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Experiment: 1

Digital Modulation Functions:
ASK, FSK, PSK generation.

Scilab code Solution 1.1 1

//Amplitude Shift Keying,

Frequency Shift Keying And

Phase Shift keying waveform generation

clc;

clear;

xdel (winsid ());

sym=10; //no. of symbols

g=[1 101001110 ]//binary data
f1=1;£2=2;//frequencies of carrier
t=0:2%%pi/99:2*%pi;//range of time

/ /ASK

cp=[];bit=[];mod_ask=[];mod_fsk=[];mod_psk=[];cpl

=[];cp2=1[];

for n=1:1length(g);//ASK modulation // Zeros and

ones are inserted for
signal
if g(n)==0;
die=zeros (1,100) ;
else g(n)==1;

die=ones (1,100) ;

proper

plot of message
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end
c_ask=sin(fi1xt);
cp=Lcp diel];

mod_ask=[mod_ask c_ask];

end

ask=cp.*mod_ask; //ASK modulated signal

//FSK
for n=1:1length(g);
if g(n)==0;
die=ones (1,100);
c_fsk=sin(f1xt);
else g(n)==1;
die=ones (1,100);
c_fsk=sin (f2x*t);
end
cpl=[cpl diel;

mod_fsk=[mod_fsk c_fsk];

end

fsk=cpl.*mod_fsk;//FSK molated signal

//PSK
for n=1:1length(g);
if g(n)==0;
die=ones (1,100) ;
c_psk=sin(f1x*t);
else g(n)==1;
die=ones (1,100) ;
c_psk=-sin(fixt);
end
cp2=[cp2 diel;

mod_psk=[mod_psk c_psk];

end

psk=cp2.*mod_psk; //PSK modulated signal
subplot (4,1,1);plot(cp, 'LineWidth’,1.5);//plot

binary signal
xgrid;

title (’Binary Signal’);//title

5



53
54

95
56
o7
58

99
60
61
62

63
64
65

66

mtlb_axis ([0 100*length(g) -2.5 2.5]); //axis range

subplot(4,1,2);plot (ask, 'LineWidth’,1.5);//plot of
ASK modulated signal

xgrid;

title (’ASK modulation’);//title of plot

mtlb_axis ([0 100*length(g) -2.5 2.5]);//axis range

subplot(4,1,3);plot (fsk, 'LineWidth’,1.5);//plot of
FSK modulated signal

xgrid;

title ('FSK modulation’);//title of plot

mtlb_axis ([0 100*length(g) -2.5 2.5]);//axis range

subplot(4,1,4);plot (psk, 'LineWidth’,1.5);//plot of
PSK modulated signal

xgrid;

title (’PSK modulation’);//title of plot

mtlb_axis ([0 100*length(g) -2.5 2.5]);//range of
axis

//Result: This experiment results plots of binary
data, ASK modulation ,FSK modulation and PSK
modulation
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Experiment: 2

Constellation diagram and
Error Rate performance of

different modulation techniques
with AWGN channel.

Scilab code Solution 2.1 Sigal space diagram of different modulation

// Constellation diagram of BPSK and QPSK modulation
and BPSK and QPSK modulation over AWGN channel

clc;

clear;

xdel (winsid ());

sym=20; //No .of symbols

datal=grand (1,sym,” uin” ,0,1);//Random symbol
generation from 0 to 1 with uniform distribution

snr=10; // Signal to Noise Ratio

gpsk_mod=[];

bpsk_mod=2*datal-1;//BPSK Modulation

for j=1:2:1length(datal)// Seperation of I & Q
component for QPSK modulation
i_phase=2xdatal(j)-1;//BPSK modulation of I phase

component
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q_phase=2*datal (j+1) -1; //BPSK modulation of Q
phase component
temp=i_phase+%i*q_phase;//Combinibg I phase and Q
phase component for QPSK modulation
qpsk_mod=[qgpsk_mod templ;//QPSK modulated signal
end

noise=1/sqrt (2)*(10~(-(snr/20)))*(rand (1, length (
bpsk_mod), 'normal ") +%i*(rand (1, length(bpsk_mod)
, ’normal ’)));//White gaussian noise generation
for bpsk

noisel=1/sqrt (2)*(10~(-(snr/20)))*(rand (1, length(
gpsk_mod) , 'normal ") +%i*(rand (1,length(qpsk_mod)
, 'normal ’)));//White gaussian noise generation
for qpsk

bpsk_awgn=bpsk_mod+noise;//BPSK Modulated signal
passed over AWGN channel

qpsk_awgn=qpsk_mod+noisel; //QPSK Modulated signal
passed over AWGN channel

figure//constellation diagram of ideal BPSK
modulated signal and BPSK modulated signal with
White Gaussian Noise

a = gca();//to handle various object
a.data_bounds = [ -1 , -1;1 ,11;
a.x_location = "origin”;
a.y_location = "origin”;

plot2d ( real(bpsk_mod),imag(bpsk_mod) ,-2);

plot2d ( real(bpsk_awgn) ,imag(bpsk_awgn) ,-5);

xlabel( ’In phase’ );//X-axis label

ylabel ( 'Quadrature phase’ );//Y—axis label

title( ’Constellation for BPSK with AWGN’ );//title
of plot

legend ([ 'Ideal message point’; 'message point with
noise 1) ;//legend

mtlb_axis([-2 2 -2 2]1);//range of axis

figure//constellation diagram of ideal QPSK
modulated signal and QPSK modulated signal with
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White Gaussian Noise

a = gca();//to handle various object
a.data_bounds = [ -1 , -1;1 ,11;
a.x_location = "origin”;
a.y_location = "origin”;

plot2d ( real(gpsk_mod),imag(qpsk_mod) ,-2);
plot2d ( real(gpsk_awgn) ,imag(qpsk_awgn) ,-5);
xlabel ( 'In phase’ );//X-axis label
ylabel ( 'Quadrature phase’ );//Y-axis label
title( ’'Constellation for QPSK with AWGN’ );//title
of plot
legend ([ 'Ideal message point’; 'message point with
noise '1);//legend
mtlb_axis ([-2 2 -2 2]);//range of axis
//Result: Generates two plots: BPSK modulated signal
with and without noise—figure —0
//QPSK modulated signal with
and without noise—figure —1

