
Scilab Manual for
Digital Communication
by Prof Kalawati Patil

Others
Thakur College of Engineering & Technology1

Solutions provided by
Mr Sanjay Rawat

Others
Mumbai University/Thakur College of Engg. & Tech.

February 12, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 3

1 Study and generate different Line Codes - 1 (Unipolar and
Polar RZ and NRZ) 4

2 Study and generate different Line Codes - 2(Bipolar, Manchestre
and Quaternary) 10

3 Study Carrier Modulation Techniques using BASK, BPSK
and BFSK 17

4 Study and generate OQPSK waveforms 23

5 Study and generate NON OQPSK waveforms 27

6 Study and generate 8-QAM waveforms 30

7 Study and generate MSK waveforms (PSK Approach) 33

8 Study and generate MSK waveforms (FSK Approach) 36

9 To calculate all Codewords, error detection and correction
capability of given LBC 40

10 To encode Cyclic code and calculate Syndrome for the given
generator polynomial 45

11 To encode and decode Hamming code 51

2

List of Experiments

Solution 1.1 Study and generate different Line Codes 1 Unipolar
NRZ . 4

Solution 1.2 Study and generate different Line Codes 1 Polar
NRZ . 5

Solution 1.3 Study and generate different Line Codes 1 Unipolar
RZ . 7

Solution 1.4 Study and generate different Line Codes 1 Polar RZ 8
Solution 2.1 Study and generate different Line Codes 2 Bipolar

NRZ . 10
Solution 2.2 Study and generate different Line Codes 2 Bipolar

RZ . 12
Solution 2.3 Study and generate different Line Codes 2 Manchestre 13
Solution 2.4 Study and generate different Line Codes 2 Quater-

nary . 15
Solution 3.1 Study Carrier Modulation Techniques using BASK 17
Solution 3.2 Study Carrier Modulation Techniques using BFSK 18
Solution 3.3 Study Carrier Modulation Techniques using BPSK 20
Solution 4.1 Study and generate offset QPSK waveforms . . . 23
Solution 5.1 Study and generate Non offset QPSK waveforms . 27
Solution 6.1 Study and generate 8QAM waveforms 30
Solution 7.1 Study and generate MSK waveforms with PSK Ap-

proach . 33
Solution 8.1 Study and generate MSK waveforms with FSK Ap-

proach . 36
Solution 9.1 Linear Block Codes 40
Solution 10.1 Cyclic Codes . 45
Solution 11.1 Hamming Codes 51

3

Experiment: 1

Study and generate different
Line Codes - 1 (Unipolar and
Polar RZ and NRZ)

Scilab code Solution 1.1 Study and generate different Line Codes 1 Unipo-
lar NRZ

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine
Codes − 1(Un ipo l a r NRZ)

5

6 clear;

7 close;

8 clc;

9 clf;

10 x=[1 0 1 0 0 1 1 0] //Data Stream
11

12 //NRZ

4

13 z=0; // S t a r t i n g va l u e on x a x i s
14 for i=1: length(x)

15

16 t=[z:1:z+1] // Set o f x c o r d i n a t e s f o r c u r r e n t b i t
du r a t i on

17 subplot (2,1,1)

18 a=gca();

19 a.data_bounds =[0, -1.5; length(x) ,1.5]

20 a.grid=[1,-1]

21 title(’ Data ’)
22 plot(t,x(i))// P lo t c u r r e n t data b i t
23

24 subplot (2,1,2)

25 a=gca();

26 a.data_bounds =[0, -1.5; length(x) ,1.5]

27 a.grid=[1,-1]

28 title(’NRZ ’)
29 if(x(i)==0)

30 plot(t,0) // P lo t 0 f o r c u r r e n t b i t du r a t i on
31 else

32 plot(t,1) // P lo t 1 f o r c u r r e n t b i t du r a t i on
33 end

34

35 z=z+1 // Increament s t a r t i n g va lu e on x a x i s by
one b i t p e r i o d

36 end

Scilab code Solution 1.2 Study and generate different Line Codes 1 Polar
NRZ

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and

5

64 b i t v e r s i o n s)
4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine

Codes − 1(Po la r NRZ)
5

6 clear;

7 close;

8 clc;

9 x=[1 0 1 0 0 1 1 0] //Data Stream
10

11 // Po la r NRZ
12 z=0; // S t a r t i n g va l u e on x a x i s
13 for i=1: length(x)

14 t=[z:1:z+1] // Set o f x c o r d i n a t e s f o r c u r r e n t b i t
du r a t i on

15 subplot (2,1,1)

16 a=gca();

17 a.data_bounds =[0, -1.5; length(x) ,1.5]

18 a.grid=[1,-1]

19 title(’ Data ’)
20 plot(t,x(i))// P lo t c u r r e n t data b i t
21

22 subplot (2,1,2)

23 a=gca();

24 a.data_bounds =[0, -1.5; length(x) ,1.5]

25 a.grid=[1,-1]

26 title(’ Po l a r NRZ ’)
27 if(x(i)==0)

28 plot(t,-1) // P lo t −1 f o r c u r r e n t b i t
du r a t i on

29 else

30 plot(t,1) // P lo t 1 f o r c u r r e n t b i t
du r a t i on

31 end

32

33 z=z+1 // Increament s t a r t i n g va lu e on x a x i s by
one b i t p e r i o d

34 end

6

Scilab code Solution 1.3 Study and generate different Line Codes 1 Unipo-
lar RZ

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine
Codes − 1(Un ipo l a r RZ)

5

6 clear;

7 close;

8 clc;

9 x=[1 0 1 0 0 1 1 0] //Data Stream
10

11 //RZ
12 z=0; // S t a r t i n g va l u e on x a x i s
13 for i=1: length(x)

14 t=[z:z+1] // Set o f x c o r d i n a t e s f o r c u r r e n t b i t
du r a t i on

15 subplot (2,1,1)

16 a=gca();

17 a.data_bounds =[0, -1.5; length(x) ,1.5]

18 a.grid=[1,-1]

19 title(’ Data ’)
20 plot(t,x(i))// P lo t c u r r e n t data b i t
21

22 t=[z:0.5:z+0.5] // Set o f x c o r d i n a t e s f o r f i r s t
h a l f b i t du r a t i on

23 subplot (2,1,2)

24 a=gca();

25 a.data_bounds =[0, -1.5; length(x) ,1.5]

7

26 a.grid=[1,-1]

27 title(’ Po l a r RZ ’)
28 if(x(i)==0)

29 plot(t,0) // P lo t 0 f o r f i r s t h a l f b i t
du r a t i on

30 else

31 plot(t,1) // P lo t 1 f o r f i r s t h a l f b i t
du r a t i on

32 end

33 t=[z+0.5:0.5:z+1] // Set o f x c o r d i n a t e s f o r
second h a l f b i t du r a t i on

34 plot(t,0) // P lo t 0 f o r second h a l f b i t du r a t i on
35

36 z=z+1; // Increament s t a r t i n g va lu e on x a x i s by
one b i t p e r i o d

37 end

Scilab code Solution 1.4 Study and generate different Line Codes 1 Polar
RZ

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine
Codes − 1(Po la r RZ)

5

6 clear;

7 close;

8 clc;

9 x=[1 0 1 0 0 1 1 0] //Data Stream
10

11 // Po la r RZ

8

12 z=0; // S t a r t i n g va l u e on x a x i s
13 for i=1: length(x)

14 t=[z:z+1] // Set o f x c o r d i n a t e s f o r c u r r e n t b i t
du r a t i on

15 subplot (2,1,1)

16 a=gca();

17 a.data_bounds =[0, -1.5; length(x) ,1.5]

18 a.grid=[1,-1]

