Scilab Manual for
Mobile Communication
by Prof Hetal Shah

Others
Dharmsinh Desai University'

Solutions provided by
Prof Hetal Shah
Others
Dharmsinh Desai

January 29, 2026

Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the "Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions

1

8

9

Digital Modulation Functions: ASK, FSK, PSK genera-
tion.

Constellation diagram and Error Rate performance of dif-
ferent modulation techniques with AWGN channel.

Effect of various channel on transmitted data using different
modulation techniques.

Trunking Theory for Probability of blocking(Erlang B) and
probability of delay(Erlang C).

Walsh Code generation

PN sequence generation.

Equalization.

Channel Coding using Linear Block Code

Transmit and receive diversity

10 Speech coding

13

23

27

31

35

38

43

47

List of Experiments

Solution 1.1
Solution 2.1
Solution 2.2
Solution 3.1
Solution 3.2
Solution 3.3
Solution 4.1
Solution 5.1

Solution 6.1
Solution 7.1
Solution &.1
Solution 9.1

Solution 9.2

Solution 10.1

Sigal space diagram of different modulation

BER of BPSK and QPSK over AWGN
BER BPSK Rayleigh fading channel
BER QPSK Rayleigh channel

Traffic calculation inErlang B and Erlang C system
Walsh code generation and spreading and despread-

ing using Walsh code

3 bit PN sequence generation and spreading and
despreading using PN sequence and shifted PN se-

quence
Adaptive equalization using LMS filter

Channel .

Linear Block Coding over AWGN channel .
Selection Diversity over AWGN channel

Maximal Ratio Combining over AWGN and Rayleigh

fading Channel

speech coding and Decoding using LPC

27

31
35
38
43

44
47

© 00 J O U = W N

—_
)

—_
—_

12
13
14
15

Experiment: 1

Digital Modulation Functions:
ASK, FSK, PSK generation.

Scilab code Solution 1.1 1

//Amplitude Shift Keying,

Frequency Shift Keying And

Phase Shift keying waveform generation

clc;

clear;

xdel (winsid ());

sym=10; //no. of symbols

g=[1 101001110]//binary data
f1=1;£2=2;//frequencies of carrier
t=0:2%%pi/99:2*%pi;//range of time

/ /ASK

cp=[];bit=[];mod_ask=[];mod_fsk=[];mod_psk=[];cpl

=[];cp2=1[];

for n=1:1length(g);//ASK modulation // Zeros and

ones are inserted for
signal
if g(n)==0;
die=zeros (1,100) ;
else g(n)==1;

die=ones (1,100) ;

proper

plot of message

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

o1
52

end
c_ask=sin(fi1xt);
cp=Lcp diel];

mod_ask=[mod_ask c_ask];

end

ask=cp.*mod_ask; //ASK modulated signal

//FSK
for n=1:1length(g);
if g(n)==0;
die=ones (1,100);
c_fsk=sin(f1xt);
else g(n)==1;
die=ones (1,100);
c_fsk=sin (f2x*t);
end
cpl=[cpl diel;

mod_fsk=[mod_fsk c_fsk];

end

fsk=cpl.*mod_fsk;//FSK molated signal

//PSK
for n=1:1length(g);
if g(n)==0;
die=ones (1,100) ;
c_psk=sin(f1x*t);
else g(n)==1;
die=ones (1,100) ;
c_psk=-sin(fixt);
end
cp2=[cp2 diel;

mod_psk=[mod_psk c_psk];

end

psk=cp2.*mod_psk; //PSK modulated signal
subplot (4,1,1);plot(cp, 'LineWidth’,1.5);//plot

binary signal
xgrid;

title (’Binary Signal’);//title

5

53
54

95
56
o7
58

99
60
61
62

63
64
65

66

mtlb_axis ([0 100*length(g) -2.5 2.5]); //axis range

subplot(4,1,2);plot (ask, 'LineWidth’,1.5);//plot of
ASK modulated signal

xgrid;

title (’ASK modulation’);//title of plot

mtlb_axis ([0 100*length(g) -2.5 2.5]);//axis range

subplot(4,1,3);plot (fsk, 'LineWidth’,1.5);//plot of
FSK modulated signal

xgrid;

title ('FSK modulation’);//title of plot

mtlb_axis ([0 100*length(g) -2.5 2.5]);//axis range

subplot(4,1,4);plot (psk, 'LineWidth’,1.5);//plot of
PSK modulated signal

xgrid;

title (’PSK modulation’);//title of plot

mtlb_axis ([0 100*length(g) -2.5 2.5]);//range of
axis

//Result: This experiment results plots of binary
data, ASK modulation ,FSK modulation and PSK
modulation

O U W N

© 00

10

11

Experiment: 2

Constellation diagram and
Error Rate performance of

different modulation techniques
with AWGN channel.

Scilab code Solution 2.1 Sigal space diagram of different modulation

// Constellation diagram of BPSK and QPSK modulation
and BPSK and QPSK modulation over AWGN channel

clc;

clear;

xdel (winsid ());

sym=20; //No .of symbols

datal=grand (1,sym,” uin” ,0,1);//Random symbol
generation from 0 to 1 with uniform distribution

snr=10; // Signal to Noise Ratio

gpsk_mod=[];

bpsk_mod=2*datal-1;//BPSK Modulation

for j=1:2:1length(datal)// Seperation of I & Q
component for QPSK modulation
i_phase=2xdatal(j)-1;//BPSK modulation of I phase

component

12

13

14
15
16
17

18

19

20

21
22

23
24
25
26
27
28
29
30
31

32

33
34

q_phase=2*datal (j+1) -1; //BPSK modulation of Q
phase component
temp=i_phase+%i*q_phase;//Combinibg I phase and Q
phase component for QPSK modulation
qpsk_mod=[qgpsk_mod templ;//QPSK modulated signal
end

noise=1/sqrt (2)*(10~(-(snr/20)))*(rand (1, length (
bpsk_mod), 'normal ") +%i*(rand (1, length(bpsk_mod)
, ’normal ’)));//White gaussian noise generation
for bpsk

noisel=1/sqrt (2)*(10~(-(snr/20)))*(rand (1, length(
gpsk_mod) , 'normal ") +%i*(rand (1,length(qpsk_mod)
, 'normal ’)));//White gaussian noise generation
for qpsk

bpsk_awgn=bpsk_mod+noise;//BPSK Modulated signal
passed over AWGN channel

qpsk_awgn=qpsk_mod+noisel; //QPSK Modulated signal
passed over AWGN channel

figure//constellation diagram of ideal BPSK
modulated signal and BPSK modulated signal with
White Gaussian Noise

a = gca();//to handle various object
a.data_bounds = [-1 , -1;1 ,11;
a.x_location = "origin”;
a.y_location = "origin”;

plot2d (real(bpsk_mod),imag(bpsk_mod) ,-2);

plot2d (real(bpsk_awgn) ,imag(bpsk_awgn) ,-5);

xlabel(’In phase’);//X-axis label

ylabel ('Quadrature phase’);//Y—axis label

title(’Constellation for BPSK with AWGN’);//title
of plot

legend (['Ideal message point’; 'message point with
noise 1) ;//legend

mtlb_axis([-2 2 -2 2]1);//range of axis

figure//constellation diagram of ideal QPSK
modulated signal and QPSK modulated signal with

