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Experiment: 1

Study and generate different
Line Codes - 1 (Unipolar and
Polar RZ and NRZ)

Scilab code Solution 1.1 Study and generate different Line Codes 1 Unipo-
lar NRZ

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine
Codes − 1( Un ipo l a r NRZ)

5

6 clear;

7 close;

8 clc;

9 clf;

10 x=[1 0 1 0 0 1 1 0] //Data Stream
11

12 //NRZ
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13 z=0; // S t a r t i n g va l u e on x a x i s
14 for i=1: length(x)

15

16 t=[z:1:z+1] // Set o f x c o r d i n a t e s f o r c u r r e n t b i t
du r a t i on

17 subplot (2,1,1)

18 a=gca();

19 a.data_bounds =[0, -1.5; length(x) ,1.5]

20 a.grid=[1,-1]

21 title( ’ Data ’ )
22 plot(t,x(i))// P lo t c u r r e n t data b i t
23

24 subplot (2,1,2)

25 a=gca();

26 a.data_bounds =[0, -1.5; length(x) ,1.5]

27 a.grid=[1,-1]

28 title( ’NRZ ’ )
29 if(x(i)==0)

30 plot(t,0) // P lo t 0 f o r c u r r e n t b i t du r a t i on
31 else

32 plot(t,1) // P lo t 1 f o r c u r r e n t b i t du r a t i on
33 end

34

35 z=z+1 // Increament s t a r t i n g va lu e on x a x i s by
one b i t p e r i o d

36 end

Scilab code Solution 1.2 Study and generate different Line Codes 1 Polar
NRZ

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
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64 b i t v e r s i o n s )
4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine

Codes − 1( Po la r NRZ)
5

6 clear;

7 close;

8 clc;

9 x=[1 0 1 0 0 1 1 0] //Data Stream
10

11 // Po la r NRZ
12 z=0; // S t a r t i n g va l u e on x a x i s
13 for i=1: length(x)

14 t=[z:1:z+1] // Set o f x c o r d i n a t e s f o r c u r r e n t b i t
du r a t i on

15 subplot (2,1,1)

16 a=gca();

17 a.data_bounds =[0, -1.5; length(x) ,1.5]

18 a.grid=[1,-1]

19 title( ’ Data ’ )
20 plot(t,x(i))// P lo t c u r r e n t data b i t
21

22 subplot (2,1,2)

23 a=gca();

24 a.data_bounds =[0, -1.5; length(x) ,1.5]

25 a.grid=[1,-1]

26 title( ’ Po l a r NRZ ’ )
27 if(x(i)==0)

28 plot(t,-1) // P lo t −1 f o r c u r r e n t b i t
du r a t i on

29 else

30 plot(t,1) // P lo t 1 f o r c u r r e n t b i t
du r a t i on

31 end

32

33 z=z+1 // Increament s t a r t i n g va lu e on x a x i s by
one b i t p e r i o d

34 end
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Scilab code Solution 1.3 Study and generate different Line Codes 1 Unipo-
lar RZ

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine
Codes − 1( Un ipo l a r RZ)

5

6 clear;

7 close;

8 clc;

9 x=[1 0 1 0 0 1 1 0] //Data Stream
10

11 //RZ
12 z=0; // S t a r t i n g va l u e on x a x i s
13 for i=1: length(x)

14 t=[z:z+1] // Set o f x c o r d i n a t e s f o r c u r r e n t b i t
du r a t i on

15 subplot (2,1,1)

16 a=gca();

17 a.data_bounds =[0, -1.5; length(x) ,1.5]

18 a.grid=[1,-1]

19 title( ’ Data ’ )
20 plot(t,x(i))// P lo t c u r r e n t data b i t
21

22 t=[z:0.5:z+0.5] // Set o f x c o r d i n a t e s f o r f i r s t
h a l f b i t du r a t i on

23 subplot (2,1,2)

24 a=gca();

25 a.data_bounds =[0, -1.5; length(x) ,1.5]

7



26 a.grid=[1,-1]

27 title( ’ Po l a r RZ ’ )
28 if(x(i)==0)

29 plot(t,0) // P lo t 0 f o r f i r s t h a l f b i t
du r a t i on

30 else

31 plot(t,1) // P lo t 1 f o r f i r s t h a l f b i t
du r a t i on

32 end

33 t=[z+0.5:0.5:z+1] // Set o f x c o r d i n a t e s f o r
second h a l f b i t du r a t i on

34 plot(t,0) // P lo t 0 f o r second h a l f b i t du r a t i on
35

36 z=z+1; // Increament s t a r t i n g va lu e on x a x i s by
one b i t p e r i o d

37 end

Scilab code Solution 1.4 Study and generate different Line Codes 1 Polar
RZ

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine
Codes − 1( Po la r RZ)

5

6 clear;

7 close;

8 clc;

9 x=[1 0 1 0 0 1 1 0] //Data Stream
10

11 // Po la r RZ
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12 z=0; // S t a r t i n g va l u e on x a x i s
13 for i=1: length(x)

14 t=[z:z+1] // Set o f x c o r d i n a t e s f o r c u r r e n t b i t
du r a t i on

15 subplot (2,1,1)

16 a=gca();

17 a.data_bounds =[0, -1.5; length(x) ,1.5]

18 a.grid=[1,-1]

19 title( ’ Data ’ )
20 plot(t,x(i))// P lo t c u r r e n t data b i t
21

22 t=[z:0.5:z+0.5] // Set o f x c o r d i n a t e s f o r f i r s t
h a l f b i t du r a t i on

23 subplot (2,1,2)

24 a=gca();

25 a.data_bounds =[0, -1.5; length(x) ,1.5]

26 a.grid=[1,-1]

27 title( ’ Po l a r RZ ’ )
28 if(x(i)==0)

29 plot(t,-1) // P lo t −1 f o r f i r s t h a l f b i t
du r a t i on

30 else

31 plot(t,1) // P lo t 1 f o r f i r s t h a l f b i t
du r a t i on

32 end

33

34 t=[z+0.5:0.5:z+1] // Set o f x c o r d i n a t e s f o r
second h a l f b i t du r a t i on

35 plot(t,0) // P lo t 0 f o r second h a l f b i t du r a t i on
36

37 z=z+1; // Increament s t a r t i n g va lu e on x a x i s by
one b i t p e r i o d

38 end
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Experiment: 2

Study and generate different
Line Codes - 2( Bipolar,
Manchestre and Quaternary)

Scilab code Solution 2.1 Study and generate different Line Codes 2 Bipo-
lar NRZ

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine
Codes − 2( B i p o l a r NRZ)

5

6 clear;

7 close;

8 clc;

9 x=[1 0 1 0 0 1 1 0] //Data stream
10

11 // B i p o l a r NRZ
12
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13 z=0; // S t a r t i n g po i n t o f p l o t on x−a x i s
14 ob=-1; // I n i t i a l o/p b i t va l u e
15

16 for i=1:1: length(x)

17

18 subplot (2,1,1) //Data P lo t
19 a=gca();

20 a.data_bounds =[0, -1.5; length(x) ,1.5]

21 a.grid=[1,-1]

22 title( ’ Data ’ )
23

24 t=[z:1:z+1] // P lo t range on x−a x i s (One b i t
p e r i o d )

25 plot(t,x(i))

26

27 subplot (2,1,2) // B i p o l a r B i p o l a r NRZ
28 a=gca();