19 title(’ Data ’)
20 plot(t,x(i))// P lo t c u r r e n t data b i t
21

22 t=[z:0.5:z+0.5] // Set o f x c o r d i n a t e s f o r f i r s t
h a l f b i t du r a t i on

23 subplot (2,1,2)

24 a=gca();

25 a.data_bounds =[0, -1.5; length(x) ,1.5]

26 a.grid=[1,-1]

27 title(’ Po l a r RZ ’)
28 if(x(i)==0)

29 plot(t,-1) // P lo t −1 f o r f i r s t h a l f b i t
du r a t i on

30 else

31 plot(t,1) // P lo t 1 f o r f i r s t h a l f b i t
du r a t i on

32 end

33

34 t=[z+0.5:0.5:z+1] // Set o f x c o r d i n a t e s f o r
second h a l f b i t du r a t i on

35 plot(t,0) // P lo t 0 f o r second h a l f b i t du r a t i on
36

37 z=z+1; // Increament s t a r t i n g va lu e on x a x i s by
one b i t p e r i o d

38 end

9

Experiment: 2

Study and generate different
Line Codes - 2(Bipolar,
Manchestre and Quaternary)

Scilab code Solution 2.1 Study and generate different Line Codes 2 Bipo-
lar NRZ

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine
Codes − 2(B i p o l a r NRZ)

5

6 clear;

7 close;

8 clc;

9 x=[1 0 1 0 0 1 1 0] //Data stream
10

11 // B i p o l a r NRZ
12

10

13 z=0; // S t a r t i n g po i n t o f p l o t on x−a x i s
14 ob=-1; // I n i t i a l o/p b i t va l u e
15

16 for i=1:1: length(x)

17

18 subplot (2,1,1) //Data P lo t
19 a=gca();

20 a.data_bounds =[0, -1.5; length(x) ,1.5]

21 a.grid=[1,-1]

22 title(’ Data ’)
23

24 t=[z:1:z+1] // P lo t range on x−a x i s (One b i t
p e r i o d)

25 plot(t,x(i))

26

27 subplot (2,1,2) // B i p o l a r B i p o l a r NRZ
28 a=gca();

29 a.data_bounds =[0, -1.5; length(x) ,1.5]

30 a.grid=[1,-1]

31 title(’ B i p o l a r NRZ ’)
32

33 if(x(i)==0)

34 t=[z:1:z+1] // P lo t range on x−a x i s (One
b i t p e r i o d)

35 plot(t,0) // P lo t z e r o
36 else

37 t=[z:1:z+1] // P lo t range on x−a x i s (One
b i t p e r i o d)

38 ob=-ob // I n v e r t p r e v i o u s o/p b i t va l u e
39 plot(t,ob)// P lo t o/p b i t
40 end

41

42 z=z+1 //Move s t a r t i n g po i n t o f p l o t on x−a x i s by
one b i t p e r i o d

43 end

11

Scilab code Solution 2.2 Study and generate different Line Codes 2 Bipo-
lar RZ

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine
Codes − 2(B i p o l a r RZ)

5

6 clear;

7 close;

8 clc;

9 x=[1 0 1 0 0 1 1 0] //Data stream
10

11 // B i p o l a r RZ
12

13 z=0; // S t a r t i n g po i n t o f p l o t on x−a x i s
14 ob=-1; // I n i t i a l o/p b i t va l u e
15

16 for i=1:1: length(x)

17

18 subplot (2,1,1) //Data P lo t
19 a=gca();

20 a.data_bounds =[0, -1.5; length(x) ,1.5]

21 a.grid=[1,-1]

22 title(’ Data ’)
23

24 t=[z:1:z+1] // P lo t range on x−a x i s (One b i t
p e r i o d)

25 plot(t,x(i))

26

12

27 subplot (2,1,2) // B i p o l a r B i p o l a r RZ
28 a=gca();

29 a.data_bounds =[0, -1.5; length(x) ,1.5]

30 a.grid=[1,-1]

31 title(’ B i p o l a r RZ ’)
32

33 if(x(i)==0)

34 t=[z:1:z+1] // P lo t range on x−a x i s (One
b i t p e r i o d)

35 plot(t,0) // P lo t z e r o
36 else

37 t=[z:0.5:z+0.5] // P lo t range on x−a x i s (
f i r s t h a l f b i t p e r i o d)

38 ob=-ob // I n v e r t p r e v i o u s o/p b i t va l u e
39 plot(t,ob)// P lo t o/p b i t
40 t=[z+0.5:0.5:z+1] // P lo t range on x−a x i s

(s econd h a l f b i t p e r i o d)
41 plot(t,0)

42 end

43

44 z=z+1 //Move s t a r t i n g po i n t o f p l o t on x−a x i s by
one b i t p e r i o d

45 end

Scilab code Solution 2.3 Study and generate different Line Codes 2 Manchestre

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine
Codes − 2(Manchestre)

5

13

6 clear;

7 close;

8 clc;

9 x=[1 0 1 0 0 1 1 0] //Data Stream
10

11 //Manchester
12 z=0; // S t a r t i n g va l u e on x a x i s
13 for i=1: length(x)

14 t=[z:1:z+1] // P lo t range on x−a x i s (One b i t
p e r i o d)

15 subplot (2,1,1)

16 a=gca();

17 a.data_bounds =[0, -1.5; length(x) ,1.5]

18 a.grid=[1,-1]

19 title(’ Data ’)
20 plot(t,x(i))// P lo t c u r r e n t data b i t
21

22 t=[z:0.5:z+0.5] // P lo t range on x−a x i s (f i r s t
h a l f b i t p e r i o d)

23 subplot (2,1,2)

24 a=gca();

25 a.data_bounds =[0, -1.5; length(x) ,1.5]

26 a.grid=[1,-1]

27 title(’ Manchester ’)
28 if(x(i)==0)

29 plot(t,1) // P lo t 1 f o r f i r s t h a l f b i t
du r a t i on

30 t=[z+0.5:0.5:z+1] // P lo t range on x−a x i s
(s econd h a l f b i t p e r i o d)

31 plot(t,-1) // P lo t 1 f o r second h a l f b i t
du r a t i on

32 else

33 plot(t,-1) // P lo t −1 f o r f i r s t h a l f b i t
du r a t i on

34 t=[z+0.5:0.5:z+1] // P lo t range on x−a x i s
(s econd h a l f b i t p e r i o d)

35 plot(t,1) // P lo t 1 f o r second h a l f b i t
du r a t i on

14

36 end

37 z=z+1; // Increament s t a r t i n g va lu e on x a x i s by
one b i t p e r i o d

38 end

Scilab code Solution 2.4 Study and generate different Line Codes 2 Qua-
ternary

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Study and g en e r a t e d i f f e r e n t L ine
Codes − 2(Quaternary)

5

6 clear;

7 close;

8 clc;

9 x=[1 0 0 1 1 1 0 0] //Data Stream
10 //x=[0 0 0 1 1 0 1 1] / / Data Stream
11 a=1;

12 // Po la r NRZ
13 z=0; // S t a r t i n g va l u e on x a x i s
14 for i=1:2: length(x)

15 subplot (2,1,1)

16 g=gca();

17 g.data_bounds =[0, -1.5; length(x) ,1.5]

18 g.grid=[1,-1]

19 title(’ Data ’)
20 t=[z:1:z+1] // P lo t range on x−a x i s (One b i t

p e r i o d f o r c u r r e n t b i t)
21 plot(t,x(i))// P lo t cu r en t b i t
22 t=[z+1:1:z+2] // P lo t range on x−a x i s (One b i t

15

p e r i o d f o r next b i t)
23 plot(t,x(i+1))// P lo t next b i t
24

25

26 subplot (2,1,2)

27 g=gca();

28 g.data_bounds =[0,-2; length(x) ,2]

29 g.grid=[1,-1]

