
Scilab Manual for
Digital Signal Processing
by Mr Vijay P Sompur
Electronics Engineering

Visvesvraya Technological University1

Solutions provided by
Mr. R.Senthilkumar- Assistant Professor

Electronics Engineering
Institute of Road and Transport Technology

January 11, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 4

1 Verification of Sampling theorem. 6

2 Impulse response of a given system 11

3 Linear Circular convolution of two given sequences 14

4 Autocorrelation of a given sequence and verification of its
properties. 18

5 Cross correlation of given sequences and verification of its
properties. 21

6 Solving a given difference equation. 24

7 Computation of N point DFT of a given sequence and to
plot magnitude and phase spectrum. 26

8 Linear convolution of two sequences using DFT and IDFT. 30

9 Circular convolution of two given sequences using DFT and
IDFT 33

10 Design and implementation of FIR filter to meet given spec-
ifications. 35

11 Design and implementation of IIR filter to meet given spec-
ifications. 39

2

12 Circular convolution of two given sequences 49

3

List of Experiments

Solution 1.1 Verification of Sampling Theorem 6
Solution 2.2 Program to find impulse response and Frequency

Response of a system 11
Solution 3.1 Program to Compute the Convolution of Two Se-

quences . 14
Solution 4.1 Program to Compute the Autocorrelation of a Se-

quence And verfication of Autocorrelation property 18
Solution 5.1 Program to Compute the Crosscorrelation of a Se-

quence And verfication of crosscorrelation property 21
Solution 6.1 Solving Difference Equation Direct Form II Real-

ization . 24
Solution 7.1 Program to find the spectral information of discrete

time signal Calculation of DFT and IDFT 26
Solution 8.1 Linear Convolution using Circular Convolution DFT

IDFT method . 30
Solution 9.1 Circular Convolution using DFT IDFT method . 33
Solution 10.1 To Design an Low Pass FIR Filter 35
Solution 11.1 To obtain Digital IIR Butterworth low pass filter

Frequency response 39
Solution 11.2 To obtain Digital IIR Chebyshev low pass filter Fre-

quency response 43
Solution 12.1 Program to perform circular convolution of two se-

quences . 49

4

List of Figures

1.1 Verification of Sampling Theorem 9
1.2 Verification of Sampling Theorem 10

2.1 Program to find impulse response and Frequency Response of
a system . 12

3.1 Program to Compute the Convolution of Two Sequences . . 15

7.1 Program to find the spectral information of discrete time signal
Calculation of DFT and IDFT 27

8.1 Linear Convolution using Circular Convolution DFT IDFT
method . 31

10.1 To Design an Low Pass FIR Filter 36

11.1 To obtain Digital IIR Butterworth low pass filter Frequency
response . 40

11.2 To obtain Digital IIR Chebyshev low pass filter Frequency
response . 44

5

Experiment: 1

Verification of Sampling
theorem.

Scilab code Solution 1.1 Verification of Sampling Theorem

1 // Capt ion : V e r i f i c a t i o n o f Sampl ing Theorem
2 // [1] . Right Sampl ing [2] . Under Sampl ing [3] . Over

Sampl ing
3 clc;

4 close;

5 clear;

6 fm=input(’ Enter the input s i g n a l f r e qu en cy : ’);
7 k=input(’ Enter the number o f Cyc l e s o f i nput s i g n a l :

’);
8 A=input(’ Enter the ampl i tude o f i nput s i g n a l : ’);
9 tm =0:1/(fm*fm):k/fm;

10 x=A*cos(2* %pi*fm*tm);

11 figure (1);

12 a = gca();

13 a.x_location = ” o r i g i n ”;
14 a.y_location = ” o r i g i n ”;
15 plot(tm,x);

16 title(’ORIGINAL SIGNAL ’);
17 xlabel(’ Time ’);

6

18 ylabel(’ Amplitude ’);
19 xgrid (1)

20 // Sampl ing Rate (Nyqu i s t Rate)=2∗fm
21 fnyq =2*fm;

22 // UNDER SAMPLING
23 fs =(3/4)*fnyq;

24 n=0:1/ fs:k/fm;

25 xn=A*cos (2* %pi*fm*n);

26 figure (2);

27 a = gca();

28 a.x_location = ” o r i g i n ”;
29 a.y_location = ” o r i g i n ”;
30 plot2d3(’ gnn ’ ,n,xn);
31 plot(n,xn, ’ r ’);
32 title(’ Under Sampl ing ’);
33 xlabel(’ Time ’);
34 ylabel(’ Amplitude ’);
35 legend(’ Sampled S i g n a l ’ , ’ Re con s t ru c t ed S i g n a l ’);
36 xgrid (1)