Scilab code Solution 2.2 BER of BPSK and QPSK over AWGN Channel

//Performance comparison of Simulated BER and
Theoritical BER of BPSK and QPSK modulation over
AWGN channel

clc;

clear;

xdel (winsid ());

sym=10000; //No .of symbols

M=4,;

gpsk_mod=[];i_phase=[];

datal=grand(1,sym,” uin”,0,1);//Random Symbol
generation from 0 to 1 with uniform distribution

for j=1:2:1length(datal)// Seperation of I & Q
component
i_phase=2xdatal(j)-1;// BPSK modulation of I
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q_phase=2*datal (j+1) -1; //BPSK modulation of Q
phase component

temp=i_phase+Ji*q_phase;//combining of I phase
and Q phase component for QPSK modulation

qpsk_mod=[qpsk_mod temp];//QPSK modulated signal

end
bpsk_mod=2*datal-1; //BPSK Modulated signal

snr=1:10; //Signal to Noise Ratio
for k=1:1:1ength(snr)
H=1/sqrt (2) *(rand (1, length (qpsk_mod), 'normal
")+%i*(rand (1,length(gqpsk_mod), 'normal "))
)
noisel=1/sqrt (2)*(10~(-(k/20)))*(rand (1,
length (qpsk_mod), 'normal ") +%i*(rand (1,
length (gpsk_mod), 'normal ’))); //White
Gaussian Noise generation for QPSK
noise=1/sqrt (2)*(10~(-(k/20)))*(rand (1,
length (bpsk_mod), 'normal ")+%i*(rand (1,
length(bpsk_mod), 'normal ’)));//White
Gaussian Noise generation for QPSK
recl_qpsk=qpsk_mod+noisel; //QPSK
modulated signal over AWGN channel
recl_bpsk= bpsk_mod+noise;//BPSK
modulated signal over AWGN channel

rec_data_qpsk=[];rec_data_bpsk=[];
recl_i=real(recl_qpsk);//Seperation
of I phase and Q phase comopnent
of received QPSK modulated signal
recl_q=imag(recl_qpsk);
//
for i=1:1length(rec1_i)//QPSK Demodulation:
BPSK demodulation of I phase and Q phase
components
if reci1_i(i)>=0
demod_out_i=1;
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else recl_i(i)<0
demod_out_i=0;
end
if recl_q(i)>=0
demod_out_q=1;
else recl_q(i)<o0
demod_out_q=0;
end
rec_data_qpsk=[rec_data_qpsk demod_out_i
demod_out_ql; //QPSK Demodulated signal
end
for i=1:1:1length(datal)//BPSK Demodulation
if real(recl_bpsk(i))>=0
demod_out_bpsk=1;
else real(recl_bpsk(i))<O0
demod_out_bpsk=0;
end
rec_data_bpsk=[rec_data_bpsk
demod_out_bpsk]; //BPSK Demodulated
signal
end

errA=0; errB=0;
for i=1:sym
if rec_data_qpsk(i)==datal (i)
errA=errl;
else
errA=errA+1;
end
end
BER_gpsk(k)=errA/sym;// BER of QPSK

for i=1:sym

if rec_data_bpsk(i)==datal (i)
errB=errB;

else
errB=errB+1;

end

11
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BER_bpsk (k) =errB/sym; //BER of BPSK
end
theoryBer = 0.5*%erfc(sqrt(10. (snr/10))); //
Theoritical BER of BPSK & QPSK

end

// end

snr=1:1:10;

plot2d (snr ,BER_bpsk,5,logflag="nl");//plot simulated
BER of BPSK over AWGN channel

plot2d (snr,BER_qpsk,2,logflag="nl");//plot simulated
BER of QPSK over AWGN channel

plot2d (snr,theoryBer ,3,logflag="nl");//Plot
theoritical BER of QPSK and BPSK over AWGN
channel

mtlb_axis ([0 20 10°-5 0.5]1);//axis

xgrid (10) ;

xtitle ( 'Bit Error Rate plot for BPSK & QPSK
Modulation’, 'SNR’, 'BER’) ;//title of plot

legend ([ 'BER_sim BPSK '’ ; "BER_sim_QPSK '’ ; "BER_Theory ']1)
;//legend

//This experiments results plot of bit error rate(
BER) comparison of simulated BPSK over AWGN
channel ;simulated QPSK over AWGN channel and
theoritical BER of BPSK and QPSK

// 1t will take few minutes to get plots as 100000
bits are applied as an input to get better plots

12
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Experiment: 3

Effect of various channel on
transmitted data using different
modulation techniques.

Scilab code Solution 3.1 BER BPSK Rayleigh fading channel

//Error rate performance of BPSK modulated signal
over only AWGN channel and AWGN and Rayleigh
channel both

clc;

clear;

xdel (winsid ()) ;

sym=10000; //No .of symbols

datal=grand(1,sym,” uin”,0,1);//Randomly generated
Symbolsfrom 0 to 1lwith uniform distribution

bpsk_mod=2*datal-1;//BPSK Modulation
snr=1:20; //signal to Noise Ratio
for k=1:1:1ength(snr)

Hi=1/sqrt (2) *(rand(1,length (bpsk_mod),’

normal ")+%i*(rand (1,length(bpsk_mod),’
normal ’))); //Rayleigh fading generation
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noise=1/sqrt (2)*(10°(-(k/20)))*(rand (1,
length (bpsk_mod), 'normal ")+%i*(rand (1,
length (bpsk_mod), 'normal’)));// White
Gaussian Noise generation

recl_bpsk=bpsk_mod+noise;//BPSK
modulated signal over AWGN channel
recl_bpsk_rayl= Hl.*bpsk_mod+noise;//
BPSK modulated signal over AWGN
channel and Rayleigh Fading
channel
recl_bpsk_ray=conj(H1) .*xrecl_bpsk_rayl
;//multiplication with conjugate of
rayleigh fading to nullify phase
because of Rayleigh Fading
// recl_bpsk_ray=recl_bpsk_rayl./(HIl.x
conj (HL));

rec_data_bpsk=[];rec_ray_bpsk=[];

for i=1:1:1length(datal)//BPSK Demodulation
of received signal over AWGN channel
if real(recl_bpsk(i))>=0
demod_out_bpsk=1;
else real(recl_bpsk(i))<O0
demod_out_bpsk=0;
end
rec_data_bpsk=[rec_data_bpsk
demod_out_bpsk];//Received signal

if real(recl_bpsk_ray(i))>=0 //BPSK
Demodulation of received signal over
AWGN channel and Rayleigh channel
demod_ray_bpsk=1;
else real(recl_bpsk_ray(i))<0
demod_ray_bpsk=0;
end

14
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rec_ray_bpsk=[rec_ray_bpsk
demod_ray_bpsk];////Received signal
end

errB=0; errC=0;
for i=1:sym

if rec_data_bpsk(i)==datal(i)//Error rate
calculation of received signal by
considering only AWGN Channel
errB=errB;
else
errB=errB+1;
end

BER_bpsk(k)=errB/sym; //BER at receiver by
considering only AWGN Channel

if rec_ray_bpsk(i)==datal(i)//Error rate
calculation of received signal by
considering AWGN Channel and Rayleigh
channel
errC=errC,;

else
errC=errC+1;

end

BER_bpsk_ray (k)=errC/sym; //BER at receiver
by considering AWGN Channel and rayleigh
channel

end end

// end
snr=1:1:20;
plot2d (snr ,BER_bpsk ,5,logflag="nl");
plot2d (snr ,BER_bpsk_ray,3,logflag="nl");
mtlb_axis ([0 20 10°-5 0.5]);
xgrid (10) ;
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xtitle ( "Bit Error Rate plot for BPSK modulated
signal over AWGN channel and AWGN and Rayleigh
channel both’, ’SNR’, ’'BER’) ;

legend ([ 'BER.BPSK_ AWGN ’; 'BER BPSK_ AWGN & Rayleigh '1)

//This experiment results plot of error rate
performance of BPSK modulated signal over AWGN
channe and AWGN and Rayleigh channel both.