30 title(’ 2B1Q (Quaternary) ’)
31 t=[z:2:z+2] // P lo t range on x−a x i s (two b i t

p e r i o d s f o r c u r r e n t and next b i t)
32 if((x(i)==0)&(x(i+1) ==0))//Check c u r r e n t and

next b i t combinat ion
33 plot(t, -3/2*a)// i f 00 then p l o t −3/2∗a
34 elseif ((x(i)==0)&(x(i+1) ==1))//Check c u r r e n t

and next b i t combinat i on
35 plot(t, -1/2*a)// i f 01 then p l o t −1/2∗a
36 elseif ((x(i)==1)&(x(i+1) ==0))//Check c u r r e n t

and next b i t combinat i on
37 plot(t,1/2*a)// i f 10 then p l o t 1/2∗ a
38 elseif ((x(i)==1)&(x(i+1) ==1))//Check c u r r e n t

and next b i t combinat i on
39 plot(t,3/2*a)// i f 11 then p l o t 3/2∗ a
40 end

41 z=z+2 // Increament s t a r t i n g va lu e on x a x i s by
two b i t s p e r i o d

42 end

16

Experiment: 3

Study Carrier Modulation
Techniques using BASK, BPSK
and BFSK

Scilab code Solution 3.1 Study Carrier Modulation Techniques using BASK

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Study Ca r r i e r Modulat ion Techn iques
u s i n g BASK

5

6 clear;

7 clc;

8 close;

9 t = 0:0.01:1; // One symbol p e r i o d
10 f=2; // Ca r r i e r c y c l e s per symbol p e r i o d
11 I=[0,0,1,1,0,1,0,1]; // data stream
12

13 // Genera t i on o f ASK Waveform

17

14

15 z=0;

16 for n=1: length(I)

17 subplot (3,1,1) // Ca r r i e r P lo t
18 a=gca();

19 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

20 a.x_location=”bottom”;
21 a.grid =[1,-1];

22 title(’ C a r r i e r ’)
23 plot((t+z),sin (2*%pi*f*t));

24

25 subplot (3,1,2) //Data P lo t
26 a=gca();

27 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

28 a.x_location=”bottom”;
29 a.grid =[1,-1];

30 title(’ Data ’)
31 plot((t+z),I(n));

32

33 subplot (3,1,3) //ASK Waveform Plo t
34 a=gca();

35 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

36 a.x_location=”bottom”;
37 a.grid =[1,-1];

38 title(’ASK Waveform ’)
39 plot((t+z) ,(sin(2*%pi*f*t))*(I(n)));

40 z=z+1;

41 end

18

Scilab code Solution 3.2 Study Carrier Modulation Techniques using BFSK

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Study Ca r r i e r Modulat ion Techn iques
u s i n g BFSK

5

6 clear;

7 clc;

8 close;

9 t = 0:0.01:1; // One symbol p e r i o d
10 f1=2; // Ca r r i e r c y c l e s per symbol p e r i o d
11 f2=4; // Ca r r i e r c y c l e s per symbol p e r i o d
12 I=[0,0,1,1,0,1,0,1]; // data stream
13

14 // Genera t i on o f FSK Waveform
15

16 z=0;

17 for n=1: length(I)

18 subplot (4,1,1) // Ca r r i e r 1 P lo t
19 a=gca();

20 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

21 a.x_location=”bottom”;
22 a.grid =[1,-1];

23 title(’ C a r r i e r 1 ’)
24 plot((t+z),sin (2*%pi*f1*t));

25

26 subplot (4,1,2) // Ca r r i e r 2 P lo t
27 a=gca();

28 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

19

29 a.x_location=”bottom”;
30 a.grid =[1,-1];

31 title(’ C a r r i e r 2 ’)
32 plot((t+z),sin (2*%pi*f2*t));

33

34 subplot (4,1,3) //Data P lo t
35 a=gca();

36 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

37 a.x_location=”bottom”;
38 a.grid =[1,-1];

39 title(’ Data ’)
40 plot((t+z),I(n));

41

42 subplot (4,1,4) //FSK Waveform Plo t
43 a=gca();

44 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

45 a.x_location=”bottom”;
46 a.grid =[1,-1];

47 title(’FSK Waveform ’)
48 if (I(n)==0)

49 plot((t+z),sin (2*%pi*f1*t));

50 elseif (I(n)==1)

51 plot((t+z),sin (2*%pi*f2*t));

52 end

53 z=z+1;

54 end

Scilab code Solution 3.3 Study Carrier Modulation Techniques using BPSK

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

20

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Study Ca r r i e r Modulat ion Techn iques
u s i n g BPSK

5

6 clear;

7 clc;

8 close;

9 t = 0:0.01:1; // One symbol p e r i o d
10 f=2; // Ca r r i e r c y c l e s per symbol p e r i o d
11 I=[0,0,1,1,0,1,0,1]; // data stream
12

13 // Genera t i on o f PSK Waveform
14

15 z=0;

16 for n=1: length(I)

17 subplot (3,1,1) // Ca r r i e r P lo t
18 a=gca();

19 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

20 a.x_location=”bottom”;
21 a.grid =[1,-1];

22 title(’ C a r r i e r ’)
23 plot((t+z),sin (2*%pi*f*t));

24

25 subplot (3,1,2) //Data P lo t
26 a=gca();

27 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

28 a.x_location=”bottom”;
29 a.grid =[1,-1];

30 title(’ Data ’)
31 plot((t+z),I(n));

32

21

33 subplot (3,1,3) //PSK Waveform Plo t
34 a=gca();

35 a.data_bounds =[0, -1.5; length(I) ,1.5]; // s e t
the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

36 a.x_location=”bottom”;
37 a.grid =[1,-1];

38 title(’PSK Waveform ’)
39 if (I(n)==1)

40 plot((t+z),sin (2*%pi*f*t));

41 elseif (I(n)==0)

42 plot((t+z),sin ((2* %pi*f*t)+%pi));

43 end

44 z=z+1;

45 end

22

Experiment: 4

Study and generate OQPSK
waveforms

Scilab code Solution 4.1 Study and generate offset QPSK waveforms

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Study and g en e r a t e O f f s e t QPSK (
OQPSK) waveforms

5

6 clear;

7 clc;

8 close;

9 T=2; // One symbol p e r i o d
10 t = 0:0.01:T/2; // Sampl ing Matr ix f o r h a l f symbol

p e r i o d
11 f=1; // Ca r r i e r f r e qu en cy (c y c l e s per b i t p e r i o d)
12 // I =[0 0 1 1 0 0 1 1] ; // data stream
13 I=[0 0 0 1 1 0 1 1]; // data stream g i v i n g d i b i t

e q u i v a l e n t to 0 , 1 , 2 , 3

23

14 // I =[1 1 0 0 0 1 1 1] ; // data stream
15

16 // Po la r NRZ Conver t e r
17 I_PNRZ = [] // empty matr ix f o r Po la r NRZ data
18 for n = 1: length(I)

19 if I(n)== 0 then

20 I_PNRZ = [I_PNRZ , -1]

21 else

22 I_PNRZ = [I_PNRZ , 1]

23 end

24 end

25

26 I_Carrier = sqrt (2/T)*cos(2*%pi*f*t); // In phase
c a r r i e r

27 Q_Carrier = sqrt (2/T)*sin(2*%pi*f*t); // Quadrature
phase c a r r i e r

28

29 // Genera t i on o f OQPSK Waveform
30 z=0; // S t a r t i n g po i n t o f p l o t on x−a x i s
31 subplot (3,1,1) // I−PSK Plo t
32 a=gca();

33 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

34 a.x_location=” o r i g i n ”;
35 a.grid =[1 ,1];

36 title(’ I−Data and I−PSK ’)
37 plot((t+z),I_Carrier*I_PNRZ (1));//

I C a r r i e r ∗ F i r s t b i t (I Ba lance
Modulator)