37 //NYQUIST SAMPLING
38 fs=fnyq;

39 n=0:1/ fs:k/fm;

40 xn=A*cos (2* %pi*fm*n);

41 figure (3);

42 a = gca();

43 a.x_location = ” o r i g i n ”;
44 a.y_location = ” o r i g i n ”;
45 plot2d3(’ gnn ’ ,n,xn);
46 plot(n,xn, ’ r ’);
47 title(’ Nyqu i s t Sampl ing ’);
48 xlabel(’ Time ’);
49 ylabel(’ Amplitude ’);
50 legend(’ Sampled S i g n a l ’ , ’ Re con s t ru c t ed S i g n a l ’);
51 xgrid (1)

52 //OVER SAMPLING
53 fs=fnyq *10;

54 n=0:1/ fs:k/fm;

55 xn=A*cos (2* %pi*fm*n);

7

56 figure (4);

57 a = gca();

58 a.x_location = ” o r i g i n ”;
59 a.y_location = ” o r i g i n ”;
60 plot2d3(’ gnn ’ ,n,xn);
61 plot(n,xn, ’ r ’);
62 title(’ Over Sampl ing ’);
63 xlabel(’ Time ’);
64 ylabel(’ Amplitude ’);
65 legend(’ Sampled S i g n a l ’ , ’ Re con s t ru c t ed S i g n a l ’);
66 xgrid (1)

67 // Re su l t
68 // Enter the input s i g n a l f r e qu en cy : 1 0 0
69 //
70 // Enter the number o f Cyc l e s o f i nput s i g n a l : 2
71 //
72 // Enter the ampl i tude o f i nput s i g n a l : 2

8

Figure 1.1: Verification of Sampling Theorem

9

Figure 1.2: Verification of Sampling Theorem

10

Experiment: 2

Impulse response of a given
system

Scilab code Solution 2.2 Program to find impulse response and Frequency
Response of a system

1 // Capt ion : Program to f i n d impu l s e r e s p on s e and
2 // Frequency Response o f a system
3 //y [n] = a∗y [n−1]+x [n]
4 //Assume y [n] = h [n] , x [n]= d e l t a [n]= un i t impu l s e

r e s p on s e
5 // a = 0 . 9
6 //h [n] = 0 . 9∗ h [n−1]+ d e l t a [n]
7 clc;

8 clear;

9 close;

10 a = 0.9; // c on s t an t a = 0 . 9 l e s s than 1
11 h0 = 1;

12 h1 = a; // f i r s t two v a l u e s o f impu l s e r e s p on s e
13 h = [h0,h1,zeros (1 ,100)];

14 for i = 1:100

15 h(i+2) = ((a)^(i+1))*h(i+1);// impu l s e r e s p on s e

11

Figure 2.1: Program to find impulse response and Frequency Response of a
system

12

16 end

17 [HW ,W] = frmag(h,512); // f r e qu en cy r e s p on s e
18 figure (1)

19 subplot (2,1,1)

20 a = gca();

21 a.x_location = ’ o r i g i n ’ ;
22 a.y_location = ’ o r i g i n ’ ;
23 plot ([1: length(h)],h, ’ r ’);
24 xlabel(’ D i s c r e t e Time Index n−−−−> ’);
25 ylabel(’ Impul se Response h [n]−−−−−> ’);
26 title(’ Impul se Response o f f i r s t o rd e r r e c u r s i v e

system ’)
27 xgrid (1)

28 subplot (2,1,2)

29 a = gca();

30 a.x_location = ’ o r i g i n ’ ;
31 a.y_location = ’ o r i g i n ’ ;
32 plot([mtlb_fliplr (-2*%pi*W) ,2*%pi*W(2:$)],[

mtlb_fliplr(abs(HW)),abs(HW(2:$))])
33 xlabel(’ D i s c r e t e Frequency index W−−−−−−> ’)
34 ylabel(’ Magnitude Response |H(W)|−−−−−−> ’)
35 title(’ Frequency Response o f a cau sa l , s t a b l e , LTI

I s t Order Re cu r s i v e System ’);
36 xgrid (1)

13

Experiment: 3

Linear Circular convolution of
two given sequences

Scilab code Solution 3.1 Program to Compute the Convolution of Two
Sequences

1 // Capt ion : Program to Compute the Convo lu t i on o f Two
Sequence s

2 clc;

3 clear;

4 close;

5 x = input(’ Enter the input Sequence := ’);
6 m = length(x);

7 lx = input(’ Enter the l owe r index o f i nput s equence
:= ’)

8 hx = lx+m-1;

9 n = lx:1:hx;