29 a.data_bounds =[0, -1.5; length(x) ,1.5]

30 a.grid=[1,-1]

31 title( ’ B i p o l a r NRZ ’ )
32

33 if(x(i)==0)

34 t=[z:1:z+1] // P lo t range on x−a x i s (One
b i t p e r i o d )

35 plot(t,0) // P lo t z e r o
36 else

37 t=[z:1:z+1] // P lo t range on x−a x i s (One
b i t p e r i o d )

38 ob=-ob // I n v e r t p r e v i o u s o/p b i t va l u e
39 plot(t,ob)// P lo t o/p b i t
40 end

41

42 z=z+1 //Move s t a r t i n g po i n t o f p l o t on x−a x i s by
one b i t p e r i o d

43 end
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Scilab code Solution 2.2 Study and generate different Line Codes 2 Bipo-
lar RZ

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine
Codes − 2( B i p o l a r RZ)

5

6 clear;

7 close;

8 clc;

9 x=[1 0 1 0 0 1 1 0] //Data stream
10

11 // B i p o l a r RZ
12

13 z=0; // S t a r t i n g po i n t o f p l o t on x−a x i s
14 ob=-1; // I n i t i a l o/p b i t va l u e
15

16 for i=1:1: length(x)

17

18 subplot (2,1,1) //Data P lo t
19 a=gca();

20 a.data_bounds =[0, -1.5; length(x) ,1.5]

21 a.grid=[1,-1]

22 title( ’ Data ’ )
23

24 t=[z:1:z+1] // P lo t range on x−a x i s (One b i t
p e r i o d )

25 plot(t,x(i))

26
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27 subplot (2,1,2) // B i p o l a r B i p o l a r RZ
28 a=gca();

29 a.data_bounds =[0, -1.5; length(x) ,1.5]

30 a.grid=[1,-1]

31 title( ’ B i p o l a r RZ ’ )
32

33 if(x(i)==0)

34 t=[z:1:z+1] // P lo t range on x−a x i s (One
b i t p e r i o d )

35 plot(t,0) // P lo t z e r o
36 else

37 t=[z:0.5:z+0.5] // P lo t range on x−a x i s (
f i r s t h a l f b i t p e r i o d )

38 ob=-ob // I n v e r t p r e v i o u s o/p b i t va l u e
39 plot(t,ob)// P lo t o/p b i t
40 t=[z+0.5:0.5:z+1] // P lo t range on x−a x i s

( s econd h a l f b i t p e r i o d )
41 plot(t,0)

42 end

43

44 z=z+1 //Move s t a r t i n g po i n t o f p l o t on x−a x i s by
one b i t p e r i o d

45 end

Scilab code Solution 2.3 Study and generate different Line Codes 2 Manchestre

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine
Codes − 2( Manchestre )

5
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6 clear;

7 close;

8 clc;

9 x=[1 0 1 0 0 1 1 0] //Data Stream
10

11 //Manchester
12 z=0; // S t a r t i n g va l u e on x a x i s
13 for i=1: length(x)

14 t=[z:1:z+1] // P lo t range on x−a x i s (One b i t
p e r i o d )

15 subplot (2,1,1)

16 a=gca();

17 a.data_bounds =[0, -1.5; length(x) ,1.5]

18 a.grid=[1,-1]

19 title( ’ Data ’ )
20 plot(t,x(i))// P lo t c u r r e n t data b i t
21

22 t=[z:0.5:z+0.5] // P lo t range on x−a x i s ( f i r s t
h a l f b i t p e r i o d )

23 subplot (2,1,2)

24 a=gca();

25 a.data_bounds =[0, -1.5; length(x) ,1.5]

26 a.grid=[1,-1]

27 title( ’ Manchester ’ )
28 if(x(i)==0)

29 plot(t,1) // P lo t 1 f o r f i r s t h a l f b i t
du r a t i on

30 t=[z+0.5:0.5:z+1] // P lo t range on x−a x i s
( s econd h a l f b i t p e r i o d )

31 plot(t,-1) // P lo t 1 f o r second h a l f b i t
du r a t i on

32 else

33 plot(t,-1) // P lo t −1 f o r f i r s t h a l f b i t
du r a t i on

34 t=[z+0.5:0.5:z+1] // P lo t range on x−a x i s
( s econd h a l f b i t p e r i o d )

35 plot(t,1) // P lo t 1 f o r second h a l f b i t
du r a t i on
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36 end

37 z=z+1; // Increament s t a r t i n g va lu e on x a x i s by
one b i t p e r i o d

38 end

Scilab code Solution 2.4 Study and generate different Line Codes 2 Qua-
ternary

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine
Codes − 2( Quaternary )

5

6 clear;

7 close;

8 clc;

9 x=[1 0 0 1 1 1 0 0] //Data Stream
10 //x=[0 0 0 1 1 0 1 1 ] / / Data Stream
11 a=1;

12 // Po la r NRZ
13 z=0; // S t a r t i n g va l u e on x a x i s
14 for i=1:2: length(x)

15 subplot (2,1,1)

16 g=gca();

17 g.data_bounds =[0, -1.5; length(x) ,1.5]

18 g.grid=[1,-1]

19 title( ’ Data ’ )
20 t=[z:1:z+1] // P lo t range on x−a x i s (One b i t

p e r i o d f o r c u r r e n t b i t )
21 plot(t,x(i))// P lo t cu r en t b i t
22 t=[z+1:1:z+2] // P lo t range on x−a x i s (One b i t
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p e r i o d f o r next b i t )
23 plot(t,x(i+1))// P lo t next b i t
24

25

26 subplot (2,1,2)

27 g=gca();

28 g.data_bounds =[0,-2; length(x) ,2]

29 g.grid=[1,-1]

30 title( ’ 2B1Q ( Quaternary ) ’ )
31 t=[z:2:z+2] // P lo t range on x−a x i s ( two b i t

p e r i o d s f o r c u r r e n t and next b i t )
32 if((x(i)==0)&(x(i+1) ==0))//Check c u r r e n t and

next b i t combinat ion
33 plot(t, -3/2*a)// i f 00 then p l o t −3/2∗a
34 elseif ((x(i)==0)&(x(i+1) ==1))//Check c u r r e n t

and next b i t combinat i on
35 plot(t, -1/2*a)// i f 01 then p l o t −1/2∗a
36 elseif ((x(i)==1)&(x(i+1) ==0))//Check c u r r e n t

and next b i t combinat i on
37 plot(t,1/2*a)// i f 10 then p l o t 1/2∗ a
38 elseif ((x(i)==1)&(x(i+1) ==1))//Check c u r r e n t

and next b i t combinat i on
39 plot(t,3/2*a)// i f 11 then p l o t 3/2∗ a
40 end

41 z=z+2 // Increament s t a r t i n g va lu e on x a x i s by
two b i t s p e r i o d

42 end
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Experiment: 3

Study Carrier Modulation
Techniques using BASK, BPSK
and BFSK

Scilab code Solution 3.1 Study Carrier Modulation Techniques using BASK

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Study Ca r r i e r Modulat ion Techn iques
u s i n g BASK

5

6 clear;

7 clc;

8 close;

9 t = 0:0.01:1; // One symbol p e r i o d
10 f=2; // Ca r r i e r c y c l e s per symbol p e r i o d
11 I=[0,0,1,1,0,1,0,1]; // data stream
12

13 // Genera t i on o f ASK Waveform
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14

