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Experiment: 1

To plot the phase portrait of
systems having stable and
unstable nodes.

Scilab code Solution 1.01 Lab01

//Lab. 01: To plot the phase portrait of systems
having stable and unstable nodes.

//scilab — 5.5.0
// Operating System : Windows 7, 32—Dbit

clc;
clear all;
clf;

//System transfer function
s=poly (0, 's’);
g=1/(s"2+3%s+2) ;

//Draw pole zero map of the system
plzr(g);
title(’Pole—zero map of the system with real stable
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eigen values’, fontsize ’,3)

//Convert the given transfer function into state
space form
sys=tf2ss(g);

//Plot of system phase trajectory
sys.c=[1,0;0,1];
sys.d=[0 0]7;

t=0:0.2:10;
al=size(t);
u=zeros (al(1),a1(2));
figure
for i=-2.0:0.5:2;
for j=-2:0.5:2;
yl=csim(u,t,sys,[i,j]’);
plot(y1(1,:),y1(2,:));
end
end

set(gca(),”grid” ,[0.3 0.3])

title(’Phase portrait of the system with stable node
", fontsize ’,3)

xlabel ('x1(t)’, fontsize’,2)

ylabel (’x2(t)’, fontsize ’,2)

f=get (" current_figure”) //Current figure handle

f.background=8

//System transfer function

s=poly (0, 's’);

g=1/(s"2-3%s+2) ;

// Draw pole zero map of the system

figure;

plzr(g);

title(’Pole—zero map of the system with real
unstable eigen values’, fontsize’,3)

f=get (" current_figure”) //Current figure handle

f.background=8
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//Convert the given transfer function into state
space form
sys=tf2ss(g);

//Plot of system phase trajectory
sys.c=[1,0;0,1]1;
sys.d=[0 0]’;

al=size(t);
u=zeros (al1(1),a1(2));
figure
for i=-2.0:0.5:2;
for j=-2:0.5:2;
yl=csim(u,t,sys,[i,j]°);
plot(y1(1,:),y1(2,:));
end
end
set(gca(),”grid” ,[0.3 0.31)
f=get (" current_figure”) //Current figure handle
f.background=8
zoom_rect ([-5,-5,5,5])
title(’Phase portrait of the system with unstable
node’, "fontsize ’,3)
xlabel ('x1(t)’, fontsize ’,2)
ylabel ('x2(t)’, fontsize ’,2)




Phase partrait of the system with stable node
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Figure 1.1: Lab01



Phase portrait of the system with unstable node
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Figure 1.2: Lab01
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Experiment: 2

To plot the phase portrait of
systems having stable and
unstable focus.

Scilab code Solution 2.1 Lab02

//Lab. 02: To plot the phase portrait of systems
having stable and unstable focus point.

//scilab — 5.5.0
// Operating System : Windows 7, 32—Dbit

clc;
clear all;
clf;

//System transfer function
s=poly (0, 's’);
g=1/(s"2+s+1);

// Draw pole zero map of the system

plzr(g);
title(’Pole—zero map of the system with stable
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underdamped eigen values’, fontsize’,3)
//Convert the given transfer function into state
space form
sys=tf2ss(g);

//Plot of system phase trajectory
sys.c=[1,0;0,1];
sys.d=[0 0]7;

t=0:0.2:10;
al=size(t);
u=zeros(al(1l),a1(2));
figure
for i=-2.0:0.5:2;
for j=-2:0.5:2;
yl=csim(u,t,sys,[i,j]’);
plot(y1(1l,:),y1(2,:));
end
end
set(gca(),”grid” ,[0.3 0.3])
f=get (" current_figure”) //Current figure handle
f.background=8
title(’Phase portrait of the system with stable
focus’, fontsize ’,3)
xlabel ('x1(t)’, fontsize’,2)
ylabel (’x2(t)’, fontsize ’,2)

//System transfer function
s=poly (0, ’s’);
g=1/(s"2-s+1);

//Convert the given transfer function into state
space form
sys=tf2ss(g);

// Draw pole zero map of the system
figure;

plzr(g);
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f=get (" current_figure”) //Current figure handle

f.background=38

title(’Pole—zero map of the system with negatively
damped eigen values’, fontsize’,3)

//Plot of system phase trajectory

sys.c=[1,0;0,1];

sys.d=[0 0]’;

al=size(t);
u=zeros (al(1),al1(2));
figure
for i=-2.0:0.5:2;
for j=-2:0.5:2;
yl=csim(u,t,sys,[i,j]°);
plot(y1(1,:),y1(2,:));
end
end
set(gca(),”grid” ,[0.3 0.31)
f=get (" current_figure”) //Current figure handle
f.background=8
zoom_rect ([-5,-5,5,5])
title(’Phase portrait of the system with unstable
focus ', ’fontsize’,3)
xlabel ('x1(t)’, fontsize ’,2)
ylabel ('x2(t)’, fontsize ’,2)

13



¥2(f)

XM

Phase portralt of the system with stable facus

2 0 oz o4
X

Figure 2.1: Lab02

Phase partrait of the system with unstable focus

Figure 2.2: Lab02
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Experiment: 3

To plot the phase portrait of
systems having vortex point.

Scilab code Solution 3.01 Lab03

//Lab. 03: To plot the phase portrait of systems
having vortex point.