10 h = input(’ Enter impu l s e r e s p on s e s equence := ’)
11 l = length(h);

12 lh = input(’ Enter the l owe r index o f impu l s e
r e s p on s e := ’)

13 hh = lh+l-1;

14

Figure 3.1: Program to Compute the Convolution of Two Sequences

15

14 g = lh:1:hh;

15 nx = lx+lh;

16 nh = nx+m+l-2;

17 y = convol(x,h)

18 r = nx:nh;

19 figure (1)

20 subplot (3,1,1)

21 a = gca();

22 a.x_location = ” o r i g i n ”;
23 a.y_location = ” o r i g i n ”;
24 plot2d3(’ gnn ’ ,n,x)
25 xlabel(’ n===> ’)
26 ylabel(’ Amplitude−−> ’)
27 title(’ Input Sequence x [n] ’)
28 subplot (3,1,2)

29 a = gca();

30 a.x_location = ” o r i g i n ”;
31 a.y_location = ” o r i g i n ”;
32 plot2d3(’ gnn ’ ,g,h)
33 xlabel(’ n===> ’)
34 ylabel(’ Amplitude−−−> ’)
35 title(’ Impul se Response Sequence h [n]= ’)
36 subplot (3,1,3)

37 a = gca();

38 a.x_location = ” o r i g i n ”;
39 a.y_location = ” o r i g i n ”;
40 plot2d3(’ gnn ’ ,r,y)
41 xlabel(’ n===> ’)
42 ylabel(’ Amplitude−−−> ’)
43 title(’ Output Response Sequence y [n]= ’)
44 //Example
45 // Enter the input Sequence := [1 , 2 , 3 , 1]
46 //
47 // Enter the l owe r index o f i nput s equence :=0
48 //
49 // Enter impu l s e r e s p on s e s equence := [1 , 2 , 1 , −1]
50 //
51 // Enter the l owe r index o f impu l s e r e s p on s e :=−1

16

52 //
53 //
54 //−−>y
55 // y =
56 //
57 // 1 . 4 . 8 . 8 . 3 . − 2 . − 1 .
58 //

17

Experiment: 4

Autocorrelation of a given
sequence and verification of its
properties.

Scilab code Solution 4.1 Program to Compute the Autocorrelation of a
Sequence And verfication of Autocorrelation property

1 // Capt ion : Program to Compute the Au t o c o r r e l a t i o n o f
a Sequence

2 //And v e r f i c a t i o n o f Au t o c o r r e l a t i o n p r ope r t y
3 clc;

4 clear;

5 close;

6 x = input(’ Enter the input Sequence := ’);
7 m = length(x);

8 lx = input(’ Enter the l owe r index o f i nput s equence
:= ’)

9 hx = lx+m-1;

10 n = lx:1:hx;

11 x_fold = x($:-1:1);
12 nx = lx+lx;

13 nh = nx+m+m-2;

14 r = nx:nh;

18

15 Rxx = convol(x,x_fold);

16 disp(Rxx , ’ Auto C o r r e l a t i o n Rxx [n] := ’)
17 // Proper ty 1 : Au t o c o r r e l a t i o n o f a s equence has even

symmetry
18 //Rxx [n] = Rxx[−n]
19 Rxx_flip = Rxx([$: -1:1]);
20 if Rxx_flip ==Rxx then

21 disp(’ P roper ty 1 : Auto Co r r e l a t i o n has Even
Symmetry ’);

22 disp(Rxx_flip , ’ Auto C o r r e l a t i o n t ime r e v e r s e d
Rxx[−n] := ’);

23 end

24 // Proper ty 2 : Center va l u e Rxx [0]= t o t a l power o f
the s equence

25 Tot_Px = sum(x.^2);

26 Mid = ceil(length(Rxx)/2);

27 if Tot_Px == Rxx(Mid) then

28 disp(’ P roper ty 2 : Rxx [0]= c e n t e r va l u e=max . va l u e=
Tota l power o f i /p s equence ’);

29 end

30 subplot (2,1,1)

31 plot2d3(’ gnn ’ ,n,x)
32 xlabel(’ n===> ’)
33 ylabel(’ Amplitude−−> ’)
34 title(’ Input Sequence x [n] ’)
35 subplot (2,1,2)

36 plot2d3(’ gnn ’ ,r,Rxx)
37 xlabel(’ n===> ’)
38 ylabel(’ Amplitude−−> ’)
39 title(’ Auto c o r r e l a t i o n Sequence Rxx [n] ’)
40 //Example
41 // Enter the input Sequence := [2 , −1 , 3 , 4 , 1]
42 //
43 // Enter the l owe r index o f i nput s equence :=−2
44 //
45 // Auto Co r r e l a t i o n Rxx [n] :=
46 //
47 // 2 . 7 . 5 . 1 1 . 3 1 . 1 1 . 5 .

