Scilab Manual for
Digital Communication
by Prof Kalawati Patil

Others
Thakur College of Engineering & Technology?

Solutions provided by
Mr Sanjay Rawat
Others
Mumbai University /Thakur College of Engg. & Tech.

February 12, 2026

Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”"Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions 3
1 Study and generate different Line Codes - 1 (Unipolar and
Polar RZ and NRZ) 4
2 Study and generate different Line Codes - 2(Bipolar, Manchestre
and Quaternary) 10
3 Study Carrier Modulation Techniques using BASK, BPSK
and BFSK 17
4 Study and generate OQPSK waveforms 23
5 Study and generate NON OQPSK waveforms 27
6 Study and generate 8-QAM waveforms 30
7 Study and generate MSK waveforms (PSK Approach) 33
8 Study and generate MSK waveforms (FSK Approach) 36
9 To calculate all Codewords, error detection and correction
capability of given LBC 40
10 To encode Cyclic code and calculate Syndrome for the given
generator polynomial 45
11 To encode and decode Hamming code 51

List of Experiments

Solution 1.1

Solution 1.2

Solution 1.3

Solution 1.4
Solution 2.1

Solution 2.2

Solution 2.3
Solution 2.4

Solution 3.1
Solution 3.2
Solution 3.3
Solution 4.1
Solution 5.1
Solution 6.1
Solution 7.1

Solution 8.1
Solution 9.1

Solution 10.1
Solution 11.1

Study and generate different Line Codes 1 Unipolar
NRZ
Study and generate different Line Codes 1 Polar
NRZ
Study and generate different Line Codes 1 Unipolar

RZ . ..

Study and generate different Line Codes 1 Polar RZ
Study and generate different Line Codes 2 Bipolar

NRZ
Study and generate different Line Codes 2 Bipolar
RZ . . .

Study and generate different Line Codes 2 Manchestre

Study and generate different Line Codes 2 Quater-
nary
Study Carrier Modulation Techniques using BASK
Study Carrier Modulation Techniques using BFSK
Study Carrier Modulation Techniques using BPSK
Study and generate offset QPSK waveforms

Study and generate Non offset QPSK waveforms .
Study and generate 8QAM waveforms
Study and generate MSK waveforms with PSK Ap-
proach
Study and generate MSK waveforms with FSK Ap-
proach
Linear Block Codes
CyclicCodes
Hamming Codes

oo

10

12
13

15
17
18
20
23
27
30

33

36
40
45
o1

© 00 N & Ot

10

12

Experiment: 1

Study and generate different
Line Codes - 1 (Unipolar and
Polar RZ and NRZ)

Scilab code Solution 1.1 Study and generate different Line Codes 1 Unipo-
lar NRZ

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate different Line
Codes — 1(Unipolar NRZ)

clear;

close;

clc;

clf;

x=[1 01 0 0 1 1 0]//Data Stream

/ /NRZ

13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36

z=0; //Starting value on x axis
for i=1:length(x)

t=[z:1:2+11//Set of x cordinates for current bit
duration

subplot(2,1,1)

a=gca();

a.data_bounds=[0,-1.5;1length(x) ,1.5]

a.grid=[1,-1]

title(’Data’)

plot(t,x(i))//Plot current data bit

subplot(2,1,2)
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]
title ('NRZ’)
if (x(i)==0)

plot(t,0)//Plot 0 for current bit duration
else

plot(t,1)//Plot 1 for current bit duration
end

z=z+1//Increament starting value on x axis by
one bit period
end

Scilab code Solution 1.2 Study and generate different Line Codes 1 Polar
NRZ

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and

64 bit versions)
4 //Program Title: Study and generate different Line
Codes — 1(Polar NRZ)

clear;

close;

clc;

x=[1 01 0 01 1 0]//Data Stream

© 00 = O Ot

10

11 //Polar NRZ

12 z=0;//Starting value on x axis
13 for i=1:length(x)

14 t=[z:1:2+1]1//Set of x cordinates for current bit
duration

15 subplot(2,1,1)

16 a=gca();

17 a.data_bounds=[0,-1.5;1length(x) ,1.5]

18 a.grid=[1,-1]

19 title (’'Data’)

20 plot(t,x(i))//Plot current data bit

21

22 subplot (2,1,2)

23 a=gca();

24 a.data_bounds=[0,-1.5;1length(x) ,1.5]

25 a.grid=[1,-1]

26 title (' Polar NRZ’)

27 if (x(1)==0)

28 plot(t,-1)//Plot —1 for current bit
duration

29 else

30 plot(t,1)//Plot 1 for current bit
duration

31 end

32

33 z=z+1//Increament starting value on x axis by

one bit period
34 end

© 00 = O Ot

10

12
13
14

15
16
17
18
19
20
21
22

23
24
25

Scilab code Solution 1.3 Study and generate different Line Codes 1 Unipo-
lar RZ

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate different Line
Codes — 1(Unipolar RZ)

clear;

close;

clc;

x=[1 01 0 01 1 0]//Data Stream

//RZ

z=0; //Starting value on x axis

for i=1:length(x)

t=[z:z+1] //Set of x cordinates for current bit
duration

subplot (2,1,1)
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]
title ('Data’)
plot(t,x(i))//Plot current data bit

t=[z:0.5:2+0.5] //Set of x cordinates for first
half bit duration
subplot (2,1,2)
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]

26
27
28
29

30
31

32
33

34
35
36

37

© 00 J & Ot

10

a.grid=[1,-1]
title(’Polar RZ’)
if (x(1)==0)
plot(t,0)//Plot 0 for first half bit
duration
else
plot(t,1)//Plot 1 for first half bit
duration
end
t=[z+0.5:0.5:z+1] //Set of x cordinates for
second half bit duration
plot(t,0)//Plot 0 for second half bit duration

z=z+1; //Increament starting value on x axis by
one bit period
end

Scilab code Solution 1.4 Study and generate different Line Codes 1 Polar
RZ

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3. 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate different Line
Codes — 1(Polar RZ)

clear;

close;

clc;

x=[1 01 0 0 1 1 0]//Data Stream

//Polar RZ

12
13
14

15
16
17
18
19
20
21
22

23
24
25
26
27
28
29

30
31

32
33
34

35
36
37

38

z=0; //Starting value on x axis
for i=1:length(x)

end

t=[z:z+1] //Set of x cordinates for current bit

duration
subplot (2,1,1)
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]
title(’Data’)
plot(t,x(i))//Plot current data bit

t=[z:0.5:2+0.5] //Set of x cordinates for first

half bit duration
subplot(2,1,2)
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]
title (' Polar RZ’)

if (x(i)==0)
plot(t,-1)//Plot —1 for first half bit
duration
else
plot(t,1)//Plot 1 for first half bit
duration
end

t=[z+0.5:0.5:2z+1] //Set of x cordinates for

second half bit duration

plot(t,0)//Plot 0 for second half bit duration

z=z+1; //Increament starting value on x axis by

one bit period

© 00 N & Ot

10

12

Experiment: 2

Study and generate different
Line Codes - 2(Bipolar,
Manchestre and Quaternary)