//This experiment will take some time to display
plot as higher no. of bits entered as an input to
get better plots.

Scilab code Solution 3.2 BER QPSK Rayleigh channel

//Error rate performance of QPSK modulated signal
over only AWGN channel and AWGN and Rayleigh
channel both

clc;

clear;

xdel (winsid ());

sym=10000; //No .of symbols

M=4,;

gpsk_mod=[];i_phase=[];

datal=grand(1,sym,”uin”,0,1);//Random Symbol
generation from 0 to 1 with uniform distribution

for j=1:2:length(datal)// Seperation of I & Q
component
i_phase=2xdatal(j)-1;// BPSK modulation of I

phase component
q_phase=2*datal (j+1) -1; //BPSK modulation of Q
phase component
temp=1i_phase+%ixq_phase;//combining of I phase
and QQ phase component for QPSK modulation
qpsk_mod=[qgpsk_mod templ;//QPSK modulated signal
end
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snr=1:5:41; //Signal to Noise Ratio
for k=1:1length(snr)
H=1/sqrt (2) *(rand(1,length (gpsk_mod), 'normal
")+%ix(rand (1,length(gpsk_mod), 'normal "))
);//Rayleigh fading generation

noisel=1/sqrt (2)*(10°(-(k/20)))*(rand (1,
length (qpsk_mod), 'normal ") +%i*(rand (1,
length(gpsk_mod), 'normal ’))); //White
Gaussian Noise generation for QPSK

recl_qpsk=qpsk_mod+noisel; //QPSK
modulated signal over AWGN channel
recl_qpsk_rayl= H.*xqpsk_mod+noisel;
//BPSK modulated signal over AWGN
channel and Rayleigh Fading
channel
recl_qpsk_ray=conj(H) .*xrecl_qgpsk_rayl
;//multiplication with conjugate
of rayleigh fading to nullify
phase because of Rayleigh Fading

rec_data_qpsk=[];rec_data_qgpsk_ray
=[1;

recl_i=real(recl_qpsk);//Seperation
of I phase and Q phase comopnent
of received QPSK modulated signal

recl_q=imag(recl_qpsk);

recl_i_ray=real(recl_qpsk_ray);//
Seperation of I phase and Q phase
comopnent of received QPSK
modulated signal

recl_q_ray=imag(recl_qgpsk_ray);

//

for i=1:length(rec1_i)//QPSK Demodulation:
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for

end

BPSK demodulation of I phase and Q phase
components
if recl1_i(i)>=0
demod_out_i=1;
else recl_i(i)<0
demod_out_i=0;
end
if recl_q(i)>=0
demod_out_q=1;
else recl_q(i)<0
demod_out_q=0;
end
if recl_i_ray(i)>=0
demod_out_i_ray=1;
else recl_i(i)<0
demod_out_i_ray=0;
end
if recl_q_ray(i)>=0
demod_out_q_ray=1;
else recl_q_ray(i)<0
demod_out_q_ray=0;
end
rec_data_qpsk=[rec_data_qpsk demod_out_i
demod_out_q]; //QPSK Demodulated signal
rec_data_qpsk_ray=[rec_data_qpsk_ray
demod_out_i_ray demod_out_q_rayl;//
QPSK Demodulated signal
end

errA=0; errB=0;

i=1:sym

if rec_data_qpsk(i)==datal (i)
errA=errl;

else
errA=errA+1;

end

BER_qgpsk(k)=errA/sym; // BER of QPSK
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for i=1:sym
if rec_data_qpsk_ray(i)==datal (i)
errB=errB;
else
errB=errB+1;
end

BER_qpsk_ray (k)=errB/sym; //BER of BPSK
end
//theoryBer = 0.5xerfc(sqrt (10." (snr/10))); //
Theoritical BER of BPSK & QPSK

end

// end

snr=1:5:41,;

plot2d (snr ,BER_qpsk,5,logflag="nl");//plot simulated
BER of BPSK over AWGN channel

plot2d (snr ,BER_qgpsk_ray,2,logflag="nl");//plot
simulated BER of QPSK over AWGN channel

//plot2d (snr , theoryBer ,3,logflag="nl");//Plot
theoritical BER of QPSK and BPSK over AWGN
channel

mtlb_axis ([0 40 10°-5 0.5]);//axis

xgrid (10) ;

xtitle ( 'Bit Error Rate plot for QPSK over AWGN
channel & AWGN and Rayleigh channel both’, ’'SNR’,
'BER’) ;//title of plot

legend ([ 'BER.QPSK_ AWGN " ; 'BER_.QPSK AWGN & Rayleigh "])
;//legend

//This experiments results plot of bit error rate(
BER) comparison of simulated QPSK over AWGN
channel ;simulated QPSK over AWGN channel and
Rayleigh fading channel.

// It will take few minutes to get plots as 10000
bits are applied as an input to get better plots
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Scilab code Solution 3.3 1

//Error rate performance of BPSK modulated signal
over only AWGN channel and AWGN and Rayleigh
channel both

clc;

clear;

xdel (winsid ()) ;

sym=10000; //No .of symbols

datal=grand(1,sym,”uin”,0,1);//Randomly generated
Symbolsfrom 0 to 1lwith uniform distribution

bpsk_mod=2xdatal-1; //BPSK Modulation
snr=1:20; //signal to Noise Ratio
for k=1:1:1ength(snr)

Hi=1/sqrt (2) *(rand (1, length (bpsk_mod),’
normal ") +%i*x(rand (1,length (bpsk_mod),’
normal ’)));//Rayleigh fading generation

noise=1/sqrt (2)*(10~(-(k/20)))*(rand (1,
length (bpsk_mod), 'normal ")+%i*(rand (1,
length(bpsk_mod), 'normal’)));// White
Gaussian Noise generation

recl_bpsk=bpsk_mod+noise;//BPSK
modulated signal over AWGN channel

recl_bpsk_rayl= H1l.*bpsk_mod+noise;//
BPSK modulated signal over AWGN
channel and Rayleigh Fading
channel

recl_bpsk_ray=conj(H1) .*xrecl_bpsk_rayl
;//multiplication with conjugate of
rayleigh fading to nullify phase
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because of Rayleigh Fading
// recl_bpsk_ray=recl_bpsk_rayl./(Hl.x

conj (H1));

rec_data_bpsk=[];rec_ray_bpsk=[];

for i=1:1:1length(datal)//BPSK Demodulation

of received

end

errB
i=1:

