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Experiment: 1

Study and generate different
Line Codes - 1 (Unipolar and
Polar RZ and NRZ)

Scilab code Solution 1.1 Study and generate different Line Codes 1 Unipo-
lar NRZ

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate different Line
Codes — 1(Unipolar NRZ)

clear;

close;

clc;

clf;

x=[1 01 0 0 1 1 0]//Data Stream

/ /NRZ
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z=0; //Starting value on x axis
for i=1:length(x)

t=[z:1:2+11//Set of x cordinates for current bit
duration

subplot(2,1,1)

a=gca();

a.data_bounds=[0,-1.5;1length(x) ,1.5]

a.grid=[1,-1]

title(’Data’)

plot(t,x(i))//Plot current data bit

subplot(2,1,2)
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]
title ('NRZ’)
if (x(i)==0)

plot(t,0)//Plot 0 for current bit duration
else

plot(t,1)//Plot 1 for current bit duration
end

z=z+1//Increament starting value on x axis by
one bit period
end

Scilab code Solution 1.2 Study and generate different Line Codes 1 Polar
NRZ

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and



64 bit versions)
4 //Program Title: Study and generate different Line
Codes — 1(Polar NRZ)

clear;

close;

clc;

x=[1 01 0 01 1 0]//Data Stream
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11 //Polar NRZ

12 z=0;//Starting value on x axis
13 for i=1:length(x)

14 t=[z:1:2+1]1//Set of x cordinates for current bit
duration

15 subplot(2,1,1)

16 a=gca();

17 a.data_bounds=[0,-1.5;1length(x) ,1.5]

18 a.grid=[1,-1]

19 title (’'Data’)

20 plot(t,x(i))//Plot current data bit

21

22 subplot (2,1,2)

23 a=gca();

24 a.data_bounds=[0,-1.5;1length(x) ,1.5]

25 a.grid=[1,-1]

26 title (' Polar NRZ’)

27 if (x(1)==0)

28 plot(t,-1)//Plot —1 for current bit
duration

29 else

30 plot(t,1)//Plot 1 for current bit
duration

31 end

32

33 z=z+1//Increament starting value on x axis by

one bit period
34 end
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Scilab code Solution 1.3 Study and generate different Line Codes 1 Unipo-
lar RZ

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate different Line
Codes — 1(Unipolar RZ)

clear;

close;

clc;

x=[1 01 0 01 1 0]//Data Stream

//RZ

z=0; //Starting value on x axis

for i=1:length(x)

t=[z:z+1] //Set of x cordinates for current bit
duration

subplot (2,1,1)
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]
title ('Data’)
plot(t,x(i))//Plot current data bit

t=[z:0.5:2+0.5] //Set of x cordinates for first
half bit duration
subplot (2,1,2)
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
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a.grid=[1,-1]
title(’Polar RZ’)
if (x(1)==0)
plot(t,0)//Plot 0 for first half bit
duration
else
plot(t,1)//Plot 1 for first half bit
duration
end
t=[z+0.5:0.5:z+1] //Set of x cordinates for
second half bit duration
plot(t,0)//Plot 0 for second half bit duration

z=z+1; //Increament starting value on x axis by
one bit period
end

Scilab code Solution 1.4 Study and generate different Line Codes 1 Polar
RZ

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3. 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate different Line
Codes — 1(Polar RZ)

clear;

close;

clc;

x=[1 01 0 0 1 1 0]//Data Stream

//Polar RZ
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z=0; //Starting value on x axis
for i=1:length(x)

end

t=[z:z+1] //Set of x cordinates for current bit

duration
subplot (2,1,1)
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]
title(’Data’)
plot(t,x(i))//Plot current data bit

t=[z:0.5:2+0.5] //Set of x cordinates for first

half bit duration
subplot(2,1,2)
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]
title (' Polar RZ’)

if (x(i)==0)
plot(t,-1)//Plot —1 for first half bit
duration
else
plot(t,1)//Plot 1 for first half bit
duration
end

t=[z+0.5:0.5:2z+1] //Set of x cordinates for

second half bit duration

plot(t,0)//Plot 0 for second half bit duration

z=z+1; //Increament starting value on x axis by

one bit period
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Experiment: 2

Study and generate different
Line Codes - 2( Bipolar,
Manchestre and Quaternary)

Scilab code Solution 2.1 Study and generate different Line Codes 2 Bipo-
lar NRZ

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate different Line
Codes — 2(Bipolar NRZ)

clear;
close;
clc;

x=[1 01 0 0 1 1 0]//Data stream

//Bipolar NRZ

10
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z=0; //Starting point of plot on x—axis
ob=-1;//Initial o/p bit value

for

end

i=1:1:1length(x)

subplot(2,1,1)//Data Plot

a=gca();

a.data_bounds=[0,-1.5;1length(x) ,1.5]

a.grid=[1,-1]
title(’Data’)

t=[z:1:2z+1]1//Plot range on x—axis

period)
plot (t,x(i))

subplot (2,1,2)//Bipolar Bipolar NRZ

a=gca();

(One bit

a.data_bounds=[0,-1.5;1length(x) ,1.5]

a.grid=[1,-1]

title (' Bipolar NRZ’)

if (x(i)==0)

t=[z:1:2z+1]1//Plot range on x—axis (One

bit period)

plot(t,0)//Plot zero

else

t=[z:1:2z+1]1//Plot range on x—axis (One

bit period)

ob=-ob//Invert previous o/p bit value

plot(t,ob)// Plot o/p bit

end

z=z+1//Move starting point of plot on x—axis by

one bit period
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Scilab code Solution 2.2 Study and generate different Line Codes 2 Bipo-
lar RZ