Scilab code Solution 2.1 Study and generate different Line Codes 2 Bipo-
lar NRZ

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate different Line
Codes — 2(Bipolar NRZ)

clear;
close;
clc;

x=[1 01 0 0 1 1 0]//Data stream

//Bipolar NRZ

10

13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34

35
36
37

38
39
40
41
42

43

z=0; //Starting point of plot on x—axis
ob=-1;//Initial o/p bit value

for

end

i=1:1:1length(x)

subplot(2,1,1)//Data Plot

a=gca();

a.data_bounds=[0,-1.5;1length(x) ,1.5]

a.grid=[1,-1]
title(’Data’)

t=[z:1:2z+1]1//Plot range on x—axis

period)
plot (t,x(i))

subplot (2,1,2)//Bipolar Bipolar NRZ

a=gca();

(One bit

a.data_bounds=[0,-1.5;1length(x) ,1.5]

a.grid=[1,-1]

title (' Bipolar NRZ’)

if (x(i)==0)

t=[z:1:2z+1]1//Plot range on x—axis (One

bit period)

plot(t,0)//Plot zero

else

t=[z:1:2z+1]1//Plot range on x—axis (One

bit period)

ob=-ob//Invert previous o/p bit value

plot(t,ob)// Plot o/p bit

end

z=z+1//Move starting point of plot on x—axis by

one bit period

11

© 00 = O Ot

10

12
13
14
15
16
17
18
19
20
21
22
23
24

25
26

Scilab code Solution 2.2 Study and generate different Line Codes 2 Bipo-
lar RZ

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate different Line
Codes — 2(Bipolar RZ)

clear;

close;

clc;

x=[1 01 0 0 1 1 0]//Data stream

//Bipolar RZ

z=0; //Starting point of plot on x—axis
ob=-1;//Initial o/p bit value

for i=1:1:1ength(x)

subplot (2,1,1)//Data Plot
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]
title(’Data’)

t=[z:1:2z+1]1//Plot range on x—axis (One bit

period)
plot (t,x(i))

12

27
28
29
30
31
32
33
34

35
36
37

38
39
40

41
42
43
44

45

subplot (2,1,2)//Bipolar Bipolar RZ

a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]

title (' Bipolar RZ7)

if (x(1)==0)
t=[z:1:2z+1]1//Plot range on x—axis (One
bit period)
plot(t,0)//Plot zero
else
t=[z:0.5:2+0.5] //Plot range on x—axis (
first half bit period)
ob=-ob//Invert previous o/p bit value
plot(t,ob)// Plot o/p bit
t=[z+0.5:0.5:z+1] //Plot range on x—axis
(second half bit period)
plot (t,0)
end

z=z+1//Move starting point of plot on x—axis by
one bit period

end

Scilab code Solution 2.3 Study and generate different Line Codes 2 Manchestre

//Note:

Details of scilab software version and OS

version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP

SP3,

32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate different Line
Codes — 2(Manchestre)

13

© o O

10

12
13
14

15
16
17
18
19
20
21
22

23
24
25
26
27
28
29

30

31

32
33

34

35

clear;

close;

clc;

x=[1 0100 1 1 0]//Data Stream

//Manchester

z=0;//Starting value on x axis

for i=1:1length(x)

t=[z:1:2z+1]1//Plot range on x—axis (One bit
period)

subplot(2,1,1)
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]
title ('Data’)
plot(t,x(i))//Plot current data bit

t=[z:0.5:2+0.5] //Plot range on x—axis (first
half bit period)
subplot (2,1,2)
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]
title ("Manchester ')
if (x(i)==0)
plot(t,1)//Plot 1 for first half bit
duration
t=[z+0.5:0.5:z+1] //Plot range on x—axis
(second half bit period)
plot(t,-1)//Plot 1 for second half bit
duration
else
plot(t,-1)//Plot —1 for first half bit
duration
t=[z+0.5:0.5:2z+1] //Plot range on x—axis
(second half bit period)
plot(t,1)//Plot 1 for second half bit
duration

14

36
37

38

© 00 J & Ot

10

12
13
14
15
16
17
18
19
20

21
22

end
z=z+1; //Increament starting value on x axis by
one bit period
end

Scilab code Solution 2.4 Study and generate different Line Codes 2 Qua-
ternary

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate different Line
Codes — 2(Quaternary)

clear;
close;

0] //Data Stream
1 1]//Data Stream
a=1;
//Polar NRZ
z=0;//Starting value on x axis
for i=1:2:1ength (x)
subplot(2,1,1)
g=gca();
g.data_bounds=[0,-1.5;length(x) ,1.5]
g.grid=[1,-1]
title (’Data’)
t=[z:1:2z+1]1//Plot range on x—axis (One bit
period for current bit)
plot(t,x(i))//Plot curent bit
t=[z+1:1:2z+2] //Plot range on x—axis (One bit

15

period for next bit)

23 plot(t,x(i+1))//Plot next bit

24

25

26 subplot(2,1,2)

27 g=gca();

28 g.data_bounds=[0,-2;length(x) ,2]

29 g.grid=[1,-1]

30 title (’2B1Q (Quaternary)’)

31 t=[z:2:2z+2]//Plot range on x—-axis (two bit
periods for current and next bit)