//scilab 5.5.0
// Operating System : Windows 7, 32—Dbit

clc;
clear all;
clf;

//System transfer function
s=poly (0, s ’);
g=1/(s"2+4) ;

// Draw pole zero map of the system
plzr(g);

title(’Pole—zero map of the system with critically

)

damped eigen values’, ’fontsize’,3)
//Convert the given transfer function into state
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space form
sys=tf2ss(g);

//Plot of system phase trajectory
sys.c=[1,0;0,1];
sys.d=[0 0]7;

t=0:0.2:10;
al=size(t);
u=zeros (al1(1),a1(2));
figure
for i=-2.0:0.5:2;
for j=-2:0.5:2;
yl=csim(u,t,sys,[i,j]°);
plot(y1(1,:),y1(2,:));
end
end
set(gca(),”grid” ,[0.3 0.31)
f=get (" current_figure”) //Current figure handle
f.background=8
title(’Phase portrait of the system with vortex
point ', "fontsize ’,3)
xlabel ('x1(t)’, fontsize’,2)
ylabel ('x2(t)’, fontsize ’,2)
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Figure 3.1: Lab03
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Phase portrait of the system with vartex point
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Figure 3.2: Lab03
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Experiment: 4

To plot the phase portrait of
systems having saddle point.

Scilab code Solution 4.01 Lab04

//Lab. 04: To plot the Phase portrait of systems
having saddle point.

//scilab 5.5.0
// Operating System : Windows 7, 32—Dbit

clc;
clear all;
clf;

//System transfer function

s=poly (0, s ’);

g=1/(s"2+1%s-2) ;

//Convert the given transfer function into state
space form

sys=tf2ss(g);

// Draw pole zero map of the system
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plzr (sys);

title(’Pole—zero map of the system with real

Y

and unstable eigen values’, ' fontsize’,3)
//Plot of system phase trajectory
sys.c=[1,0;0,1];
sys.d=[0 0]7;

t=0:0.2:5;
al=size(t);
u=zeros (al(1l),a1(2));
figure;
for i=-2.0:0.5:2;

for j=-2:0.5:2;
yl=csim(u,t,sys,[i,j]°);
plot(y1(1,:),y1(2,:));
end
end
set(gca(),”grid” ,[0.3 0.31)

stable

f=get (" current_figure”) //Current figure handle

f.background=8
zoom_rect([-3,-3,3,3])

title(’Phase portrait of the system with saddle

point ’, "fontsize ’,3)
xlabel ('x1(t)’, fontsize ’,2)
ylabel ('x2(t)’, fontsize ’,2)
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Phase portrait of the system with saddle point
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Figure 4.1: Lab04
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Phase portrait of the system with saddle point
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Figure 4.2: Lab04
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Experiment: 5

To demonstrate limit cycles for
vander pol’s equation.

This code can be downloaded from the website wwww.scilab.in

23



Figure 5.1: Lab05
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Experiment: 6

To demonstrate the effect of
the static nonlinearities.

This code can be downloaded from the website wwww.scilab.in
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Figure 6.1: Lab06

Figure 6.2: Lab06
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Experiment: 7

To demonstrate the stability of
the system using Describing
function.

Scilab code Solution 7.01 Lab07

//Lab. 08: To check the stability of the system
using Describing Functions.

//scilab — 5.5.0
// Operating System : Windows 7, 32—Dbit

clc;
clear all;

// Frequency Bounds
wmin=1;

wmax=100;
fmin=wmin/2/%pi;

fmax=wmax/2/%pi;

//System Model
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s=poly (0, ’s’);
gl=syslin(’c’,10/(0.5%s73+1.5%xs"2+s))

//Nyquist Plot

nyquist (gl,fmin, fmax)

// Plot of Describing Function of Relay with
Deadzone Nonlinearity

x=1:0.5:10;

n=(2/%pi)*(asin(1l ./x)+(1 ./x) .* sqrt(1-(1 ./x)
.72)) 5

nl=-1 ./n;

z=size(nl);

plot2d(nl,zeros(1,z(2)),2)

h=legend ([’DF Contour’; ’System Contour’])

28



Imih{ZimE)

2.5

1.5

0.5 4

Myquist plot

-0.159

——

DF Contour

System Contour

174

159

15.9

RefhiZimfi

Figure 7.1: Lab07
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Experiment: 8

To demonstrate the stability of
the system using Lyapunov
equation.

Scilab code Solution 8.01 Lab08

//Lab. 08: To check the stability of the system
using Lyapunov equation.

//scilab — 5.5.0
// Operating System : Windows 7, 32—Dbit

clc;
clear all;

//System model

a=[0 1 0;0 0 1;-2 -3 -2];
q=-eye (3,3);

p=lyap(a,q, ’'c’);

// For a stable system matrix p should be positive
definite for

30
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//which all the principle minors or all eigen values
of the matrix p should be positive
eig_val=spec(p);
m=length(eig_val);
stable=0;
for i=1:m;
if real(eig_val(i))>0 then
stable=stable+1;
end
end
if stable==m then
disp(’The system is asymptotically stable’)
else
disp(’The system is unstable or critically
stable ")
end
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Experiment: 9

Stabilization of double
integrator system using
variable structure control.

This code can be downloaded from the website wwww.scilab.in
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Figure 9.1: Lab09
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Experiment: 10

Design the exact feedback
linearizing controller for the
non linear system.

This code can be downloaded from the website wwww.scilab.in
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Figure 10.1: Lab10
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Experiment: 11

To design sliding mode
controller for a linear system.

This code can be downloaded from the website wwww.scilab.in
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Figure 11.1: Labl1
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Figure 11.2: Labl1
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Experiment: 12

To demonstrate model
reference adaptive control
system.

This code can be downloaded from the website wwww.scilab.in
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