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate different Line
Codes — 2(Bipolar RZ)

clear;

close;

clc;

x=[1 01 0 0 1 1 0]//Data stream

//Bipolar RZ

z=0; //Starting point of plot on x—axis
ob=-1;//Initial o/p bit value

for i=1:1:1ength(x)

subplot (2,1,1)//Data Plot
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]
title(’Data’)

t=[z:1:2z+1]1//Plot range on x—axis (One bit

period)
plot (t,x(i))

12
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subplot (2,1,2)//Bipolar Bipolar RZ

a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]

title (' Bipolar RZ7)

if (x(1)==0)
t=[z:1:2z+1]1//Plot range on x—axis (One
bit period)
plot(t,0)//Plot zero
else
t=[z:0.5:2+0.5] //Plot range on x—axis (
first half bit period)
ob=-ob//Invert previous o/p bit value
plot(t,ob)// Plot o/p bit
t=[z+0.5:0.5:z+1] //Plot range on x—axis
(second half bit period)
plot (t,0)
end

z=z+1//Move starting point of plot on x—axis by
one bit period

end

Scilab code Solution 2.3 Study and generate different Line Codes 2 Manchestre

//Note:

Details of scilab software version and OS

version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP

SP3,

32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate different Line
Codes — 2(Manchestre)

13
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clear;

close;

clc;

x=[1 0100 1 1 0]//Data Stream

//Manchester

z=0;//Starting value on x axis

for i=1:1length(x)

t=[z:1:2z+1]1//Plot range on x—axis (One bit
period)

subplot(2,1,1)
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]
title ('Data’)
plot(t,x(i))//Plot current data bit

t=[z:0.5:2+0.5] //Plot range on x—axis (first
half bit period)
subplot (2,1,2)
a=gca();
a.data_bounds=[0,-1.5;1length(x) ,1.5]
a.grid=[1,-1]
title ("Manchester ')
if (x(i)==0)
plot(t,1)//Plot 1 for first half bit
duration
t=[z+0.5:0.5:z+1] //Plot range on x—axis
(second half bit period)
plot(t,-1)//Plot 1 for second half bit
duration
else
plot(t,-1)//Plot —1 for first half bit
duration
t=[z+0.5:0.5:2z+1] //Plot range on x—axis
(second half bit period)
plot(t,1)//Plot 1 for second half bit
duration

14
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end
z=z+1; //Increament starting value on x axis by
one bit period
end

Scilab code Solution 2.4 Study and generate different Line Codes 2 Qua-
ternary

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate different Line
Codes — 2(Quaternary)

clear;
close;

0] //Data Stream
1 1]//Data Stream
a=1;
//Polar NRZ
z=0;//Starting value on x axis
for i=1:2:1ength (x)
subplot(2,1,1)
g=gca();
g.data_bounds=[0,-1.5;length(x) ,1.5]
g.grid=[1,-1]
title (’Data’)
t=[z:1:2z+1]1//Plot range on x—axis (One bit
period for current bit)
plot(t,x(i))//Plot curent bit
t=[z+1:1:2z+2] //Plot range on x—axis (One bit

15



period for next bit)

23 plot(t,x(i+1))//Plot next bit

24

25

26 subplot(2,1,2)

27 g=gca();

28 g.data_bounds=[0,-2;length(x) ,2]

29 g.grid=[1,-1]

30 title (’2B1Q (Quaternary)’)

31 t=[z:2:2z+2]//Plot range on x—-axis (two bit
periods for current and next bit)

32 if ((x(1)==0)&(x(i+1)==0))//Check current and
next bit combination

33 plot(t,-3/2xa)//if 00 then plot —3/2xa

34 elseif ((x(i)==0)&(x(i+1)==1))//Check current
and next bit combination

35 plot(t,-1/2*a)//if 01 then plot —1/2xa

36 elseif ((x(i)==1)&(x(i+1)==0))//Check current
and next bit combination

37 plot(t,1/2xa)//if 10 then plot 1/2xa

38 elseif ((x(i)==1)&(x(i+1)==1))//Check current
and next bit combination

39 plot(t,3/2%a)//if 11 then plot 3/2xa

40 end

41 z=z+2//Increament starting value on x axis by

two bits period
42 end

16



© 0o N O Ot

10

12
13

Experiment: 3

Study Carrier Modulation
Techniques using BASK, BPSK
and BFSK

Scilab code Solution 3.1 Study Carrier Modulation Techniques using BASK

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3., 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study Carrier Modulation Techniques
using BASK

clear;

clc;

close;

t = 0:0.01:1; // One symbol period

f=2; // Carrier cycles per symbol period
I1=[(0,0,1,1,0,1,0,1]; //data stream

// Generation of ASK Waveform

17
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z=0;

for n=1:1length(I)

end

subplot (3,1,1) //Carrier Plot

a=gca();

a.data_bounds=[0,-1.5;1length(I),1.5]; //set
the boundary values for the x—y
coordinates .

a.x_location="bottom” ;

a.grid=[1,-1];

title(’Carrier ’)

plot ((t+z) ,sin (2*%pi*xf*t));

subplot (3,1,2) //Data Plot

a=gca();

a.data_bounds=[0,-1.5;1length(I),1.5]; //set
the boundary values for the x—y
coordinates .

a.x_location="bottom” ;

a.grid=[1,-1];

title(’Data’)

plot ((t+z),I(n));

subplot (3,1,3) //ASK Waveform Plot
a=gca();
a.data_bounds=[0,-1.5;1length(I),1.5]; //set
the boundary values for the x—y
coordinates .
a.x_location="bottom” ;
a.grid=[1,-1];
title ("ASK Waveform ’)
plot ((t+z),(sin(2x%pi*xf*xt))*(I(n)));
z=z+1;