32 if ((x(1)==0)&(x(i+1)==0))//Check current and
next bit combination

33 plot(t,-3/2xa)//if 00 then plot —3/2xa

34 elseif ((x(i)==0)&(x(i+1)==1))//Check current
and next bit combination

35 plot(t,-1/2*a)//if 01 then plot —1/2xa

36 elseif ((x(i)==1)&(x(i+1)==0))//Check current
and next bit combination

37 plot(t,1/2xa)//if 10 then plot 1/2xa

38 elseif ((x(i)==1)&(x(i+1)==1))//Check current
and next bit combination

39 plot(t,3/2%a)//if 11 then plot 3/2xa

40 end

41 z=z+2//Increament starting value on x axis by

two bits period
42 end

16

© 0o N O Ot

10

12
13

Experiment: 3

Study Carrier Modulation
Techniques using BASK, BPSK
and BFSK

Scilab code Solution 3.1 Study Carrier Modulation Techniques using BASK

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3., 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study Carrier Modulation Techniques
using BASK

clear;

clc;

close;

t = 0:0.01:1; // One symbol period

f=2; // Carrier cycles per symbol period
I1=[(0,0,1,1,0,1,0,1]; //data stream

// Generation of ASK Waveform

17

14
15
16
17
18
19

20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35

36
37
38
39
40
41

z=0;

for n=1:1length(I)

end

subplot (3,1,1) //Carrier Plot

a=gca();

a.data_bounds=[0,-1.5;1length(I),1.5]; //set
the boundary values for the x—y
coordinates .

a.x_location="bottom” ;

a.grid=[1,-1];

title(’Carrier ’)

plot ((t+z) ,sin (2*%pi*xf*t));

subplot (3,1,2) //Data Plot

a=gca();

a.data_bounds=[0,-1.5;1length(I),1.5]; //set
the boundary values for the x—y
coordinates .

a.x_location="bottom” ;

a.grid=[1,-1];

title(’Data’)

plot ((t+z),I(n));

subplot (3,1,3) //ASK Waveform Plot
a=gca();
a.data_bounds=[0,-1.5;1length(I),1.5]; //set
the boundary values for the x—y
coordinates .
a.x_location="bottom” ;
a.grid=[1,-1];
title ("ASK Waveform ’)
plot ((t+z),(sin(2x%pi*xf*xt))*(I(n)));
z=z+1;

18

© 00 J & Ot

10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28

Scilab code Solution 3.2 Study Carrier Modulation Techniques using BFSK

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study Carrier Modulation Techniques
using BFSK

clear;

clc;

close;

t = 0:0.01:1; // One symbol period

f1=2; // Carrier cycles per symbol period
f2=4; // Carrier cycles per symbol period
1=(0,0,1,1,0,1,0,1]; //data stream

//Generation of FSK Waveform

z=0;
for n=1:length(I)
subplot (4,1,1) //Carrier 1 Plot
a=gca();
a.data_bounds=[0,-1.5;1length(I),1.5]; //set
the boundary values for the x—y
coordinates.
a.x_location="bottom” ;
a.grid=[1,-1];
title(' Carrier 17)
plot ((t+z) ,sin (2*%pi*xfi1x*t));

subplot (4,1,2) //Carrier 2 Plot
a=gca();
a.data_bounds=[0,-1.5;1length(I),1.5]; //set
the boundary values for the x—y
coordinates.

19

29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54

1

a.x_location="bottom”;
a.grid=[1,-1];
title(’Carrier 27)

plot ((t+z) ,sin (2*%pi*xf2x*t));

subplot (4,1,3) //Data Plot

a=gca();

a.data_bounds=[0,-1.5;1length(I),1.5]; //set
the boundary values for the x—y
coordinates .
a.x_location="bottom” ;
a.grid=[1,-1];
title (’Data’)
plot ((t+z),I(n));

subplot (4,1,4) //FSK Waveform Plot

a=gca();

a.data_bounds=[0,-1.5;1length(I),1.5]; //set
the boundary values for the x—y
coordinates .
a.x_location="bottom” ;
a.grid=[1,-1];
title ('FSK Waveform)
if (I(n)==0)
plot ((t+z) ,sin (2*%pixfl1x*t));
elseif (I(mn)==1)
plot ((t+z) ,sin (2*%pi*xf2x*t));

end
z=z+1;
end

Scilab code Solution 3.3 Study Carrier Modulation Techniques using BPSK

//Note: Details
version used:

of scilab

software version and OS

20

© 00 J & Ot

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27

28
29
30
31
32

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP

SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and

64 bit versions)

//Program Title: Study Carrier Modulation Techniques

using BPSK

clear;

clc;

close;

t = 0:0.01:1; // One symbol period

f=2; // Carrier cycles per symbol period
1=[0,0,1,1,0,1,0,1]; //data stream

//Generation of PSK Waveform

z=0;
for n=1:1length(I)
subplot (3,1,1) //Carrier Plot
a=gca();

a.data_bounds=[0,-1.5;1length(I),1.5];

the boundary values for the x—y
coordinates.
a.x_location="bottom” ;
a.grid=[1,-1];
title(’Carrier ’)
plot ((t+z) ,sin (2*%pi*xf*t));

subplot (3,1,2) //Data Plot
a=gca();

a.data_bounds=[0,-1.5;1length(I),1.5];

the boundary values for the x—y
coordinates .
a.x_location="bottom” ;
a.grid=[1,-17;
title (’Data’)
plot ((t+z),I(n));

21

//set

//set

33
34
35

36
37
38
39
40
41
42
43
44
45

subplot (3,1,3) //PSK Waveform Plot
a=gca();

a.data_bounds=[0,-1.5;1length(I) ,1.5];

the boundary values for the x—y
coordinates .
a.x_location="bottom” ;
a.grid=[1,-1];
title ('PSK Waveform ’)
if (I(n)==1)
plot ((t+z),sin (2*%pi*fxt));
elseif (I(mn)==0)

//set

plot ((t+z),sin ((2*x%pixfxt)+%pi));

end
z=z+1;
end

22

© 00 N O Ot

10

11
12
13

Experiment: 4

Study and generate OQPSK
waveforms

Scilab code Solution 4.1 Study and generate offset QPSK waveforms

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate Offset QPSK (
OQPSK) waveforms

clear;

clc;

close;

T=2;// One symbol period

t = 0:0.01:T/2;//Sampling Matrix for half symbol
period

f=1; // Carrier frequency (cycles per bit period)

//I=[0 01 1001 1]; //data stream

I=[0 0 01 101 1]; //data stream giving dibit
equivalent to 0,1,2,3

23

14
15
16
17
18
19
20
21
22
23
24
25
26

27

28
29
30
31
32
33
34
35
36
37

38

39
40

41
42
43
44
45

//I=[1 100011 1]; //data stream

//Polar NRZ Converter
I_PNRZ = [] //empty matrix for Polar NRZ data
for n = 1:length(I)
if I(n)== 0 then
I_PNRZ [I_PNRZ, -1]
else
I_PNRZ