8

35
36
37
38
39
40
41
42
43

44

45
46

47

CO N O Ut i W N

10

White Gaussian Noise

a = gca();//to handle various object
a.data_bounds = [-1 , -1;1 ,11;
a.x_location = "origin”;
a.y_location = "origin”;

plot2d (real(gpsk_mod),imag(qpsk_mod) ,-2);
plot2d (real(gpsk_awgn) ,imag(qpsk_awgn) ,-5);
xlabel ('In phase’);//X-axis label
ylabel ('Quadrature phase’);//Y-axis label
title(’'Constellation for QPSK with AWGN’);//title
of plot
legend (['Ideal message point’; 'message point with
noise '1);//legend
mtlb_axis ([-2 2 -2 2]);//range of axis
//Result: Generates two plots: BPSK modulated signal
with and without noise—figure —0
//QPSK modulated signal with
and without noise—figure —1

Scilab code Solution 2.2 BER of BPSK and QPSK over AWGN Channel

//Performance comparison of Simulated BER and
Theoritical BER of BPSK and QPSK modulation over
AWGN channel

clc;

clear;

xdel (winsid ());

sym=10000; //No .of symbols

M=4,;

gpsk_mod=[];i_phase=[];

datal=grand(1,sym,” uin”,0,1);//Random Symbol
generation from 0 to 1 with uniform distribution

for j=1:2:1length(datal)// Seperation of I & Q
component
i_phase=2xdatal(j)-1;// BPSK modulation of I

11

12

13
14
15
16
17
18
19

20

21

22

23

24
25
26

27
28
29

30
31

phase component

q_phase=2*datal (j+1) -1; //BPSK modulation of Q
phase component

temp=i_phase+Ji*q_phase;//combining of I phase
and Q phase component for QPSK modulation

qpsk_mod=[qpsk_mod temp];//QPSK modulated signal

end
bpsk_mod=2*datal-1; //BPSK Modulated signal

snr=1:10; //Signal to Noise Ratio
for k=1:1:1ength(snr)
H=1/sqrt (2) *(rand (1, length (qpsk_mod), 'normal
")+%i*(rand (1,length(gqpsk_mod), 'normal "))
)
noisel=1/sqrt (2)*(10~(-(k/20)))*(rand (1,
length (qpsk_mod), 'normal ") +%i*(rand (1,
length (gpsk_mod), 'normal ’))); //White
Gaussian Noise generation for QPSK
noise=1/sqrt (2)*(10~(-(k/20)))*(rand (1,
length (bpsk_mod), 'normal ")+%i*(rand (1,
length(bpsk_mod), 'normal ’)));//White
Gaussian Noise generation for QPSK
recl_qpsk=qpsk_mod+noisel; //QPSK
modulated signal over AWGN channel
recl_bpsk= bpsk_mod+noise;//BPSK
modulated signal over AWGN channel

rec_data_qpsk=[];rec_data_bpsk=[];
recl_i=real(recl_qpsk);//Seperation
of I phase and Q phase comopnent
of received QPSK modulated signal
recl_q=imag(recl_qpsk);
//
for i=1:1length(rec1_i)//QPSK Demodulation:
BPSK demodulation of I phase and Q phase
components
if reci1_i(i)>=0
demod_out_i=1;

10

32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48

49
50
51
52
53
o4
55
56
57
o8
59
60
61
62
63
64
65
66

else recl_i(i)<0
demod_out_i=0;
end
if recl_q(i)>=0
demod_out_q=1;
else recl_q(i)<o0
demod_out_q=0;
end
rec_data_qpsk=[rec_data_qpsk demod_out_i
demod_out_ql; //QPSK Demodulated signal
end
for i=1:1:1length(datal)//BPSK Demodulation
if real(recl_bpsk(i))>=0
demod_out_bpsk=1;
else real(recl_bpsk(i))<O0
demod_out_bpsk=0;
end
rec_data_bpsk=[rec_data_bpsk
demod_out_bpsk]; //BPSK Demodulated
signal
end

errA=0; errB=0;
for i=1:sym
if rec_data_qpsk(i)==datal (i)
errA=errl;
else
errA=errA+1;
end
end
BER_gpsk(k)=errA/sym;// BER of QPSK

for i=1:sym

if rec_data_bpsk(i)==datal (i)
errB=errB;

else
errB=errB+1;

end

11

67
68
69
70

71
72
73
74
75

76

7

78

79

80

81

82

83

84

85

BER_bpsk (k) =errB/sym; //BER of BPSK
end
theoryBer = 0.5*%erfc(sqrt(10. (snr/10))); //
Theoritical BER of BPSK & QPSK

end

// end

snr=1:1:10;

plot2d (snr ,BER_bpsk,5,logflag="nl");//plot simulated
BER of BPSK over AWGN channel

plot2d (snr,BER_qpsk,2,logflag="nl");//plot simulated
BER of QPSK over AWGN channel

plot2d (snr,theoryBer ,3,logflag="nl");//Plot
theoritical BER of QPSK and BPSK over AWGN
channel

mtlb_axis ([0 20 10°-5 0.5]1);//axis

xgrid (10) ;

xtitle ('Bit Error Rate plot for BPSK & QPSK
Modulation’, 'SNR’, 'BER’) ;//title of plot

legend (['BER_sim BPSK '’ ; "BER_sim_QPSK '’ ; "BER_Theory ']1)
;//legend

//This experiments results plot of bit error rate(
BER) comparison of simulated BPSK over AWGN
channel ;simulated QPSK over AWGN channel and
theoritical BER of BPSK and QPSK

// 1t will take few minutes to get plots as 100000
bits are applied as an input to get better plots

12

S U = W N

© 00

10

12

Experiment: 3

Effect of various channel on
transmitted data using different
modulation techniques.

Scilab code Solution 3.1 BER BPSK Rayleigh fading channel

//Error rate performance of BPSK modulated signal
over only AWGN channel and AWGN and Rayleigh
channel both

clc;

clear;

xdel (winsid ()) ;

sym=10000; //No .of symbols

datal=grand(1,sym,” uin”,0,1);//Randomly generated
Symbolsfrom 0 to 1lwith uniform distribution

bpsk_mod=2*datal-1;//BPSK Modulation
snr=1:20; //signal to Noise Ratio
for k=1:1:1ength(snr)

Hi=1/sqrt (2) *(rand(1,length (bpsk_mod),’

normal ")+%i*(rand (1,length(bpsk_mod),’
normal ’))); //Rayleigh fading generation

13

13
14

15
16

17

18

19

20
21
22
23

24
25
26
27
28
29

30
31

32
33
34
35

noise=1/sqrt (2)*(10°(-(k/20)))*(rand (1,
length (bpsk_mod), 'normal ")+%i*(rand (1,
length (bpsk_mod), 'normal’)));// White
Gaussian Noise generation

recl_bpsk=bpsk_mod+noise;//BPSK
modulated signal over AWGN channel
recl_bpsk_rayl= Hl.*bpsk_mod+noise;//
BPSK modulated signal over AWGN
channel and Rayleigh Fading
channel
recl_bpsk_ray=conj(H1) .*xrecl_bpsk_rayl
;//multiplication with conjugate of
rayleigh fading to nullify phase
because of Rayleigh Fading
// recl_bpsk_ray=recl_bpsk_rayl./(HIl.x
conj (HL));

rec_data_bpsk=[];rec_ray_bpsk=[];

for i=1:1:1length(datal)//BPSK Demodulation
of received signal over AWGN channel
if real(recl_bpsk(i))>=0
demod_out_bpsk=1;
else real(recl_bpsk(i))<O0
demod_out_bpsk=0;
end
rec_data_bpsk=[rec_data_bpsk
demod_out_bpsk];//Received signal

if real(recl_bpsk_ray(i))>=0 //BPSK
Demodulation of received signal over
AWGN channel and Rayleigh channel
demod_ray_bpsk=1;
else real(recl_bpsk_ray(i))<0
demod_ray_bpsk=0;
end