19

7 . 2 .
48 //
49 // Proper ty 1 : Auto C o r r e l a t i o n has Even Symmetry
50 //
51 // Auto Co r r e l a t i o n t ime r e v e r s e d Rxx[−n] :=
52 //
53 // 2 . 7 . 5 . 1 1 . 3 1 . 1 1 . 5 .

7 . 2 .
54 //
55 // Proper ty 2 : Rxx [0]= c e n t e r va l u e=max . va l u e=Tota l

power o f i /p s equence

20

Experiment: 5

Cross correlation of given
sequences and verification of its
properties.

Scilab code Solution 5.1 Program to Compute the Crosscorrelation of a
Sequence And verfication of crosscorrelation property

1 // Capt ion : Program to Compute the C r o s s c o r r e l a t i o n
o f a Sequence

2 //And v e r f i c a t i o n o f c r o s s c o r r e l a t i o n p r ope r t y
3 clc;

4 clear;

5 close;

6 x = input(’ Enter the F i r s t i nput Sequence := ’);
7 y = input(’ Enter the second input Sequence := ’)
8 mx = length(x);

9 my = length(y);

10 lx = input(’ Enter the l owe r index o f f i r s t i nput
s equence := ’)

11 ly = input(’ Enter the l owe r index o f s econd input
s equence := ’)

12 hx = lx+mx -1;

13 n = lx:1:hx;

21

14 x_fold = x($:-1:1);
15 y_fold = y($:-1:1);
16 nx = lx+ly;

17 ny = nx+mx+my -2;

18 r = nx:ny;

19 Rxy = convol(x,y_fold);

20 Ryx = convol(x_fold ,y);

21 disp(Rxy , ’ Cros s C o r r e l a t i o n Rxy [n] := ’)
22 count =1;

23 // Proper ty 1 : c r o s s c o r r e l a t i o n o f a s equence has
Antisymmetry

24 //Rxy [n] = Ryx[−n]
25 Ryx_flip = Ryx([$: -1:1]);
26 for i = 1: length(Rxy)

27 if (ceil(Ryx_flip(i))==ceil(Rxy(i))) then

28 count = count +1;

29 end

30 end

31 if (count == length(Rxy)) then

32 disp(’ P roper ty 1 : Cros s C o r r e l a t i o n has
AntiSymmetry : Rxy [n]=Ryx[−n] ’);

33 end

34 // Proper ty 2 :% V e r i f i c a t i o n o f Energy Proper ty o f
Rxy

35 Ex = sum(x.^2);

36 Ey = sum(y.^2);

37 E = sqrt(Ex*Ey);

38 Mid = ceil(length(Rxy)/2);

39 if (E >= Rxy(Mid)) then

40 disp(’ P roper ty 2 : Energy Proper ty o f Cros s
C o r r e l a t i o n v e r i f i e d ’)

41 end

42 subplot (2,1,1)

43 plot2d3(’ gnn ’ ,n,x)
44 xlabel(’ n===> ’)
45 ylabel(’ Amplitude−−> ’)
46 title(’ Input Sequence x [n] ’)
47 subplot (2,1,2)

22

48 plot2d3(’ gnn ’ ,r,Rxy)
49 xlabel(’ n===> ’)
50 ylabel(’ Amplitude−−> ’)
51 title(’ Cros s c o r r e l a t i o n Sequence Rxy [n] ’)
52 //Example
53 // Enter the F i r s t i nput Sequence := [1 , 2 , 1 , 1]
54 // Enter the second input Sequence := [1 , 1 , 2 , 1]
55 // Enter the l owe r index o f f i r s t i nput s equence :=0
56 // Enter the l owe r index o f s econd input s equence :=0
57 // Cross C o r r e l a t i o n Rxy [n] :=
58 // 1 . 4 . 6 . 6 . 5 . 2 . 1 .
59 // Proper ty 1 : Cros s C o r r e l a t i o n has AntiSymmetry : Rxy

[n]=Ryx[−n]
60 //
61 // Proper ty 2 : Energy Proper ty o f Cros s C o r r e l a t i o n

v e r i f i e d

23

Experiment: 6

Solving a given difference
equation.