[I_PNRZ, 1]

end
end

I_Carrier sqrt (2/T)*cos (2x%pixf*t); //In phase
carrier
Q_Carrier sqrt (2/T)*sin (2*%pi*xf*t); //Quadrature

phase carrier

// Generation of OQPSK Waveform
z=0; //Starting point of plot on x—axis
subplot(3,1,1) //I-PSK Plot
a=gca();
a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];
a.x_location="origin”;
a.grid=[1,1];
title (’I—-Data and I-PSK’)
plot ((t+z),I_Carrier*xI_PNRZ(1));//
[_Carrier * First bit (I Balance
Modulator)
plot ((t+z) ,I_PNRZ(1),’r’);//First bit
Data for reference
//xpause (2000000) ;//Delay for observation
z=z+1; //Move starting point of plot on x—axis by 1
bit (half symbol) period
for n=2:1:1length (I_PNRZ)
if modulo(n,2)==0 then//Check for odd—even bit
I_Bit=I_PNRZ(n-1)//set I bit as previous bit
Q_Bit=I_PNRZ(n)//set Q bit as current bit
else

24

46 I_Bit=I_PNRZ(n)//set I bit as current bit

47 Q_Bit=I_PNRZ(n-1)//set Q bit as previous bit

48 end

49

50 subplot(3,1,1) //I-PSK Plot

51 a=gca();

52 a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];

53 a.x_location="origin”;

54 a.grid=[1,1];

55 title(’I -Data and I -PSK’)

56 plot ((t+z),I_Carrier*I_Bit);//I_Carrier
* Even bit (I Balance Modulator)

57 plot ((t+z),I_Bit, 'r’);//1 Data for
reference

58

59 subplot (3,1,2) //Q-PSK Plot

60 a=gca();

61 a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];

62 a.x_location="origin”;

63 a.grid=[1,1];

64 title ('Q-Data and Q-PSK’)

65 plot ((t+z),Q_Carrier*Q_Bit);//Q _Carrier
x Odd bit (Q Balance Modulator)

66 plot ((t+z),Q_Bit, 'r’);//Q Data for
reference

67

68 subplot (3,1,3) //QPSK Plot

69 a=gca();

70 a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];

71 a.x_location="Origin”;

72 a.grid=[1,1];

73 title ('OQPSK and I—Carrier)

74 plot ((t+z) ,(I_Carrier*I_Bit)+(Q_Carrierx
Q_Bit));//I-PSK + Q-PSK (Adder)

75 plot ((t+z),I_Carrier,’'r’);//1 Carrier

for reference
76 z=z+1;//Move starting point of plot on x—axis by 1
bit (half symbol) period

25

77 //xpause (2000000);//Delay for observation
78 end

26

© 00 N O Ot

10

11
12

13

Experiment: 5

Study and generate NON
OQPSK waveforms

Scilab code Solution 5.1 Study and generate Non offset QPSK waveforms

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate Non—-Offset QPSK
waveforms

clear;

clc;

close;

T=2; //One Symbol period

t = 0:0.01:T; // Sampling Matrix for one symbol
period

f=1; // Carrier frequency (cycles per bit period)

I=[0 001101 1]; //data stream giving dibit
equivalent to 0,1,2.,3

//I=[01 10100 0]; //data stream Simon Hykin Ex

27

14
15
16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40

41

42
43
44
45
46

I_Carrier

Q_Carrier

6.1

//Polar NRZ Converter
I_PNRZ = [] //empty matrix for Polar NRZ data

for n = 1:length(I)

if I(n)== 0 then

I_PNRZ = [I_PNRZ, -1]
else

I_PNRZ = [I_PNRZ, 1]
end

end

carrier

phase carrier

// Generation of QPSK Waveform

z=0;//Starting point of plot on x—axis
for n=1:2:1ength (I_PNRZ)

I_Bit=I_PNRZ(n)

Q_Bit=I_PNRZ(n+1)

subplot (3,1,1) //I-PSK Plot
a=gca();

a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];

a.x_location="origin”;
a.grid=[1,1];
title(’I-Data and I-PSK’)

plot ((t+z),I_Carrier*I_Bit);//I_Carrier
* Even bit (I Balance Modulator)
plot ((t+z),I_Bit,’'r’);//I Data for

reference

subplot (3,1,2) //Q-PSK Plot
a=gca();

a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];

a.x_location="origin”;

28

sqrt (2/T)*cos (2x%pixf*t); // In phase

sqrt (2/T)*sin (2*%pixf*t); // Quadrature

47
48
49

50

51
52
53
54
55
56
57
58

59

60

61

z=z+2; //Move starting point of plot on x—axis by 2

end

a.grid=[1,1];

title ('Q-Data and Q-PSK’)

plot ((t+z),Q_

* Odd bit

plot ((t+z),Q_

reference

Carrier*Q_Bit);//Q_Carrier

(Q Balance Modulator)
Bit,'r’);//Q Data for

subplot (3,1,3) //QPSK Plot

bits

a=gca();

a.data_bounds=[0,

-1.5;length (I_PNRZ) ,1.5];

a.x_location="origin”;

a.grid=[1,1];

title ('QPSK and I—Carrier ’)

plot ((t+z) ,(I_Carrier*I_Bit)+(Q_Carrierx

Q_Bit));//I-PSK + Q-PSK (Adder)

plot ((t+z),I_

Carrier,’'r’);//1 Carrier

for reference

(1 symbol) period

29

© 00 g O U

10

11
12

13

Experiment: 6

Study and generate 8-QAM
waveforms

Scilab code Solution 6.1 Study and generate 8QAM waveforms

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate 8-QAM waveforms

clear;

clc;

close;

T=3; //One Symbol period

t = 0:0.01:T; // Sampling Matrix for one symbol
period

f=1/T; // Carrier frequency (cycles per bit period)

I=[0 0 0O0OO0O1 0100111001011 10111];
//data stream giving tribits equivalent to
0,1,2.3.4,5,6.7