14

36

37
38
39
40
41
42

43
44
45
46
47
48

49
50

51
52
53
54
55
56

o7
58
59
60
61
62
63
64

rec_ray_bpsk=[rec_ray_bpsk
demod_ray_bpsk];////Received signal
end

errB=0; errC=0;
for i=1:sym

if rec_data_bpsk(i)==datal(i)//Error rate
calculation of received signal by
considering only AWGN Channel
errB=errB;
else
errB=errB+1;
end

BER_bpsk(k)=errB/sym; //BER at receiver by
considering only AWGN Channel

if rec_ray_bpsk(i)==datal(i)//Error rate
calculation of received signal by
considering AWGN Channel and Rayleigh
channel
errC=errC,;

else
errC=errC+1;

end

BER_bpsk_ray (k)=errC/sym; //BER at receiver
by considering AWGN Channel and rayleigh
channel

end end

// end
snr=1:1:20;
plot2d (snr ,BER_bpsk ,5,logflag="nl");
plot2d (snr ,BER_bpsk_ray,3,logflag="nl");
mtlb_axis ([0 20 10°-5 0.5]);
xgrid (10) ;

15

65

66

67

68

o 3 O Ot i W N

10

11

12

13
14

xtitle ("Bit Error Rate plot for BPSK modulated
signal over AWGN channel and AWGN and Rayleigh
channel both’, ’SNR’, ’'BER’) ;

legend (['BER.BPSK_ AWGN ’; 'BER BPSK_ AWGN & Rayleigh '1)

//This experiment results plot of error rate
performance of BPSK modulated signal over AWGN
channe and AWGN and Rayleigh channel both.

//This experiment will take some time to display
plot as higher no. of bits entered as an input to
get better plots.

Scilab code Solution 3.2 BER QPSK Rayleigh channel

//Error rate performance of QPSK modulated signal
over only AWGN channel and AWGN and Rayleigh
channel both

clc;

clear;

xdel (winsid ());

sym=10000; //No .of symbols

M=4,;

gpsk_mod=[];i_phase=[];

datal=grand(1,sym,”uin”,0,1);//Random Symbol
generation from 0 to 1 with uniform distribution

for j=1:2:length(datal)// Seperation of I & Q
component
i_phase=2xdatal(j)-1;// BPSK modulation of I

phase component
q_phase=2*datal (j+1) -1; //BPSK modulation of Q
phase component
temp=1i_phase+%ixq_phase;//combining of I phase
and QQ phase component for QPSK modulation
qpsk_mod=[qgpsk_mod templ;//QPSK modulated signal
end

16

15
16
17
18

19
20

21
22

23

24

25
26

27
28

29
30
31

32
33
34

snr=1:5:41; //Signal to Noise Ratio
for k=1:1length(snr)
H=1/sqrt (2) *(rand(1,length (gpsk_mod), 'normal
")+%ix(rand (1,length(gpsk_mod), 'normal "))
);//Rayleigh fading generation

noisel=1/sqrt (2)*(10°(-(k/20)))*(rand (1,
length (qpsk_mod), 'normal ") +%i*(rand (1,
length(gpsk_mod), 'normal ’))); //White
Gaussian Noise generation for QPSK

recl_qpsk=qpsk_mod+noisel; //QPSK
modulated signal over AWGN channel
recl_qpsk_rayl= H.*xqpsk_mod+noisel;
//BPSK modulated signal over AWGN
channel and Rayleigh Fading
channel
recl_qpsk_ray=conj(H) .*xrecl_qgpsk_rayl
;//multiplication with conjugate
of rayleigh fading to nullify
phase because of Rayleigh Fading

rec_data_qpsk=[];rec_data_qgpsk_ray
=[1;

recl_i=real(recl_qpsk);//Seperation
of I phase and Q phase comopnent
of received QPSK modulated signal

recl_q=imag(recl_qpsk);

recl_i_ray=real(recl_qpsk_ray);//
Seperation of I phase and Q phase
comopnent of received QPSK
modulated signal

recl_q_ray=imag(recl_qgpsk_ray);

//

for i=1:length(rec1_i)//QPSK Demodulation:

17

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56

57
58
59
60
61
62
63
64
65
66
67

for

end

BPSK demodulation of I phase and Q phase
components
if recl1_i(i)>=0
demod_out_i=1;
else recl_i(i)<0
demod_out_i=0;
end
if recl_q(i)>=0
demod_out_q=1;
else recl_q(i)<0
demod_out_q=0;
end
if recl_i_ray(i)>=0
demod_out_i_ray=1;
else recl_i(i)<0
demod_out_i_ray=0;
end
if recl_q_ray(i)>=0
demod_out_q_ray=1;
else recl_q_ray(i)<0
demod_out_q_ray=0;
end
rec_data_qpsk=[rec_data_qpsk demod_out_i
demod_out_q]; //QPSK Demodulated signal
rec_data_qpsk_ray=[rec_data_qpsk_ray
demod_out_i_ray demod_out_q_rayl;//
QPSK Demodulated signal
end

errA=0; errB=0;

i=1:sym

if rec_data_qpsk(i)==datal (i)
errA=errl;

else
errA=errA+1;

end

BER_qgpsk(k)=errA/sym; // BER of QPSK

18

68
69
70
71
72
73
74
75
76
7
78

79
80
81
82
83
84
85
86

87
88

89

90

91

92

for i=1:sym
if rec_data_qpsk_ray(i)==datal (i)
errB=errB;
else
errB=errB+1;
end

BER_qpsk_ray (k)=errB/sym; //BER of BPSK
end
//theoryBer = 0.5xerfc(sqrt (10." (snr/10))); //
Theoritical BER of BPSK & QPSK

end

// end

snr=1:5:41,;

plot2d (snr ,BER_qpsk,5,logflag="nl");//plot simulated
BER of BPSK over AWGN channel

plot2d (snr ,BER_qgpsk_ray,2,logflag="nl");//plot
simulated BER of QPSK over AWGN channel

//plot2d (snr , theoryBer ,3,logflag="nl");//Plot
theoritical BER of QPSK and BPSK over AWGN
channel

mtlb_axis ([0 40 10°-5 0.5]);//axis

xgrid (10) ;

xtitle ('Bit Error Rate plot for QPSK over AWGN
channel & AWGN and Rayleigh channel both’, ’'SNR’,
'BER’) ;//title of plot

legend (['BER.QPSK_ AWGN " ; 'BER_.QPSK AWGN & Rayleigh "])
;//legend

//This experiments results plot of bit error rate(
BER) comparison of simulated QPSK over AWGN
channel ;simulated QPSK over AWGN channel and
Rayleigh fading channel.