15 z=0;

16 for n=1: length(I)

17 subplot (3,1,1) // Ca r r i e r P lo t
18 a=gca();

19 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

20 a.x_location=”bottom”;
21 a.grid =[1,-1];

22 title( ’ C a r r i e r ’ )
23 plot((t+z),sin (2*%pi*f*t));

24

25 subplot (3,1,2) //Data P lo t
26 a=gca();

27 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

28 a.x_location=”bottom”;
29 a.grid =[1,-1];

30 title( ’ Data ’ )
31 plot((t+z),I(n));

32

33 subplot (3,1,3) //ASK Waveform Plo t
34 a=gca();

35 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

36 a.x_location=”bottom”;
37 a.grid =[1,-1];

38 title( ’ASK Waveform ’ )
39 plot((t+z) ,(sin(2*%pi*f*t))*(I(n)));

40 z=z+1;

41 end
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Scilab code Solution 3.2 Study Carrier Modulation Techniques using BFSK

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Study Ca r r i e r Modulat ion Techn iques
u s i n g BFSK

5

6 clear;

7 clc;

8 close;

9 t = 0:0.01:1; // One symbol p e r i o d
10 f1=2; // Ca r r i e r c y c l e s per symbol p e r i o d
11 f2=4; // Ca r r i e r c y c l e s per symbol p e r i o d
12 I=[0,0,1,1,0,1,0,1]; // data stream
13

14 // Genera t i on o f FSK Waveform
15

16 z=0;

17 for n=1: length(I)

18 subplot (4,1,1) // Ca r r i e r 1 P lo t
19 a=gca();

20 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

21 a.x_location=”bottom”;
22 a.grid =[1,-1];

23 title( ’ C a r r i e r 1 ’ )
24 plot((t+z),sin (2*%pi*f1*t));

25

26 subplot (4,1,2) // Ca r r i e r 2 P lo t
27 a=gca();

28 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .
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29 a.x_location=”bottom”;
30 a.grid =[1,-1];

31 title( ’ C a r r i e r 2 ’ )
32 plot((t+z),sin (2*%pi*f2*t));

33

34 subplot (4,1,3) //Data P lo t
35 a=gca();

36 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

37 a.x_location=”bottom”;
38 a.grid =[1,-1];

39 title( ’ Data ’ )
40 plot((t+z),I(n));

41

42 subplot (4,1,4) //FSK Waveform Plo t
43 a=gca();

44 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

45 a.x_location=”bottom”;
46 a.grid =[1,-1];

47 title( ’FSK Waveform ’ )
48 if (I(n)==0)

49 plot((t+z),sin (2*%pi*f1*t));

50 elseif (I(n)==1)

51 plot((t+z),sin (2*%pi*f2*t));

52 end

53 z=z+1;

54 end

Scilab code Solution 3.3 Study Carrier Modulation Techniques using BPSK

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :
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2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Study Ca r r i e r Modulat ion Techn iques
u s i n g BPSK

5

6 clear;

7 clc;

8 close;

9 t = 0:0.01:1; // One symbol p e r i o d
10 f=2; // Ca r r i e r c y c l e s per symbol p e r i o d
11 I=[0,0,1,1,0,1,0,1]; // data stream
12

13 // Genera t i on o f PSK Waveform
14

15 z=0;

16 for n=1: length(I)

17 subplot (3,1,1) // Ca r r i e r P lo t
18 a=gca();

19 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

20 a.x_location=”bottom”;
21 a.grid =[1,-1];

22 title( ’ C a r r i e r ’ )
23 plot((t+z),sin (2*%pi*f*t));

24

25 subplot (3,1,2) //Data P lo t
26 a=gca();

27 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

28 a.x_location=”bottom”;
29 a.grid =[1,-1];

30 title( ’ Data ’ )
31 plot((t+z),I(n));

32
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33 subplot (3,1,3) //PSK Waveform Plo t
34 a=gca();

35 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

36 a.x_location=”bottom”;
37 a.grid =[1,-1];

38 title( ’PSK Waveform ’ )
39 if (I(n)==1)

40 plot((t+z),sin (2*%pi*f*t));

41 elseif (I(n)==0)

42 plot((t+z),sin ((2* %pi*f*t)+%pi));

43 end

44 z=z+1;

45 end
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Experiment: 4

Study and generate OQPSK
waveforms

Scilab code Solution 4.1 Study and generate offset QPSK waveforms

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Study and g en e r a t e O f f s e t QPSK (
OQPSK) waveforms

5

6 clear;

7 clc;

8 close;

9 T=2; // One symbol p e r i o d
10 t = 0:0.01:T/2; // Sampl ing Matr ix f o r h a l f symbol

p e r i o d
11 f=1; // Ca r r i e r f r e qu en cy ( c y c l e s per b i t p e r i o d )
12 // I =[0 0 1 1 0 0 1 1 ] ; // data stream
13 I=[0 0 0 1 1 0 1 1]; // data stream g i v i n g d i b i t

e q u i v a l e n t to 0 , 1 , 2 , 3
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14 // I =[1 1 0 0 0 1 1 1 ] ; // data stream
15

16 // Po la r NRZ Conver t e r
17 I_PNRZ = [] // empty matr ix f o r Po la r NRZ data
18 for n = 1: length(I)

19 if I(n)== 0 then

20 I_PNRZ = [I_PNRZ , -1]

21 else

22 I_PNRZ = [I_PNRZ , 1]

23 end

24 end

25

26 I_Carrier = sqrt (2/T)*cos(2*%pi*f*t); // In phase
c a r r i e r

27 Q_Carrier = sqrt (2/T)*sin(2*%pi*f*t); // Quadrature
phase c a r r i e r

28

29 // Genera t i on o f OQPSK Waveform
30 z=0; // S t a r t i n g po i n t o f p l o t on x−a x i s
31 subplot (3,1,1) // I−PSK Plo t
32 a=gca();

33 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

34 a.x_location=” o r i g i n ”;
35 a.grid =[1 ,1];

36 title( ’ I−Data and I−PSK ’ )
37 plot((t+z),I_Carrier*I_PNRZ (1));//

I C a r r i e r ∗ F i r s t b i t ( I Ba lance
Modulator )

38 plot((t+z),I_PNRZ (1), ’ r ’ );// F i r s t b i t
Data f o r r e f e r e n c e

39 // xpause ( 2000000 ) ; / / Delay f o r o b s e r v a t i o n
40 z=z+1; //Move s t a r t i n g po i n t o f p l o t on x−a x i s by 1

b i t ( h a l f symbol ) p e r i o d
41 for n=2:1: length(I_PNRZ)

42 if modulo(n,2) ==0 then //Check f o r odd−even b i t
43 I_Bit=I_PNRZ(n-1) // s e t I b i t as p r e v i o u s b i t
44 Q_Bit=I_PNRZ(n)// s e t Q b i t as c u r r e n t b i t
45 else
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46 I_Bit=I_PNRZ(n)// s e t I b i t as c u r r e n t b i t
47 Q_Bit=I_PNRZ(n-1) // s e t Q b i t as p r e v i o u s b i t
48 end

49

50 subplot (3,1,1) // I−PSK Plo t
51 a=gca();

52 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

53 a.x_location=” o r i g i n ”;
54 a.grid =[1 ,1];

55 title( ’ I−Data and I−PSK ’ )
56 plot((t+z),I_Carrier*I_Bit);// I C a r r i e r