signal over AWGN channel

if real(recl_bpsk(i))>=0

demod_out_bpsk=1;

else real(recl_bpsk(i))<O0

demod_out_bpsk=0;

end

rec_data_bpsk=[rec_data_bpsk
demod_out_bpsk];//Received signal

if real(recl_bpsk_ray(i))>=0 //BPSK
Demodulation of received signal over
AWGN channel and Rayleigh channel

demod_ray_bpsk=1;

else real(recl_bpsk_ray(i)) <0

demod_ray_bpsk=0;

end

rec_ray_bpsk=[rec_ray_bpsk
demod_ray_bpsk];////Received signal

=0;errC=0;
sym

if rec_data_bpsk(i)==datal(i)//Error rate

calculation of received

signal by

considering only AWGN Channel

else

end

errB=errB;

errB=errB+1;
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BER_bpsk(k)=errB/sym; //BER at receiver by
considering only AWGN Channel

if rec_ray_bpsk(i)==datal(i)//Error rate
calculation of received signal by

considering AWGN Channel and Rayleigh
channel

errC=errC,;

else

errC=errC+1;

end

BER_bpsk_ray(k)=errC/sym; //BER at receiver
by considering AWGN Channel and rayleigh
channel

end end

// end

snr=1:1:20;

plot2d (snr ,BER_bpsk,5,logflag="nl");
plot2d (snr,BER_bpsk_ray,3,logflag="nl");
mtlb_axis ([0 20 10°-5 0.5]);

xgrid (10) ;

xtitle( ’'Bit Error Rate plot for BPSK modulated
signal over AWGN channel and AWGN and Rayleigh

channel both’,

"SNR 7,

'BER’) ;

legend ([ 'BER.BPSK_ AWGN’; 'BER BPSK_ AWGN & Rayleigh 1)

//This experiment results plot of error rate
performance of BPSK modulated signal over AWGN
channe and AWGN and Rayleigh channel both.

//This experiment will take some time to display
plot as higher no.

get better

plots.

of bits

entered as an input to
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Experiment: 4

Trunking Theory for
Probability of blocking(Erlang
B) and probability of delay(
Erlang C).

Scilab code Solution 4.1 Traffic calculation inErlang B and Erlang C sys-
tem

1 //Exp—4 Calculates maximum traffic intensity and
maximum no. of users accomodated in Erlang B and
Erlang C system for given no of channels

2 clc;

3 clear;

4 xdel(winsid ());

)

6 function [pll=erlangB(Al,c1)// calculate blocking

probability for Erlang B system

7 pr2=0;

8 pri=A1~cil/factorial (cl);

9 for k=1:cl

10 pr2=pr2+(Al1-k/factorial(k));
11 end
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/] Al=Al1+1;
pl=pril/pr2;
endfunction

function [p2]=erlangC(A2,c2)// calculate
probability of blocked call delayed in Erlang C
system
temp_1=0;
for k=0:c2-1
temp_l=temp_1+A2"k/factorial (k);
end
denominator=A"c2+(factorial (c2)*(1-(A2/c))*xtemp_1);
p2=A2~°c2/denominator;
endfunction

pr_blocking=input (’enter probability of blocking’);
//enter probability of blocking for perticular
system

pr_delay=input (’enter probability of block call
delay ') ;//enter probability of blocked call
delayed for particular system

y=input ('enter call rate’);// Average no .of calls
per minute

H=input (’enter the average call duration’); //
Average call duration in minute

c=input ("enter no.of channels”);//Enter no. of
channels

disp("no.of channel=");

disp(c);

Au=y*H; // Traffic intensity per user

p=0;
for A=1:1:100
while (p<pr_blocking)//Find maximum traffic
intensity for entered blocking
probability pr_blocking
[pl=erlangB(A,c)//calling function erlangB
A=A+1;
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end
disp(pr_blocking, "for blocking probability of’
);//display blocking probability
disp(A-1, 'Maximum traffic intensity is’);//
display max. traffic intensity
u=(A-1)/Au; //no. of users calculation
disp(u,”’no .of users are accomodated”);//
display maximum no.of users accomodated in
Erlang B system
break;
end//
p=0;
for A=1:1:100
while (p<pr_delay)//Find maximum traffic
intensity for entered blocking probability
pr_blocking
[pl=erlangC(A,c)//calling funtion to
calculate erlang C probability
A=A+1;
end
disp(pr_delay, "for block call delay
probability of’);//display blocking
probability
disp(A-1, 'Maximum traffic intensity is’);//
display max. traffic intensity
u=(A-1)/Au;
disp(u,”no.of users are accomodated”);//
display maximum no.of users accomodated in
Erlang C system
break;
end
//Enter blocking probability pr_blocking=0.01
//Enter probabolity of block call delay pr_delay
=0.1
//Enter call rate= 3/60
//enter call duration= 2(in minute)
//Enter no of channels 50
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//Output :
//no.of channel= 50.

// for blocking probability of

// Maximum traffic intensity

18

0.01
38.

// mo .of users are accomodated 380.

// for block call delay probability of 0.1

// Maximum traffic intensity
//no.of users are accomodated

1s

41.
410.
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Experiment: 5

Walsh Code generation

Scilab code Solution 5.1 Walsh code generation and spreading and de-
spreading using Walsh code

// Walsh Code generation
//Spreading and despreading of information for three
users using Walsh code
clc;
clear;
xdel (winsid ()) ;
a=input (’enter the number order of 2:’);//input
required length of Walsh Code which is always
order of 2
ci=[1 -1 -1];//information of user 1
c2=[-1 1 -1];//information of user 2
c3=[1 -1 1];//information of user 3
W=[0 0;0 1];// Basic Walsh code Matrix
m=2;
%n=2"m;
for m =2:1:a
for i = 1:1:a//genration of walsh code matrix of
entered length
if i==2"m
Winv=bitcmp (W, 1) ;
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W=[W W;W Winv];
end

end
end
temp=0;
wi=[];
disp (W)
for i=1:1:1length(W(1,:))//0 replaced by —1 in walsh
code matrix
for j=1:1:1length(W(1l,:))
if W(i,j)==0 then
W(i,j)=w(i,j)-1;
else W(i,j)=W(i,j)+0;

end
end
end
//disp (W)