// It will take few minutes to get plots as 10000
bits are applied as an input to get better plots

19

O O i W N

© 00

10

12

13
14

15
16

17

18

Scilab code Solution 3.3 1

//Error rate performance of BPSK modulated signal
over only AWGN channel and AWGN and Rayleigh
channel both

clc;

clear;

xdel (winsid ()) ;

sym=10000; //No .of symbols

datal=grand(1,sym,”uin”,0,1);//Randomly generated
Symbolsfrom 0 to 1lwith uniform distribution

bpsk_mod=2xdatal-1; //BPSK Modulation
snr=1:20; //signal to Noise Ratio
for k=1:1:1ength(snr)

Hi=1/sqrt (2) *(rand (1, length (bpsk_mod),’
normal ") +%i*x(rand (1,length (bpsk_mod),’
normal ’)));//Rayleigh fading generation

noise=1/sqrt (2)*(10~(-(k/20)))*(rand (1,
length (bpsk_mod), 'normal ")+%i*(rand (1,
length(bpsk_mod), 'normal’)));// White
Gaussian Noise generation

recl_bpsk=bpsk_mod+noise;//BPSK
modulated signal over AWGN channel

recl_bpsk_rayl= H1l.*bpsk_mod+noise;//
BPSK modulated signal over AWGN
channel and Rayleigh Fading
channel

recl_bpsk_ray=conj(H1) .*xrecl_bpsk_rayl
;//multiplication with conjugate of
rayleigh fading to nullify phase

20

19

20
21
22
23

24
25
26
27
28
29

30
31

32
33
34
35
36

37
38
39
40
41
42

43
44
45
46
47

for

because of Rayleigh Fading
// recl_bpsk_ray=recl_bpsk_rayl./(Hl.x

conj (H1));

rec_data_bpsk=[];rec_ray_bpsk=[];

for i=1:1:1length(datal)//BPSK Demodulation

of received

end

errB
i=1:

signal over AWGN channel

if real(recl_bpsk(i))>=0

demod_out_bpsk=1;

else real(recl_bpsk(i))<O0

demod_out_bpsk=0;

end

rec_data_bpsk=[rec_data_bpsk
demod_out_bpsk];//Received signal

if real(recl_bpsk_ray(i))>=0 //BPSK
Demodulation of received signal over
AWGN channel and Rayleigh channel

demod_ray_bpsk=1;

else real(recl_bpsk_ray(i)) <0

demod_ray_bpsk=0;

end

rec_ray_bpsk=[rec_ray_bpsk
demod_ray_bpsk];////Received signal

=0;errC=0;
sym

if rec_data_bpsk(i)==datal(i)//Error rate

calculation of received

signal by

considering only AWGN Channel

else

end

errB=errB;

errB=errB+1;

21

48

49
50

51
52
53
54
55
56

o7
58
59
60
61
62
63
64
65

66

67

68

BER_bpsk(k)=errB/sym; //BER at receiver by
considering only AWGN Channel

if rec_ray_bpsk(i)==datal(i)//Error rate
calculation of received signal by

considering AWGN Channel and Rayleigh
channel

errC=errC,;

else

errC=errC+1;

end

BER_bpsk_ray(k)=errC/sym; //BER at receiver
by considering AWGN Channel and rayleigh
channel

end end

// end

snr=1:1:20;

plot2d (snr ,BER_bpsk,5,logflag="nl");
plot2d (snr,BER_bpsk_ray,3,logflag="nl");
mtlb_axis ([0 20 10°-5 0.5]);

xgrid (10) ;

xtitle(’'Bit Error Rate plot for BPSK modulated
signal over AWGN channel and AWGN and Rayleigh

channel both’,

"SNR 7,

'BER’) ;

legend (['BER.BPSK_ AWGN’; 'BER BPSK_ AWGN & Rayleigh 1)

//This experiment results plot of error rate
performance of BPSK modulated signal over AWGN
channe and AWGN and Rayleigh channel both.

//This experiment will take some time to display
plot as higher no.

get better

plots.

of bits

entered as an input to

22

Experiment: 4

Trunking Theory for
Probability of blocking(Erlang
B) and probability of delay(
Erlang C).

Scilab code Solution 4.1 Traffic calculation inErlang B and Erlang C sys-
tem

1 //Exp—4 Calculates maximum traffic intensity and
maximum no. of users accomodated in Erlang B and
Erlang C system for given no of channels

2 clc;

3 clear;

4 xdel(winsid ());

)

6 function [pll=erlangB(Al,c1)// calculate blocking

probability for Erlang B system

7 pr2=0;

8 pri=A1~cil/factorial (cl);

9 for k=1:cl

10 pr2=pr2+(Al1-k/factorial(k));
11 end

23

12
13
14
15
16

17
18
19
20
21
22
23
24
25

26

27

28

29

30
31
32
33
34
35
36

37
38

/] Al=Al1+1;
pl=pril/pr2;
endfunction

function [p2]=erlangC(A2,c2)// calculate
probability of blocked call delayed in Erlang C
system
temp_1=0;
for k=0:c2-1
temp_l=temp_1+A2"k/factorial (k);
end
denominator=A"c2+(factorial (c2)*(1-(A2/c))*xtemp_1);
p2=A2~°c2/denominator;
endfunction

pr_blocking=input (’enter probability of blocking’);
//enter probability of blocking for perticular
system

pr_delay=input (’enter probability of block call
delay ') ;//enter probability of blocked call
delayed for particular system

y=input ('enter call rate’);// Average no .of calls
per minute

H=input (’enter the average call duration’); //
Average call duration in minute

c=input ("enter no.of channels”);//Enter no. of
channels

disp("no.of channel=");

disp(c);

Au=y*H; // Traffic intensity per user

p=0;
for A=1:1:100
while (p<pr_blocking)//Find maximum traffic
intensity for entered blocking
probability pr_blocking
[pl=erlangB(A,c)//calling function erlangB
A=A+1;

24

39
40

41

42
43

44
45
46
47
48

49

50
o1
52

53

54
55

56
o7
58
59

60
61
62
63

end
disp(pr_blocking, "for blocking probability of’
);//display blocking probability
disp(A-1, 'Maximum traffic intensity is’);//
display max. traffic intensity
u=(A-1)/Au; //no. of users calculation
disp(u,”’no .of users are accomodated”);//
display maximum no.of users accomodated in
Erlang B system
break;
end//
p=0;
for A=1:1:100
while (p<pr_delay)//Find maximum traffic
intensity for entered blocking probability
pr_blocking
[pl=erlangC(A,c)//calling funtion to
calculate erlang C probability
A=A+1;
end
disp(pr_delay, "for block call delay
probability of’);//display blocking
probability
disp(A-1, 'Maximum traffic intensity is’);//
display max. traffic intensity
u=(A-1)/Au;
disp(u,”no.of users are accomodated”);//
display maximum no.of users accomodated in
Erlang C system
break;
end
//Enter blocking probability pr_blocking=0.01
//Enter probabolity of block call delay pr_delay
=0.1
//Enter call rate= 3/60
//enter call duration= 2(in minute)
//Enter no of channels 50

25

64
65
66
67
68
69
70
71
72
73

//Output :
//no.of channel= 50.

// for blocking probability of

// Maximum traffic intensity

18

0.01
38.

// mo .of users are accomodated 380.

// for block call delay probability of 0.1

// Maximum traffic intensity
//no.of users are accomodated

1s

41.
410.

