Least square fit of a line/polynomial to input/output data

Prashant Dave

Chemical Engg., Indian Institute of Technology Bombay

Jan, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

Prashant Dave Least square fit

・ロト ・回ト ・ヨト ・ヨト

æ

• Scilab is free.

・ロン ・雪と ・雨と

æ

- Scilab is free.
- Matrix/loops syntax is same as for Matlab.

▲□→ < □→</p>

문 문 문

- Scilab is free.
- Matrix/loops syntax is same as for Matlab.
- Scilab provides all basic and many advanced tools.

A ►

- Scilab is free.
- Matrix/loops syntax is same as for Matlab.
- Scilab provides all basic and many advanced tools.
- Today: best fit: line and polynomial : reglin command

Linear fit

Given *n* samples of (x, y) pairs: x_i and y_i for i = 1, ..., n, we expect following equation is satisfied

$$y_i = a_1 x_i + a_0$$
 for $i = 1, ..., n$ (1)

▲□→ < □→</p>

for some constants a_1 and a_0 .

Linear fit

Given *n* samples of (x, y) pairs:

 x_i and y_i for $i = 1, \ldots, n$, we expect following equation is satisfied

$$y_i = a_1 x_i + a_0$$
 for $i = 1, ..., n$ (1)

for some constants a_1 and a_0 .

- x: independent variable (exactly known),
- y: dependent variable (some error in measuring it)

 x_i and y_i fall on some line with slope a_1 and 'y-intercept'= a_0 . The 'line fit' problem:

Find these constants a_1 and a_0 .

'Best' fit?

Best fit

The true relationship is $y_i = a_{0a} + a_{1a}x_i$, but due to noise (for example in measurements), the available x_i, y_i pairs will not satisfy the equation exactly.

A ■

Best fit

The true relationship is $y_i = a_{0a} + a_{1a}x_i$, but due to noise (for example in measurements), the available x_i, y_i pairs will not satisfy the equation exactly. Least-square-fit problem: Given *n* samples of (x_i, y_i) pairs,

Best fit

The true relationship is $y_i = a_{0a} + a_{1a}x_i$, but due to noise (for example in measurements), the available x_i , y_i pairs will not satisfy the equation exactly.

- Least-square-fit problem:
- Given *n* samples of (x_i, y_i) pairs,

find constants a_1 and a_0 such that the 'total square error'

$$\sum_{i=1}^{n} (y_i - a_1 x_i - a_0)^2$$
 (2)

is least.

Scilab Tool: reglin

[a1,a0,sig] = reglin(x,y)

- x: $1 \times n$ vector (for *n* data points)
- y: $1 \times n$ vector (for *n* data points)
- a1: slope, a0: intercept
- sig: standard deviation of fit error: lower is "better"

Straight line fit example

Generate data using known (actual) values of a0 and a1. Add noise to dependent variable.

Using noisy data, estimate a0 and a1.

- True data generation: y = 5 + 2x for x = 0: 10.
- 2 Noise addition: y = y + e where e is normally distributed noise with mean 0 and standard deviation 2.
- Least squares fit: [a1, a0, sig] = reglin(x, y).
- O Plot: (xi,yi) pairs, true (noise free) line, fitted line

Generate a vector of length n from a normal distribution with mean a and standard deviation b.

▲ □ ► < □ ►</p>

문 문 문

Generate a vector of length n from a normal distribution with mean a and standard deviation b.

rand('seed',10): get repeatable random numbers by initializing seed.

A 1

æ

Generate a vector of length n from a normal distribution with mean a and standard deviation b.

- rand('seed',10): get repeatable random numbers by initializing seed.
- **2** rand('normal'): generate from a normal distribution.

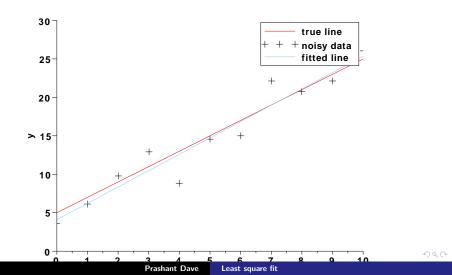
Generate a vector of length n from a normal distribution with mean a and standard deviation b.

- rand('seed',10): get repeatable random numbers by initializing seed.
- I rand('normal'): generate from a normal distribution.
- rand(x): generate a vector of same length as x.

Generate a vector of length n from a normal distribution with mean a and standard deviation b.

