Scilab Manual for Signals and Systems by Prof Manisha Joshi Electronics Engineering VESIT¹

> Solutions provided by Nandan Hegde Electronics Engineering V.E.S.I.T/Mumbai

> > May 2, 2024

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes written in it can be downloaded from the "Migrated Labs" section at the website http://scilab.in

Contents

Li	List of Scilab Solutions	
1	To express sum of two complex exponentials as a single sinusoid	5
2	Perform linear convolution sum	9
3	Convolution integral of finite duration signals	12
4	Convolution sum of finite duration sequences	15
5	Frequency Response of Ideal Low pass Filter X (iW) = 1	18

List of Experiments

Solution 1.1	To express sum of two complex exponentials as a	
	single sinusoid	5
Solution 2.1	Perform linear convolution sum	Ć
Solution 3.1	convolution integral of finite duration signals	12
Solution 4.1	convolution sum of finite duration sequences	15
Solution 5.1	Frequency Response of Ideal Low pass Filter	18

List of Figures

1.1	To express sum of two complex exponentials as a single sinusoid To express sum of two complex exponentials as a single sinusoid	6 7
2.1 2.2	Perform linear convolution sum	10 11
3.1 3.2	convolution integral of finite duration signals	13 14
4.1 4.2	convolution sum of finite duration sequences	16 17
5.1 5.2	Frequency Response of Ideal Low pass Filter Frequency Response of Ideal Low pass Filter	19 20

To express sum of two complex exponentials as a single sinusoid

Scilab code Solution 1.1 To express sum of two complex exponentials as a single sinusoid

Figure 1.1: To express sum of two complex exponentials as a single sinusoid

Figure 1.2: To express sum of two complex exponentials as a single sinusoid

xtitle('Full wave rectified sinusoid', 'time t',' Magnitude');

Perform linear convolution sum

Scilab code Solution 2.1 Perform linear convolution sum

```
1 // To Perform linear convolution sum
2 //scilab 5.4.1 ;64 bit (windows 8)
3 clear;
4 close;
5 clc;
6 h = [0,0,1,1,1,0,0];
7 \text{ N1} = -2:4;
8 x = [0,0,0.5,2,0,0,0];
9 N2 = -2:4;
10 y = convol(x,h);
11 for i = 1:length(y)
12 if (y(i) \le 0.0001)
13
       y(i) = 0;
14
     end
15 end
16 N = -4:8;
17 subplot (3,1,1)
18 a=gca();
19 plot2d3('gnn',N1,h)
20 xtitle('Impulse Response', 'n', 'h[n]');
21 a.thickness = 2;
```


Figure 2.1: Perform linear convolution sum

```
22 subplot(3,1,2)
23 a=gca();
24 plot2d3('gnn',N2,x)
25 xtitle('Input Response','n','x[n]');
26 a.thickness = 2;
27 subplot(3,1,3)
28 a=gca();
29 plot2d3('gnn',N,y)
30 xtitle('Output Response','n','y[n]');
31 a.thickness = 2;
```


Figure 2.2: Perform linear convolution sum

Convolution integral of finite duration signals

Scilab code Solution 3.1 convolution integral of finite duration signals

```
1 //Convolution Integral of fintie duration signals
2 //scilab 5.4.1 ;64 bit (windows 8)
3 clear;
4 close;
5 clc;
6 T = 10;
7 x = ones(1,T); //Input Response
8 \text{ for } t = 1:2*T
     h(t) = t-1; //Impulse Response
10 \, \text{end}
11 N1 = 0: length(x) - 1;
12 N2 = 0: length(h) -1;
13 y = convol(x,h);
14 N = 0: length(x) + length(h) - 2;
15 subplot (3,1,1)
16 a=gca();
17 a.x_location="origin";
18 plot2d(N2,h)
19 xtitle('Impulse Response', 't', 'h(t)');
```


Figure 3.1: convolution integral of finite duration signals

```
20 a.thickness = 2;
21 subplot(3,1,2)
22 a=gca();
23 plot2d(N1,x)
24 xtitle('Input Response','t','x(t)');
25 a.thickness = 2;
26 subplot(3,1,3)
27 a=gca();
28 plot2d(N,y)
29 xtitle('Output Response','t','y(t)');
30 a.thickness = 2;
```


Figure 3.2: convolution integral of finite duration signals

Convolution sum of finite duration sequences

Scilab code Solution 4.1 convolution sum of finite duration sequences

```
1 // Convolution Sum of finite duration sequences
2 //scilab 5.4.1 ;64 bit (windows 8)
3 clear;
4 close;
5 clc;
6 x = ones(1,5);
7 \text{ N1 = 0:length(x)-1;}
8 Alpha = 1.4; // alpha > 1
9 	 for n = 1:7
10 h(n) = (Alpha^(n-1))*1;
11 end
12 N2 =0:length(h)-1;
13 y = convol(x,h);
14 N = 0: length(x) + length(h) - 2;
15 subplot (3,1,1)
16 a=gca();
17 plot2d3('gnn', N2, h)
18 xtitle('Impulse Response', 'n', 'h[n]');
19 a.thickness = 2;
```


Figure 4.1: convolution sum of finite duration sequences

```
20     subplot(3,1,2)
21     a=gca();
22     plot2d3('gnn',N1,x)
23     xtitle('Input Response','n','x[n]');
24     a.thickness = 2;
25     subplot(3,1,3)
26     a=gca();
27     plot2d3('gnn',N,y)
28     xtitle('Output Response','n','y[n]');
29     a.thickness = 2;
```


Figure 4.2: convolution sum of finite duration sequences

Frequency Response of Ideal Low pass Filter X (jW) = 1

Scilab code Solution 5.1 Frequency Response of Ideal Low pass Filter

Figure 5.1: Frequency Response of Ideal Low pass Filter

Figure 5.2: Frequency Response of Ideal Low pass Filter

```
15 subplot (2,1,1)
16 \quad a = gca();
17 a.y_location = "origin";
18 a.x_location = "origin";
19 plot(W, HW);
20 xtitle('Frequency Response of Filter H(jW)')
21 xlabel('Frequency (f) in Hz');
22 ylabel('Amplitude');
23 subplot(2,1,2)
24 \ a = gca();
25 a.y_location = "origin";
26 \text{ a.x\_location} = " \text{ origin}";
27 plot(t,ht);
28 xtitle('Impulse Response of Filter h(t)')
29 xlabel('Samples');
30 ylabel('Amplitude');
```