26

[\

S U = W

© 00

10

12
13
14

15
16

Experiment: 5

Walsh Code generation

Scilab code Solution 5.1 Walsh code generation and spreading and de-
spreading using Walsh code

// Walsh Code generation
//Spreading and despreading of information for three
users using Walsh code
clc;
clear;
xdel (winsid ()) ;
a=input (’enter the number order of 2:’);//input
required length of Walsh Code which is always
order of 2
ci=[1 -1 -1];//information of user 1
c2=[-1 1 -1];//information of user 2
c3=[1 -1 1];//information of user 3
W=[0 0;0 1];// Basic Walsh code Matrix
m=2;
%n=2"m;
for m =2:1:a
for i = 1:1:a//genration of walsh code matrix of
entered length
if i==2"m
Winv=bitcmp (W, 1) ;

27

17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38

39

40

41

42

43

44

W=[W W;W Winv];
end

end
end
temp=0;
wi=[];
disp (W)
for i=1:1:1length(W(1,:))//0 replaced by —1 in walsh
code matrix
for j=1:1:1length(W(1l,:))
if W(i,j)==0 then
W(i,j)=w(i,j)-1;
else W(i,j)=W(i,j)+0;

end
end
end
//disp (W)

//spreading using Walsh code
tans_cl=[c1(1,1) . *W(1,:) c1(1,2).*xW(1,:) c1(1,3) .%xW
(1,:)1;//spreading of user 1 information using

first row of Walsh Matrix
tans_c2=[c2(1,1) .*W(2,:) c2(1,2) .*xW(2,:) c2(1,3) .*xW
(2,:)]1;//spreading of user 2 information using
second row of Walsh Matrix
tans_c3=[c3(1,1) . *W(3,:) c3(1,2).*xW(3,:) c3(1,3) .%W
(3,:)1;//spreading of user 3 information using
third row of Walsh Matrix
aal=tans_cl(1,1:a)+tans_c2(1,1:a)+tans_c3(1,1:a);
aa2=tans_c1(1,(a+1) : (2*xa))+tans_c2(1,(a+1) :(2*xa))+
tans_c3 (1, (a+1) : (2xa));
aa3=tans_cl(1,((2xa))+1:(3*xa))+tans_c2 (1, ((2xa))
+1:(3*%a))+tans_c3(1,((2*%a))+1:(3*xa));
tans_sig=[aal aa2 aa3];//transmission of spreaded
signal

28

45

46
47

48
49
50
o1
52
53
54
55
56

57
58
99
60

61

62
63
64

65
66
67

68

det_codel=input (’enter detection code’);//Enter any
integer no. ranging up to no. of rows of walsh
matrix

select det_codel//select case to get information
of entered user
case 1
det_code=W(1,:);
case 2
det_code=W(2,:);
case 3
det_code=W(3,:);
else
det_code=W(4,:);
disp(’invalid detection code’);//display
message for input of invalid detection
code
end

rec_sig =[det_code(1,:).*xaal det_code(1l,:).*aa2
det_code(1,:).*%aa3];//received signal multiplied
with detection code

det_sig=[rec_sig(1l,1)+rec_sig(1,2)+rec_sig(1,3)+
rec_sig(1,4) rec_sig(1,5)+rec_sig(l,6)+rec_sig
(1,7)+rec_sig(1,8) rec_sig(1,9)+rec_sig(1,10)+
rec_sig(1l,11)+rec_sig(1,12)];//detection of
information from received signal

final_sig=(1/4)*det_sig;

disp(’transmited information is’);

disp(final_sig)//information transmmited using
selected valid detection code

//input a=4

//W=[0 000 ;010 1;00113;0 11 0]

//detection code=2, output=-1 1—1(information of
user 2 spreaded with second row of Walsh Matrix)

//detection code > 3 |, results : code not available

000

29

30

© 00 N O Ot i W N

[S e S e S G SO S Y
S UL W N = O

—_
J

Experiment: 6

PN sequence generation.

Scilab code Solution 6.1 3 bit PN sequence generation and spreading and
despreading using PN sequence and shifted PN sequence

// Spreading of sequence using PN sequence and
despreading of sequence using PN sequence and
shifted PN sequence

clc;

clear;

xdel (winsid ());

// Generation of 7 bit PN sequence

// Coefficient of polynomial

al=1;

a2=1;

a3=1;

// Initial states of flip flop
R(1)=1;

R(2)=0;

R(3)=0;

m=3;

disp(’output after every clock pulse’);

for i=1:((2"m)-1)//shift of bit in each register for
every clock pulse
ri=R(1);

31

18
19
20
21
22

23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40

41

42

43

44
45

46

r2=R(2);
r3=R(3);
PN (i)=R(3);
//if (al==0)
Ri=bitxor (r2,r3);//input of register is modulo2
addition of R2 and R3
R(3)=R(2);
R(2)=R(1);
R(1)=R1;

disp(R);
end
disp (PN sequence is’);
disp (PN);//Display 7 bit PN sequence
cl=[1 -1 -1];//information of user 1
for j=1:1:1length(PN)//0 replaced with —1 in PN
sequence
if PN(j)==0 then
PN(j)=PN(j)-1;
else PN(j)=PN(j)+0;
end

end
disp (PN);
spreaded_sig=[c1(1) .*PN’ c1(2) .*%PN’ c1(3).*PN’]//
Spreading of data of user 1 using PN sequence
detect_code=[spreaded_sig(1:7) .*PN’ spreaded_sig
(8:14) .*PN’ spreaded_sig(15:21) .xPN’];//at
receiver , recieved spreaded signal multiplied
with PN sequnce
corr_code=[sum(detect_code(1:7)) sum(detect_code
(8:14)) sum(detect_code (15:21))1;
rec_sig=(1/7) .*xcorr_code;//get information form
received signal
disp(’received signal with correct PN sequence is’);
disp(rec_sig);//received data of user 1 at receiver
1 -1 —1
//Despreading with shifted PN sequence

32

47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62

63

64

65

66

67

68

69

70

71

72

shift_fact=input(’enter the shifting factor’);
1=1;
k=shift_fact-1;
for i=1:1:1length(PN) //generation of shifted PN
sequence as per entered shifting factor
if i<=shift_fact
shift_seq(i)=PN(length (PN)-k) ;
k=k-1;
else i>shift_fact
shift_seq(i)=PN(1);
1=1+1;
end
end
disp(’shifted sequence is’);
disp(shift_seq’);//display shifted sequence
//despreading using shifted PN sequence
detect_shift_code=[spreaded_sig(1:7) .*xshift_seq’
spreaded_sig(8:14) .*xshift_seq’ spreaded_sig
(15:21) .*xshift_seq’];
corr_shift_code=[sum(detect_shift_code(1:7)) sum(
detect_shift_code(8:14)) sum(detect_shift_code
(15:21))1;
rec_shift_sig=(1/7) .*corr_shift_code;
disp("recieved signal with shifted PN sequence is
7))
disp(rec_shift_sig);//Invalid data received
beacuse signal was despreded with shifted PN
sequence
disp(’which is not valid transmitted signal’);
// Result:
//output of PN sequence generator after each
clock pulse
// PN=0010111 replace 0 with —1,PN=1 —1 1
—-1 111
//entered shifting factor =3, shifted PN sequence=
111 -1-11-1
//Invalid signal is received when despreading is
with shifted version of PN

33

73 //rec_shift_sig=- 0.1428571 0.1428571
0.1428571

34

© 00 J O U i W N

—
o

11
12
13
14
15
16
17
18
19
20

Experiment: 7

Equalization.