30

14
15
16
17
18
19
20
21
22
23
24

25

26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48

//Polar NRZ Converter

I_PNRZ = [] //empty matrix for Polar NRZ data

for n = 1:length(I)
if I(n)== 0 then
I_PNRZ [I_PNRZ, -1]
else
I_PNRZ

[I_PNRZ, 1]
end
end

I_Carrier
carrier
Q_Carrier
phase carrier

// Generation of 8-QAM Waveform

z=0;//Starting point of plot on x—axis

for n=1:3:1length (I_PNRZ)
Q_Bit=I_PNRZ(n)//Set Q Bit Value
I_Bit=I_PNRZ(n+1)//Set I Bit Value
C_Bit=I_PNRZ(n+2)//Set C Bit Value

if C_Bit==-1 then //Set PAM, Product of C

with T or Q

QC=0.5*Q_Bit//Set half amplitude
IC=0.5%I_Bit//Set half amplitude

else
QC=Q_Bit//Set full amplitude
IC=I_Bit//Set full amplitude
end

subplot (3,1,1) //QC Plot
a=gca();

a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];

a.x_location="origin”;
a.grid=[1,1];
title ('Q-PAM’)

plot ((t+z),Q_Carrier*QC);//Q _Carrier * Q

31

sqrt (2/T)*cos (2*%pi*f*t); // In phase

sqrt (2/T)*sin (2*%pi*xf*t); // Quadrature

49
50
o1
52
53
54
55
56
o7

58
59
60
61
62
63
64
65
66

67

68

69

70

71
72

73

—PAM (Q Balance Modulator)
plot ((t+z),QC, 'r’);//QPAM Output

subplot (3,1,2) //IC Plot
a=gca();
a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];
a.x_location="origin”;
a.grid=[1,1];
title ('I-PAM’)
plot ((t+z),I_Carrier*IC);//I_Carrier x I
~PAM (I Balance Modulator)
plot ((t+z),IC, r’);//I-PAM Output

subplot (3,1,3) //8-QAM Plot
a=gca();
a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];
a.x_location="origin”;
a.grid=[1,1];
title ('8—QAM’)
plot ((t+z) ,(I_Carrier*IC)+(Q_Carrier=*QC)
);//1-PAM + Q-PAM (Adder)
plot ((t+z),I_Carrier,’'r’);//I Carrier
for reference
plot (((t/3)+z),Q_Bit, 'c’);//Q Bit for
reference
plot (((t/3)+1+z),I_Bit,’b’);//1 Bit for
reference
plot (((t/3)+2+z),C_Bit, 'm’);//C Bit for
reference

z=z+3; //Move starting point of plot on x—axis by 3
bits (1 symbol) period
end

32

© 0o O Ot

10

12
13

Experiment: 7

Study and generate MSK
waveforms (PSK Approach)

Scilab code Solution 7.1 Study and generate MSK waveforms with PSK
Approach

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate MSK waveforms (
PSK Approach)

clear;

clc;

close;

h=1/2;

T=1;// One symbol period

t = 0:0.01:T; // One symbol period vector

f=1; // Carrier cycles per symbol period "t”

//I=[01 01010 1]; //data stream in binary to
test worst case

33

14

15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43

44
45

I=[0 001 10 1 17;
equivalent to 0,1,2.,3

//PNRZ Converter ,
Signal)

I_PNRZ = [] //empty

for n =

if I(n)==

I_PNRZ =

else

I_PNRZ =

end
end

//Generation of MSK Waveform using PSK approach

theta=0;//Initial phase
z=0; //Starting point of

for n=1:1:1ength (I_PNRZ)

//data stream giving dibits

converts data to PNRZ (Bi—Polar

matrix for PNRZ data
1:1length(I)
0O then

[I_PNRZ,

[I_PNRZ,

in radians

plot on x—axis

subplot(3,1,1) //Data Plot

a=gca();

a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];
//set the boundary values for the x—y

coordinates.

a.x_location="origin”;

a.grid=[1,-1];
title(’Data’)

plot ((t+z),I_PNRZ(n));

subplot (3,1,2) //MSK Plot

a=gca();

a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];
//set the boundary values for the x—y

coordinates.

a.x_location="origin”;

a.grid=[1,-1];

34

46

47

48

49

50
o1

52
53
54
55
56

57

58
59

60

61
62

title ('MSK")

theta_change = theta + ((I_PNRZ(n))x*((

hpi*hxt)/T));//Phase variation over a
bit period

plot ((t+z) ,sqrt (2/T)*cos (2*%pi*xf*xt +
theta_change)); // MSK Plot

plot ((t+z) ,sqrt (2/T)*cos (2xY%pi*xfxt), 'r’)
; // Carrier for reference

subplot (3,1,3) // Plot for MSK Phase variation
wrt Carrier
a=gca();
a.x_location="bottom” ;
a.grid=[1,1];
title ('MSK Phase variation wrt Carrier ')
theta_degrees = theta_changex*(180/%pi);//
converts radians to degrees
plot ((t+z),theta_degrees);// plote phase
variation for a bit period

theta=theta_change(length (theta_change));//Stores

last value of phase to theta

z=z+1; //Move starting point of plot on x—axis by 1

bit period

//xpause (2000000) ; //Delay for observation

35

© 0o O Ot

10

12
13

Experiment: 8

Study and generate MSK
waveforms (FSK Approach)

Scilab code Solution 8.1 Study and generate MSK waveforms with FSK
Approach

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate MSK waveforms (
FSK Approach)

clear;

clc;

close;

h=1/2;

T=1;// One symbol period

t = 0:0.01:T; // One symbol period vector

f=1; // Carrier cycles per symbol period "t”

//I=[01 01010 1]; //data stream in binary to
test worst case

36

14

15
16

17
18
19
20
21
22
23
24
25
26
27
28

29

30

31

33
34
35
36

37
38
39
40
41
42
43

I=[0 001 10 1 17;
equivalent to 0,1,2.,3

//PNRZ Converter ,

//data stream giving dibits

converts data to PNRZ (Bi—Polar

Signal)
I_PNRZ = [] //empty matrix for PNRZ data
for n = 1:length(I)
if I(n)== 0 then
I_PNRZ = [I_PNRZ, -1]
else
I_PNRZ = [I_PNRZ, 1]
end
end