38 plot((t+z),I_PNRZ (1), ’ r ’);// F i r s t b i t
Data f o r r e f e r e n c e

39 // xpause (2000000) ; / / Delay f o r o b s e r v a t i o n
40 z=z+1; //Move s t a r t i n g po i n t o f p l o t on x−a x i s by 1

b i t (h a l f symbol) p e r i o d
41 for n=2:1: length(I_PNRZ)

42 if modulo(n,2) ==0 then //Check f o r odd−even b i t
43 I_Bit=I_PNRZ(n-1) // s e t I b i t as p r e v i o u s b i t
44 Q_Bit=I_PNRZ(n)// s e t Q b i t as c u r r e n t b i t
45 else

24

46 I_Bit=I_PNRZ(n)// s e t I b i t as c u r r e n t b i t
47 Q_Bit=I_PNRZ(n-1) // s e t Q b i t as p r e v i o u s b i t
48 end

49

50 subplot (3,1,1) // I−PSK Plo t
51 a=gca();

52 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

53 a.x_location=” o r i g i n ”;
54 a.grid =[1 ,1];

55 title(’ I−Data and I−PSK ’)
56 plot((t+z),I_Carrier*I_Bit);// I C a r r i e r

∗ Even b i t (I Ba lance Modulator)
57 plot((t+z),I_Bit , ’ r ’);// I Data f o r

r e f e r e n c e
58

59 subplot (3,1,2) //Q−PSK Plo t
60 a=gca();

61 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

62 a.x_location=” o r i g i n ”;
63 a.grid =[1 ,1];

64 title(’Q−Data and Q−PSK ’)
65 plot((t+z),Q_Carrier*Q_Bit);// Q Car r i e r

∗ Odd b i t (Q Balance Modulator)
66 plot((t+z),Q_Bit , ’ r ’);//Q Data f o r

r e f e r e n c e
67

68 subplot (3,1,3) //QPSK Plo t
69 a=gca();

70 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

71 a.x_location=” Or i g i n ”;
72 a.grid =[1 ,1];

73 title(’OQPSK and I−Ca r r i e r ’)
74 plot((t+z) ,(I_Carrier*I_Bit)+(Q_Carrier*

Q_Bit));// I−PSK + Q−PSK (Adder)
75 plot((t+z),I_Carrier , ’ r ’);// I C a r r i e r

f o r r e f e r e n c e
76 z=z+1; //Move s t a r t i n g po i n t o f p l o t on x−a x i s by 1

b i t (h a l f symbol) p e r i o d

25

77 // xpause (2000000) ; / / Delay f o r o b s e r v a t i o n
78 end

26

Experiment: 5

Study and generate NON
OQPSK waveforms

Scilab code Solution 5.1 Study and generate Non offset QPSK waveforms

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Study and g en e r a t e Non−O f f s e t QPSK
waveforms

5

6 clear;

7 clc;

8 close;

9 T=2; //One Symbol p e r i o d
10 t = 0:0.01:T; // Sampl ing Matr ix f o r one symbol

p e r i o d
11 f=1; // Ca r r i e r f r e qu en cy (c y c l e s per b i t p e r i o d)
12 I=[0 0 0 1 1 0 1 1]; // data stream g i v i n g d i b i t

e q u i v a l e n t to 0 , 1 , 2 , 3
13 // I =[0 1 1 0 1 0 0 0] ; // data stream Simon Hykin Ex

27

6 . 1
14

15 // Po la r NRZ Conver t e r
16 I_PNRZ = [] // empty matr ix f o r Po la r NRZ data
17 for n = 1: length(I)

18 if I(n)== 0 then

19 I_PNRZ = [I_PNRZ , -1]

20 else

21 I_PNRZ = [I_PNRZ , 1]

22 end

23 end

24

25 I_Carrier = sqrt (2/T)*cos(2*%pi*f*t); // In phase
c a r r i e r

26 Q_Carrier = sqrt (2/T)*sin(2*%pi*f*t); // Quadrature
phase c a r r i e r

27

28 // Genera t i on o f QPSK Waveform
29

30 z=0; // S t a r t i n g po i n t o f p l o t on x−a x i s
31 for n=1:2: length(I_PNRZ)

32 I_Bit=I_PNRZ(n)

33 Q_Bit=I_PNRZ(n+1)

34 subplot (3,1,1) // I−PSK Plo t
35 a=gca();

36 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

37 a.x_location=” o r i g i n ”;
38 a.grid =[1 ,1];

39 title(’ I−Data and I−PSK ’)
40 plot((t+z),I_Carrier*I_Bit);// I C a r r i e r

∗ Even b i t (I Ba lance Modulator)
41 plot((t+z),I_Bit , ’ r ’);// I Data f o r

r e f e r e n c e
42

43 subplot (3,1,2) //Q−PSK Plo t
44 a=gca();

45 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

46 a.x_location=” o r i g i n ”;

28

47 a.grid =[1 ,1];

48 title(’Q−Data and Q−PSK ’)
49 plot((t+z),Q_Carrier*Q_Bit);// Q Car r i e r

∗ Odd b i t (Q Balance Modulator)
50 plot((t+z),Q_Bit , ’ r ’);//Q Data f o r

r e f e r e n c e
51

52 subplot (3,1,3) //QPSK Plo t
53 a=gca();

54 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

55 a.x_location=” o r i g i n ”;
56 a.grid =[1 ,1];

57 title(’QPSK and I−Ca r r i e r ’)
58 plot((t+z) ,(I_Carrier*I_Bit)+(Q_Carrier*

Q_Bit));// I−PSK + Q−PSK (Adder)
59 plot((t+z),I_Carrier , ’ r ’);// I C a r r i e r

f o r r e f e r e n c e
60 z=z+2; //Move s t a r t i n g po i n t o f p l o t on x−a x i s by 2

b i t s (1 symbol) p e r i o d
61 end

29

Experiment: 6

Study and generate 8-QAM
waveforms

Scilab code Solution 6.1 Study and generate 8QAM waveforms

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Study and g en e r a t e 8−QAM waveforms
5

6 clear;

7 clc;

8 close;

9 T=3; //One Symbol p e r i o d
10 t = 0:0.01:T; // Sampl ing Matr ix f o r one symbol

p e r i o d
11 f=1/T; // Ca r r i e r f r e qu en cy (c y c l e s per b i t p e r i o d)
12 I=[0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1];

// data stream g i v i n g t r i b i t s e q u i v a l e n t to
0 , 1 , 2 , 3 , 4 , 5 , 6 , 7

13

30

14 // Po la r NRZ Conver t e r
15 I_PNRZ = [] // empty matr ix f o r Po la r NRZ data
16 for n = 1: length(I)

17 if I(n)== 0 then

18 I_PNRZ = [I_PNRZ , -1]

19 else

20 I_PNRZ = [I_PNRZ , 1]

21 end

22 end

23

24 I_Carrier = sqrt (2/T)*cos(2*%pi*f*t); // In phase
c a r r i e r

25 Q_Carrier = sqrt (2/T)*sin(2*%pi*f*t); // Quadrature
phase c a r r i e r

26

27 // Genera t i on o f 8−QAM Waveform
28

29 z=0; // S t a r t i n g po i n t o f p l o t on x−a x i s
30 for n=1:3: length(I_PNRZ)

31 Q_Bit=I_PNRZ(n)// Set Q Bi t Value
32 I_Bit=I_PNRZ(n+1) // Set I B i t Value
33 C_Bit=I_PNRZ(n+2) // Set C Bi t Value
34 if C_Bit ==-1 then // Set PAM, Product o f C

with I or Q
35 QC=0.5* Q_Bit // Set h a l f ampl i tude
36 IC=0.5* I_Bit // Set h a l f ampl i tude
37 else