Scilab code Solution 7.1 Adaptive equalization using LMS filter

// Least Mean Square adaptive equalizer
clc;

clear all;

xdel (winsid ());

numPoints = 500;
numTaps = 1; //channel order
Mu = 0.01; //iteration step size

// input is guassian

x = rand(numPoints ,1, 'normal’) + %i*rand(numPoints
,1, 'normal’);

//choose channel to be random uniform

h = rand (numTaps,1) + %i*rand(numTaps, 1);

h = h/max(abs(h)); //normalize channel
// convolve channel with the input
d = filter(h, 1, x);

//initialize variables
w = [];
y = [1;

35

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56

in = [];

e = [1; // error, final result to be computed
w = zeros (numTaps+1,1) + %i*zeros (numTaps+1,1);
kk=1;

aa(kk,:)=w’;

//LMS Adaptation

for n = numTaps+1l : numPoints

// select part of training input
in = x(n : -1 : n-numTaps) ;
y(n) =w’* in;

// compute error
e(n) = d(n)-y(n);

// update taps

w = w+ Mux(real(e(n)*conj(in)) - %i*imag(e(n)*conj(

in)));

kk=kk+1;
aa(kk,:)=w’;
end

// Plot results

figure;

iter=1:500

plot2d (iter ,abs(e) ,5,logflag="nn");

title (['LMS Adaptation Learning Curve Using Mu =

0.0171);
xlabel ('Iteration Number’) ;
ylabel ('Output Estimation Error in dB’);
figure;
plot3d(abs(aa(:,1)),abs(aa(:,2)),abs(e));

title (’LMS adaption curve with weight factors’);

xlabel (’adaptive weight factorl’);
ylabel ("adaptive weight factor2’);

36

57 zlabel (’mean square error ’);

58 // Output shows plot of MSE with no. of iterations
in figure 1 and 3D plot of MSE with weight
factors

37

© 00 N O

10

12

Experiment: 8

Channel Coding using Linear
Block Code

Scilab code Solution 8.1 Linear Block Coding over AWGN channel

//this is a linear block coding and decoding over
awgn channel

// 4 bits input signal is coded with linear block
code (4,7), 7 bit coded signal is transmitted
over awgn channel and at receiver side signal is
decoded. If there is error in one bit, li//near
block code correct that error and original
transmitter code is receved.

//1f error is in more than one bit, code is not
corrected so wrong code is recieved

clc;

clear all;

xdel (winsid ());

global P n k;

n=7;//length of coded input
k=4;//length of input

38

13

14

15

16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45

P=[1 1 0; 01 1; 10 1;1 1 1]; //parity matrix of
size k*x(n—k) to be

// selected so that
the systematic generator

// matrix is linearly
independent or full rank

// matrix

//(n,k) linear block code where k — no. of input
data bits and n-no. of o/p

//data bits. code rate=k/n

// x is an input vector containing k bits

//This is an linear block encoding function
function yl=linblkcode (x);

global P n k;
n=7;

k=4,

P=[1 1 0; 01 1; 1 0 1;1 1 1];//parity matrix
//x=[0 1 1 0]

Y

//G=[|; // % Generator matrix kxn
G=[eye(k,k) PJ;

yl=zeros(1,n);
for i=1:k//linear block coding
var (i, :)=x(1,1) & G(i,:);
var (i,:)=bool2s(var(i,:));
y1(1,:)=bitxor(var(i,:),y1(1,:));//coded signal
end

endfunction

//%This is a linear block syndrome decoding function
file%

function xl=linblkdecoder (y)

39

46
47
48
49
50
51
52
53
o4
55
56
57
58
99
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
0]
76
7
78
79
80
81
82

//% here y is recieved vector 7 bits long

//% (7,4) linear block code
global P n k;

//H=[]; //% PARITY CHECK MATRIX

H=[P’ eye((n-k),(n-k))1;
Ht=H’; //%transpose of H

S=zeros(1l,n-k); //%syndrome of recieved vector x
for i=1:n-k// decoding of linear block code
S(i)=y (1) & Ht(1,i);
S(i)=bool2s(8(i));
for j=2:n

S(i)=bitxor(S(i), bool2s((y(j) & Ht(j,1i))));
//decoded signal
end
end

/ |76 % x «SYNDROME LOOK UP TABLE s s s sk s s sk sk ook

[[T0T0% s sk sk sk ok sk ok sk sk sk sk ok sk ok skok sk sk ok sk ok sk ok sk ok K sk ok sk ok sk ok koK ok o
/7%
if s==[0 0 0]
e=[0 0 0O 0O O 0 0];
z=bitxor(y,e);
end

if §==[0 0 1]
e=[0 0 0 0 0 O 1];
z=bitxor(y,e);
end
if §==[0 1 0]

40

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

113

114

115

e=[0 00 0 0 1 0];
z=bitxor(y,e);
end
if 8==[1 0 0]

e=[0 00 01 0 0];
z=bitxor(y,e);
end
if 8==[1 1 1]

e=[0 001 0 0 0];
z=bitxor(y,e);
end
if S==[1 0 1]
e=[0 01 0 0 0 0];
z=bitxor (y,e);
end
if 8S==[0 1 1]
e=[0 1 0 0 0 0 0];
z=bitxor(y,e);
end
if S==[1 1 0]
e=[1 0 0 0 0 0 0];
z=bitxor(y,e);
end
//disp ("error 7) ;
//disp (e);
xl=z(1,1:k);
endfunction

snr_dB=2;

x=[1 0 0 1]; // input bits to the
encoder of size 1x k

yl=linblkcode (x);// // yl is the output

of linear block encoder
nl = 1/sqrt(2)*[rand(1,length(yl), 'normal’) + %ix
rand (1, length(y1), 'normal’)];//white gaussian
noise generation
r=yl1+ 10" (-snr_dB/20)*nl;//received signal over awgn
channel

41

116
117

118

119
120
121
122
123

124
125

126
127

128
129
130

131
132

133
134
135
136

137
138

139

140
141

//rl=real (1)

rec=real(r)>=0.5;//detection of bit 1 and 0 in
received signal

rec_fin=bool2s(rec);//convert boolean matrix to zero
one matrix

//rec_err=rec_fin=—=yl;

//no_err=bool2s(rec_err);

disp (’The information signal=’)//display input

disp(x)

disp(’The transmitted encoded signal=’)//display
coded signal

disp(y1)

disp (’The recieved signal=")//display received
signal

disp(rec_fin);

x1=linblkdecoder (rec_fin); // % x1 is the

output of the linear block decoder

disp (’The decoded signal=’)//display decoded signal

disp(x1);

if x1==x then disp(’one or less than one error so
correct code is received ’);

else

disp(’more than one error so wrong code detected
)

end

//Output: The information signal is : 1001

//transmitted code is : 1001001

//1. received signal is :1011001(e.g)(error in only
one bit)

//decoded signal: 1001

//one or less than one error so correct code is
received

//2. received signal is:1011011(e.g)(error in more
than one bits)

//decoded signal:1010

//more than one error so wrong code is received

42

S T W N

© 00

10

12

13

14

15

Experiment: 9

Transmit and receive diversity

Scilab code Solution 9.1 Selection Diversity over AWGN channel

//ber performance with 1, 2 and 3 receiver antennas
over awgn channel using selection diversity

clc;

clear;

xdel (winsid ());

sym=10000; //no. of symbols

datal=grand(1,sym,”uin”,0,1);//randomly generated

input
s = 2xdatal-1; // BPSK modulation 0 —> —1; 1 — 1
nRx = [1 2 3];//no .of receiving antennas
snr_dB = [1:10]; // signal to noise ratio

for j = 1:length(nRx)
for i = 1:length(snr_dB)
n = 1/sqrt(2)*[rand (nRx(j),sym, 'normal ’) +
%i*rand (nRx(j),sym, 'normal’)]; //white
gaussian noise

y = ones(nRx(j),1)*s + 10~ (-snr_dB (i) /20) *n;
//received signal over awgn channel
[yHatl ind] = mtlb_max(y,[],1);//find
strongest received signal from all