//spreading using Walsh code
tans_cl=[c1(1,1) . *W(1,:) c1(1,2).*xW(1,:) c1(1,3) .%xW
(1,:)1;//spreading of user 1 information using

first row of Walsh Matrix
tans_c2=[c2(1,1) .*W(2,:) c2(1,2) .*xW(2,:) c2(1,3) .*xW
(2,:)]1;//spreading of user 2 information using
second row of Walsh Matrix
tans_c3=[c3(1,1) . *W(3,:) c3(1,2).*xW(3,:) c3(1,3) .%W
(3,:)1;//spreading of user 3 information using
third row of Walsh Matrix
aal=tans_cl(1,1:a)+tans_c2(1,1:a)+tans_c3(1,1:a);
aa2=tans_c1(1,(a+1) : (2*xa))+tans_c2(1,(a+1) :(2*xa))+
tans_c3 (1, (a+1) : (2xa));
aa3=tans_cl(1,((2xa))+1:(3*xa))+tans_c2 (1, ((2xa))
+1:(3*%a))+tans_c3(1,((2*%a))+1:(3*xa));
tans_sig=[aal aa2 aa3];//transmission of spreaded
signal
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det_codel=input (’enter detection code’);//Enter any
integer no. ranging up to no. of rows of walsh
matrix

select det_codel//select case to get information
of entered user
case 1
det_code=W(1,:);
case 2
det_code=W(2,:);
case 3
det_code=W(3,:);
else
det_code=W(4,:);
disp(’invalid detection code’);//display
message for input of invalid detection
code
end

rec_sig =[det_code(1,:).*xaal det_code(1l,:).*aa2
det_code(1,:).*%aa3];//received signal multiplied
with detection code

det_sig=[rec_sig(1l,1)+rec_sig(1,2)+rec_sig(1,3)+
rec_sig(1,4) rec_sig(1,5)+rec_sig(l,6)+rec_sig
(1,7)+rec_sig(1,8) rec_sig(1,9)+rec_sig(1,10)+
rec_sig(1l,11)+rec_sig(1,12)];//detection of
information from received signal

final_sig=(1/4)*det_sig;

disp(’transmited information is’);

disp(final_sig)//information transmmited using
selected valid detection code

//input a=4

//W=[0 000 ;010 1;00113;0 11 0]

//detection code=2, output=-1 1—1(information of
user 2 spreaded with second row of Walsh Matrix)

//detection code > 3 |, results : code not available

000
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Experiment: 6

PN sequence generation.

Scilab code Solution 6.1 3 bit PN sequence generation and spreading and
despreading using PN sequence and shifted PN sequence

// Spreading of sequence using PN sequence and
despreading of sequence using PN sequence and
shifted PN sequence

clc;

clear;

xdel (winsid ());

// Generation of 7 bit PN sequence

// Coefficient of polynomial

al=1;

a2=1;

a3=1;

// Initial states of flip flop
R(1)=1;

R(2)=0;

R(3)=0;

m=3;

disp(’output after every clock pulse’);

for i=1:((2"m)-1)//shift of bit in each register for
every clock pulse
ri=R(1);
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r2=R(2);
r3=R(3);
PN (i)=R(3);
//if (al==0)
Ri=bitxor (r2,r3);//input of register is modulo2
addition of R2 and R3
R(3)=R(2);
R(2)=R(1);
R(1)=R1;

disp(R);
end
disp (PN sequence is’);
disp (PN);//Display 7 bit PN sequence
cl=[1 -1 -1];//information of user 1
for j=1:1:1length(PN)//0 replaced with —1 in PN
sequence
if PN(j)==0 then
PN(j)=PN(j)-1;
else PN(j)=PN(j)+0;
end

end
disp (PN);
spreaded_sig=[c1(1) .*PN’ c1(2) .*%PN’ c1(3).*PN’]//
Spreading of data of user 1 using PN sequence
detect_code=[spreaded_sig(1:7) .*PN’ spreaded_sig
(8:14) .*PN’ spreaded_sig(15:21) .xPN’];//at
receiver , recieved spreaded signal multiplied
with PN sequnce
corr_code=[sum(detect_code(1:7)) sum(detect_code
(8:14)) sum(detect_code (15:21))1;
rec_sig=(1/7) .*xcorr_code;//get information form
received signal
disp(’received signal with correct PN sequence is’);
disp(rec_sig);//received data of user 1 at receiver
1 -1 —1
//Despreading with shifted PN sequence
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shift_fact=input(’enter the shifting factor’);
1=1;
k=shift_fact-1;
for i=1:1:1length(PN) //generation of shifted PN
sequence as per entered shifting factor
if i<=shift_fact
shift_seq(i)=PN(length (PN)-k) ;
k=k-1;
else i>shift_fact
shift_seq(i)=PN(1);
1=1+1;
end
end
disp(’shifted sequence is’);
disp(shift_seq’);//display shifted sequence
//despreading using shifted PN sequence
detect_shift_code=[spreaded_sig(1:7) .*xshift_seq’
spreaded_sig(8:14) .*xshift_seq’ spreaded_sig
(15:21) .*xshift_seq’];
corr_shift_code=[sum(detect_shift_code(1:7)) sum(
detect_shift_code(8:14)) sum(detect_shift_code
(15:21))1;
rec_shift_sig=(1/7) .*corr_shift_code;
disp("recieved signal with shifted PN sequence is
7))
disp(rec_shift_sig);//Invalid data received
beacuse signal was despreded with shifted PN
sequence
disp(’which is not valid transmitted signal’);
// Result:
//output of PN sequence generator after each
clock pulse
// PN=0010111 replace 0 with —1,PN=1 —1 1
—-1 111
//entered shifting factor =3, shifted PN sequence=
111 -1-11-1
//Invalid signal is received when despreading is
with shifted version of PN

33



73 //rec_shift_sig=- 0.1428571 0.1428571
0.1428571
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Experiment: 7

Equalization.

Scilab code Solution 7.1 Adaptive equalization using LMS filter

// Least Mean Square adaptive equalizer
clc;

clear all;

xdel (winsid ());

numPoints = 500;
numTaps = 1; //channel order
Mu = 0.01; //iteration step size

// input is guassian

x = rand(numPoints ,1, 'normal’) + %i*rand(numPoints
,1, 'normal’);

//choose channel to be random uniform

h = rand (numTaps,1) + %i*rand(numTaps, 1);

h = h/max(abs(h)); //normalize channel
// convolve channel with the input
d = filter(h, 1, x);

//initialize variables
w = [];
y = [1;
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in = [];

e = [1; // error, final result to be computed
w = zeros (numTaps+1,1) + %i*zeros (numTaps+1,1);
kk=1;

aa(kk,:)=w’;

//LMS Adaptation

for n = numTaps+1l : numPoints

// select part of training input
in = x(n : -1 : n-numTaps) ;
y(n) =w’* in;

// compute error
e(n) = d(n)-y(n);

// update taps

w = w+ Mux( real(e(n)*conj(in)) - %i*imag(e(n)*conj(

in)) );

kk=kk+1;
aa(kk,:)=w’;
end

// Plot results

figure;

iter=1:500

plot2d (iter ,abs(e) ,5,logflag="nn");

title (['LMS Adaptation Learning Curve Using Mu =

0.0171);
xlabel ('Iteration Number’) ;
ylabel ('Output Estimation Error in dB’);
figure;
plot3d(abs(aa(:,1)),abs(aa(:,2)),abs(e));

title (’LMS adaption curve with weight factors’);

xlabel (’adaptive weight factorl’);
ylabel ("adaptive weight factor2’);

36



57 zlabel (’mean square error ’);

58 // Output shows plot of MSE with no. of iterations
in figure 1 and 3D plot of MSE with weight
factors
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Experiment: 8

Channel Coding using Linear
Block Code

Scilab code Solution 8.1 Linear Block Coding over AWGN channel

//this is a linear block coding and decoding over
awgn channel

// 4 bits input signal is coded with linear block
code (4,7), 7 bit coded signal is transmitted
over awgn channel and at receiver side signal is
decoded. If there is error in one bit, li//near
block code correct that error and original
transmitter code is receved.