38 QC=Q_Bit // Set f u l l ampl i tude
39 IC=I_Bit // Set f u l l ampl i tude
40 end

41

42 subplot (3,1,1) //QC Plo t
43 a=gca();

44 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

45 a.x_location=” o r i g i n ”;
46 a.grid =[1 ,1];

47 title(’Q−PAM’)
48 plot((t+z),Q_Carrier*QC);// Q Car r i e r ∗ Q

31

−PAM (Q Balance Modulator)
49 plot((t+z),QC, ’ r ’);//Q−PAM Output
50

51 subplot (3,1,2) // IC Plo t
52 a=gca();

53 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

54 a.x_location=” o r i g i n ”;
55 a.grid =[1 ,1];

56 title(’ I−PAM’)
57 plot((t+z),I_Carrier*IC);// I C a r r i e r ∗ I

−PAM (I Balance Modulator)
58 plot((t+z),IC, ’ r ’);// I−PAM Output
59

60 subplot (3,1,3) //8−QAM Plo t
61 a=gca();

62 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

63 a.x_location=” o r i g i n ”;
64 a.grid =[1 ,1];

65 title(’8−QAM’)
66 plot((t+z) ,(I_Carrier*IC)+(Q_Carrier*QC)

);// I−PAM + Q−PAM (Adder)
67 plot((t+z),I_Carrier , ’ r ’);// I C a r r i e r

f o r r e f e r e n c e
68 plot (((t/3)+z),Q_Bit , ’ c ’);//Q Bi t f o r

r e f e r e n c e
69 plot (((t/3) +1+z),I_Bit , ’ b ’);// I B i t f o r

r e f e r e n c e
70 plot (((t/3) +2+z),C_Bit , ’m ’);//C Bi t f o r

r e f e r e n c e
71

72 z=z+3; //Move s t a r t i n g po i n t o f p l o t on x−a x i s by 3
b i t s (1 symbol) p e r i o d

73 end

32

Experiment: 7

Study and generate MSK
waveforms (PSK Approach)

Scilab code Solution 7.1 Study and generate MSK waveforms with PSK
Approach

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Study and g en e r a t e MSK waveforms (
PSK Approach)

5

6 clear;

7 clc;

8 close;

9 h=1/2;

10 T=1; // One symbol p e r i o d
11 t = 0:0.01:T; // One symbol p e r i o d v e c t o r
12 f=1; // Ca r r i e r c y c l e s per symbol p e r i o d ” t ”
13 // I =[0 1 0 1 0 1 0 1] ; // data stream in b ina ry to

t e s t wors t c a s e

33

14 I=[0 0 0 1 1 0 1 1]; // data stream g i v i n g d i b i t s
e q u i v a l e n t to 0 , 1 , 2 , 3

15

16 //PNRZ Converter , c o n v e r t s data to PNRZ (Bi−Po la r
S i g n a l)

17 I_PNRZ = [] // empty matr ix f o r PNRZ data
18 for n = 1: length(I)

19 if I(n)== 0 then

20 I_PNRZ = [I_PNRZ , -1]

21 else

22 I_PNRZ = [I_PNRZ , 1]

23 end

24 end

25

26 // Genera t i on o f MSK Waveform us i ng PSK approach
27

28 theta =0; // I n i t i a l phase i n r a d i a n s
29

30 z=0; // S t a r t i n g po i n t o f p l o t on x−a x i s
31

32 for n=1:1: length(I_PNRZ)

33 subplot (3,1,1) //Data P lo t
34 a=gca();

35 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

// s e t the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

36 a.x_location=” o r i g i n ”;
37 a.grid =[1,-1];

38 title(’ Data ’)
39 plot((t+z),I_PNRZ(n));

40

41 subplot (3,1,2) //MSK Plo t
42 a=gca();

43 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

// s e t the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

44 a.x_location=” o r i g i n ”;
45 a.grid =[1,-1];

34

46 title(’MSK ’)
47 theta_change = theta + ((I_PNRZ(n))*((

%pi*h*t)/T));// Phase v a r i a t i o n ove r a
b i t p e r i o d

48 plot((t+z),sqrt (2/T)*cos (2*%pi*f*t +

theta_change)); // MSK Plo t
49 plot((t+z),sqrt (2/T)*cos (2*%pi*f*t), ’ r ’)

; // Ca r r i e r f o r r e f e r e n c e
50

51 subplot (3,1,3) // P lo t f o r MSK Phase v a r i a t i o n
wrt Ca r r i e r

52 a=gca();

53 a.x_location=”bottom”;
54 a.grid =[1 ,1];

55 title(’MSK Phase v a r i a t i o n wrt C a r r i e r ’)
56 theta_degrees = theta_change *(180/ %pi);//

c onv e r t s r a d i a n s to d e g r e e s
57 plot((t+z),theta_degrees);// p l o t e phase

v a r i a t i o n f o r a b i t p e r i o d
58

59 theta=theta_change(length(theta_change));// S t o r e s
l a s t va l u e o f phase to th e t a

60 z=z+1; //Move s t a r t i n g po i n t o f p l o t on x−a x i s by 1
b i t p e r i o d

61 // xpause (2000000) ; // Delay f o r o b s e r v a t i o n
62 end

35

Experiment: 8

Study and generate MSK
waveforms (FSK Approach)

Scilab code Solution 8.1 Study and generate MSK waveforms with FSK
Approach

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Study and g en e r a t e MSK waveforms (
FSK Approach)

5

6 clear;

7 clc;

8 close;

9 h=1/2;

10 T=1; // One symbol p e r i o d
11 t = 0:0.01:T; // One symbol p e r i o d v e c t o r
12 f=1; // Ca r r i e r c y c l e s per symbol p e r i o d ” t ”
13 // I =[0 1 0 1 0 1 0 1] ; // data stream in b ina ry to

t e s t wors t c a s e

36

14 I=[0 0 0 1 1 0 1 1]; // data stream g i v i n g d i b i t s
e q u i v a l e n t to 0 , 1 , 2 , 3

15

16 //PNRZ Converter , c o n v e r t s data to PNRZ (Bi−Po la r
S i g n a l)

17 I_PNRZ = [] // empty matr ix f o r PNRZ data
18 for n = 1: length(I)

19 if I(n)== 0 then

20 I_PNRZ = [I_PNRZ , -1]

21 else

22 I_PNRZ = [I_PNRZ , 1]

23 end

24 end

25

26 // Genera t i on o f MSK Waveform us i ng FSK approach
27

28 bitchange =0; // I n i t i a l b i t s t a t e (b e f o r e f i r s t b i t o f
s equence)

29 theta =0; // I n i t i a l phase s t a t e i n r a d i a n s (b e f o r e
f i r s t b i t o f s equence)

30 theta_degrees =[0 ,0]; // I n i t i a l phase s t a t e i n d e g r e e s
(f i r s t e l ement = s t a r t va lue , s econd e l ement =

l a s t va l u e)
31

32 z=0; // S t a r t i n g po i n t o f p l o t on x−a x i s
33 for n=1:1: length(I_PNRZ)

34 subplot (3,1,1) //Data P lo t
35 a=gca();

36 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

// s e t the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

37 a.x_location=” o r i g i n ”;
38 a.grid =[1,-1];

39 title(’ Data ’)
40 plot((t+z),I_PNRZ(n));

41

42 subplot (3,1,2) //MSK Plo t
43 a=gca();

37

44 a.data_bounds =[0, -1.5; length(I_PNRZ) ,1.5];

// s e t the boundary v a l u e s f o r the x−y
c o o r d i n a t e s .