18
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Scilab code Solution 3.2 Study Carrier Modulation Techniques using BFSK

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study Carrier Modulation Techniques
using BFSK

clear;

clc;

close;

t = 0:0.01:1; // One symbol period

f1=2; // Carrier cycles per symbol period
f2=4; // Carrier cycles per symbol period
1=(0,0,1,1,0,1,0,1]; //data stream

//Generation of FSK Waveform

z=0;
for n=1:length(I)
subplot (4,1,1) //Carrier 1 Plot
a=gca();
a.data_bounds=[0,-1.5;1length(I),1.5]; //set
the boundary values for the x—y
coordinates.
a.x_location="bottom” ;
a.grid=[1,-1];
title( ' Carrier 17)
plot ((t+z) ,sin (2*%pi*xfi1x*t));

subplot (4,1,2) //Carrier 2 Plot
a=gca();
a.data_bounds=[0,-1.5;1length(I),1.5]; //set
the boundary values for the x—y
coordinates.
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a.x_location="bottom”;
a.grid=[1,-1];
title(’Carrier 27)

plot ((t+z) ,sin (2*%pi*xf2x*t));

subplot (4,1,3) //Data Plot

a=gca();

a.data_bounds=[0,-1.5;1length(I),1.5]; //set
the boundary values for the x—y
coordinates .
a.x_location="bottom” ;
a.grid=[1,-1];
title (’Data’)
plot ((t+z),I(n));

subplot (4,1,4) //FSK Waveform Plot

a=gca();

a.data_bounds=[0,-1.5;1length(I),1.5]; //set
the boundary values for the x—y
coordinates .
a.x_location="bottom” ;
a.grid=[1,-1];
title ('FSK Waveform )
if (I(n)==0)
plot ((t+z) ,sin (2*%pixfl1x*t));
elseif (I(mn)==1)
plot ((t+z) ,sin (2*%pi*xf2x*t));

end
z=z+1;
end

Scilab code Solution 3.3 Study Carrier Modulation Techniques using BPSK

//Note: Details
version used:

of scilab

software version and OS

20
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//Tested on OS: Windows 7 SP1, 64 bit and Windows XP

SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and

64 bit versions)

//Program Title: Study Carrier Modulation Techniques

using BPSK

clear;

clc;

close;

t = 0:0.01:1; // One symbol period

f=2; // Carrier cycles per symbol period
1=[0,0,1,1,0,1,0,1]; //data stream

//Generation of PSK Waveform

z=0;
for n=1:1length(I)
subplot (3,1,1) //Carrier Plot
a=gca();

a.data_bounds=[0,-1.5;1length(I),1.5];

the boundary values for the x—y
coordinates.
a.x_location="bottom” ;
a.grid=[1,-1];
title(’Carrier ’)
plot ((t+z) ,sin (2*%pi*xf*t));

subplot (3,1,2) //Data Plot
a=gca();

a.data_bounds=[0,-1.5;1length(I),1.5];

the boundary values for the x—y
coordinates .
a.x_location="bottom” ;
a.grid=[1,-17;
title (’Data’)
plot ((t+z),I(n));

21
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subplot (3,1,3) //PSK Waveform Plot
a=gca();

a.data_bounds=[0,-1.5;1length(I) ,1.5];

the boundary values for the x—y
coordinates .
a.x_location="bottom” ;
a.grid=[1,-1];
title ('PSK Waveform ’)
if (I(n)==1)
plot ((t+z),sin (2*%pi*fxt));
elseif (I(mn)==0)

//set

plot ((t+z),sin ((2*x%pixfxt)+%pi));

end
z=z+1;
end

22
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Experiment: 4

Study and generate OQPSK
waveforms

Scilab code Solution 4.1 Study and generate offset QPSK waveforms

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate Offset QPSK (
OQPSK) waveforms

clear;

clc;

close;

T=2;// One symbol period

t = 0:0.01:T/2;//Sampling Matrix for half symbol
period

f=1; // Carrier frequency (cycles per bit period)

//I=[0 01 1001 1]; //data stream

I=[0 0 01 101 1]; //data stream giving dibit
equivalent to 0,1,2,3

23
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//I=[1 100011 1]; //data stream

//Polar NRZ Converter
I_PNRZ = [] //empty matrix for Polar NRZ data
for n = 1:length(I)
if I(n)== 0 then
I_PNRZ [I_PNRZ, -1]
else
I_PNRZ

[I_PNRZ, 1]

end
end

I_Carrier sqrt (2/T)*cos (2x%pixf*t); //In phase
carrier
Q_Carrier sqrt (2/T)*sin (2*%pi*xf*t); //Quadrature

phase carrier

// Generation of OQPSK Waveform
z=0; //Starting point of plot on x—axis
subplot(3,1,1) //I-PSK Plot
a=gca();
a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];
a.x_location="origin”;
a.grid=[1,1];
title (’I—-Data and I-PSK’)
plot ((t+z),I_Carrier*xI_PNRZ(1));//
[ _Carrier * First bit (I Balance
Modulator)
plot ((t+z) ,I_PNRZ(1),’r’);//First bit
Data for reference
//xpause (2000000) ;//Delay for observation
z=z+1; //Move starting point of plot on x—axis by 1
bit (half symbol) period
for n=2:1:1length (I_PNRZ)
if modulo(n,2)==0 then//Check for odd—even bit
I_Bit=I_PNRZ(n-1)//set I bit as previous bit
Q_Bit=I_PNRZ(n)//set Q bit as current bit
else
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46 I_Bit=I_PNRZ(n)//set I bit as current bit