43

16
17
18

19
20

21
22
23
24

25
26
27
28
29
30
31
32
33
34

antennas

ipHatl = real(yHatl)>0;
ipHat = bool2s(ipHatl);//boolean to zero one
matrix conversion
// effective SNR
nErr(j,i) = size(find([datal- ipHatl) ,2);//
no. of error calculation
end
end
simBer = nErr/sym; //BER calculation
// plot of ber comparison plot for 1,2 and 3
receiving antennas
snr_dB=1:10
plot2d (snr_dB,simBer (1,:),5,logflag="nl");
plot2d (snr_dB,simBer (2,:),2,logflag="nl");
plot2d (snr_dB,simBer (3,:),12,1logflag="nl");
xgrid
legend ([71X17;71X27;'1x37]1);
xlabel ('Number of receive antenna’);
ylabel ('effective SNR, dB’);
title (’SNR improvement with Selection Combining’) ;
//output presents BER performance comparison plots
with 1,2 and 3 receiving antennas over awgn
channels

Scilab code Solution 9.2 Maximal Ratio Combining over AWGN and Rayleigh
fading Channel

// BER Performance coamparison with one receivivng
atenna and two receiving antennas with Maximal
ratio Combining diversity technique over awgn
channe and rayleigh fading channel

clc;

clear;

44

4 xdel(winsid ());

5 sym=100000;// no. of symbols

6 M=2;

7 datal=grand(1,sym,”uin”,0,1);// input signal is
randomly generated

8 //N = 10; % number of bits or symbols

9 //ip = rand(1,N)>0.5; % generating 0,1 with equal

probability
10 s = 2xdatal-1; // BPSK modulation 0 —> —1; 1 —> 1
11 nRx = [1 2];//no of receivers

12 snr_dB = [1:20]1; // signal to noise ration in dB
13 for jj = 1:length(nRx)

14 for ii = 1:length(snr_dB)

15 n = 1/sqrt(2)*[rand(nRx(jj),sym, 'normal’) +

%hi*rand (nRx(jj),sym, 'normal’)]; //white
gaussian noise ,

16 h = 1/sqrt(2)*[rand (nRx(jj),sym, 'normal’) +
hi*rand (nRx(jj),sym, 'normal’)]; //
Rayleigh fading channel

17 // Channel and noise Noise addition
18 sD = kron(ones(nRx(jj),1),s);
19 y = h.xsD + 10" (-snr_dB(ii)/20)*n;//

received signal over awgn channel and
ayleigh fading channel

20 // finding the power of the channel on all
rx chain
21 yHat = sum(conj(h).*y,1)./sum(h.*conj(h)
,1); // maximal ratio combining

22 // hPowerl = h.xconj(h);

23

24 ipHat = real(yHat) >0;

25 // effective SNR

26 nErr(jj,ii) = size(find([datal-
ipHat]) ,2);//calculate error

27 end

28 end

29 simBer = nErr/sym; //bit error rate calculation

30 // plot

45

31
32

33

34

35
36
37
38
39
40

snr_dB=1:20

plot2d (snr_dB,simBer (1,:),5,logflag="nl");//snr— ber
plot with one receiving antenna

plot2d (snr_dB,simBer (2,:),2,logflag="nl");//snr— ber
plot with two receiving antennas

//plot (nRx,10%logl10 (EbNOEffSim) , " bp—", LineWidth ’ ,2)

//mtlb_axis ([1 20 0 6])

xgrid

legend ([71X17; 71X2°1);

xlabel ('"Number of receive antenna’);

ylabel ("effective SNR, dB’);

title ('SNR improvement with Maximal ratio Combining’

)

46

10
11
12
13

Experiment: 10

Speech coding

Scilab code Solution 10.1 speech coding and Decoding using LPC

//Exp—10 Speech coding using Long Term Predictive
coder

//This code read wav file and play original signal
and compressed signal

// It also plots original signal as well as
compressed signal

function [aCoeff, tcount_of_aCoeff, e] =
func_lev_durb(y, M);

//M=order and y is array of the data point of the
current frame

sk=0; //initializing summartion term ”sk”

a=[zeros (M+1);zeros(M+1)]1; //defining a matrix of

7 2

zeros for 7a” for init.

//MAIN BODY OF THIS PROGRAM STARTS FROM HERE
SSSSSSSSSESS>
z=xcorr (y);

//finding array of R[1]

R=z(((length(z)+1) ./2) : length(z)); //R=array
of "R[1]”, where 1=0,1,...(b+N)—1 %R(1)=R[lag

47

14
15

16
17

18
19

20
21

22
23
24

25

26
27
28
29
30
31
32
33
34
35

36
37
38
39

40
41
42

—0], R(2)=R[lag=1], %R(3)=R[lag=2]... etc

//GETTING OTHER PARAMETERS OF PREDICTOR OF ORDER
7707):

s=1; //s=step no.

J(1)=R(1); //J=array of 7J1”, where 1
—0,1,2...(bsN) 1, J(1)=J0, J(2)=J1, J(3)=J2 etc

//GETTING OTHER PARAMETERS OF PREDICTOR OF ORDER ” (s
1)
for s=2:M+1,
sk=0; //clearing 7sk” for each
iteration
for i=2:(s-1),
sk=sk + a(i,(s-1)) .*R(s-i+1);
end //now we know value of 7sk”,
the summation term
//of formula of calculating
77k(1>77
k(s)=(R(s) + sk)./J(s-1);
J(s)=J(s-1) .%x(1-(k(s))."2);

a(s,s)= -k(s);
a(l,s)=1;
for i=2:(s-1),
a(i,s)=a(i,(s-1)) - k(s).*xa((s-i+1),(s-1));
end
end
//increment ”b” and do same for mnext frame until end
of frame when
//combining this code with other parts of LPC algo

//PREDICTION ERROR; FOR TESTING THE ABOVE PREDICTOR

aCoeff=a((1:s),s)’; //array of 7a(i,s)”, where
, s=M+1

tcount_of_aCoeff = length(aCoeff);

y_padded_for_delay_r = [y’; =zeros(1,1)]; //it is

48

43

44
45
46
47
48

49
50
o1

52
53

54

55
56

o7

o8

59

60

61

62

63

64

65

padded with zeros to remove the effect of delay
in filter
est_y_with_dummy_pad = filter ([0 -aCoeff (2:9)],1,

y_padded_for_delay_r); // = s (n) with a cap
on page 92 of the book

est_y = est_y_with_dummy_pad(2:321);

e =y’ - est_y; //supposed to be a white noise

endfunction

function [aCoeff, b_LTopt, Topt, e_prime] =
f _ENCODER_relp(x, fs)
M = 8; //prediction order for LP analysis

//INITIALIZATION ;

b=1; //index no. of starting data point of
current frame

fsize = 20e-3; //frame size (in milisec)

frame_length = round(fs .x fsize); //=number data

points in each framesize of "x”
N= frame_length - 1; //N+1 = frame length = number
of data points in each framesize

y_proc = filter ([1 -1], [1 -0.999], x); //pre—
processing

/ /FRAME SEGMENTATION

for b=1 : frame_length : (length(x) - N)

y_f = y_proc(b:b+N); //7”b+N" denotes the end
point of current frame. ”y” denotes an array of
the data points of the current frame

//LP ANALYSIS [lev-—durb] & PREDICTION ERROR (short—
term) FILTER;

[a, tcount_of_aCoeff, e_s] = func_lev_durb (y_f,
M); //e=error signal from lev-—durb proc
aCoeff(b: (b + tcount_of_aCoeff - 1)) = a; //

aCoeff is array of 7a” for whole 7x”
//LONG-TERM LP ANALYSIS, FILTERING, AND CODING
analysis:
T_min = round (fs .* 5e-3); //=total data