∗ Even b i t ( I Ba lance Modulator )
57 plot((t+z),I_Bit , ’ r ’ );// I Data f o r

r e f e r e n c e
58

59 subplot (3,1,2) //Q−PSK Plo t
60 a=gca();

61 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

62 a.x_location=” o r i g i n ”;
63 a.grid =[1 ,1];

64 title( ’Q−Data and Q−PSK ’ )
65 plot((t+z),Q_Carrier*Q_Bit);// Q Car r i e r

∗ Odd b i t (Q Balance Modulator )
66 plot((t+z),Q_Bit , ’ r ’ );//Q Data f o r

r e f e r e n c e
67

68 subplot (3,1,3) //QPSK Plo t
69 a=gca();

70 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

71 a.x_location=” Or i g i n ”;
72 a.grid =[1 ,1];

73 title( ’OQPSK and I−Ca r r i e r ’ )
74 plot((t+z) ,(I_Carrier*I_Bit)+( Q_Carrier*

Q_Bit));// I−PSK + Q−PSK ( Adder )
75 plot((t+z),I_Carrier , ’ r ’ );// I C a r r i e r

f o r r e f e r e n c e
76 z=z+1; //Move s t a r t i n g po i n t o f p l o t on x−a x i s by 1

b i t ( h a l f symbol ) p e r i o d
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77 // xpause ( 2000000 ) ; / / Delay f o r o b s e r v a t i o n
78 end
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Experiment: 5

Study and generate NON
OQPSK waveforms

Scilab code Solution 5.1 Study and generate Non offset QPSK waveforms

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Study and g en e r a t e Non−O f f s e t QPSK
waveforms

5

6 clear;

7 clc;

8 close;

9 T=2; //One Symbol p e r i o d
10 t = 0:0.01:T; // Sampl ing Matr ix f o r one symbol

p e r i o d
11 f=1; // Ca r r i e r f r e qu en cy ( c y c l e s per b i t p e r i o d )
12 I=[0 0 0 1 1 0 1 1]; // data stream g i v i n g d i b i t

e q u i v a l e n t to 0 , 1 , 2 , 3
13 // I =[0 1 1 0 1 0 0 0 ] ; // data stream Simon Hykin Ex
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6 . 1
14

15 // Po la r NRZ Conver t e r
16 I_PNRZ = [] // empty matr ix f o r Po la r NRZ data
17 for n = 1: length(I)

18 if I(n)== 0 then

19 I_PNRZ = [I_PNRZ , -1]

20 else

21 I_PNRZ = [I_PNRZ , 1]

22 end

23 end

24

25 I_Carrier = sqrt (2/T)*cos(2*%pi*f*t); // In phase
c a r r i e r

26 Q_Carrier = sqrt (2/T)*sin(2*%pi*f*t); // Quadrature
phase c a r r i e r

27

28 // Genera t i on o f QPSK Waveform
29

30 z=0; // S t a r t i n g po i n t o f p l o t on x−a x i s
31 for n=1:2: length(I_PNRZ)

32 I_Bit=I_PNRZ(n)

33 Q_Bit=I_PNRZ(n+1)

34 subplot (3,1,1) // I−PSK Plo t
35 a=gca();

36 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

37 a.x_location=” o r i g i n ”;
38 a.grid =[1 ,1];

39 title( ’ I−Data and I−PSK ’ )
40 plot((t+z),I_Carrier*I_Bit);// I C a r r i e r

∗ Even b i t ( I Ba lance Modulator )
41 plot((t+z),I_Bit , ’ r ’ );// I Data f o r

r e f e r e n c e
42

43 subplot (3,1,2) //Q−PSK Plo t
44 a=gca();

45 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

46 a.x_location=” o r i g i n ”;
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47 a.grid =[1 ,1];

48 title( ’Q−Data and Q−PSK ’ )
49 plot((t+z),Q_Carrier*Q_Bit);// Q Car r i e r

∗ Odd b i t (Q Balance Modulator )
50 plot((t+z),Q_Bit , ’ r ’ );//Q Data f o r

r e f e r e n c e
51

52 subplot (3,1,3) //QPSK Plo t
53 a=gca();

54 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

55 a.x_location=” o r i g i n ”;
56 a.grid =[1 ,1];

57 title( ’QPSK and I−Ca r r i e r ’ )
58 plot((t+z) ,(I_Carrier*I_Bit)+( Q_Carrier*

Q_Bit));// I−PSK + Q−PSK ( Adder )
59 plot((t+z),I_Carrier , ’ r ’ );// I C a r r i e r

f o r r e f e r e n c e
60 z=z+2; //Move s t a r t i n g po i n t o f p l o t on x−a x i s by 2

b i t s (1 symbol ) p e r i o d
61 end
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Experiment: 6

Study and generate 8-QAM
waveforms

Scilab code Solution 6.1 Study and generate 8QAM waveforms

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Study and g en e r a t e 8−QAM waveforms
5

6 clear;

7 clc;

8 close;

9 T=3; //One Symbol p e r i o d
10 t = 0:0.01:T; // Sampl ing Matr ix f o r one symbol

p e r i o d
11 f=1/T; // Ca r r i e r f r e qu en cy ( c y c l e s per b i t p e r i o d )
12 I=[0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1];

// data stream g i v i n g t r i b i t s e q u i v a l e n t to
0 , 1 , 2 , 3 , 4 , 5 , 6 , 7

13
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14 // Po la r NRZ Conver t e r
15 I_PNRZ = [] // empty matr ix f o r Po la r NRZ data
16 for n = 1: length(I)

17 if I(n)== 0 then

18 I_PNRZ = [I_PNRZ , -1]

19 else

20 I_PNRZ = [I_PNRZ , 1]

21 end

22 end

23

24 I_Carrier = sqrt (2/T)*cos(2*%pi*f*t); // In phase
c a r r i e r

25 Q_Carrier = sqrt (2/T)*sin(2*%pi*f*t); // Quadrature
phase c a r r i e r

26

27 // Genera t i on o f 8−QAM Waveform
28

29 z=0; // S t a r t i n g po i n t o f p l o t on x−a x i s
30 for n=1:3: length(I_PNRZ)

31 Q_Bit=I_PNRZ(n)// Set Q Bi t Value
32 I_Bit=I_PNRZ(n+1) // Set I B i t Value
33 C_Bit=I_PNRZ(n+2) // Set C Bi t Value
34 if C_Bit ==-1 then // Set PAM, Product o f C

with I or Q
35 QC=0.5* Q_Bit // Set h a l f ampl i tude
36 IC=0.5* I_Bit // Set h a l f ampl i tude
37 else

38 QC=Q_Bit // Set f u l l ampl i tude
39 IC=I_Bit // Set f u l l ampl i tude
40 end

41

42 subplot (3,1,1) //QC Plo t
43 a=gca();

44 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

45 a.x_location=” o r i g i n ”;
46 a.grid =[1 ,1];

47 title( ’Q−PAM’ )
48 plot((t+z),Q_Carrier*QC);// Q Car r i e r ∗ Q
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−PAM (Q Balance Modulator )
49 plot((t+z),QC, ’ r ’ );//Q−PAM Output
50

51 subplot (3,1,2) // IC Plo t
52 a=gca();

53 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

54 a.x_location=” o r i g i n ”;
55 a.grid =[1 ,1];