47 Q_Bit=I_PNRZ(n-1)//set Q bit as previous bit

48 end

49

50 subplot(3,1,1) //I-PSK Plot

51 a=gca();

52 a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];

53 a.x_location="origin”;

54 a.grid=[1,1];

55 title(’I -Data and I -PSK’)

56 plot ((t+z),I_Carrier*I_Bit);//I_Carrier
* Even bit (I Balance Modulator)

57 plot ((t+z),I_Bit, 'r’);//1 Data for
reference

58

59 subplot (3,1,2) //Q-PSK Plot

60 a=gca();

61 a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];

62 a.x_location="origin”;

63 a.grid=[1,1];

64 title ('Q-Data and Q-PSK’)

65 plot ((t+z),Q_Carrier*Q_Bit);//Q _Carrier
x Odd bit (Q Balance Modulator)

66 plot ((t+z),Q_Bit, 'r’);//Q Data for
reference

67

68 subplot (3,1,3) //QPSK Plot

69 a=gca();

70 a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];

71 a.x_location="Origin”;

72 a.grid=[1,1];

73 title ('OQPSK and I—Carrier )

74 plot ((t+z) ,(I_Carrier*I_Bit)+(Q_Carrierx
Q_Bit));//I-PSK + Q-PSK (Adder)

75 plot ((t+z),I_Carrier,’'r’);//1 Carrier

for reference
76 z=z+1;//Move starting point of plot on x—axis by 1
bit (half symbol) period

25



77 //xpause (2000000);//Delay for observation
78 end
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Experiment: 5

Study and generate NON
OQPSK waveforms

Scilab code Solution 5.1 Study and generate Non offset QPSK waveforms

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate Non—-Offset QPSK
waveforms

clear;

clc;

close;

T=2; //One Symbol period

t = 0:0.01:T; // Sampling Matrix for one symbol
period

f=1; // Carrier frequency (cycles per bit period)

I=[0 001101 1]; //data stream giving dibit
equivalent to 0,1,2.,3

//I=[01 10100 0]; //data stream Simon Hykin Ex
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I_Carrier

Q_Carrier

6.1

//Polar NRZ Converter
I_PNRZ = [] //empty matrix for Polar NRZ data

for n = 1:length(I)

if I(n)== 0 then

I_PNRZ = [I_PNRZ, -1]
else

I_PNRZ = [I_PNRZ, 1]
end

end

carrier

phase carrier

// Generation of QPSK Waveform

z=0;//Starting point of plot on x—axis
for n=1:2:1ength (I_PNRZ)

I_Bit=I_PNRZ(n)

Q_Bit=I_PNRZ(n+1)

subplot (3,1,1) //I-PSK Plot
a=gca();

a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];

a.x_location="origin”;
a.grid=[1,1];
title(’I-Data and I-PSK’)

plot ((t+z),I_Carrier*I_Bit);//I_Carrier
* Even bit (I Balance Modulator)
plot ((t+z),I_Bit,’'r’);//I Data for

reference

subplot (3,1,2) //Q-PSK Plot
a=gca();

a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];

a.x_location="origin”;

28

sqrt (2/T)*cos (2x%pixf*t); // In phase

sqrt (2/T)*sin (2*%pixf*t); // Quadrature
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z=z+2; //Move starting point of plot on x—axis by 2

end

a.grid=[1,1];

title ('Q-Data and Q-PSK’)

plot ((t+z),Q_

* Odd bit

plot ((t+z),Q_

reference

Carrier*Q_Bit);//Q_Carrier

(Q Balance Modulator)
Bit,'r’);//Q Data for

subplot (3,1,3) //QPSK Plot

bits

a=gca();

a.data_bounds=[0,

-1.5;length (I_PNRZ) ,1.5];

a.x_location="origin”;

a.grid=[1,1];

title ('QPSK and I—Carrier ’)

plot ((t+z) ,(I_Carrier*I_Bit)+(Q_Carrierx

Q_Bit));//I-PSK + Q-PSK (Adder)

plot ((t+z),I_

Carrier,’'r’);//1 Carrier

for reference

(1 symbol) period
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Experiment: 6

Study and generate 8-QAM
waveforms

Scilab code Solution 6.1 Study and generate 8QAM waveforms

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate 8-QAM waveforms

clear;

clc;

close;

T=3; //One Symbol period

t = 0:0.01:T; // Sampling Matrix for one symbol
period

f=1/T; // Carrier frequency (cycles per bit period)

I=[0 0 0O0OO0O1 0100111001011 10111];
//data stream giving tribits equivalent to
0,1,2.3.4,5,6.7
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//Polar NRZ Converter

I_PNRZ = [] //empty matrix for Polar NRZ data

for n = 1:length(I)
if I(n)== 0 then
I_PNRZ [I_PNRZ, -1]
else
I_PNRZ

[I_PNRZ, 1]
end
end

I_Carrier
carrier
Q_Carrier
phase carrier

// Generation of 8-QAM Waveform

z=0;//Starting point of plot on x—axis

for n=1:3:1length (I_PNRZ)
Q_Bit=I_PNRZ(n)//Set Q Bit Value
I_Bit=I_PNRZ(n+1)//Set I Bit Value
C_Bit=I_PNRZ(n+2)//Set C Bit Value

if C_Bit==-1 then //Set PAM, Product of C

with T or Q

QC=0.5*Q_Bit//Set half amplitude
IC=0.5%I_Bit//Set half amplitude

else
QC=Q_Bit//Set full amplitude
IC=I_Bit//Set full amplitude
end

subplot (3,1,1) //QC Plot
a=gca();

a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];

a.x_location="origin”;
a.grid=[1,1];
title ('Q-PAM’)

plot ((t+z),Q_Carrier*QC);//Q _Carrier * Q

31

sqrt (2/T)*cos (2*%pi*f*t); // In phase

sqrt (2/T)*sin (2*%pi*xf*t); // Quadrature
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69
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71
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73