//1f error is in more than one bit, code is not
corrected so wrong code is recieved

clc;

clear all;

xdel (winsid ());

global P n k;

n=7;//length of coded input
k=4;//length of input
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P=[1 1 0; 01 1; 10 1;1 1 1]; //parity matrix of
size k*x(n—k) to be

// selected so that
the systematic generator

// matrix is linearly
independent or full rank

// matrix

//(n,k) linear block code where k — no. of input
data bits and n-no. of o/p

//data bits. code rate=k/n

// x is an input vector containing k bits

//This is an linear block encoding function
function yl=linblkcode (x);

global P n k;
n=7;

k=4,

P=[1 1 0; 01 1; 1 0 1;1 1 1];//parity matrix
//x=[0 1 1 0]

Y

//G=[ |; // % Generator matrix kxn
G=[eye(k,k) PJ;

yl=zeros(1,n);
for i=1:k//linear block coding
var (i, :)=x(1,1) & G(i,:);
var (i,:)=bool2s(var(i,:));
y1(1,:)=bitxor(var(i,:),y1(1,:));//coded signal
end

endfunction

//%This is a linear block syndrome decoding function
file%

function xl=linblkdecoder (y)
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//% here y is recieved vector 7 bits long

//% (7,4) linear block code
global P n k;

//H=[ ]; //% PARITY CHECK MATRIX

H=[P’ eye((n-k),(n-k))1;
Ht=H’; //%transpose of H

S=zeros(1l,n-k); //%syndrome of recieved vector x
for i=1:n-k// decoding of linear block code
S(i)=y (1) & Ht(1,i);
S(i)=bool2s(8(i));
for j=2:n

S(i)=bitxor(S(i), bool2s((y(j) & Ht(j,1i))));
//decoded signal
end
end

/ |76 % x «SYNDROME LOOK UP TABLE s s s sk s s sk sk ook

[ [ T0T0% s sk sk sk ok sk ok sk sk sk sk ok sk ok skok sk sk ok sk ok sk ok sk ok K sk ok sk ok sk ok koK ok o
/7%
if s==[0 0 0]
e=[0 0 0O 0O O 0 0];
z=bitxor(y,e);
end

if §==[0 0 1]
e=[0 0 0 0 0 O 1];
z=bitxor(y,e);
end
if §==[0 1 0]
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e=[0 00 0 0 1 0];
z=bitxor(y,e);
end
if 8==[1 0 0]

e=[0 00 01 0 0];
z=bitxor(y,e);
end
if 8==[1 1 1]

e=[0 001 0 0 0];
z=bitxor(y,e);
end
if S==[1 0 1]
e=[0 01 0 0 0 0];
z=bitxor (y,e);
end
if 8S==[0 1 1]
e=[0 1 0 0 0 0 0];
z=bitxor(y,e);
end
if S==[1 1 0]
e=[1 0 0 0 0 0 0];
z=bitxor(y,e);
end
//disp ("error 7) ;
//disp (e);
xl=z(1,1:k);
endfunction

snr_dB=2;

x=[1 0 0 1]; // input bits to the
encoder of size 1x k

yl=linblkcode (x);// // yl is the output

of linear block encoder
nl = 1/sqrt(2)*[rand(1,length(yl), 'normal’) + %ix
rand (1, length(y1), 'normal’)];//white gaussian
noise generation
r=yl1+ 10" (-snr_dB/20)*nl;//received signal over awgn
channel
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//rl=real (1)

rec=real(r)>=0.5;//detection of bit 1 and 0 in
received signal

rec_fin=bool2s(rec);//convert boolean matrix to zero
one matrix

//rec_err=rec_fin=—=yl;

//no_err=bool2s(rec_err);

disp (’The information signal=’)//display input

disp(x)

disp(’The transmitted encoded signal=’)//display
coded signal

disp(y1)

disp (’The recieved signal=")//display received
signal

disp(rec_fin);

x1=linblkdecoder (rec_fin); // % x1 is the

output of the linear block decoder

disp (’The decoded signal=’)//display decoded signal

disp(x1);

if x1==x then disp(’one or less than one error so
correct code is received ’);

else

disp( ’more than one error so wrong code detected
)

end

//Output: The information signal is : 1001

//transmitted code is : 1001001

//1. received signal is :1011001(e.g)(error in only
one bit)

//decoded signal: 1001

//one or less than one error so correct code is
received

//2. received signal is:1011011(e.g)(error in more
than one bits)

//decoded signal:1010

//more than one error so wrong code is received
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Experiment: 9

Transmit and receive diversity

Scilab code Solution 9.1 Selection Diversity over AWGN channel

//ber performance with 1, 2 and 3 receiver antennas
over awgn channel using selection diversity

clc;

clear;

xdel (winsid ());

sym=10000; //no. of symbols

datal=grand(1,sym,”uin”,0,1);//randomly generated

input
s = 2xdatal-1; // BPSK modulation 0 —> —1; 1 — 1
nRx = [1 2 3];//no .of receiving antennas
snr_dB = [1:10]; // signal to noise ratio

for j = 1:length(nRx)
for i = 1:length(snr_dB)
n = 1/sqrt(2)*[rand (nRx(j),sym, 'normal ’) +
%i*rand (nRx(j),sym, 'normal’)]; //white
gaussian noise

y = ones(nRx(j),1)*s + 10~ (-snr_dB (i) /20) *n;
//received signal over awgn channel
[yHatl ind] = mtlb_max(y,[],1);//find
strongest received signal from all
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ipHatl = real(yHatl)>0;
ipHat = bool2s(ipHatl);//boolean to zero one
matrix conversion
// effective SNR
nErr(j,i) = size(find([datal- ipHatl) ,2);//
no. of error calculation
end
end
simBer = nErr/sym; //BER calculation
// plot of ber comparison plot for 1,2 and 3
receiving antennas
snr_dB=1:10
plot2d (snr_dB,simBer (1,:),5,logflag="nl");
plot2d (snr_dB,simBer (2,:),2,logflag="nl");
plot2d (snr_dB,simBer (3,:),12,1logflag="nl");
xgrid
legend ( [71X17;71X27;'1x37]1);
xlabel ('Number of receive antenna’);
ylabel ('effective SNR, dB’);
title (’SNR improvement with Selection Combining’) ;
//output presents BER performance comparison plots
with 1,2 and 3 receiving antennas over awgn
channels