- rand('seed',10): get repeatable random numbers by initializing seed.
- I rand('normal'): generate from a normal distribution.
- rand(x): generate a vector of same length as x.
- **(**) a+b*rand(x): generate with mean a and standard deviation b.

Plots for example



Suppose we expect y_i satisfies the following equation:

$$y_i = a_2 x_i^2 + a_1 x_i + a_0$$

● ▶ < ミ ▶

Suppose we expect y_i satisfies the following equation:

$$y_i = a_2 x_i^2 + a_1 x_i + a_0$$

Points (x_i, y_i) are sitting on a parabola.

Suppose we expect y_i satisfies the following equation:

$$y_i = a_2 x_i^2 + a_1 x_i + a_0$$

Points (x_i, y_i) are sitting on a parabola. Problem (more generally):

Suppose we expect y_i satisfies the following equation:

$$y_i = a_2 x_i^2 + a_1 x_i + a_0$$

Points (x_i, y_i) are sitting on a parabola. Problem (more generally): Given *n* samples of (x_i, y_i) pairs and some choice of degree *d*.

$$y_i = a_d x_i^d + a_{d-1} x_i^{d-1} + \dots + a_1 x_i + a_0$$

Suppose we expect y_i satisfies the following equation:

$$y_i = a_2 x_i^2 + a_1 x_i + a_0$$

Points (x_i, y_i) are sitting on a parabola. Problem (more generally): Given *n* samples of (x_i, y_i) pairs and some choice of degree *d*.

$$y_i = a_d x_i^d + a_{d-1} x_i^{d-1} + \dots + a_1 x_i + a_0$$

Find constants $a_d, \ldots a_1$ and a_0 such that the 'total square error'

$$\sum_{i=1}^{n} (a_d x_i^d + a_{d-1} x_i^{d-1} + \dots + a_1 x_i + a_0 - y_i)^2$$
(3)

is least.

Still a linear regression problem

The unknowns a_i enter the problem linearly.

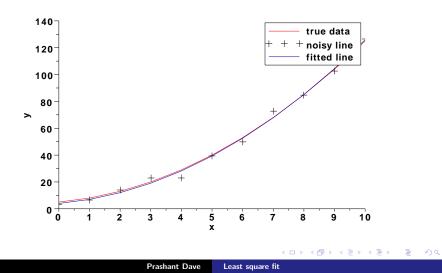
▲ □ ► < □ ►</p>

э.

Still a linear regression problem

The unknowns a_i enter the problem linearly. (i.e. a_i 's are not getting squared, or multiplied to each other.) [slopes, intercept] = reglin(X,y) where $X = [x; x^2]$: a matrix with two regressors (one in each row) y: a row vector with same number of columns as X. slopes: the coefficients a1,a2 intercept: the coefficient a0 sig : standard deviation of the residual.

Second order fit example



More than one independent variables

Suppose y depends on independent variables x_1 , x_2 , etc.

$$y_i = a_0 + a_1 x_{1i} + a_2 x_{2i} + \dots + a_p x_{pi}$$

A multiple linear regression problem (coefficients a_i still appear linearly)

More than one independent variables

Suppose y depends on independent variables x_1 , x_2 , etc.

$$y_i = a_0 + a_1 x_{1i} + a_2 x_{2i} + \dots + a_p x_{pi}$$

A multiple linear regression problem (coefficients a_i still appear linearly)

[slopes, intercept] = reglin(X, y)

where X and y are matrix/vector with same number of columns.

More than one independent variables

Suppose y depends on independent variables x_1 , x_2 , etc.

$$y_i = a_0 + a_1 x_{1i} + a_2 x_{2i} + \dots + a_p x_{pi}$$

A multiple linear regression problem (coefficients a_i still appear linearly)

[slopes,intercept]=reglin(X,y)

where X and y are matrix/vector with same number of columns. (but X has many rows.) Components in slopes = number of rows of X

(number of independent variables.)

Nonlinear Least Squares

The parameters to be estimated appear non-linearly in the model: y = f(x)Example, $y_i = a/(b + x_i)$

・ 同・ ・ ヨ・

Nonlinear Least Squares

The parameters to be estimated appear non-linearly in the model: y = f(x)Example, $y_i = a/(b + x_i)$

- Want to choose parameters so as to minimize $\sum_{i=1}^{n} (y_i f(x_i))^2$.
- Analytical solution usually not available.
- Use a numerical optimization technique.
- Scilab functions: Isqrsolve, leastsq (front end to optim function)

Thank You

Prashant Dave Least square fit

▲口> ▲圖> ▲注> ▲注>

æ