—PAM (Q Balance Modulator)
plot ((t+z),QC, 'r’);//QPAM Output

subplot (3,1,2) //IC Plot
a=gca();
a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];
a.x_location="origin”;
a.grid=[1,1];
title ('I-PAM’)
plot ((t+z),I_Carrier*IC);//I_Carrier x I
~PAM (I Balance Modulator)
plot ((t+z),IC, r’);//I-PAM Output

subplot (3,1,3) //8-QAM Plot
a=gca();
a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];
a.x_location="origin”;
a.grid=[1,1];
title ('8—QAM’)
plot ((t+z) ,(I_Carrier*IC)+(Q_Carrier=*QC)
);//1-PAM + Q-PAM (Adder)
plot ((t+z),I_Carrier,’'r’);//I Carrier
for reference
plot (((t/3)+z),Q_Bit, 'c’);//Q Bit for
reference
plot (((t/3)+1+z),I_Bit,’b’);//1 Bit for
reference
plot (((t/3)+2+z),C_Bit, 'm’);//C Bit for
reference

z=z+3; //Move starting point of plot on x—axis by 3
bits (1 symbol) period
end
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Experiment: 7

Study and generate MSK
waveforms (PSK Approach)

Scilab code Solution 7.1 Study and generate MSK waveforms with PSK
Approach

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate MSK waveforms (
PSK Approach)

clear;

clc;

close;

h=1/2;

T=1;// One symbol period

t = 0:0.01:T; // One symbol period vector

f=1; // Carrier cycles per symbol period "t”

//I=[01 01010 1]; //data stream in binary to
test worst case
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I=[0 001 10 1 17;
equivalent to 0,1,2.,3

//PNRZ Converter ,
Signal)

I_PNRZ = [] //empty

for n =

if I(n)==

I_PNRZ =

else

I_PNRZ =

end
end

//Generation of MSK Waveform using PSK approach

theta=0;//Initial phase
z=0; //Starting point of

for n=1:1:1ength (I_PNRZ)

//data stream giving dibits

converts data to PNRZ (Bi—Polar

matrix for PNRZ data
1:1length(I)
0O then

[I_PNRZ,

[I_PNRZ,

in radians

plot on x—axis

subplot(3,1,1) //Data Plot

a=gca();

a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];
//set the boundary values for the x—y

coordinates.

a.x_location="origin”;

a.grid=[1,-1];
title(’Data’)

plot ((t+z),I_PNRZ(n));

subplot (3,1,2) //MSK Plot

a=gca();

a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];
//set the boundary values for the x—y

coordinates.

a.x_location="origin”;

a.grid=[1,-1];
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title ('MSK")

theta_change = theta + ((I_PNRZ(n))x*((

hpi*hxt)/T));//Phase variation over a
bit period

plot ((t+z) ,sqrt (2/T)*cos (2*%pi*xf*xt +
theta_change)); // MSK Plot

plot ((t+z) ,sqrt (2/T)*cos (2xY%pi*xfxt), 'r’)
; // Carrier for reference

subplot (3,1,3) // Plot for MSK Phase variation
wrt Carrier
a=gca();
a.x_location="bottom” ;
a.grid=[1,1];
title ('MSK Phase variation wrt Carrier ')
theta_degrees = theta_changex*(180/%pi);//
converts radians to degrees
plot ((t+z),theta_degrees);// plote phase
variation for a bit period

theta=theta_change(length (theta_change));//Stores

last value of phase to theta

z=z+1; //Move starting point of plot on x—axis by 1

bit period

//xpause (2000000) ; //Delay for observation
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Experiment: 8

Study and generate MSK
waveforms (FSK Approach)

Scilab code Solution 8.1 Study and generate MSK waveforms with FSK
Approach

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Study and generate MSK waveforms (
FSK Approach)

clear;

clc;

close;

h=1/2;

T=1;// One symbol period

t = 0:0.01:T; // One symbol period vector

f=1; // Carrier cycles per symbol period "t”

//I=[01 01010 1]; //data stream in binary to
test worst case
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I=[0 001 10 1 17;
equivalent to 0,1,2.,3

//PNRZ Converter ,

//data stream giving dibits

converts data to PNRZ (Bi—Polar

Signal)
I_PNRZ = [] //empty matrix for PNRZ data
for n = 1:length(I)
if I(n)== 0 then
I_PNRZ = [I_PNRZ, -1]
else
I_PNRZ = [I_PNRZ, 1]
end
end

//Generation of MSK Waveform using FSK approach

bitchange=0;//Initial bit

sequence )

theta=0;//Initial phase state in radians

first bit of sequence)

theta_degrees=[0,0];//Initial
start value ,

(first element =
last value)

state

(before first bit of
(before

phase state in degrees
second element =

z=0;//Starting point of plot on x—axis

for n=1:1:1ength (I_PNRZ)

subplot (3,1,1) //Data Plot

a=gca();

a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];
//set the boundary values for the x—y

coordinates.

a.x_location="origin”;

a.grid=[1,-1];
title(’Data’)

plot ((t+z),I_PNRZ(n));

subplot (3,1,2) //MSK Plot

a=gca();
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64

a.data_bounds=[0,-1.5;1length (I_PNRZ) ,1.5];
//set the boundary values for the x—y
coordinates .