56 title( ’ I−PAM’ )
57 plot((t+z),I_Carrier*IC);// I C a r r i e r ∗ I

−PAM ( I Balance Modulator )
58 plot((t+z),IC, ’ r ’ );// I−PAM Output
59

60 subplot (3,1,3) //8−QAM Plo t
61 a=gca();

62 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

63 a.x_location=” o r i g i n ”;
64 a.grid =[1 ,1];

65 title( ’8−QAM’ )
66 plot((t+z) ,(I_Carrier*IC)+( Q_Carrier*QC)

);// I−PAM + Q−PAM (Adder )
67 plot((t+z),I_Carrier , ’ r ’ );// I C a r r i e r

f o r r e f e r e n c e
68 plot (((t/3)+z),Q_Bit , ’ c ’ );//Q Bi t f o r

r e f e r e n c e
69 plot (((t/3) +1+z),I_Bit , ’ b ’ );// I B i t f o r

r e f e r e n c e
70 plot (((t/3) +2+z),C_Bit , ’m ’ );//C Bi t f o r

r e f e r e n c e
71

72 z=z+3; //Move s t a r t i n g po i n t o f p l o t on x−a x i s by 3
b i t s (1 symbol ) p e r i o d

73 end
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Experiment: 7

Study and generate MSK
waveforms (PSK Approach)

Scilab code Solution 7.1 Study and generate MSK waveforms with PSK
Approach

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Study and g en e r a t e MSK waveforms (
PSK Approach )

5

6 clear;

7 clc;

8 close;

9 h=1/2;

10 T=1; // One symbol p e r i o d
11 t = 0:0.01:T; // One symbol p e r i o d v e c t o r
12 f=1; // Ca r r i e r c y c l e s per symbol p e r i o d ” t ”
13 // I =[0 1 0 1 0 1 0 1 ] ; // data stream in b ina ry to

t e s t wors t c a s e
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14 I=[0 0 0 1 1 0 1 1]; // data stream g i v i n g d i b i t s
e q u i v a l e n t to 0 , 1 , 2 , 3

15

16 //PNRZ Converter , c o n v e r t s data to PNRZ ( Bi−Po la r
S i g n a l )

17 I_PNRZ = [] // empty matr ix f o r PNRZ data
18 for n = 1: length(I)

19 if I(n)== 0 then

20 I_PNRZ = [I_PNRZ , -1]

21 else

22 I_PNRZ = [I_PNRZ , 1]

23 end

24 end

25

26 // Genera t i on o f MSK Waveform us i ng PSK approach
27

28 theta =0; // I n i t i a l phase i n r a d i a n s
29

30 z=0; // S t a r t i n g po i n t o f p l o t on x−a x i s
31

32 for n=1:1: length(I_PNRZ)

33 subplot (3,1,1) //Data P lo t
34 a=gca();

35 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

// s e t the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

36 a.x_location=” o r i g i n ”;
37 a.grid =[1,-1];

38 title( ’ Data ’ )
39 plot((t+z),I_PNRZ(n));

40

41 subplot (3,1,2) //MSK Plo t
42 a=gca();

43 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

// s e t the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

44 a.x_location=” o r i g i n ”;
45 a.grid =[1,-1];
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46 title( ’MSK ’ )
47 theta_change = theta + (( I_PNRZ(n))*((

%pi*h*t)/T));// Phase v a r i a t i o n ove r a
b i t p e r i o d

48 plot((t+z),sqrt (2/T)*cos (2*%pi*f*t +

theta_change)); // MSK Plo t
49 plot((t+z),sqrt (2/T)*cos (2*%pi*f*t), ’ r ’ )

; // Ca r r i e r f o r r e f e r e n c e
50

51 subplot (3,1,3) // P lo t f o r MSK Phase v a r i a t i o n
wrt Ca r r i e r

52 a=gca();

53 a.x_location=”bottom”;
54 a.grid =[1 ,1];

55 title( ’MSK Phase v a r i a t i o n wrt C a r r i e r ’ )
56 theta_degrees = theta_change *(180/ %pi);//

c onv e r t s r a d i a n s to d e g r e e s
57 plot((t+z),theta_degrees);// p l o t e phase

v a r i a t i o n f o r a b i t p e r i o d
58

59 theta=theta_change(length(theta_change));// S t o r e s
l a s t va l u e o f phase to th e t a

60 z=z+1; //Move s t a r t i n g po i n t o f p l o t on x−a x i s by 1
b i t p e r i o d

61 // xpause ( 2000000 ) ; // Delay f o r o b s e r v a t i o n
62 end
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Experiment: 8

Study and generate MSK
waveforms (FSK Approach)

Scilab code Solution 8.1 Study and generate MSK waveforms with FSK
Approach

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Study and g en e r a t e MSK waveforms (
FSK Approach )

5

6 clear;

7 clc;

8 close;

9 h=1/2;

10 T=1; // One symbol p e r i o d
11 t = 0:0.01:T; // One symbol p e r i o d v e c t o r
12 f=1; // Ca r r i e r c y c l e s per symbol p e r i o d ” t ”
13 // I =[0 1 0 1 0 1 0 1 ] ; // data stream in b ina ry to

t e s t wors t c a s e
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14 I=[0 0 0 1 1 0 1 1]; // data stream g i v i n g d i b i t s
e q u i v a l e n t to 0 , 1 , 2 , 3

15

16 //PNRZ Converter , c o n v e r t s data to PNRZ ( Bi−Po la r
S i g n a l )

17 I_PNRZ = [] // empty matr ix f o r PNRZ data
18 for n = 1: length(I)

19 if I(n)== 0 then

20 I_PNRZ = [I_PNRZ , -1]

21 else

22 I_PNRZ = [I_PNRZ , 1]

23 end

24 end

25

26 // Genera t i on o f MSK Waveform us i ng FSK approach
27

28 bitchange =0; // I n i t i a l b i t s t a t e ( b e f o r e f i r s t b i t o f
s equence )

29 theta =0; // I n i t i a l phase s t a t e i n r a d i a n s ( b e f o r e
f i r s t b i t o f s equence )

30 theta_degrees =[0 ,0]; // I n i t i a l phase s t a t e i n d e g r e e s
( f i r s t e l ement = s t a r t va lue , s econd e l ement =

l a s t va l u e )
31

32 z=0; // S t a r t i n g po i n t o f p l o t on x−a x i s
33 for n=1:1: length(I_PNRZ)

34 subplot (3,1,1) //Data P lo t
35 a=gca();

36 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

// s e t the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

37 a.x_location=” o r i g i n ”;
38 a.grid =[1,-1];

39 title( ’ Data ’ )
40 plot((t+z),I_PNRZ(n));

41

42 subplot (3,1,2) //MSK Plo t
43 a=gca();
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44 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

// s e t the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

45 a.x_location=” o r i g i n ”;
46 a.grid =[1,-1];

47 title( ’MSK ’ )
48 fm = f + (I_PNRZ(n)*(h/(2*T)));// Genera t ing

two f r e q u e n c i e s c o r r e s p ond i n g to
49 // b ina ry 0 (−1

i n PNRZ) and
b ina ry 1 (1
i n PNRZ)

50 // (0 −−> f c − h
/2T)

51 // (1 −−> f c + h
/2T)

52 plot((t+z),sqrt (2/T)*cos (2*%pi*fm*t +

theta)); // MSK Plo t
53 plot((t+z),sqrt (2/T)*cos (2*%pi*f*t), ’ r ’ )