//Generation of MSK Waveform using FSK approach

bitchange=0;//Initial bit

sequence)

theta=0;//Initial phase state in radians

first bit of sequence)

theta_degrees=[0,0];//Initial
start value ,

(first element =
last value)

state

(before first bit of
(before

phase state in degrees
second element =

z=0;//Starting point of plot on x—axis

for n=1:1:1ength (I_PNRZ)

subplot (3,1,1) //Data Plot

a=gca();

a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];
//set the boundary values for the x—y

coordinates.

a.x_location="origin”;

a.grid=[1,-1];
title(’Data’)

plot ((t+z),I_PNRZ(n));

subplot (3,1,2) //MSK Plot

a=gca();

37

44

45
46
47
48

49

50

o1

52

53

54
55

56
o7
58
59
60
61
62
63

64

a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];
//set the boundary values for the x—y
coordinates .

a.x_location="origin”;

a.grid=[1,-1];

title ('MSK’)

fm = £ + (I_PNRZ(n)*(h/(2%T)));//Generating
two frequencies corresponding to

//binary 0 (—1
in PNRZ)and
binary 1 (1
in PNRZ)
// (0 —> fc — h
/2T)
// (1 —> fc + h
/2T)
plot ((t+z) ,sqrt(2/T)*cos (2*%pi*xfm*xt +
theta)); // MSK Plot
plot ((t+z) ,sqrt (2/T)*cos (2*%pi*xf*xt), 'r’)
; // Carrier for reference

subplot (3,1,3) // Plot for MSK Phase variation
wrt Carrier

a=gca();

a.x_location="bottom” ;

a.grid=[1,1];

title ('MSK Phase variation wrt Carrier ’)

bitchange=bitchange+I_PNRZ(n);//Bit State
value (cumulative)

theta = bitchangex*((%pi*h)/T);//Phase state
at the end of bit period, in radians

theta_degrees (2)=theta*180/%pi;//Phase state
at the end of bit period, in degrees
plot ([z n],theta_degrees);// plote phase

variation for a bit period

65 theta_degrees(l)=theta_degrees(2);//Copy end phase

value to start phase value for next cycle

38

66 z=z+1;//Move starting point of plot on x—-axis by 1
bit period

67 //xpause (2000000); //Delay for observation

68 end

39

© 00 O U o

10

12
13
14

Experiment: 9

To calculate all Codewords,
error detection and correction
capability of given LBC

Scilab code Solution 9.1 Linear Block Codes

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3., 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Linear Block Codes (7,4)

clc;
clear;

k = 4; //Information message length
n = 7; //Coded word length

P [110;011 ;11 1;1 0 1]//Parity Matrix
disp (P, "Parity Matrix P’)

40

15

16
17
18
19
20
21

22
23
24
25
26
27
28
29

30
31
32
33

34
35
36
37

38

39

40
41
42
43
44
45

G = [P eye(k,k)]//Generator Matrix to create code
word in P1P2P3D1D2D3D4 format
disp (G, "Generator Matrix G’)

H=[eye(n-k,n-k);P]1’//Parity Check Matrix
disp(H, "Parity Check Matrix H")

//AlIl_M = All 16 posibilities for Information
Message Matrix

1 [0 OO 0;0 00 1;0010;0011;

1;
1,
1

1 0;
1 0;
10

) b

b

= = O =

M
0
0
0

O O O
= = O~
= = O -

1_
1
0
1

)
= O
o O O
= O
= O

1
1
1

= e

)
)))]

// Calculate all 16 posibile codewords

CodedMat=A11_Mx*G;

CodedMat = modulo(CodedMat ,2);//Convert generated
code into binary

disp (CodedMat , 'Codewords Matrix ')

//Calculate Hamming Distances

HamDist=sum(CodedMat, 'c’) //Sum over the rows of
CodedMat (column of values)

disp(HamDist , '"Hamming Distances) ;

//Find Minimum non—zero Hamming Distance

[row,coll=find (HamDist==0);//find elements that are

Zero

HamDist (row,:)=[];//Remove all rows that are zero
replace by null)

MinHamDist=min (HamDist) //Find Minimum non—zero
Hamming Distance

disp(MinHamDist , 'Minimum Non—Zero Hamming Distance ’)

// Calculate Error Detection Capability
ErrDetCap=MinHamDist -1;
disp (ErrDetCap, "Error Detection Capability ’);

41

46
47
48
49
50
51

52
53

54
55
56

o7
58
59
60
61
62
63
64

65
66
67
68
69
70

71
72

73
74
75
76
7

// Calculate Error Correction Capability
ErrCorCap=(MinHamDist -1) /2;
disp (ErrCorCap, 'Error Correction Capability ') ;

//Generate random message
RandMessage=modulo (round (16*rand ()) ,16)+1//Get
random number between 1 to 16

M=A11_M(RandMessage ,:)//Select a random row from
Message Matrix All.M as Information Message
disp (M, "Information Message M’)

C = CodedMat (RandMessage,:)//Select a random row
from Coded Matrix CodedMat as Coded Message
disp(C, "Coded Message C’)

//Transmit random message
R=C//Create recieved code word

//Generate error at random bit position

ErrPos=modulo (round (8*rand()) ,8)//Get random number
between 0 to 7

if ErrPos==0 then
//Do nothing , as ’0’ means no error
else
if R(ErrPos)==0 then
R(ErrPos)=1//Invert bit at Erroneous Bit

Position
else
R(ErrPos)=0//Invert bit at Erroneous Bit
Position
end

end

disp(R, "Recieved Code word R’)

42

78 //Error Correction

79

80 S=R*H’//Find Syndrome Matrix

81 S = modulo(S,2);//Convert Syndrome Matrix into

binary
82 disp (S, Syndrome Matrix RxH(transpose)’)
83
8 if S==[0 0 0] then //[0 O 0] indicates no error
85 disp(R, "Recieved Code without error’)
86 disp(R(4:7), Recieved Information Message’)//
Extract and display Message from code word
87 else
88 //Find erroneous bit position
89 //Here we find colomn within H matrix with
pattern simmilar to Syndrome Matrix
90 //The position number of that colomn is
equivalent to erroneous bit position
91
92 ErrPos=1//Initiallize erroneous bit position
93 d=[H(:,ErrPos)]’//Transpose of first coloumn of
H matrix
94 // (Transpose is used to convert
colomn to row as syndrome is
in row format)
95
96 while ((d(1)<>5(1))1(d(2)<>5(2))1(d(3)<>5(3)
)) do //Check element wise inequallity
for any element (OR condition)
97 ErrPos=ErrPos+1//Increament erroneous
bit position (Point to next colomn)
98 d=[H(:,ErrPos)]’//Transpose of next
coloumn of H matrix
99 end
100
101 disp(ErrPos, "Erroneous Bit Position’)
102
103 //Error correction
104 if R(ErrPos)==0 then