Scilab code Solution 6.1 Solving Difference Equation Direct Form II Re-
alization

1 // Capt ion : S o l v i n g D i f f e r e n c e Equat ion
2 // D i r e c t Form−I I R e a l i z a t i o n
3 // F ind ing out the Output Response o f the f i r s t o r d e r
4 // system (F i l t e r)
5 clc;

6 clear;

7 close;

8 x =

[1 ,1/2 ,1/4 ,1/8 ,1/16 ,1/32 ,1/64 ,1/128 ,1/256 ,1/512];

9 b = [3,-4/3]; // numerator po l ynom ia l s
10 a = [1,-1/3]; // denominator po l ynom ia l s
11 p = length(a) -1;

12 q = length(b) -1;

13 pq = max(p,q);

14 a = a(2:p+1);

15 w = zeros(1,pq);

16 for i = 1: length(x)

17 wnew = x(i)-sum(w(1:p).*a);

24

18 w = [wnew ,w];

19 y(i) = sum(w(1:q+1).*b);

20 end

21 disp(y, ’ Output Response y [n]= ’);
22 // Re su l t
23 //Output Response y [n]=
24 // 3 .
25 // 1 . 1666667
26 // 0 . 4722222
27 // 0 . 1990741
28 // 0 . 0871914
29 // 0 . 0394805
30 // 0 . 0183685
31 // 0 . 0087270
32 // 0 . 0042111
33 // 0 . 0020547

25

Experiment: 7

Computation of N point DFT
of a given sequence and to plot
magnitude and phase spectrum.

Scilab code Solution 7.1 Program to find the spectral information of dis-
crete time signal Calculation of DFT and IDFT

1 // Capt ion : Program to f i n d the s p e c t r a l i n f o rma t i o n
o f d i s c r e t e t ime s i g n a l

2 // Ca l c u l a t i o n o f DFT and IDFT
3 // P l o t t i n g Magnitude and Phase Spectrum
4 clc;

5 close;

6 clear;

7 xn = input(’ Enter the r e a l i nput d i s c r e t e s equence x
[n]= ’);

8 N = length(xn);

9 XK = zeros(1,N);

10 IXK = zeros(1,N);

11 //Code b l o ck to f i n d the DFT o f the Sequence
12 for K = 0:N-1

26

Figure 7.1: Program to find the spectral information of discrete time signal
Calculation of DFT and IDFT

13 for n = 0:N-1

14 XK(K+1) = XK(K+1)+xn(n+1)*exp(-%i*2*%pi*K*n/

N);

15 end

16 end

17 [phase ,db] = phasemag(XK)

18 disp(XK, ’ D i s c r e t e Fou r i e r Transform X(k)= ’)
19 disp(abs(XK), ’ Magnitude S p e c t r a l Samples= ’)
20 disp(phase , ’ Phase S p e c t r a l Samples= ’)
21 n = 0:N-1;

22 K = 0:N-1;

23 figure (1)

24 subplot (2,2,1)

25 a = gca();

26 a.x_location = ” o r i g i n ”;
27 a.y_location = ” o r i g i n ”;
28 plot2d3(’ gnn ’ ,n,xn)
29 xlabel(’ Time Index n−−−−> ’)

27

30 ylabel(’ Amplitude xn−−−−> ’)
31 title(’ D i s c r e t e Input Sequence ’)
32 subplot (2,2,2)

33 a = gca();

34 a.x_location = ” o r i g i n ”;
35 a.y_location = ” o r i g i n ”;
36 plot2d3(’ gnn ’ ,K,abs(XK))
37 xlabel(’ Frequency Sample Index K−−−−> ’)
38 ylabel(’ |X(K) |−−−−> ’)
39 title(’ Magnitude Spectrum ’)
40 subplot (2,2,3)

41 a = gca();

42 a.x_location = ” o r i g i n ”;
43 a.y_location = ” o r i g i n ”;
44 plot2d3(’ gnn ’ ,K,phase)
45 xlabel(’ Frequency Sample Index K−−−−> ’)
46 ylabel(’<X(K) in rad i an s−−−−> ’)
47 title(’ Phase Spectrum ’)
48 //Code b l o ck to f i n d the IDFT o f the s equence
49 for n = 0:N-1

50 for K = 0:N-1

51 IXK(n+1) = IXK(n+1)+XK(K+1)*exp(%i*2* %pi*K*n

/N);

52 end

53 end

54 IXK = IXK/N;

55 ixn = real(IXK);

56 subplot (2,2,4)

57 a = gca();

58 a.x_location = ” o r i g i n ”;
59 a.y_location = ” o r i g i n ”;
60 plot2d3(’ gnn ’ ,[0:N-1],ixn)
61 xlabel(’ D i s c r e t e Time Index n −−−−> ’)
62 ylabel(’ Amplitude x [n]−−−−> ’)
63 title(’ IDFT sequence ’)
64 //Example
65 //
66 // Enter the r e a l i nput d i s c r e t e s equence x [n

28

] = [1 , 2 , 3 , 4]
67 //
68 // D i s c r e t e Fou r i e r Transform X(k)=
69 //
70 // 1 0 . − 2 . + 2 . i − 2 . − 9 . 7 97D−16 i − 2 . − 2 . i
71 //
72 // Magnitude S p e c t r a l Samples=
73 //
74 // 1 0 . 2 . 8284271 2 . 2 . 8 284271
75 //
76 // Phase S p e c t r a l Samples=
77 //
78 // 0 . 1 3 5 . 1 8 0 . 2 2 5 .
79 //

29

Experiment: 8

Linear convolution of two
sequences using DFT and
IDFT.