45 a.x_location=” o r i g i n ”;
46 a.grid =[1,-1];

47 title(’MSK ’)
48 fm = f + (I_PNRZ(n)*(h/(2*T)));// Genera t ing

two f r e q u e n c i e s c o r r e s p ond i n g to
49 // b ina ry 0 (−1

i n PNRZ) and
b ina ry 1 (1
i n PNRZ)

50 // (0 −−> f c − h
/2T)

51 // (1 −−> f c + h
/2T)

52 plot((t+z),sqrt (2/T)*cos (2*%pi*fm*t +

theta)); // MSK Plo t
53 plot((t+z),sqrt (2/T)*cos (2*%pi*f*t), ’ r ’)

; // Ca r r i e r f o r r e f e r e n c e
54

55 subplot (3,1,3) // P lo t f o r MSK Phase v a r i a t i o n
wrt Ca r r i e r

56 a=gca();

57 a.x_location=”bottom”;
58 a.grid =[1 ,1];

59 title(’MSK Phase v a r i a t i o n wrt C a r r i e r ’)
60 bitchange=bitchange+I_PNRZ(n);// Bi t S t a t e

va lu e (cumu la t i v e)
61 theta = bitchange *((%pi*h)/T);// Phase s t a t e

at the end o f b i t pe r i od , i n r a d i a n s
62 theta_degrees (2)=theta *180/ %pi;// Phase s t a t e

at the end o f b i t pe r i od , i n d e g r e e s
63 plot([z n],theta_degrees);// p l o t e phase

v a r i a t i o n f o r a b i t p e r i o d
64

65 theta_degrees (1)=theta_degrees (2);//Copy end phase
va lu e to s t a r t phase va lu e f o r next c y c l e

38

66 z=z+1; //Move s t a r t i n g po i n t o f p l o t on x−a x i s by 1
b i t p e r i o d

67 // xpause (2000000) ; // Delay f o r o b s e r v a t i o n
68 end

39

Experiment: 9

To calculate all Codewords,
error detection and correction
capability of given LBC

Scilab code Solution 9.1 Linear Block Codes

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : L i n ea r Block Codes (7 , 4)
5

6 clc;

7 clear;

8

9 k = 4; // I n f o rma t i on message l e n g t h
10 n = 7; //Coded word l e n g t h
11

12 P = [1 1 0;0 1 1 ;1 1 1;1 0 1] // Pa r i t y Matr ix
13 disp(P, ’ Pa r i t y Matr ix P ’)
14

40

15 G = [P eye(k,k)]// Generator Matr ix to c r e a t e code
word i n P1P2P3D1D2D3D4 format

16 disp(G, ’ Generator Matr ix G ’)
17

18 H=[eye(n-k,n-k);P]’// Pa r i t y Check Matr ix
19 disp(H, ’ Pa r i t y Check Matr ix H ’)
20

21 //All M = Al l 16 p o s i b i l i t i e s f o r I n f o rma t i on
Message Matr ix

22 All_M = [0 0 0 0;0 0 0 1;0 0 1 0;0 0 1 1;

23 0 1 0 0;0 1 0 1;0 1 1 0;0 1 1 1;

24 1 0 0 0;1 0 0 1;1 0 1 0;1 0 1 1;

25 1 1 0 0;1 1 0 1;1 1 1 0;1 1 1 1]

26

27 // Ca l c u l a t e a l l 16 p o s i b i l e codewords
28 CodedMat=All_M*G;

29 CodedMat = modulo(CodedMat ,2);// Convert g en e r a t ed
code i n t o b ina ry

30 disp(CodedMat , ’ Codewords Matr ix ’)
31

32 // Ca l c u l a t e Hamming D i s t an c e s
33 HamDist=sum(CodedMat , ’ c ’)//Sum over the rows o f

CodedMat (column o f v a l u e s)
34 disp(HamDist , ’Hamming D i s t an c e s ’);
35

36 // Find Minimum non−z e r o Hamming D i s t anc e
37 [row ,col]=find(HamDist ==0);// f i n d e l emen t s tha t a r e

z e r o
38 HamDist(row ,:) =[]; //Remove a l l rows tha t a r e z e r o (

r e p l a c e by n u l l)
39 MinHamDist=min(HamDist)// Find Minimum non−z e r o

Hamming D i s t anc e
40 disp(MinHamDist , ’Minimum Non−Zero Hamming D i s t anc e ’)
41

42 // Ca l c u l a t e Er ro r De t e c t i o n Capab i l i t y
43 ErrDetCap=MinHamDist -1;

44 disp(ErrDetCap , ’ E r ro r De t e c t i on Capab i l i t y ’);
45

41

46 // Ca l c u l a t e Er ro r Co r r e c t i o n Capab i l i t y
47 ErrCorCap =(MinHamDist -1)/2;

48 disp(ErrCorCap , ’ E r ro r Co r r e c t i o n Capab i l i t y ’);
49

50 // Generate random message
51 RandMessage=modulo(round (16* rand()) ,16)+1 //Get

random number between 1 to 16
52

53 M=All_M(RandMessage ,:) // S e l e c t a random row from
Message Matr ix All M as I n f o rma t i on Message

54 disp(M, ’ I n f o rma t i on Message M’)
55

56 C = CodedMat(RandMessage ,:) // S e l e c t a random row
from Coded Matr ix CodedMat as Coded Message

57 disp(C, ’ Coded Message C ’)
58

59 // Transmit random message
60 R=C// Create r e c i e v e d code word
61

62 // Generate e r r o r at random b i t p o s i t i o n
63

64 ErrPos=modulo(round (8* rand()) ,8) //Get random number
between 0 to 7

65

66 if ErrPos ==0 then

67 //Do noth ing , as ’ 0 ’ means no e r r o r
68 else

69 if R(ErrPos)==0 then

70 R(ErrPos)=1 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

71 else

72 R(ErrPos)=0 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

73 end

74 end

75

76 disp(R, ’ Rec i eved Code word R ’)
77

42

78 // Er ro r Co r r e c t i o n
79

80 S=R*H’// Find Syndrome Matr ix
81 S = modulo(S,2);// Convert Syndrome Matr ix i n t o

b ina ry
82 disp(S, ’ Syndrome Matr ix R∗H(t r a n s p o s e) ’)
83

84 if S==[0 0 0] then // [0 0 0] i n d i c a t e s no e r r o r
85 disp(R, ’ Rec i eved Code wi thout e r r o r ’)
86 disp(R(4:7), ’ Rec i eved In f o rma t i on Message ’)//

Ext ra c t and d i s p l a y Message from code word
87 else

88 // Find e r r on e ou s b i t p o s i t i o n
89 //Here we f i n d colomn w i th i n H matr ix with

pa t t e r n s immi l a r to Syndrome Matr ix
90 //The p o s i t i o n number o f tha t colomn i s

e q u i v a l e n t to e r r on e ou s b i t p o s i t i o n
91

92 ErrPos =1 // I n i t i a l l i z e e r r o n e ou s b i t p o s i t i o n
93 d=[H(:,ErrPos)]’// Transpose o f f i r s t coloumn o f

H matr ix
94 // (Transpose i s used to c onv e r t

colomn to row as syndrome i s
i n row format)

95

96 while ((d(1) <>S(1))|(d(2) <>S(2))|(d(3) <>S(3)

)) do //Check e l ement w i s e i n e q u a l l i t y
f o r any e l ement (OR c ond i t i o n)

97 ErrPos=ErrPos +1 // Increament e r r on e ou s
b i t p o s i t i o n (Po int to next colomn)

98 d=[H(:,ErrPos)]’// Transpose o f next
coloumn o f H matr ix

99 end

100

101 disp(ErrPos , ’ Er roneous B i t P o s i t i o n ’)
102

103 // Er ro r c o r r e c t i o n
104 if R(ErrPos)==0 then

43

105 R(ErrPos)=1 // I n v e r t b i t at Erroneous
B i t P o s i t i o n

106 disp(R, ’ Rec i eved Code with e r r o r
c o r r e c t e d ’)