43

105

106

107

108

109

110

111

112
113

end

else

end

R(ErrPos)=1//Invert bit at Erroneous
Bit Position
disp (R, "Recieved Code with error
corrected ’)
disp(R(4:7), Recieved Information
Message ') // Extract and display
Message from code word

R(ErrPos)=0//Invert bit at Erroneous Bit
Position
disp(R, "Recieved Code with error
corrected)
disp(R(4:7), Recieved Information
Message ’) //Extract and display
Message from code word

44

© 00 O U

10

12
13
14

Experiment: 10

To encode Cyclic code and
calculate Syndrome for the
given generator polynomial

Scilab code Solution 10.1 Cyclic Codes

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3., 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Cyclic Codes (7,4)

clc;

clear;

k = 4; //Information Message Length
n = 7; //Codeword Length

// Generator Polynomial

x=poly (0, 'x7);

GenPoly=1+x+x"3;

disp(GenPoly, "The Generator Polynomial’);

45

15
16
17
18

19
20
21
22
23
24

25
26

27
28
29
30

31

32
33

34

35

36

37

38

39
40

//Generating Random Message

//AIl_M = All 16 posibilities for Information
Message Matrix

1 [0 0O 0;000 1;0010;0011;

; 1, ;
1
1 .

)

1 0;
1 0;
1 0;

)

)

= = O =

1_M
10
0 0
10

O O O |
o)
= O -
O O O
= = O -
= O
= = O .
= O

1
1
1

[S =

]

)

RandMessage=modulo (round (16*rand ()) ,16)+1//Get
random number between 1 to 16

M=A11_M(RandMessage ,:)//Select a random row from
Message Matrix All.M as Information Message
disp (M, "Information Message M’)

//Message Polynomial

MesPoly=(M(1)*1) + (M(2)*(x~1)) + (M(3)*(x"2)) + (M

(4)*(x73));
disp (MesPoly, 'Message Polynomial u(x)’);

//Encoding

// Generating Codeword Polynomial

p=(x~(n-k))*(MesPoly);//Step 1 — multiply MesPoly by

x (n—k), [x"(n-k)*u(x)]

[RemPoly,ql=pdiv(p,GenPoly);//Step 2 — divide above

product by GenPoly, g(x)(Polynomial Division)
RemPoly=modulo (RemPoly ,2);//Convert Remainder
Polynomial to binary to get parity check
polynomial , b(x)
disp (RemPoly, 'Remainder Polynomial b(x)’);

CodePoly=RemPoly+(MesPoly*(x~(n-k)));//Step 3 — add

(x"(n—k)*u(x)) and b(x) to get Codeword
Polynomial

46

41
42
43
44
45

46
47
48
49
50
51

52
53

54
55
56

o7

58
59
60
61

62
63
64
65

66
67
68
69
70

disp (CodePoly, 'Codeword Polynomial c(x)’);

//Finding Coefficients of Codeword Polynomial
CodePolyCoeff=coeff (CodePoly);
//Removal of — signs from Coefficients of
Codeword Polynomial
for i=1:1length(CodePolyCoeff)
if (CodePolyCoeff (i)==-1) then
CodePolyCoeff (i)=1;
end
end
disp(CodePolyCoeff, Coefficients of Codeword
Polynomial 7) ;

//Generating 7 bit Codeword from Coefficients of
Codeword Polynomial

C=CodePolyCoeff;

if length(C)<7 then

C(1,7)=0;//Assigning a value outside arrey
dimension will automatically
//pad additional zeros to resize the
arrey / vector
end
disp(C, "Generated Codeword’) ;

//Transmition

R=C//Create recieved code word

//Generate error at random bit position
ErrPos=modulo (round (8*rand ()) ,8) //Get random
number between 0 to 7
//ErrPos=0 //for testing
if ErrPos==0 then
//Do nothing , as ’0’ means no error
else
if R(ErrPos)==0 then

47

71 R(ErrPos)=1//Invert bit at Erroneous Bit

Position

72 else

73 R(ErrPos)=0//Invert bit at Erroneous Bit
Position

74 end

75 end

76

77 //Reception and Decoding

78

79 disp(R, 'Recieved Code word R’)

80

81 //Received Polynomial

82 RecPoly=(R(1)x*1) + (R(2)*(x"1)) + (R(3)*(x"2)) + (R
(4)*(x~3)) + (R(B)*(x"4)) + (R(6)*(x"5)) + (R(7)
*(x76)) ;

83 disp(RecPoly, 'Received Polynomial u(x)’);

84

85 //Syndrome Polynomial

86 [SynPoly,ql=pdiv(RecPoly, GenPoly) ;

87 SynPoly=modulo (SynPoly,b2)

88 disp(SynPoly, Syndrome Polynomial)

89

90 //Finding Coefficients of Syndrome Polynomial

91 SynPolyCoeff=coeff (SynPoly) ;

92 //Removal of — signs from Coefficients of
Syndrome Polynomial

93 for i=1:length(SynPolyCoeff)

94 if (SynPolyCoeff(i)==-1) then

95 SynPolyCoeff (i)=1;

96 end

97 end

98 disp(SynPolyCoeff, Coefficients of Syndrome
Polynomial 7) ;

99

100 //Generating 3 bit Syndrome from Coefficients of

48

Syndrome Polynomial
101 if length(SynPolyCoeff)<3 then

102 SynPolyCoeff (1,3)=0;//Assigning a value outside
arrey dimension will automatically
103 //pad additional zeros to resize the
arrey / vector

104 end

105 disp(SynPolyCoeff , Syndrome’) ;

106

107

108

109 //Create H (Parity check matrix) as error
lookup table

110 P=1[110;0113;111;1 0 1]1//Parity
Matrix

111 H=[eye(n-k,n-k);P]1’//Parity Check Matrix

112 //disp (H, Parity Check Matrix H’) //for
testing

113

114 if SynPolyCoeff==[0 0 0] then //[0 O 0] indicates
no error

115 disp (R, "Recieved Code without error’)
116 disp(R(4:7), Recieved Information Message’)//
Extract and display Message from code word
117 else
118 //Find erroneous bit position
119 //Here we find colomn within H matrix with
pattern simmilar to Syndrome Matrix
120 //The position number of that colomn is
equivalent to erroneous bit position
121
122 ErrPos=1//Initiallize erroneous bit position
123 d=[H(:,ErrPos)]’//Transpose of first coloumn of
H matrix
124 //(Transpose is used to convert
colomn to row as syndrome is
in row format)
125