Scilab code Solution 8.1 Linear Convolution using Circular Convolution
DFT IDFT method

1 // Capt ion : L in ea r Convo lu t i on u s i n g C i r c u l a r
Convo lu t i on

2 //DFT−IDFT method
3 clc;

4 clear;

5 close;

6 x = input(’ Enter the input d i s c r e t e s equence := ’)
7 h = input(’ Enter the impu l s e d i s c r e t e s equence := ’)
8 N1 = length(x);

9 N2 = length(h);

10 N = N1+N2 -1; // L in ea r Convo lu t i on r e s u l t l e n g t h
11 h = [h,zeros(1,N-N2)];

12 x = [x,zeros(1,N-N1)];

13 //Computing DFT−IDFT

30

Figure 8.1: Linear Convolution using Circular Convolution DFT IDFT
method

31

14 XK = dft(x,-1);//N po i n t DFT o f i /p s equence
15 HK = dft(h,-1);//N po i n t DFT o f impu l s e s equence
16 // Mu l t i p l i c a t i o n o f 2 DFT’ s
17 YK = XK.*HK;

18 // L in ea r Convo lu t i on r e s u l t
19 yn = dft(YK ,1);//IDFT o f Y(K) (o/p s equence)
20 disp(real(yn), ’ L i n ea r Convo lu t i on r e s u l t y [n] := ’)
21 //Example
22 // Enter the input d i s c r e t e s equence := [1 , 2 , 3]
23 // Enter the impu l s e d i s c r e t e s equence := [1 , 2 , 2 , 1]
24 // L in ea r Convo lu t i on r e s u l t y [n] :=
25 //
26 // 1 .
27 // 4 .
28 // 9 .
29 // 1 1 .
30 // 8 .
31 // 3 .

32

Experiment: 9

Circular convolution of two
given sequences using DFT and
IDFT

Scilab code Solution 9.1 Circular Convolution using DFT IDFT method

1 // Capt ion : C i r c u l a r Convo lu t i on u s i n g DFT−IDFT
method

2 clc;

3 clear;

4 close;

5 L = 4; // Length o f the s equence
6 N = 4; //N−po i n t DFT
7 x1 = input(’ Enter the f i r s t d i s c r e t e s equence : x1 [n]=

’)
8 x2 = input(’ Enter the second d i s c r e t e s equence : x2 [n

]= ’)
9 //Computing DFT
10 X1K = dft(x1 ,-1);

11 X2K = dft(x2 ,-1);

12 // Mu l t i p l i c a t i o n o f 2 DFT’ s
13 X3K = X1K.*X2K;

14 x3 = dft(X3K ,1); //IDFT o f X3(K)

33

15 x3 = real(x3);

16 disp(x3, ’ C i r c u l a r Convo lu t i on r e s u l t : x3 [n]= ’);
17 //Example
18 // Enter the f i r s t d i s c r e t e s equence : x1 [n]= [2 , 1 , 2 , 1]
19 // Enter the second d i s c r e t e s equence : x2 [n]=

[1 , 2 , 3 , 4]
20 //
21 // C i r c u l a r Convo lu t i on r e s u l t : x3 [n]=
22 //
23 // 1 4 .
24 // 1 6 .
25 // 1 4 .
26 // 1 6 .

34

Experiment: 10

Design and implementation of
FIR filter to meet given
specifications.