Scilab code Solution 9.2 Maximal Ratio Combining over AWGN and Rayleigh
fading Channel

// BER Performance coamparison with one receivivng
atenna and two receiving antennas with Maximal
ratio Combining diversity technique over awgn
channe and rayleigh fading channel

clc;

clear;
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4 xdel(winsid ());

5 sym=100000;// no. of symbols

6 M=2;

7 datal=grand(1,sym,”uin”,0,1);// input signal is
randomly generated

8 //N = 10; % number of bits or symbols

9 //ip = rand(1,N)>0.5; % generating 0,1 with equal

probability
10 s = 2xdatal-1; // BPSK modulation 0 —> —1; 1 —> 1
11 nRx = [1 2];//no of receivers

12 snr_dB = [1:20]1; // signal to noise ration in dB
13 for jj = 1:length(nRx)

14 for ii = 1:length(snr_dB)

15 n = 1/sqrt(2)*[rand(nRx(jj),sym, 'normal’) +

%hi*rand (nRx(jj),sym, 'normal’)]; //white
gaussian noise ,

16 h = 1/sqrt(2)*[rand (nRx(jj),sym, 'normal’) +
hi*rand (nRx(jj),sym, 'normal’)]; //
Rayleigh fading channel

17 // Channel and noise Noise addition
18 sD = kron(ones(nRx(jj),1),s);
19 y = h.xsD + 10" (-snr_dB(ii)/20)*n;//

received signal over awgn channel and
ayleigh fading channel

20 // finding the power of the channel on all
rx chain
21 yHat = sum(conj(h).*y,1)./sum(h.*conj(h)
,1); // maximal ratio combining

22 // hPowerl = h.xconj(h);

23

24 ipHat = real(yHat) >0;

25 // effective SNR

26 nErr(jj,ii) = size(find([datal-
ipHat]) ,2);//calculate error

27 end

28 end

29 simBer = nErr/sym; //bit error rate calculation

30 // plot
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snr_dB=1:20

plot2d (snr_dB,simBer (1,:),5,logflag="nl");//snr— ber
plot with one receiving antenna

plot2d (snr_dB,simBer (2,:),2,logflag="nl");//snr— ber
plot with two receiving antennas

//plot (nRx,10%logl10 (EbNOEffSim) , " bp—", LineWidth ’ ,2)

//mtlb_axis ([1 20 0 6])

xgrid

legend ([71X17; 71X2°1);

xlabel ('"Number of receive antenna’);

ylabel ("effective SNR, dB’);

title ('SNR improvement with Maximal ratio Combining’

)
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11
12
13

Experiment: 10

Speech coding

Scilab code Solution 10.1 speech coding and Decoding using LPC

//Exp—10 Speech coding using Long Term Predictive
coder

//This code read wav file and play original signal
and compressed signal

// It also plots original signal as well as
compressed signal

function [aCoeff, tcount_of_aCoeff, e] =
func_lev_durb(y, M);

//M=order and y is array of the data point of the
current frame

sk=0; //initializing summartion term ”sk”

a=[zeros (M+1);zeros(M+1)]1; //defining a matrix of

7 2

zeros for 7a” for init.

//MAIN BODY OF THIS PROGRAM STARTS FROM HERE
SSSSSSSSSESS>
z=xcorr (y);

//finding array of R[1]

R=z( ( (length(z)+1) ./2 ) : length(z)); //R=array
of "R[1]”, where 1=0,1,...(b+N)—1 %R(1)=R[lag
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15

16
17

18
19

20
21

22
23
24

25

26
27
28
29
30
31
32
33
34
35

36
37
38
39

40
41
42

—0], R(2)=R[lag=1], %R(3)=R[lag=2]... etc

//GETTING OTHER PARAMETERS OF PREDICTOR OF ORDER
7707):

s=1; //s=step no.

J(1)=R(1); //J=array of 7J1”, where 1
—0,1,2...(bsN) 1, J(1)=J0, J(2)=J1, J(3)=J2 etc

//GETTING OTHER PARAMETERS OF PREDICTOR OF ORDER ” (s
1)
for s=2:M+1,
sk=0; //clearing 7sk” for each
iteration
for i=2:(s-1),
sk=sk + a(i,(s-1)) .*R(s-i+1);
end //now we know value of 7sk”,
the summation term
//of formula of calculating
77k( 1>77
k(s)=(R(s) + sk)./J(s-1);
J(s)=J(s-1) .%x(1-(k(s))."2);

a(s,s)= -k(s);
a(l,s)=1;
for i=2:(s-1),
a(i,s)=a(i,(s-1)) - k(s).*xa((s-i+1),(s-1));
end
end
//increment ”b” and do same for mnext frame until end
of frame when
//combining this code with other parts of LPC algo

//PREDICTION ERROR; FOR TESTING THE ABOVE PREDICTOR

aCoeff=a((1:s),s)’; //array of 7a(i,s)”, where
, s=M+1

tcount_of_aCoeff = length(aCoeff);

y_padded_for_delay_r = [y’; =zeros(1,1)]; //it is
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55
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o7

o8

59

60

61

62

63

64

65

padded with zeros to remove the effect of delay
in filter
est_y_with_dummy_pad = filter ([0 -aCoeff (2:9)],1,

y_padded_for_delay_r); // = s (n) with a cap
on page 92 of the book

est_y = est_y_with_dummy_pad(2:321);

e =y’ - est_y; //supposed to be a white noise

endfunction

function [aCoeff, b_LTopt, Topt, e_prime] =
f _ENCODER_relp(x, fs)
M = 8; //prediction order for LP analysis

//INITIALIZATION ;

b=1; //index no. of starting data point of
current frame

fsize = 20e-3; //frame size (in milisec)

frame_length = round(fs .x fsize); //=number data

points in each framesize of "x”
N= frame_length - 1; //N+1 = frame length = number
of data points in each framesize

y_proc = filter ([1 -1], [1 -0.999], x); //pre—
processing

/ /FRAME SEGMENTATION

for b=1 : frame_length : (length(x) - N)

y_f = y_proc(b:b+N); //7”b+N" denotes the end
point of current frame. ”y” denotes an array of
the data points of the current frame

//LP ANALYSIS [lev-—durb] & PREDICTION ERROR (short—
term ) FILTER;

[a, tcount_of_aCoeff, e_s] = func_lev_durb (y_f,
M); //e=error signal from lev-—durb proc
aCoeff(b: (b + tcount_of_aCoeff - 1)) = a; //

aCoeff is array of 7a” for whole 7x”
//LONG-TERM LP ANALYSIS, FILTERING, AND CODING
analysis:
T_min = round (fs .* 5e-3); //=total data
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67
68

69
70
71
72
73
74
75

76

7

78

79
80
81
82
83
84
85

86
87

88
89
90
91
92
93
94
95

2 7

points in Hms of 7"x

T_max = round (fs .* 15e-3);
cl = 1;
for bs = b : 40 : b+length(y_f)-40 //subframing
bs = 1281;
if bs < T_max
break;
end