107 disp(R(4:7), ’ Rec i eved In f o rma t i on
Message ’)// Ext ra c t and d i s p l a y
Message from code word

108 else

109 R(ErrPos)=0 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

110 disp(R, ’ Rec i eved Code with e r r o r
c o r r e c t e d ’)

111 disp(R(4:7), ’ Rec i eved In f o rma t i on
Message ’)// Ext ra c t and d i s p l a y
Message from code word

112 end

113 end

44

Experiment: 10

To encode Cyclic code and
calculate Syndrome for the
given generator polynomial

Scilab code Solution 10.1 Cyclic Codes

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Cy c l i c Codes (7 , 4)
5

6 clc;

7 clear;

8 k = 4; // I n f o rma t i on Message Length
9 n = 7; //Codeword Length

10

11 // Generator Po lynomia l
12 x=poly(0, ’ x ’);
13 GenPoly =1+x+x^3;

14 disp(GenPoly , ’ The Generato r Po lynomia l ’);

45

15

16 // Genera t ing Random Message
17

18 //All M = Al l 16 p o s i b i l i t i e s f o r I n f o rma t i on
Message Matr ix

19 All_M = [0 0 0 0;0 0 0 1;0 0 1 0;0 0 1 1;

20 0 1 0 0;0 1 0 1;0 1 1 0;0 1 1 1;

21 1 0 0 0;1 0 0 1;1 0 1 0;1 0 1 1;

22 1 1 0 0;1 1 0 1;1 1 1 0;1 1 1 1]

23

24 RandMessage=modulo(round (16* rand()) ,16)+1 //Get
random number between 1 to 16

25

26 M=All_M(RandMessage ,:) // S e l e c t a random row from
Message Matr ix All M as I n f o rma t i on Message

27 disp(M, ’ I n f o rma t i on Message M’)
28

29 //Message Po lynomia l
30 MesPoly =(M(1)*1) + (M(2)*(x^1)) + (M(3)*(x^2)) + (M

(4)*(x^3));

31 disp(MesPoly , ’ Message Po lynomia l u (x) ’);
32

33 // Encoding
−−

34

35 // Genera t ing Codeword Po lynomia l
36 p=(x^(n-k))*(MesPoly);// Step 1 − mu l t i p l y MesPoly by

x ˆ(n−k) , [x ˆ(n−k) ∗u (x)]
37 [RemPoly ,q]=pdiv(p,GenPoly);// Step 2 − d i v i d e above

product by GenPoly , g (x) (Po lynomia l D i v i s i o n)
38 RemPoly=modulo(RemPoly ,2);// Convert Remainder

Po lynomia l to b ina ry to ge t p a r i t y check
po lynomia l , b (x)

39 disp(RemPoly , ’ Remainder Po lynomia l b (x) ’);
40 CodePoly=RemPoly +(MesPoly *(x^(n-k)));// Step 3 − add

(x ˆ(n−k) ∗u (x)) and b (x) to g e t Codeword
Po lynomia l

46

41 disp(CodePoly , ’ Codeword Po lynomia l c (x) ’);
42

43 // F ind ing C o e f f i c i e n t s o f Codeword Po lynomia l
44 CodePolyCoeff=coeff(CodePoly);

45 //Removal o f − s i g n s from C o e f f i c i e n t s o f
Codeword Po lynomia l

46 for i=1: length(CodePolyCoeff)

47 if (CodePolyCoeff(i)==-1) then

48 CodePolyCoeff(i)=1;

49 end

50 end

51 disp(CodePolyCoeff , ’ C o e f f i c i e n t s o f Codeword
Po lynomia l ’);

52

53 // Genera t ing 7 b i t Codeword from C o e f f i c i e n t s o f
Codeword Po lynomia l

54 C=CodePolyCoeff;

55 if length(C) <7 then

56 C(1,7)=0; // As s i gn i n g a va lu e o u t s i d e a r r e y
d imens ion w i l l a u t oma t i c a l l y

57 //pad a d d i t i o n a l z e r o s to r e s i z e the
a r r e y / v e c t o r

58 end

59 disp(C, ’ Generated Codeword ’);
60

61 // Transmit ion
−−

62 R=C// Create r e c i e v e d code word
63

64 // Generate e r r o r at random b i t p o s i t i o n
65 ErrPos=modulo(round (8* rand()) ,8) //Get random

number between 0 to 7
66 // ErrPos=0 // f o r t e s t i n g
67 if ErrPos ==0 then

68 //Do noth ing , as ’ 0 ’ means no e r r o r
69 else

70 if R(ErrPos)==0 then

47

71 R(ErrPos)=1 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

72 else

73 R(ErrPos)=0 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

74 end

75 end

76

77 // Recept i on and Decoding
−−

78

79 disp(R, ’ Rec i eved Code word R ’)
80

81 // Rece ived Po lynomia l
82 RecPoly =(R(1)*1) + (R(2)*(x^1)) + (R(3)*(x^2)) + (R

(4)*(x^3)) + (R(5)*(x^4)) + (R(6)*(x^5)) + (R(7)

*(x^6));

83 disp(RecPoly , ’ Rece ived Po lynomia l u (x) ’);
84

85 // Syndrome Polynomia l
86 [SynPoly ,q]=pdiv(RecPoly ,GenPoly);

87 SynPoly=modulo(SynPoly ,2)

88 disp(SynPoly , ’ Syndrome Po lynomia l ’)
89

90 // F ind ing C o e f f i c i e n t s o f Syndrome Polynomia l
91 SynPolyCoeff=coeff(SynPoly);

92 //Removal o f − s i g n s from C o e f f i c i e n t s o f
Syndrome Polynomia l

93 for i=1: length(SynPolyCoeff)

94 if (SynPolyCoeff(i)==-1) then

95 SynPolyCoeff(i)=1;

96 end

97 end

98 disp(SynPolyCoeff , ’ C o e f f i c i e n t s o f Syndrome
Polynomia l ’);

99

100 // Genera t ing 3 b i t Syndrome from C o e f f i c i e n t s o f

48

Syndrome Polynomia l
101 if length(SynPolyCoeff) <3 then

102 SynPolyCoeff (1,3)=0; // As s i gn i n g a va lu e o u t s i d e
a r r e y d imens ion w i l l a u t oma t i c a l l y

103 //pad a d d i t i o n a l z e r o s to r e s i z e the
a r r e y / v e c t o r

104 end

105 disp(SynPolyCoeff , ’ Syndrome ’);
106

107

108

109 // Create H (Pa r i t y check matr ix) as e r r o r
lookup t a b l e

110 P = [1 1 0;0 1 1 ;1 1 1;1 0 1] // Pa r i t y
Matr ix

111 H=[eye(n-k,n-k);P]’// Pa r i t y Check Matr ix
112 // d i s p (H, ’ Pa r i t y Check Matr ix H’) // f o r

t e s t i n g
113

114 if SynPolyCoeff ==[0 0 0] then // [0 0 0] i n d i c a t e s
no e r r o r

115 disp(R, ’ Rec i eved Code wi thout e r r o r ’)
116 disp(R(4:7), ’ Rec i eved In f o rma t i on Message ’)//

Ext ra c t and d i s p l a y Message from code word
117 else

118 // Find e r r on e ou s b i t p o s i t i o n
119 //Here we f i n d colomn w i th i n H matr ix with

pa t t e r n s immi l a r to Syndrome Matr ix
120 //The p o s i t i o n number o f tha t colomn i s

e q u i v a l e n t to e r r on e ou s b i t p o s i t i o n
121

122 ErrPos =1 // I n i t i a l l i z e e r r o n e ou s b i t p o s i t i o n
123 d=[H(:,ErrPos)]’// Transpose o f f i r s t coloumn o f

H matr ix
124 // (Transpose i s used to c onv e r t

colomn to row as syndrome i s
i n row format)