Scilab code Solution 10.1 To Design an Low Pass FIR Filter

1 // Capt ion : To Des ign an Low Pass FIR F i l t e r
2 clc;

3 clear;

4 close;

5 wp= input(’ Enter the pa s s band edge (rad)= ’);
6 ws= input(’ Enter the s t op band edge (rad)= ’);
7 ks= input(’ Enter the s t op band a t t e nu a t i o n (dB)= ’);
8 // I f 43<Ks<54 choo s e hamming window .
9 //To s e l e c t N, o rd e r o f f i l t e r .
10 N= (2* %pi*4)./(ws-wp); // k=4 f o r Hamming window .
11 N= ceil(N); //To round−o f f N to the next i n t e g e r .
12 wc=(wp+(ws-wp)/2)./%pi

13 // To ob ta i n FIR f i l t e r Impul se Response ’ wft ’
14 //And FIR F i l t e r Frequency r e s p on s e ’wfm ’
15 [wft ,wfm ,fr]=wfir(’ l p ’ ,N+1,[wc/2,0], ’hm ’ ,[0,0]);

35

Figure 10.1: To Design an Low Pass FIR Filter

36

16 figure (1)

17 a = gca();

18 a.x_location = ” o r i g i n ”;
19 a.y_location = ” o r i g i n ”;
20 a.data_bounds = [0 , -150;1 ,50];

21 plot (2*fr ,20* log10(wfm), ’ r ’)
22 xlabel(’ Normal i zed D i g i t a l Frequency w−−−> ’)
23 ylabel(’ Frequency Response i n dB H(jw)= ’)
24 title(’ Frequency Response o f FIR LPF ’)
25 xgrid (1)

26 // Re su l t
27 // Enter the pa s s band edge (rad)= 0 . 3∗%pi
28 // Enter the s t op band edge (rad)= 0 . 4 5∗%pi
29 // Enter the s t op band a t t e nu a t i o n (dB)= 50
30 //N = 54 .
31 //−−>wc
32 // wc = 0 . 3 75
33 //−−>d i s p (wft , ’ Impul se Response o f FIR LPF= ’)
34 // Impul se Response o f FIR LPF=
35 // column 1 to 7
36 // 0 . 0003609 − 0 . 0007195 − 0 . 0010869 1 . 5 7 5D

−18 0 . 0016485 0 . 0015927 − 0 . 0010883
37 // column 8 to 14
38 // − 0 . 0035703 − 0 . 0017009 0 . 0038764

0 . 0061896 − 5 . 9 65D−18 − 0 . 0090208 − 0 . 0082516
39 // column 15 to 21
40 // 0 . 0053105 0 . 0164428 0 . 0074408 −

0 . 0162551 − 0 . 0251602 1 . 1 9 1D−17 0 . 0359480
41 // column 22 to 28
42 // 0 . 0334760 − 0 . 0225187 − 0 . 0756838 −

0 . 0394776 0 . 1111441 0 . 2931653 0 . 3 7 5
43 // column 29 to 35
44 // 0 . 2931653 0 . 1111441 − 0 . 0394776 −

0 . 0756838 − 0 . 0225187 0 . 0334760 0 . 0359480
45 // column 36 to 42
46 // 1 . 1 9 1D−17 − 0 . 0251602 − 0 . 0162551

0 . 0074408 0 . 0164428 0 . 0053105 − 0 . 0082516
47 // column 43 to 49

37

48 // − 0 . 0090208 − 5 . 9 65D−18 0 . 0061896
0 . 0038764 − 0 . 0017009 − 0 . 0035703 − 0 . 0010883
column 50 to 55

49 // 0 . 0015927 0 . 0016485 1 . 5 7 5D−18 −
0 . 0010869 − 0 . 0007195 0 . 0003609

38

Experiment: 11

Design and implementation of
IIR filter to meet given
specifications.

Scilab code Solution 11.1 To obtain Digital IIR Butterworth low pass
filter Frequency response

1 // Capt ion : To ob ta i n D i g i t a l I IR Butte rworth low
pas s f i l t e r

2 // Frequency r e s p on s e
3 clc;

4 clear;

5 close;

6 fp= input(’ Enter the pa s s band edge (Hz) = ’);
7 fs= input(’ Enter the s t op band edge (Hz) = ’);
8 kp= input(’ Enter the pa s s band a t t e nu a t i o n (dB) = ’)

;

9 ks= input(’ Enter the s t op band a t t e nu a t i o n (dB) = ’)
;

10 Fs= input(’ Enter the sampl ing r a t e sample s / s e c = ’)
;

39

Figure 11.1: To obtain Digital IIR Butterworth low pass filter Frequency
response

40

11 d1 = 10^(kp/20);

12 d2 = 10^(ks/20);

13 d = sqrt ((1/(d2^2)) -1);

14 E = sqrt ((1/(d1^2)) -1);

15 // D i g i t a l f i l t e r s p e c i f i c a t i o n s (rad / sample s)
16 wp=2*%pi*fp*1/Fs;

17 ws=2*%pi*fs*1/Fs;

18 disp(wp, ’ D i g i t a l Pass band edge f r e q i n rad / sample s
wp= ’)

19 disp(ws, ’ D i g i t a l Stop band edge f r e q i n rad / sample s
ws= ’)