a.x_location="origin”;

a.grid=[1,-1];

title ('MSK’)

fm = £ + (I_PNRZ(n)*(h/(2%T)));//Generating
two frequencies corresponding to

//binary 0 (—1
in PNRZ)and
binary 1 (1
in PNRZ)
// (0 —> fc — h
/2T)
// (1 —> fc + h
/2T)
plot ((t+z) ,sqrt(2/T)*cos (2*%pi*xfm*xt +
theta)); // MSK Plot
plot ((t+z) ,sqrt (2/T)*cos (2*%pi*xf*xt), 'r’)
; // Carrier for reference

subplot (3,1,3) // Plot for MSK Phase variation
wrt Carrier

a=gca();

a.x_location="bottom” ;

a.grid=[1,1];

title ('MSK Phase variation wrt Carrier ’)

bitchange=bitchange+I_PNRZ(n);//Bit State
value (cumulative)

theta = bitchangex*((%pi*h)/T);//Phase state
at the end of bit period, in radians

theta_degrees (2)=theta*180/%pi;//Phase state
at the end of bit period, in degrees
plot ([z n],theta_degrees);// plote phase

variation for a bit period

65 theta_degrees(l)=theta_degrees(2);//Copy end phase

value to start phase value for next cycle

38



66 z=z+1;//Move starting point of plot on x—-axis by 1
bit period

67 //xpause (2000000); //Delay for observation

68 end
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Experiment: 9

To calculate all Codewords,
error detection and correction
capability of given LBC

Scilab code Solution 9.1 Linear Block Codes

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3., 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Linear Block Codes (7,4)

clc;
clear;

k = 4; //Information message length
n = 7; //Coded word length

P [110;011 ;11 1;1 0 1]//Parity Matrix
disp (P, "Parity Matrix P’)
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G = [P eye(k,k)]//Generator Matrix to create code
word in P1P2P3D1D2D3D4 format
disp (G, "Generator Matrix G’)

H=[eye(n-k,n-k);P]1’//Parity Check Matrix
disp(H, "Parity Check Matrix H")

//AlIl_M = All 16 posibilities for Information
Message Matrix

1 [0 OO 0;0 00 1;0010;0011;

1;
1,
1

1 0;
1 0;
10

) b

b

= = O =

M
0
0
0

O O O
= = O~
= = O -

1_
1
0
1

)
= O
o O O
= O
= O

1
1
1

= e

)
) ) ) ]

// Calculate all 16 posibile codewords

CodedMat=A11_Mx*G;

CodedMat = modulo(CodedMat ,2);//Convert generated
code into binary

disp (CodedMat , 'Codewords Matrix ')

//Calculate Hamming Distances

HamDist=sum(CodedMat, 'c’) //Sum over the rows of
CodedMat (column of values)

disp(HamDist , '"Hamming Distances ) ;

//Find Minimum non—zero Hamming Distance

[row,coll=find (HamDist==0);//find elements that are

Zero

HamDist (row,:)=[];//Remove all rows that are zero
replace by null)

MinHamDist=min (HamDist) //Find Minimum non—zero
Hamming Distance

disp(MinHamDist , 'Minimum Non—Zero Hamming Distance ’)

// Calculate Error Detection Capability
ErrDetCap=MinHamDist -1;
disp (ErrDetCap, "Error Detection Capability ’);
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// Calculate Error Correction Capability
ErrCorCap=(MinHamDist -1) /2;
disp (ErrCorCap, 'Error Correction Capability ') ;

//Generate random message
RandMessage=modulo (round (16*rand ()) ,16)+1//Get
random number between 1 to 16

M=A11_M(RandMessage ,:)//Select a random row from
Message Matrix All.M as Information Message
disp (M, "Information Message M’)

C = CodedMat (RandMessage,:)//Select a random row
from Coded Matrix CodedMat as Coded Message
disp(C, "Coded Message C’)

//Transmit random message
R=C//Create recieved code word

//Generate error at random bit position

ErrPos=modulo (round (8*rand()) ,8)//Get random number
between 0 to 7

if ErrPos==0 then
//Do nothing , as ’0’ means no error
else
if R(ErrPos)==0 then
R(ErrPos)=1//Invert bit at Erroneous Bit

Position
else
R(ErrPos)=0//Invert bit at Erroneous Bit
Position
end

end

disp(R, "Recieved Code word R’)
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78 //Error Correction

79

80 S=R*H’//Find Syndrome Matrix

81 S = modulo(S,2);//Convert Syndrome Matrix into

binary
82 disp (S, Syndrome Matrix RxH(transpose)’)
83
8 if S==[0 0 0] then //[0 O 0] indicates no error
85 disp(R, "Recieved Code without error’)
86 disp(R(4:7), Recieved Information Message’)//
Extract and display Message from code word
87 else
88 //Find erroneous bit position
89 //Here we find colomn within H matrix with
pattern simmilar to Syndrome Matrix
90 //The position number of that colomn is
equivalent to erroneous bit position
91
92 ErrPos=1//Initiallize erroneous bit position
93 d=[H(:,ErrPos)]’//Transpose of first coloumn of
H matrix
94 // (Transpose is used to convert
colomn to row as syndrome is
in row format)
95
96 while ((d(1)<>5(1))1(d(2)<>5(2))1(d(3)<>5(3)
)) do //Check element wise inequallity
for any element (OR condition)
97 ErrPos=ErrPos+1//Increament erroneous
bit position (Point to next colomn)
98 d=[H(:,ErrPos)]’//Transpose of next
coloumn of H matrix
99 end
100
101 disp(ErrPos, "Erroneous Bit Position’)
102
103 //Error correction
104 if R(ErrPos)==0 then
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109

110

111

112
113

end

else

end

R(ErrPos)=1//Invert bit at Erroneous
Bit Position
disp (R, "Recieved Code with error
corrected ’)
disp(R(4:7), Recieved Information
Message ') // Extract and display
Message from code word

R(ErrPos)=0//Invert bit at Erroneous Bit
Position
disp(R, "Recieved Code with error
corrected )
disp(R(4:7), Recieved Information
Message ’) //Extract and display
Message from code word
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Experiment: 10

To encode Cyclic code and
calculate Syndrome for the
given generator polynomial

Scilab code Solution 10.1 Cyclic Codes

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3., 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Cyclic Codes (7,4)

clc;

clear;

k = 4; //Information Message Length
n = 7; //Codeword Length

// Generator Polynomial

x=poly (0, 'x7);

GenPoly=1+x+x"3;

disp(GenPoly, "The Generator Polynomial’);
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//Generating Random Message

//AIl_M = All 16 posibilities for Information
Message Matrix

1 [0 0O 0;000 1;0010;0011;

; 1, ;
1
1 .