; // Ca r r i e r f o r r e f e r e n c e
54

55 subplot (3,1,3) // P lo t f o r MSK Phase v a r i a t i o n
wrt Ca r r i e r

56 a=gca();

57 a.x_location=”bottom”;
58 a.grid =[1 ,1];

59 title( ’MSK Phase v a r i a t i o n wrt C a r r i e r ’ )
60 bitchange=bitchange+I_PNRZ(n);// Bi t S t a t e

va lu e ( cumu la t i v e )
61 theta = bitchange *(( %pi*h)/T);// Phase s t a t e

at the end o f b i t pe r i od , i n r a d i a n s
62 theta_degrees (2)=theta *180/ %pi;// Phase s t a t e

at the end o f b i t pe r i od , i n d e g r e e s
63 plot([z n],theta_degrees);// p l o t e phase

v a r i a t i o n f o r a b i t p e r i o d
64

65 theta_degrees (1)=theta_degrees (2);//Copy end phase
va lu e to s t a r t phase va lu e f o r next c y c l e
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66 z=z+1; //Move s t a r t i n g po i n t o f p l o t on x−a x i s by 1
b i t p e r i o d

67 // xpause ( 2000000 ) ; // Delay f o r o b s e r v a t i o n
68 end
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Experiment: 9

To calculate all Codewords,
error detection and correction
capability of given LBC

Scilab code Solution 9.1 Linear Block Codes

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : L i n ea r Block Codes ( 7 , 4 )
5

6 clc;

7 clear;

8

9 k = 4; // I n f o rma t i on message l e n g t h
10 n = 7; //Coded word l e n g t h
11

12 P = [1 1 0;0 1 1 ;1 1 1;1 0 1] // Pa r i t y Matr ix
13 disp(P, ’ Pa r i t y Matr ix P ’ )
14

40



15 G = [P eye(k,k)]// Generator Matr ix to c r e a t e code
word i n P1P2P3D1D2D3D4 format

16 disp(G, ’ Generator Matr ix G ’ )
17

18 H=[eye(n-k,n-k);P]’// Pa r i t y Check Matr ix
19 disp(H, ’ Pa r i t y Check Matr ix H ’ )
20

21 //All M = Al l 16 p o s i b i l i t i e s f o r I n f o rma t i on
Message Matr ix

22 All_M = [0 0 0 0;0 0 0 1;0 0 1 0;0 0 1 1;

23 0 1 0 0;0 1 0 1;0 1 1 0;0 1 1 1;

24 1 0 0 0;1 0 0 1;1 0 1 0;1 0 1 1;

25 1 1 0 0;1 1 0 1;1 1 1 0;1 1 1 1]

26

27 // Ca l c u l a t e a l l 16 p o s i b i l e codewords
28 CodedMat=All_M*G;

29 CodedMat = modulo(CodedMat ,2);// Convert g en e r a t ed
code i n t o b ina ry

30 disp(CodedMat , ’ Codewords Matr ix ’ )
31

32 // Ca l c u l a t e Hamming D i s t an c e s
33 HamDist=sum(CodedMat , ’ c ’ )//Sum over the rows o f

CodedMat ( column o f v a l u e s )
34 disp(HamDist , ’Hamming D i s t an c e s ’ );
35

36 // Find Minimum non−z e r o Hamming D i s t anc e
37 [row ,col]=find(HamDist ==0);// f i n d e l emen t s tha t a r e

z e r o
38 HamDist(row ,:) =[]; //Remove a l l rows tha t a r e z e r o (

r e p l a c e by n u l l )
39 MinHamDist=min(HamDist)// Find Minimum non−z e r o

Hamming D i s t anc e
40 disp(MinHamDist , ’Minimum Non−Zero Hamming D i s t anc e ’ )
41

42 // Ca l c u l a t e Er ro r De t e c t i o n Capab i l i t y
43 ErrDetCap=MinHamDist -1;

44 disp(ErrDetCap , ’ E r ro r De t e c t i on Capab i l i t y ’ );
45
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46 // Ca l c u l a t e Er ro r Co r r e c t i o n Capab i l i t y
47 ErrCorCap =(MinHamDist -1)/2;

48 disp(ErrCorCap , ’ E r ro r Co r r e c t i o n Capab i l i t y ’ );
49

50 // Generate random message
51 RandMessage=modulo(round (16* rand()) ,16)+1 //Get

random number between 1 to 16
52

53 M=All_M(RandMessage ,:) // S e l e c t a random row from
Message Matr ix All M as I n f o rma t i on Message

54 disp(M, ’ I n f o rma t i on Message M’ )
55

56 C = CodedMat(RandMessage ,:) // S e l e c t a random row
from Coded Matr ix CodedMat as Coded Message

57 disp(C, ’ Coded Message C ’ )
58

59 // Transmit random message
60 R=C// Create r e c i e v e d code word
61

62 // Generate e r r o r at random b i t p o s i t i o n
63

64 ErrPos=modulo(round (8* rand()) ,8) //Get random number
between 0 to 7

65

66 if ErrPos ==0 then

67 //Do noth ing , as ’ 0 ’ means no e r r o r
68 else

69 if R(ErrPos)==0 then

70 R(ErrPos)=1 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

71 else

72 R(ErrPos)=0 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

73 end

74 end

75

76 disp(R, ’ Rec i eved Code word R ’ )
77
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78 // Er ro r Co r r e c t i o n
79

80 S=R*H’// Find Syndrome Matr ix
81 S = modulo(S,2);// Convert Syndrome Matr ix i n t o

b ina ry
82 disp(S, ’ Syndrome Matr ix R∗H( t r a n s p o s e ) ’ )
83

84 if S==[0 0 0] then // [ 0 0 0 ] i n d i c a t e s no e r r o r
85 disp(R, ’ Rec i eved Code wi thout e r r o r ’ )
86 disp(R(4:7), ’ Rec i eved In f o rma t i on Message ’ )//

Ext ra c t and d i s p l a y Message from code word
87 else

88 // Find e r r on e ou s b i t p o s i t i o n
89 //Here we f i n d colomn w i th i n H matr ix with

pa t t e r n s immi l a r to Syndrome Matr ix
90 //The p o s i t i o n number o f tha t colomn i s

e q u i v a l e n t to e r r on e ou s b i t p o s i t i o n
91

92 ErrPos =1 // I n i t i a l l i z e e r r o n e ou s b i t p o s i t i o n
93 d=[H(:,ErrPos)]’// Transpose o f f i r s t coloumn o f

H matr ix
94 // ( Transpose i s used to c onv e r t

colomn to row as syndrome i s
i n row format )

95

96 while ((d(1) <>S(1))|(d(2) <>S(2))|(d(3) <>S(3)

)) do //Check e l ement w i s e i n e q u a l l i t y
f o r any e l ement (OR c ond i t i o n )

97 ErrPos=ErrPos +1 // Increament e r r on e ou s
b i t p o s i t i o n ( Po int to next colomn )

98 d=[H(:,ErrPos)]’// Transpose o f next
coloumn o f H matr ix

99 end

100

101 disp(ErrPos , ’ Er roneous B i t P o s i t i o n ’ )
102

103 // Er ro r c o r r e c t i o n
104 if R(ErrPos)==0 then
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105 R(ErrPos)=1 // I n v e r t b i t at Erroneous
B i t P o s i t i o n

106 disp(R, ’ Rec i eved Code with e r r o r
c o r r e c t e d ’ )