Jmin(bs) = 10°9;

for T = T_min : T_max //within 1 (
current ) frame T = 40;
for ¢ = 1:40 //data points of
current subframe c=1; temporary
sml(c) = ( y_proc(bs+(c-1)) .x
y_proc (bs-T+(c-1))); //es(n)
sm2(c) = y_proc(bs-T+(c-1)); //=
es (n—T)
sm22(c) = sm2(c) . 2;
end
ql = sum(sml);
q2 = sum(sm22);

b_LT(T) = -(ql1./q2);
//J loop:
for ¢ = 1:40 //data points of

current subframe c=1; temporary
smJ1(c) = y_proc(bs+(c-1));
smJ2(c) = b_LT(T) .* y_proc(bs-T
+(c-1));

end

smJ = smJ1 + smJ2;

qJ = smJ."2;

J(T) = sum(qlJ);

if J(T) < Jmin(bs),
Jmin(bs) = J(T);
Topt (bs) T;
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97

98

99
100
101
102
103
104
105

106

107

108

109
110

111
112

113

114

115
116

if b_LT(T)>=1,
b_LTopt(bs) = 0.9999; //
trancation

else
b_LTopt(bs) = b_LT(T);
end
else
end
end //T loop ends

//predictor :
LT_gain = [zeros(l, Topt(bs)-1), b_LTopt (bs)
1; //as it says z =T in page 121
e_s_padded_for_delay_r = [e_s(cl:c1+39);
zeros (Topt (bs), 1)]; //it is padded with
zeros to remove the effect of delay in
filter . %Topt(bs) no. of ’z’s and one
"1’ results in total 'Topt(bs)’ amount

of delay
e_with_dummy_pad = filter ([1 LT_gain], 1,
e_s_padded_for_delay_r); /] =1 + 0xz
"—1 4+ 0%z -2 + ... + bxz T
e_LT(bs:bs+39,1) = e_with_dummy_pad(Topt (bs
)+1 : Topt(bs)+1+39); //LT predicted ”

b

e
e(bs:bs+39, 1) = e_s(cl : c1+39) - e_LT(bs
bs+39) ;

//WEIGHTING FILTER:
w = [-0.0004;
-0.0156;-0.0677;0.0545;0.6069;1.0000;0.6069;0.0545;-0.067
//11 point flattop window is
temporarily chosen
wndd = conv(w, e(bs:bs+39)); //outputs
total 50 samples
x_n(bs:bs+39) = wndd(6:45); //middle 40
samples are taken

//POSITION SELECTION & EXCITATION GENERATOR:
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117 for i1 = 0:3

118 for i = il+bs : 3 : bs+i1+38;

119 x_m(il+1,i) = x_n(i);

120 end

121

122 E.m(il+1,1) = sum((x_m(il+1, bs:3)).72);

123 end

124 [E_m_max, index_max] = gsort(E_m);

125 e_prime(bs : bs+39) = x_m(index_max (4), bs:
bs+39) ;

126 cl = cl1 + 40;

127 end

128 end

129 endfunction

130

131 //RELP DECODER portion :

132 function [synth_speech, synth_speechl, LT_gain,
e_prime_pad_for_d_r, e_prime_op_dummy_pad,
e_prime_op, e_prime_op_pad_delay_r,
synth_speech_dummy_pad] = f_DECODER_relp (aCoeff,
b_LTopt, Topt, e_prime)

133 //re—calculating frame_length for this decoder

134 frame_length=9; //initial value for calculation

135 for i=10:1length(aCoeff)

136 if aCoeff (i) == 0

137 frame_length = frame_length + 1;

138 else break;

139 end

140 end

141 e_prime = e_prime’; //making it a column matrix
for convenience

142

143 for b=1 : frame_length : length(aCoeff) //length (
aCoeff) should be very close (i.e less than a
frame_length error) to length (x)

144 for bs = b : 40 : b+frame_length-40 //

subframing
145
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147

148

149

150

151

152
153

154

155

156

157
158
159
160
161

end

//EXCITATION GENERATOR: not done yet.
because e_prime has been sent to this
decoder directly. without quantization .

//PITCH SYNTHESIS FILTER: %has to be domne

per subframe

LT_gain = [zeros(l, Topt(bs)-1), b_LTopt (bs)
1; //as it says z —T

e_prime_pad_for_d_r = [e_prime(bs:bs+39);
zeros (Topt(bs), 1)1; //it is padded with
zeros to remove the effect of delay in
filter. %Topt(bs) no. of ’z’s and one
"1’ results in total 'Topt(bs)’ amount
of delay

e_prime_op_dummy_pad = filter (1, [1 LT_gain
l, e_prime_pad_for_d_r); //=1 / (1 +
Oxz"—1 + 0%z —2 + ... + bxz -T)

e_prime_op(bs:bs+39,1) =
e_prime_op_dummy_pad (Topt(bs)+1 : Topt (bs

) +1+39) ; //pitch—synthesis filter
output
end //FORMANT SYNTHESIS FILTER:

e_prime_op_pad_delay_r= [e_prime_op(b : b
+159); zeros(1,1)]1; //it is padded with
zeros to remove the effect of delay in
filter

synth_speech_dummy_pad = filter (1, [1 aCoeff
(b+1 : b+8)], e_prime_op_pad_delay_r);

synth_speechl(b : b+159) =
synth_speech_dummy_pad (2:161) ; / /DE—~
EMPHASIS (de—proprocessing):

synth_speech(b : b+159) = filter ([1 -0.999],

[1 -1], synth_speechl(b : b+159)); //De

—processing

endfunction

clc;

clear all;
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163
164
165
166
167
168
169
170

171
172

173
174
175
176

177
178
179
180
181
182
183
184
185
186

187

188

xdel (winsid ());
inpfilenm = ”SCI/modules/sound/demos/slofwb.wav”;
[x,fs,bits] =wavread(inpfilenm) ;

t=length(x)./fs;// total time t seconds
//COMPRESSION STARTS HERE,

disp(’original signal’);

sound (x, fs);

[aCoeff, b_LTopt, Topt, e_prime] = f_ENCODER_relp(x,

fs);
// e_prime is instead of position ,
peak _magitude_index and
sample_amplitude_index. (temporarily)
// halt ()

//halt (?’Press a key to play the original sound!’)

[synth_speech] = f_DECODER_relp(aCoeff, b_LTopt,
Topt, e_prime);

/ /RESULTS,

disp(’compressed signal ’);
sound (synth_speech, fs);

figure;

subplot (211),

plot(x); title([’Original signal = 7’, inpfilenm, 7
1)

subplot (212), plot(synth_speech); title(’'RELP
compressed output’);

//Output plays original signal and after
approximately 5 minutes it plays compressed sound
and plot the original signal and compressed
signal .
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