)

1 0;
1 0;
1 0;

)

)

= = O =

1_M
10
0 0
10

O O O |
o)
= O -
O O O
= = O -
= O
= = O .
= O

1
1
1

[ S =

]

)

RandMessage=modulo (round (16*rand ()) ,16)+1//Get
random number between 1 to 16

M=A11_M(RandMessage ,:)//Select a random row from
Message Matrix All.M as Information Message
disp (M, "Information Message M’)

//Message Polynomial

MesPoly=(M(1)*1) + (M(2)*(x~1)) + (M(3)*(x"2)) + (M

(4)*(x73));
disp (MesPoly, 'Message Polynomial u(x)’);

//Encoding

// Generating Codeword Polynomial

p=(x~(n-k))*(MesPoly);//Step 1 — multiply MesPoly by

x (n—k), [x"(n-k)*u(x)]

[RemPoly,ql=pdiv(p,GenPoly);//Step 2 — divide above

product by GenPoly, g(x)(Polynomial Division)
RemPoly=modulo (RemPoly ,2);//Convert Remainder
Polynomial to binary to get parity check
polynomial , b(x)
disp (RemPoly, 'Remainder Polynomial b(x)’);

CodePoly=RemPoly+(MesPoly*(x~(n-k)));//Step 3 — add

(x"(n—k)*u(x)) and b(x) to get Codeword
Polynomial
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disp (CodePoly, 'Codeword Polynomial c(x)’);

//Finding Coefficients of Codeword Polynomial
CodePolyCoeff=coeff (CodePoly);
//Removal of — signs from Coefficients of
Codeword Polynomial
for i=1:1length(CodePolyCoeff)
if (CodePolyCoeff (i)==-1) then
CodePolyCoeff (i)=1;
end
end
disp(CodePolyCoeff, Coefficients of Codeword
Polynomial 7) ;

//Generating 7 bit Codeword from Coefficients of
Codeword Polynomial

C=CodePolyCoeff;

if length(C)<7 then

C(1,7)=0;//Assigning a value outside arrey
dimension will automatically
//pad additional zeros to resize the
arrey / vector
end
disp(C, "Generated Codeword’) ;

//Transmition

R=C//Create recieved code word

//Generate error at random bit position
ErrPos=modulo (round (8*rand ()) ,8) //Get random
number between 0 to 7
//ErrPos=0 //for testing
if ErrPos==0 then
//Do nothing , as ’0’ means no error
else
if R(ErrPos)==0 then
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71 R(ErrPos)=1//Invert bit at Erroneous Bit

Position

72 else

73 R(ErrPos)=0//Invert bit at Erroneous Bit
Position

74 end

75 end

76

77 //Reception and Decoding

78

79 disp(R, 'Recieved Code word R’)

80

81 //Received Polynomial

82 RecPoly=(R(1)x*1) + (R(2)*(x"1)) + (R(3)*(x"2)) + (R
(4)*(x~3)) + (R(B)*(x"4)) + (R(6)*(x"5)) + (R(7)
*(x76)) ;

83 disp(RecPoly, 'Received Polynomial u(x)’);

84

85 //Syndrome Polynomial

86 [SynPoly,ql=pdiv(RecPoly, GenPoly) ;

87 SynPoly=modulo (SynPoly,b2)

88 disp(SynPoly, Syndrome Polynomial )

89

90 //Finding Coefficients of Syndrome Polynomial

91 SynPolyCoeff=coeff (SynPoly) ;

92 //Removal of — signs from Coefficients of
Syndrome Polynomial

93 for i=1:length(SynPolyCoeff)

94 if (SynPolyCoeff(i)==-1) then

95 SynPolyCoeff (i)=1;

96 end

97 end

98 disp(SynPolyCoeff, Coefficients of Syndrome
Polynomial 7) ;

99

100 //Generating 3 bit Syndrome from Coefficients of
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Syndrome Polynomial
101 if length(SynPolyCoeff)<3 then

102 SynPolyCoeff (1,3)=0;//Assigning a value outside
arrey dimension will automatically
103 //pad additional zeros to resize the
arrey / vector

104 end

105 disp(SynPolyCoeff , Syndrome’) ;