107 disp(R(4:7), ’ Rec i eved In f o rma t i on
Message ’ )// Ext ra c t and d i s p l a y
Message from code word

108 else

109 R(ErrPos)=0 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

110 disp(R, ’ Rec i eved Code with e r r o r
c o r r e c t e d ’ )

111 disp(R(4:7), ’ Rec i eved In f o rma t i on
Message ’ )// Ext ra c t and d i s p l a y
Message from code word

112 end

113 end
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Experiment: 10

To encode Cyclic code and
calculate Syndrome for the
given generator polynomial

Scilab code Solution 10.1 Cyclic Codes

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Cy c l i c Codes ( 7 , 4 )
5

6 clc;

7 clear;

8 k = 4; // I n f o rma t i on Message Length
9 n = 7; //Codeword Length

10

11 // Generator Po lynomia l
12 x=poly(0, ’ x ’ );
13 GenPoly =1+x+x^3;

14 disp(GenPoly , ’ The Generato r Po lynomia l ’ );
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15

16 // Genera t ing Random Message
17

18 //All M = Al l 16 p o s i b i l i t i e s f o r I n f o rma t i on
Message Matr ix

19 All_M = [0 0 0 0;0 0 0 1;0 0 1 0;0 0 1 1;

20 0 1 0 0;0 1 0 1;0 1 1 0;0 1 1 1;

21 1 0 0 0;1 0 0 1;1 0 1 0;1 0 1 1;

22 1 1 0 0;1 1 0 1;1 1 1 0;1 1 1 1]

23

24 RandMessage=modulo(round (16* rand()) ,16)+1 //Get
random number between 1 to 16

25

26 M=All_M(RandMessage ,:) // S e l e c t a random row from
Message Matr ix All M as I n f o rma t i on Message

27 disp(M, ’ I n f o rma t i on Message M’ )
28

29 //Message Po lynomia l
30 MesPoly =(M(1)*1) + (M(2)*(x^1)) + (M(3)*(x^2)) + (M

(4)*(x^3));

31 disp(MesPoly , ’ Message Po lynomia l u ( x ) ’ );
32

33 // Encoding
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

34

35 // Genera t ing Codeword Po lynomia l
36 p=(x^(n-k))*( MesPoly);// Step 1 − mu l t i p l y MesPoly by

x ˆ(n−k ) , [ x ˆ( n−k ) ∗u ( x ) ]
37 [RemPoly ,q]=pdiv(p,GenPoly);// Step 2 − d i v i d e above

product by GenPoly , g ( x ) ( Po lynomia l D i v i s i o n )
38 RemPoly=modulo(RemPoly ,2);// Convert Remainder

Po lynomia l to b ina ry to ge t p a r i t y check
po lynomia l , b ( x )

39 disp(RemPoly , ’ Remainder Po lynomia l b ( x ) ’ );
40 CodePoly=RemPoly +( MesPoly *(x^(n-k)));// Step 3 − add

( x ˆ(n−k ) ∗u ( x ) ) and b ( x ) to g e t Codeword
Po lynomia l
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41 disp(CodePoly , ’ Codeword Po lynomia l c ( x ) ’ );
42

43 // F ind ing C o e f f i c i e n t s o f Codeword Po lynomia l
44 CodePolyCoeff=coeff(CodePoly);

45 //Removal o f − s i g n s from C o e f f i c i e n t s o f
Codeword Po lynomia l

46 for i=1: length(CodePolyCoeff)

47 if (CodePolyCoeff(i)==-1) then

48 CodePolyCoeff(i)=1;

49 end

50 end

51 disp(CodePolyCoeff , ’ C o e f f i c i e n t s o f Codeword
Po lynomia l ’ );

52

53 // Genera t ing 7 b i t Codeword from C o e f f i c i e n t s o f
Codeword Po lynomia l

54 C=CodePolyCoeff;

55 if length(C) <7 then

56 C(1,7)=0; // As s i gn i n g a va lu e o u t s i d e a r r e y
d imens ion w i l l a u t oma t i c a l l y

57 //pad a d d i t i o n a l z e r o s to r e s i z e the
a r r e y / v e c t o r

58 end

59 disp(C, ’ Generated Codeword ’ );
60

61 // Transmit ion
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

62 R=C// Create r e c i e v e d code word
63

64 // Generate e r r o r at random b i t p o s i t i o n
65 ErrPos=modulo(round (8* rand()) ,8) //Get random

number between 0 to 7
66 // ErrPos=0 // f o r t e s t i n g
67 if ErrPos ==0 then

68 //Do noth ing , as ’ 0 ’ means no e r r o r
69 else

70 if R(ErrPos)==0 then
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71 R(ErrPos)=1 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

72 else

73 R(ErrPos)=0 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

74 end

75 end

76

77 // Recept i on and Decoding
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

78

79 disp(R, ’ Rec i eved Code word R ’ )
80

81 // Rece ived Po lynomia l
82 RecPoly =(R(1)*1) + (R(2)*(x^1)) + (R(3)*(x^2)) + (R

(4)*(x^3)) + (R(5)*(x^4)) + (R(6)*(x^5)) + (R(7)

*(x^6));

83 disp(RecPoly , ’ Rece ived Po lynomia l u ( x ) ’ );
84

85 // Syndrome Polynomia l
86 [SynPoly ,q]=pdiv(RecPoly ,GenPoly);

87 SynPoly=modulo(SynPoly ,2)

88 disp(SynPoly , ’ Syndrome Po lynomia l ’ )
89

90 // F ind ing C o e f f i c i e n t s o f Syndrome Polynomia l
91 SynPolyCoeff=coeff(SynPoly);

92 //Removal o f − s i g n s from C o e f f i c i e n t s o f
Syndrome Polynomia l

93 for i=1: length(SynPolyCoeff)

94 if (SynPolyCoeff(i)==-1) then

95 SynPolyCoeff(i)=1;

96 end

97 end

98 disp(SynPolyCoeff , ’ C o e f f i c i e n t s o f Syndrome
Polynomia l ’ );

99

100 // Genera t ing 3 b i t Syndrome from C o e f f i c i e n t s o f
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Syndrome Polynomia l
101 if length(SynPolyCoeff) <3 then

102 SynPolyCoeff (1,3)=0; // As s i gn i n g a va lu e o u t s i d e
a r r e y d imens ion w i l l a u t oma t i c a l l y

103 //pad a d d i t i o n a l z e r o s to r e s i z e the
a r r e y / v e c t o r

104 end

105 disp(SynPolyCoeff , ’ Syndrome ’ );
106

107

108

109 // Create H ( Pa r i t y check matr ix ) as e r r o r
lookup t a b l e

110 P = [1 1 0;0 1 1 ;1 1 1;1 0 1] // Pa r i t y
Matr ix

111 H=[eye(n-k,n-k);P]’// Pa r i t y Check Matr ix
112 // d i s p (H, ’ Pa r i t y Check Matr ix H’ ) // f o r

t e s t i n g
113

114 if SynPolyCoeff ==[0 0 0] then // [ 0 0 0 ] i n d i c a t e s
no e r r o r

115 disp(R, ’ Rec i eved Code wi thout e r r o r ’ )
116 disp(R(4:7), ’ Rec i eved In f o rma t i on Message ’ )//

