

7. Click on the “bandpass2” button to hear the audio file after it has been processed
through a band-pass filter allowing frequencies in the range 3000 Hz to 4000 Hz.

8. Click on the “bandpass3” button to hear the audio file after it has been processed
through a band-pass filter allowing frequencies in the range 4000 Hz to 5000 Hz.

9. Click on the “highpass” button to hear the audio file after it has been processed through
a high-pass filter that cuts off frequencies below 5000 Hz.

10. After applying any of the above filters, click on the “output (frequency domain)”

button to see the amplitude vs. frequency plot of the filtered signal.

Steps to Execute ‘reverse.sce’ Code:

1. Open the file ‘reverse.sce” from the Scilab window.

2. After the code has opened in Scilab Notes, click on the Run or Play button to execute
the code.

3. A window will prompt you to select an audio file.

4. After selecting the audio file, you will hear the original audio first, followed by the
reversed audio after a short delay. Additionally, two graphs will appear: the top graph
displays the amplitude vs. time of the input signal, and the bottom graph shows the

amplitude vs. time of the reversed input signal.

Steps to Execute “fft.sce’ Code:

1. Open the file “fft.sce’ from Scilab.

2. After the code has opened in Scilab Notes, click on the Run or Play button to execute
the code.

3. A window will prompt you to select an audio file.

4. After selecting the audio file, you can view the frequency plot of the input signal. The
plot is generated by plotting the absolute values of the fast Fourier transform (FFT) of the

input signal.

7. Result

A detailed description of the results from the simulation. Use contours and/or plots

wherever necessary. Inference(s) drawn from the results also need to be mentioned in

detail.

GUI

Time frequency domain (input signal)

=
FEEEIPERFEEIEE G
sce (G sce) - Schiotes
s [equaizer.sce |3 e (X
finalequalizer.sce |3 reversesce (M
1
3|¢
4
5|handles
&|nandles rhandles
7|nandles. £,

-
B @ onr 00/ @Eh|!
soe (C soe) - Scihotes
e (X equalizer.sce M se (X
findlequalizer sce | reverse.sce X
1
3¢
5{handles
é|handles - +handles
7|handles

®

é

Amplitudes

Low pass

a

&
b
\

EEE

ELE

| ?
fabe Yoe Vizkdty Meame
11| Geaphich... ocal
i [{1 Doube| ghabal]
1 i . e
Phy Ix Struct] local
nput{tm...
input{fre....
bo-42:01
output{fr... Bisass
b
g3
highpass
| Merws tens , »
) Data import in Salab 6.1

Data import in Scilab 6.1

& wizard has been added in the new version to facitate the impor
of data coming from . it & .csv fles
> importgui

1t provides an interface on the cnvRaad function to faciltate the

L
ale Type visbiity Memory
1x1| Graphich... local 2
Read File i Doubie| global 5
IHNIT 44ie304” Dobe| gebal 2
Play 1] Struct baal| 340
b
mput{tm...
inputfre...
za
output{fr...
Low pass bandpassi bandpass2 bandpass3 highpass
Lo gy ey oy e
Bl T T T T
w00 5008 108 18000 i
Time —
News faad >

e Data import in Scilab 6.1
Data import in Scilab 6.1

/A wizard has been added in the new version to faclitate the mport
of data coming from .txt & .csv fles
> mportgu

Tt provides an interface on the coviiead function to fackitate the
enftry of arguments such as separator, decmal, conversion, header,

w b e

=) shandles

[[] Case sensitve [] Regular ex

Frequency domain(input signal)

+
2>
fae Type Wbty Memory
0.000 Il Graphic h. |)OCU. 216
Read Fle | {1 Dowle goba| 8
4410404 Double gobal 216
S Py 1 ix1 Struct local| _ 34.0M
o007
input{tm...
0.008 4
. nput{fre...
_é 0005 o 1 e
} outputifr. g
£ o004
0003+
ooaz -4
Low pass bandpassl bandpass2 bandpass3 highpass
o 2000 4000 e000 8000 10000 12000 4000 16000 18000 20000
y .
| Newws Tesd 2e>
@ Data import in Scisb 6.1 3

Filtered signal frequency plot

Data import in Scilab 6.1

A wizard has been added n the new verson to fackiate the mport
of data coming from .txt & cov fles
> mportgul

It pravides an interface on the cxyRlead function to facitate the
entry of arguments such as separator, decmal, conversion, header,

z ACO@®ES.
sce) - SciNotes
sce X equalzer.sce |} sce M
fingiequalizer ace M reverse.sce
3|t . 501,
7 - £, . i
. . .