106

107

108

109 //Create H (Parity check matrix) as error
lookup table

110 P=1[110;0113;111;1 0 1]1//Parity
Matrix

111 H=[eye(n-k,n-k);P]1’//Parity Check Matrix

112 //disp (H, Parity Check Matrix H’) //for
testing

113

114 if SynPolyCoeff==[0 0 0] then //[0 O 0] indicates
no error

115 disp (R, "Recieved Code without error’)
116 disp(R(4:7), Recieved Information Message’)//
Extract and display Message from code word
117 else
118 //Find erroneous bit position
119 //Here we find colomn within H matrix with
pattern simmilar to Syndrome Matrix
120 //The position number of that colomn is
equivalent to erroneous bit position
121
122 ErrPos=1//Initiallize erroneous bit position
123 d=[H(:,ErrPos)]’//Transpose of first coloumn of
H matrix
124 //(Transpose is used to convert
colomn to row as syndrome is
in row format)
125
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126 while ((d(1)<>SynPolyCoeff (1)) |(d(2)<>
SynPolyCoeff (2))](d(3)<>SynPolyCoeff (3)))
do //Check element wise inequallity for
any element (OR condition)
127 ErrPos=ErrPos+1//Increament erroneous
bit position (Point to next colomn)
128 d=[H(:,ErrPos)]’//Transpose of next
coloumn of H matrix
129 end
130
131 disp (ErrPos, "Erroneous Bit Position )
132
133 //Error correction
134 if R(ErrPos)==0 then
135 R(ErrPos)=1//Invert bit at Erroneous Bit
Position
136 else
137 R(ErrPos)=0//Invert bit at Erroneous Bit
Position
138 end
139 disp(R, "Recieved Code with error corrected ')
140 disp(R(4:7), Recieved Information Message’)
//Extract and display Message from code
word
141 end
142 disp (M, 'Information Message M that was sent ... )

50



© 00 g O U

10

12
13
14
15

Experiment: 11

To encode and decode
Hamming code

Scilab code Solution 11.1 Hamming Codes

//Note: Details of scilab software version and OS
version used:

//Tested on OS: Windows 7 SP1, 64 bit and Windows XP
SP3, 32 bit

//Scilab version: 5.4.1 (Tested on both 32 bit and
64 bit versions)

//Program Title: Hamming Codes (7,4)

clc;
clear;

k = 4; //Information message matrix length
n =7; //Coded word length

P=1[110;0113;111;1 0 1]//Parity Matrix
disp (P, "Parity Matrix P’)

G = [P eye(k,k)]//Generator Matrix to create code
word in PI1P2P3D1D2D3D4 format
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16

17
18
19
20

21
22
23

24
25

26
27
28

29
30
31
32
33

34

35
36
37
38
39
40
41
42
43
44
45
46

G(:,[3 41)=G(:,[4 3])//Swap colomn 3 and 4 of G to
create code word in P1P2D1P3D2D3D4 format
disp (G, "Generator Matrix G’)

H=[eye(n-k,n-k);P]1’//Parity Check Matrix

H(:,[3 41)=H(:,[4 3])//Swap colomn 3 and 4 of H to
satisfy GH =0

disp(H, "Parity Check Matrix H’)

//disp (modulo(G«H’,2) ,’GH’) //Check if the condition
GH'=0 satisfy (for testing)

/M= [1 10 1]//Information Message Matrix for
testing

//Generate random message
//AlIl_M = All 16 posibilities for Information
Message Matrix
[0 OO 0;0 00 1;0010;0011;
0 1;0 1 00
0 1;1 1 051

b b

A11_M
010
100

1 1;
11

o O

1 1 1
0 0 0 ;
1100;1101;1110;1 11 1]
RandMessage=modulo (round (16*rand()) ,16)+1//Get
random number between 1 to 16
M=Al11_M(RandMessage,:)//Select a random row from 1

to 16 as Information Message

;0
;1

disp(M, "Information Message M)

C = MxG;//Generate code word
C modulo(C,2);//Convert generated code into binary
disp(C, 'Code word of (7,4) Hamming code MxG’)

R=C//Create recieved code word
//Generate error at random bit position
ErrPos=modulo (round (8xrand ()) ,8) //Get random number
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55
56
o7
58
59
60
61
62
63

64
65
66
67
68

69
70
71

72

73

74
75

between 0 to 7

if ErrPos==0 then
//Do nothing , as ’0’ means no error
else
if R(ErrPos)==0 then
R(ErrPos)=1//Invert bit at Erroneous Bit

Position
else
R(ErrPos)=0//Invert bit at Erroneous Bit
Position
end

end
disp(R, "Recieved Code word R’)
//Error Correction

S=R*H’ //Find Syndrome Matrix

S = modulo(S,2);//Convert Syndrome Matrix into
binary

disp (8, ’Syndrome Matrix R«xH(transpose)’)

if 8==[0 0 0] then //[0 O 0] indicates no error
disp (R, "Recieved Code without error’)
disp([R(3) R(5:7)], Recieved Information Message
") //Extract and display Message from code
word
else
//Find erroneous bit position
//Here we find colomn within H matrix with
pattern simmilar to Syndrome Matrix
//The position number of that colomn is
equivalent to erroneous bit position

ErrPos=1//Initiallize erroneous bit position

d=[H(:,ErrPos)]’//Transpose of first coloumn of
H matrix
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7
78
79
80
81
82
83
84
85
86
87
88

89

90
91

92

93

94
95

//(Transpose is used to convert
colomn to row as syndrome is
in row format)

while ((d(1)<>5(1))1(d(2)<>5(2))1(d(3)<>5(3)
)) do //Check element wise inequallity
for any element (OR condition)
ErrPos=ErrPos+1//Increament erroneous
bit position (Point to next colomn)
d=[H(:,ErrPos)]’//Transpose of next
coloumn of H matrix
end

disp(ErrPos, "Erroneous Bit Position’)

//Error correction
if R(ErrPos)==0 then
R(ErrPos)=1//Invert bit at Erroneous
Bit Position
disp (R, "Recieved Code with error
corrected ’)
disp ([R(3) R(5:7)], Recieved
Information Message’) //Extract
and display Message from code
word
else
R(ErrPos)=0//Invert bit at Erroneous Bit
Position
disp (R, "Recieved Code with error
corrected ’)
disp([R(3) R(5:7)], Recieved Information
Message ') // Extract and display
Message from code word
end
end
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