Ext ra c t and d i s p l a y Message from code word
117 else

118 // Find e r r on e ou s b i t p o s i t i o n
119 //Here we f i n d colomn w i th i n H matr ix with

pa t t e r n s immi l a r to Syndrome Matr ix
120 //The p o s i t i o n number o f tha t colomn i s

e q u i v a l e n t to e r r on e ou s b i t p o s i t i o n
121

122 ErrPos =1 // I n i t i a l l i z e e r r o n e ou s b i t p o s i t i o n
123 d=[H(:,ErrPos)]’// Transpose o f f i r s t coloumn o f

H matr ix
124 // ( Transpose i s used to c onv e r t

colomn to row as syndrome i s
i n row format )

125
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126 while ((d(1) <>SynPolyCoeff (1))|(d(2) <>

SynPolyCoeff (2))|(d(3) <>SynPolyCoeff (3)))

do //Check e l ement w i s e i n e q u a l l i t y f o r
any e l ement (OR c ond i t i o n )

127 ErrPos=ErrPos +1 // Increament e r r on e ou s
b i t p o s i t i o n ( Po int to next colomn )

128 d=[H(:,ErrPos)]’// Transpose o f next
coloumn o f H matr ix

129 end

130

131 disp(ErrPos , ’ Er roneous B i t P o s i t i o n ’ )
132

133 // Er ro r c o r r e c t i o n
134 if R(ErrPos)==0 then

135 R(ErrPos)=1 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

136 else

137 R(ErrPos)=0 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

138 end

139 disp(R, ’ Rec i eved Code with e r r o r c o r r e c t e d ’ )
140 disp(R(4:7), ’ Rec i eved In f o rma t i on Message ’ )

// Ext ra c t and d i s p l a y Message from code
word

141 end

142 disp(M, ’ I n f o rma t i on Message M tha t was s en t . . . ’ )
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Experiment: 11

To encode and decode
Hamming code

Scilab code Solution 11.1 Hamming Codes

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 ( Tested on both 32 b i t and
64 b i t v e r s i o n s )

4 //Program T i t l e : Hamming Codes ( 7 , 4 )
5

6 clc;

7 clear;

8

9 k = 4; // I n f o rma t i on message matr ix l e n g t h
10 n = 7; //Coded word l e n g t h
11

12 P = [1 1 0;0 1 1 ;1 1 1;1 0 1] // Pa r i t y Matr ix
13 disp(P, ’ Pa r i t y Matr ix P ’ )
14

15 G = [P eye(k,k)]// Generator Matr ix to c r e a t e code
word i n P1P2P3D1D2D3D4 format
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16 G(:,[3 4])=G(:,[4 3]) //Swap colomn 3 and 4 o f G to
c r e a t e code word in P1P2D1P3D2D3D4 format

17 disp(G, ’ Generator Matr ix G ’ )
18

19 H=[eye(n-k,n-k);P]’// Pa r i t y Check Matr ix
20 H(:,[3 4])=H(:,[4 3]) //Swap colomn 3 and 4 o f H to

s a t i s f y GH’=0
21 disp(H, ’ Pa r i t y Check Matr ix H ’ )
22

23 // d i s p ( modulo (G∗H’ , 2 ) , ’GH’ ) //Check i f the c o n d i t i o n
GH’=0 s a t i s f y ( f o r t e s t i n g )

24

25 //M = [ 1 1 0 1 ] / / I n f o rma t i on Message Matr ix f o r
t e s t i n g

26

27 // Generate random message
28 //All M = Al l 16 p o s i b i l i t i e s f o r I n f o rma t i on

Message Matr ix
29 All_M = [0 0 0 0;0 0 0 1;0 0 1 0;0 0 1 1;

30 0 1 0 0;0 1 0 1;0 1 1 0;0 1 1 1;

31 1 0 0 0;1 0 0 1;1 0 1 0;1 0 1 1;

32 1 1 0 0;1 1 0 1;1 1 1 0;1 1 1 1]

33 RandMessage=modulo(round (16* rand()) ,16)+1 //Get
random number between 1 to 16

34 M=All_M(RandMessage ,:) // S e l e c t a random row from 1
to 16 as I n f o rma t i on Message

35

36 disp(M, ’ I n f o rma t i on Message M’ )
37

38 C = M*G;// Generate code word
39 C = modulo(C,2);// Convert g en e r a t ed code i n t o b ina ry
40 disp(C, ’ Code word o f ( 7 , 4 ) Hamming code M∗G’ )
41

42 R=C// Create r e c i e v e d code word
43

44 // Generate e r r o r at random b i t p o s i t i o n
45

46 ErrPos=modulo(round (8* rand()) ,8) //Get random number
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between 0 to 7
47

48 if ErrPos ==0 then

49 //Do noth ing , as ’ 0 ’ means no e r r o r
50 else

51 if R(ErrPos)==0 then

52 R(ErrPos)=1 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

53 else

54 R(ErrPos)=0 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

55 end

56 end

57

58 disp(R, ’ Rec i eved Code word R ’ )
59

60 // Er ro r Co r r e c t i o n
61

62 S=R*H’// Find Syndrome Matr ix
63 S = modulo(S,2);// Convert Syndrome Matr ix i n t o

b ina ry
64 disp(S, ’ Syndrome Matr ix R∗H( t r a n s p o s e ) ’ )
65

66 if S==[0 0 0] then // [ 0 0 0 ] i n d i c a t e s no e r r o r
67 disp(R, ’ Rec i eved Code wi thout e r r o r ’ )
68 disp([R(3) R(5:7)], ’ Rec i eved In f o rma t i on Message

’ )// Ext ra c t and d i s p l a y Message from code
word

69 else

70 // Find e r r on e ou s b i t p o s i t i o n
71 //Here we f i n d colomn w i th i n H matr ix with

pa t t e r n s immi l a r to Syndrome Matr ix
72 //The p o s i t i o n number o f tha t colomn i s

e q u i v a l e n t to e r r on e ou s b i t p o s i t i o n
73

74 ErrPos =1 // I n i t i a l l i z e e r r o n e ou s b i t p o s i t i o n
75 d=[H(:,ErrPos)]’// Transpose o f f i r s t coloumn o f

H matr ix
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76 // ( Transpose i s used to c onv e r t
colomn to row as syndrome i s
i n row format )

77

78 while ((d(1) <>S(1))|(d(2) <>S(2))|(d(3) <>S(3)

)) do //Check e l ement w i s e i n e q u a l l i t y
f o r any e l ement (OR c ond i t i o n )

79 ErrPos=ErrPos +1 // Increament e r r on e ou s
b i t p o s i t i o n ( Po int to next colomn )

80 d=[H(:,ErrPos)]’// Transpose o f next
coloumn o f H matr ix

81 end

82

83 disp(ErrPos , ’ Er roneous B i t P o s i t i o n ’ )
84

85 // Er ro r c o r r e c t i o n
86 if R(ErrPos)==0 then

87 R(ErrPos)=1 // I n v e r t b i t at Erroneous
B i t P o s i t i o n

88 disp(R, ’ Rec i eved Code with e r r o r
c o r r e c t e d ’ )

89 disp([R(3) R(5:7)], ’ Rec i eved
In f o rma t i on Message ’ )// Ext ra c t
and d i s p l a y Message from code
word

90 else

91 R(ErrPos)=0 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

92 disp(R, ’ Rec i eved Code with e r r o r
c o r r e c t e d ’ )

93 disp([R(3) R(5:7)], ’ Rec i eved In f o rma t i on
Message ’ )// Ext ra c t and d i s p l a y

Message from code word
94 end

95 end
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