49

66
67
68

69
70
71
72
73
74
75

76

7

78

79
80
81
82
83
84
85

86
87

88
89
90
91
92
93
94
95

2 7

points in Hms of 7"x

T_max = round (fs .* 15e-3);
cl = 1;
for bs = b : 40 : b+length(y_f)-40 //subframing
bs = 1281;
if bs < T_max
break;
end

Jmin(bs) = 10°9;

for T = T_min : T_max //within 1 (
current) frame T = 40;
for ¢ = 1:40 //data points of
current subframe c=1; temporary
sml(c) = (y_proc(bs+(c-1)) .x
y_proc (bs-T+(c-1))); //es(n)
sm2(c) = y_proc(bs-T+(c-1)); //=
es (n—T)
sm22(c) = sm2(c) . 2;
end
ql = sum(sml);
q2 = sum(sm22);

b_LT(T) = -(ql1./q2);
//J loop:
for ¢ = 1:40 //data points of

current subframe c=1; temporary
smJ1(c) = y_proc(bs+(c-1));
smJ2(c) = b_LT(T) .* y_proc(bs-T
+(c-1));

end

smJ = smJ1 + smJ2;

qJ = smJ."2;

J(T) = sum(qlJ);

if J(T) < Jmin(bs),
Jmin(bs) = J(T);
Topt (bs) T;

50

96
97

98

99
100
101
102
103
104
105

106

107

108

109
110

111
112

113

114

115
116

if b_LT(T)>=1,
b_LTopt(bs) = 0.9999; //
trancation

else
b_LTopt(bs) = b_LT(T);
end
else
end
end //T loop ends

//predictor :
LT_gain = [zeros(l, Topt(bs)-1), b_LTopt (bs)
1; //as it says z =T in page 121
e_s_padded_for_delay_r = [e_s(cl:c1+39);
zeros (Topt (bs), 1)]; //it is padded with
zeros to remove the effect of delay in
filter . %Topt(bs) no. of ’z’s and one
"1’ results in total 'Topt(bs)’ amount

of delay
e_with_dummy_pad = filter ([1 LT_gain], 1,
e_s_padded_for_delay_r); /] =1 + 0xz
"—1 4+ 0%z -2 + ... + bxz T
e_LT(bs:bs+39,1) = e_with_dummy_pad(Topt (bs
)+1 : Topt(bs)+1+39); //LT predicted ”

b

e
e(bs:bs+39, 1) = e_s(cl : c1+39) - e_LT(bs
bs+39) ;

//WEIGHTING FILTER:
w = [-0.0004;
-0.0156;-0.0677;0.0545;0.6069;1.0000;0.6069;0.0545;-0.067
//11 point flattop window is
temporarily chosen
wndd = conv(w, e(bs:bs+39)); //outputs
total 50 samples
x_n(bs:bs+39) = wndd(6:45); //middle 40
samples are taken

//POSITION SELECTION & EXCITATION GENERATOR:

51

117 for i1 = 0:3

118 for i = il+bs : 3 : bs+i1+38;

119 x_m(il+1,i) = x_n(i);

120 end

121

122 E.m(il+1,1) = sum((x_m(il+1, bs:3)).72);

123 end

124 [E_m_max, index_max] = gsort(E_m);

125 e_prime(bs : bs+39) = x_m(index_max (4), bs:
bs+39) ;

126 cl = cl1 + 40;

127 end

128 end

129 endfunction

130

131 //RELP DECODER portion :

132 function [synth_speech, synth_speechl, LT_gain,
e_prime_pad_for_d_r, e_prime_op_dummy_pad,
e_prime_op, e_prime_op_pad_delay_r,
synth_speech_dummy_pad] = f_DECODER_relp (aCoeff,
b_LTopt, Topt, e_prime)

133 //re—calculating frame_length for this decoder

134 frame_length=9; //initial value for calculation

135 for i=10:1length(aCoeff)

136 if aCoeff (i) == 0

137 frame_length = frame_length + 1;

138 else break;

139 end

140 end

141 e_prime = e_prime’; //making it a column matrix
for convenience

142

143 for b=1 : frame_length : length(aCoeff) //length (
aCoeff) should be very close (i.e less than a
frame_length error) to length (x)

144 for bs = b : 40 : b+frame_length-40 //

subframing
145

52

146

147

148

149

150

151

152
153

154

155

156

157
158
159
160
161

end

//EXCITATION GENERATOR: not done yet.
because e_prime has been sent to this
decoder directly. without quantization .

//PITCH SYNTHESIS FILTER: %has to be domne

per subframe

LT_gain = [zeros(l, Topt(bs)-1), b_LTopt (bs)
1; //as it says z —T

e_prime_pad_for_d_r = [e_prime(bs:bs+39);
zeros (Topt(bs), 1)1; //it is padded with
zeros to remove the effect of delay in
filter. %Topt(bs) no. of ’z’s and one
"1’ results in total 'Topt(bs)’ amount
of delay

e_prime_op_dummy_pad = filter (1, [1 LT_gain
l, e_prime_pad_for_d_r); //=1 / (1 +
Oxz"—1 + 0%z —2 + ... + bxz -T)

e_prime_op(bs:bs+39,1) =
e_prime_op_dummy_pad (Topt(bs)+1 : Topt (bs

) +1+39) ; //pitch—synthesis filter
output
end //FORMANT SYNTHESIS FILTER:

e_prime_op_pad_delay_r= [e_prime_op(b : b
+159); zeros(1,1)]1; //it is padded with
zeros to remove the effect of delay in
filter

synth_speech_dummy_pad = filter (1, [1 aCoeff
(b+1 : b+8)], e_prime_op_pad_delay_r);

synth_speechl(b : b+159) =
synth_speech_dummy_pad (2:161) ; / /DE—~
EMPHASIS (de—proprocessing):

synth_speech(b : b+159) = filter ([1 -0.999],

[1 -1], synth_speechl(b : b+159)); //De

—processing

endfunction

clc;

clear all;

53

162
163
164
165
166
167
168
169
170

171
172

173
174
175
176

177
178
179
180
181
182
183
184
185
186

187

188

xdel (winsid ());
inpfilenm = ”SCI/modules/sound/demos/slofwb.wav”;
[x,fs,bits] =wavread(inpfilenm) ;

t=length(x)./fs;// total time t seconds
//COMPRESSION STARTS HERE,

disp(’original signal’);

sound (x, fs);

[aCoeff, b_LTopt, Topt, e_prime] = f_ENCODER_relp(x,

fs);
// e_prime is instead of position ,
peak _magitude_index and
sample_amplitude_index. (temporarily)
// halt ()

//halt (?’Press a key to play the original sound!’)

[synth_speech] = f_DECODER_relp(aCoeff, b_LTopt,
Topt, e_prime);

/ /RESULTS,

disp(’compressed signal ’);
sound (synth_speech, fs);

figure;

subplot (211),

plot(x); title([’Original signal = 7’, inpfilenm, 7
1)

subplot (212), plot(synth_speech); title(’'RELP
compressed output’);

//Output plays original signal and after
approximately 5 minutes it plays compressed sound
and plot the original signal and compressed
signal .

o4

	
	Digital Modulation Functions: ASK, FSK, PSK generation.
	Constellation diagram and Error Rate performance of different modulation techniques with AWGN channel.
	Effect of various channel on transmitted data using different modulation techniques.
	Trunking Theory for Probability of blocking(Erlang B) and probability of delay(Erlang C).
	Walsh Code generation
	PN sequence generation.
	Equalization.
	Channel Coding using Linear Block Code
	Transmit and receive diversity
	Speech coding