-
v

[] Case sensitive] Reguiar ex...

M © Type here to search

i | ¥ |9
fiter.sce 3 frsce
equakzer2sce (5
shandles

Amplitudee

3804 4

25004 -

20044

15004

7 # % Variabls Browser AN
Name Value Type Visbiity Memory
B | 11| Graphich,..| local| 2161
fiteredaudo | 1e4255614] Double] goball M.0M
& 441404 Dodble global 2161
hendes | 1x1 Struct locall 34.0M
Read Fie o]
.
Py
nput(tim...
input{fre..
output(fr...
N
Pax
L2
4
bandpassl bandpass3
it

2000 4000 6000 EBO0O0 10000

Frequensy

12000 14000

18000

18000 20000

{11t provides an nterface on the cuRiaag function to facittate the
entry of arguments such as separator, deomal, conversion, header

19:39

e -
- @ e 15-03-2020)

Original and reversed input signal in time domain

File Edit Control Applications ?

r
zE A DO Y% 282K e® o
Fis Brawzer 2 2 % Scila61.0Console | == T T TTERm R . 28
= ERdB S0 A00@E% |0 2|5 |
B serspishepoamens| & vieblty Memory
e == reverss sca (CUserswishe Desidopreverse sce) - Schiotes E i e
reverse.sce [amemiears ae (58] nea- (S8 amadear ns 58], crn (S0 Mar.crn (5L #00.oen I8 54 il 340N
| Documents beall 340M
& .. i baal 2151
B Audacity File Tools Edit 7 B —
i My Music B AR TS @ |
3 vaP‘cLlrs 4 | [originaj
- My videos < a Graphic window number
¥ in‘mimznﬁ € |e= 1
Sce 7 i (]
is_exm_pad480.Jog = e
s _err_pid6604.log i ol 5
10
11 e
12
T T T
000 5405 18068 15008 2e08
.
A
a
§ the import
litate the
- jion, header
[] Case sensitive [] Reguar ex... : J
- 0259
~
M © Type here to search n . G ENG
Plot of i tsi lin f d ' (i fft
function)
[4
File Edit Control Applications ? =
ZERA0D0O|v &2 S X ed i A
| File Browser 7 7 % Scisb10Conscie e : = : : — LY
EsE®E DD REL DD XK @ e
B seshisheDocuments\ - | & " " Visibiity Memary
; e 1Mlsce (C:WsershvisheDeskioplif sce) - Schlotes _ 8 %l e
fme reverse.sce (M) eouskrerzsce M) sce (M equsitersce 3 .sce (M| fitersce [fsce [X bl locall_€8.1M
S oaments 1 b bal 218
4 i[eze: e ol 34.0M
) Audadty 12| |
-l My Music
#-{5 My Pctures B
il [My Videos File Tools Edit ?
-8 Visual Studio 2013 s
ace BDIROR|T Y P |
hs_esr_pid4880.Jog Graphic window rumber 0 A
hs_err_pd6604.J0g 5
20000
33 D00
30 000 -1
25000
— i \
20 DOO -1 Newrs fead TR
<@ Data importin Sclab 6.1 w5
15 000 |]
Data import in Scilab 6.1
10 00O
A wizard has been added in the new version to fadlitate the import
of data coming from . txt & .cov fles
§ DOO -2 mportgu
It provides an interface on the (vRead function to faciitate the
o entry of arguments such as separator, decmal, conversion, header
0#00 5a05 1608 1 5e08 2e08

[] Case sensitve [] Regular ex...

0300

M © Type here to search n € E @ AW G NG s o020

8. References

1. Oppenheim, A. V., & Schafer, R. W. (Year). Discrete-Time Signal Processing.
Publisher.

2. Roy, N. (2020). Audio Signal Processing. Retrieved from
[GitHub](https://www.github.com/neelabhro/Audio-Signal-Processing). Accessed
May 4, 2020.

3. Chaguaro Aldaz, E. D. (n.d.). Digital Signal Processing Filtering Algorithm - Audio
Equalization Using MATLAB. Retrieved from [Semantic
Scholar](https://pdfs.semanticscholar.org/b367/c0375672e83a57ec9ee7c2e3cffa569bc
6¢3.pdf).