49

126 while ((d(1)<>SynPolyCoeff (1)) |(d(2)<>
SynPolyCoeff (2))](d(3)<>SynPolyCoeff (3)))
do //Check element wise inequallity for
any element (OR condition)
127 ErrPos=ErrPos+1//Increament erroneous
bit position (Point to next colomn)
128 d=[H(:,ErrPos)]’//Transpose of next
coloumn of H matrix
129 end
130
131 disp (ErrPos, "Erroneous Bit Position)
132
133 //Error correction
134 if R(ErrPos)==0 then
135 R(ErrPos)=1//Invert bit at Erroneous Bit
Position
136 else
137 R(ErrPos)=0//Invert bit at Erroneous Bit
Position
138 end
139 disp(R, "Recieved Code with error corrected ')
140 disp(R(4:7), Recieved Information Message’)
//Extract and display Message from code
word
141 end
142 disp (M, 'Information Message M that was sent ...)

50

© 00 g O U

10

12
13
14
15

Experiment: 11

To encode and decode
Hamming code

Scilab code Solution 11.1 Hamming Codes

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Hamming Codes (7,4)

clc;
clear;

k = 4; //Information message matrix length
n =7; //Coded word length

P=1[110;0113;111;1 0 1]//Parity Matrix
disp (P, "Parity Matrix P’)

G = [P eye(k,k)]//Generator Matrix to create code
word in PI1P2P3D1D2D3D4 format

51

16

17
18
19
20

21
22
23

24
25

26
27
28

29
30
31
32
33

34

35
36
37
38
39
40
41
42
43
44
45
46

G(:,[3 41)=G(:,[4 3])//Swap colomn 3 and 4 of G to
create code word in P1P2D1P3D2D3D4 format
disp (G, "Generator Matrix G’)

H=[eye(n-k,n-k);P]1’//Parity Check Matrix

H(:,[3 41)=H(:,[4 3])//Swap colomn 3 and 4 of H to
satisfy GH =0

disp(H, "Parity Check Matrix H’)

//disp (modulo(G«H’,2) ,’GH’) //Check if the condition
GH'=0 satisfy (for testing)

/M= [1 10 1]//Information Message Matrix for
testing

//Generate random message
//AlIl_M = All 16 posibilities for Information
Message Matrix
[0 OO 0;0 00 1;0010;0011;
0 1;0 1 00
0 1;1 1 051

b b

A11_M
010
100

1 1;
11

o O

1 1 1
0 0 0 ;
1100;1101;1110;1 11 1]
RandMessage=modulo (round (16*rand()) ,16)+1//Get
random number between 1 to 16
M=Al11_M(RandMessage,:)//Select a random row from 1

to 16 as Information Message

;0
;1

disp(M, "Information Message M)

C = MxG;//Generate code word
C modulo(C,2);//Convert generated code into binary
disp(C, 'Code word of (7,4) Hamming code MxG’)

R=C//Create recieved code word
//Generate error at random bit position
ErrPos=modulo (round (8xrand ()) ,8) //Get random number

52

47
48
49
50
51
52

53
o4

55
56
o7
58
59
60
61
62
63

64
65
66
67
68

69
70
71

72

73

74
75

between 0 to 7

if ErrPos==0 then
//Do nothing , as ’0’ means no error
else
if R(ErrPos)==0 then
R(ErrPos)=1//Invert bit at Erroneous Bit

Position
else
R(ErrPos)=0//Invert bit at Erroneous Bit
Position
end

end
disp(R, "Recieved Code word R’)
//Error Correction

S=R*H’ //Find Syndrome Matrix

S = modulo(S,2);//Convert Syndrome Matrix into
binary

disp (8, ’Syndrome Matrix R«xH(transpose)’)

if 8==[0 0 0] then //[0 O 0] indicates no error
disp (R, "Recieved Code without error’)
disp([R(3) R(5:7)], Recieved Information Message
") //Extract and display Message from code
word
else
//Find erroneous bit position
//Here we find colomn within H matrix with
pattern simmilar to Syndrome Matrix
//The position number of that colomn is
equivalent to erroneous bit position

ErrPos=1//Initiallize erroneous bit position

d=[H(:,ErrPos)]’//Transpose of first coloumn of
H matrix

53

76

7
78
79
80
81
82
83
84
85
86
87
88

89

90
91

92

93

94
95

//(Transpose is used to convert
colomn to row as syndrome is
in row format)

while ((d(1)<>5(1))1(d(2)<>5(2))1(d(3)<>5(3)
)) do //Check element wise inequallity
for any element (OR condition)
ErrPos=ErrPos+1//Increament erroneous
bit position (Point to next colomn)
d=[H(:,ErrPos)]’//Transpose of next
coloumn of H matrix
end

disp(ErrPos, "Erroneous Bit Position’)

//Error correction
if R(ErrPos)==0 then
R(ErrPos)=1//Invert bit at Erroneous
Bit Position
disp (R, "Recieved Code with error
corrected ’)
disp ([R(3) R(5:7)], Recieved
Information Message’) //Extract
and display Message from code
word
else
R(ErrPos)=0//Invert bit at Erroneous Bit
Position
disp (R, "Recieved Code with error
corrected ’)
disp([R(3) R(5:7)], Recieved Information
Message ') // Extract and display
Message from code word
end
end

o4

	
	Study and generate different Line Codes - 1 (Unipolar and Polar RZ and NRZ)
	Study and generate different Line Codes - 2(Bipolar, Manchestre and Quaternary)
	Study Carrier Modulation Techniques using BASK, BPSK and BFSK
	Study and generate OQPSK waveforms
	Study and generate NON OQPSK waveforms
	Study and generate 8-QAM waveforms
	Study and generate MSK waveforms (PSK Approach)
	Study and generate MSK waveforms (FSK Approach)
	To calculate all Codewords, error detection and correction capability of given LBC
	To encode Cyclic code and calculate Syndrome for the given generator polynomial
	To encode and decode Hamming code