125

49

126 while ((d(1) <>SynPolyCoeff (1))|(d(2) <>

SynPolyCoeff (2))|(d(3) <>SynPolyCoeff (3)))

do //Check e l ement w i s e i n e q u a l l i t y f o r
any e l ement (OR c ond i t i o n)

127 ErrPos=ErrPos +1 // Increament e r r on e ou s
b i t p o s i t i o n (Po int to next colomn)

128 d=[H(:,ErrPos)]’// Transpose o f next
coloumn o f H matr ix

129 end

130

131 disp(ErrPos , ’ Er roneous B i t P o s i t i o n ’)
132

133 // Er ro r c o r r e c t i o n
134 if R(ErrPos)==0 then

135 R(ErrPos)=1 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

136 else

137 R(ErrPos)=0 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

138 end

139 disp(R, ’ Rec i eved Code with e r r o r c o r r e c t e d ’)
140 disp(R(4:7), ’ Rec i eved In f o rma t i on Message ’)

// Ext ra c t and d i s p l a y Message from code
word

141 end

142 disp(M, ’ I n f o rma t i on Message M tha t was s en t . . . ’)

50

Experiment: 11

To encode and decode
Hamming code

Scilab code Solution 11.1 Hamming Codes

1 //Note : D e t a i l s o f s c i l a b s o f twa r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Windows 7 SP1 , 64 b i t and Windows XP
SP3 , 32 b i t

3 // S c i l a b v e r s i o n : 5 . 4 . 1 (Tested on both 32 b i t and
64 b i t v e r s i o n s)

4 //Program T i t l e : Hamming Codes (7 , 4)
5

6 clc;

7 clear;

8

9 k = 4; // I n f o rma t i on message matr ix l e n g t h
10 n = 7; //Coded word l e n g t h
11

12 P = [1 1 0;0 1 1 ;1 1 1;1 0 1] // Pa r i t y Matr ix
13 disp(P, ’ Pa r i t y Matr ix P ’)
14

15 G = [P eye(k,k)]// Generator Matr ix to c r e a t e code
word i n P1P2P3D1D2D3D4 format

51

16 G(:,[3 4])=G(:,[4 3]) //Swap colomn 3 and 4 o f G to
c r e a t e code word in P1P2D1P3D2D3D4 format

17 disp(G, ’ Generator Matr ix G ’)
18

19 H=[eye(n-k,n-k);P]’// Pa r i t y Check Matr ix
20 H(:,[3 4])=H(:,[4 3]) //Swap colomn 3 and 4 o f H to

s a t i s f y GH’=0
21 disp(H, ’ Pa r i t y Check Matr ix H ’)
22

23 // d i s p (modulo (G∗H’ , 2) , ’GH’) //Check i f the c o n d i t i o n
GH’=0 s a t i s f y (f o r t e s t i n g)

24

25 //M = [1 1 0 1] / / I n f o rma t i on Message Matr ix f o r
t e s t i n g

26

27 // Generate random message
28 //All M = Al l 16 p o s i b i l i t i e s f o r I n f o rma t i on

Message Matr ix
29 All_M = [0 0 0 0;0 0 0 1;0 0 1 0;0 0 1 1;

30 0 1 0 0;0 1 0 1;0 1 1 0;0 1 1 1;

31 1 0 0 0;1 0 0 1;1 0 1 0;1 0 1 1;

32 1 1 0 0;1 1 0 1;1 1 1 0;1 1 1 1]

33 RandMessage=modulo(round (16* rand()) ,16)+1 //Get
random number between 1 to 16

34 M=All_M(RandMessage ,:) // S e l e c t a random row from 1
to 16 as I n f o rma t i on Message

35

36 disp(M, ’ I n f o rma t i on Message M’)
37

38 C = M*G;// Generate code word
39 C = modulo(C,2);// Convert g en e r a t ed code i n t o b ina ry
40 disp(C, ’ Code word o f (7 , 4) Hamming code M∗G’)
41

42 R=C// Create r e c i e v e d code word
43

44 // Generate e r r o r at random b i t p o s i t i o n
45

46 ErrPos=modulo(round (8* rand()) ,8) //Get random number

52

between 0 to 7
47

48 if ErrPos ==0 then

49 //Do noth ing , as ’ 0 ’ means no e r r o r
50 else

51 if R(ErrPos)==0 then

52 R(ErrPos)=1 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

53 else

54 R(ErrPos)=0 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

55 end

56 end

57

58 disp(R, ’ Rec i eved Code word R ’)
59

60 // Er ro r Co r r e c t i o n
61

62 S=R*H’// Find Syndrome Matr ix
63 S = modulo(S,2);// Convert Syndrome Matr ix i n t o

b ina ry
64 disp(S, ’ Syndrome Matr ix R∗H(t r a n s p o s e) ’)
65

66 if S==[0 0 0] then // [0 0 0] i n d i c a t e s no e r r o r
67 disp(R, ’ Rec i eved Code wi thout e r r o r ’)
68 disp([R(3) R(5:7)], ’ Rec i eved In f o rma t i on Message

’)// Ext ra c t and d i s p l a y Message from code
word

69 else

70 // Find e r r on e ou s b i t p o s i t i o n
71 //Here we f i n d colomn w i th i n H matr ix with

pa t t e r n s immi l a r to Syndrome Matr ix
72 //The p o s i t i o n number o f tha t colomn i s

e q u i v a l e n t to e r r on e ou s b i t p o s i t i o n
73

74 ErrPos =1 // I n i t i a l l i z e e r r o n e ou s b i t p o s i t i o n
75 d=[H(:,ErrPos)]’// Transpose o f f i r s t coloumn o f

H matr ix

53

76 // (Transpose i s used to c onv e r t
colomn to row as syndrome i s
i n row format)

77

78 while ((d(1) <>S(1))|(d(2) <>S(2))|(d(3) <>S(3)

)) do //Check e l ement w i s e i n e q u a l l i t y
f o r any e l ement (OR c ond i t i o n)

79 ErrPos=ErrPos +1 // Increament e r r on e ou s
b i t p o s i t i o n (Po int to next colomn)

80 d=[H(:,ErrPos)]’// Transpose o f next
coloumn o f H matr ix

81 end

82

83 disp(ErrPos , ’ Er roneous B i t P o s i t i o n ’)
84

85 // Er ro r c o r r e c t i o n
86 if R(ErrPos)==0 then

87 R(ErrPos)=1 // I n v e r t b i t at Erroneous
B i t P o s i t i o n

88 disp(R, ’ Rec i eved Code with e r r o r
c o r r e c t e d ’)

89 disp([R(3) R(5:7)], ’ Rec i eved
In f o rma t i on Message ’)// Ext ra c t
and d i s p l a y Message from code
word

90 else

91 R(ErrPos)=0 // I n v e r t b i t at Erroneous Bi t
P o s i t i o n

92 disp(R, ’ Rec i eved Code with e r r o r
c o r r e c t e d ’)

93 disp([R(3) R(5:7)], ’ Rec i eved In f o rma t i on
Message ’)// Ext ra c t and d i s p l a y

Message from code word
94 end

95 end

54

	
	Study and generate different Line Codes - 1 (Unipolar and Polar RZ and NRZ)
	Study and generate different Line Codes - 2(Bipolar, Manchestre and Quaternary)
	Study Carrier Modulation Techniques using BASK, BPSK and BFSK
	Study and generate OQPSK waveforms
	Study and generate NON OQPSK waveforms
	Study and generate 8-QAM waveforms
	Study and generate MSK waveforms (PSK Approach)
	Study and generate MSK waveforms (FSK Approach)
	To calculate all Codewords, error detection and correction capability of given LBC
	To encode Cyclic code and calculate Syndrome for the given generator polynomial
	To encode and decode Hamming code