20 // Pre warping
21 op=2*Fs*tan(wp/2);

22 os=2*Fs*tan(ws/2);

23 disp(op, ’ Analog Pass Band Edge Freq . i n rad / s e c op= ’
)

24 disp(os, ’ Analog Stop band Edge Freq . i n rad / s e c os= ’
)

25 N = log10(d/E)/log10(os/op);

26 oc = op/((E^2) ^(1/(2*N)));

27 N = ceil(N);// rounded to n e a r e s t i n t e g e r
28 disp(N, ’ I IR F i l t e r o rd e r N = ’);
29 disp(oc, ’ Cu t o f f Frequency i n rad / s e cond s OC = ’)
30 [pols ,gn] = zpbutt(N,oc);

31 disp(gn, ’ Gain o f Analog IIR Butte rworth LPF Gain = ’)
32 disp(pols , ’ Po l e s o f Analog IIR Butte rworth LPF Po l e s

= ’)
33 HS = poly(gn, ’ s ’ , ’ c o e f f ’)/real(poly(pols , ’ s ’));
34 disp(HS, ’ T r an s f e r f u n c t i o n o f Ananlog IIR

Butte rworth LPF H(S)= ’)
35 z = poly(0, ’ z ’)
36 Hz = horner(HS ,(2*Fs*(z-1)/(z+1)))

37 num = coeff(Hz(2))

38 den = coeff(Hz(3))

39 Hz(2)= Hz(2)./den (3);

40 Hz(3) = Hz(3)./den(3);

41 disp(Hz, ’ T r an s f e r f u n c t i o n o f D i g i t l a IIR
Butte rworth LPF H(Z)= ’)

41

42 [Hw ,w] = frmag(Hz ,256);

43 figure (1)

44 plot (2*w*%pi ,20* log10(abs(Hw)));

45 xlabel(’ D i g i t a l Frequency w−−−> ’)
46 ylabel(’ Magnitude i n dB 20 l o g |H(w) |= ’)
47 title(’ Magnitude Response o f IIR LPF ’)
48 xgrid (1)

49 // Re su l t
50 // Enter the pa s s band edge (Hz) = 1500
51 //
52 // Enter the s t op band edge (Hz) = 2000
53 //
54 // Enter the pa s s band a t t e nu a t i o n (dB) = −1
55 //
56 // Enter the s t op band a t t e nu a t i o n (dB) = −3
57 //
58 // Enter the sampl ing r a t e sample s / s e c = 8000
59 //
60 // D i g i t a l Pass band edge f r e q i n rad / sample s wp=
61 //
62 // 1 . 1780972
63 //
64 // D i g i t a l Stop band edge f r e q i n rad / sample s ws=
65 //
66 // 1 . 5707963
67 //
68 // Analog Pass Band Edge Freq . i n rad / s e c op=
69 //
70 // 10690 . 858
71 //
72 // Analog Stop band Edge Freq . i n rad / s e c os=
73 //
74 // 16000 .
75 //
76 // IIR F i l t e r o rd e r N =
77 //
78 // 2 .
79 //

42

80 // Cuto f f Frequency i n rad / s e cond s OC =
81 //
82 // 16022 . 769
83 //
84 // Gain o f Analog IIR Butte rworth LPF Gain =
85 //
86 // 2 . 5 6 7D+08
87 //
88 // Po l e s o f Analog IIR Butte rworth LPF Po l e s =
89 //
90 // − 11329 . 809 + 11329 . 809 i − 11329 . 809 −

11329 . 809 i
91 //
92 // T ran s f e r f u n c t i o n o f Ananlog IIR Butte rworth LPF

H(S)=
93 //
94 // 2 . 5 6 7D+08
95 // −−−−−−−−−−−−−−−−−−−−−−−−−
96 // 2
97 // 2 . 5 6 7D+08 + 22659 . 618 s + s
98 //
99 // T ran s f e r f u n c t i o n o f D i g i t l a IIR Butte rworth LPF

H(Z)=
100 //
101 // 2
102 // 0 . 2933099 + 0 . 5866197 z + 0 . 2933099 z
103 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
104 // 2
105 // 0 . 1715734 + 0 . 0016661 z + z
106 //

Scilab code Solution 11.2 To obtain Digital IIR Chebyshev low pass filter
Frequency response

43

Figure 11.2: To obtain Digital IIR Chebyshev low pass filter Frequency re-
sponse

44

1 // Capt ion : To ob ta i n D i g i t a l I IR Chebyshev low pas s
f i l t e r

2 // Frequency r e s p on s e
3 clc;

4 clear;

5 close;

6 fp= input(’ Enter the pa s s band edge (Hz) = ’);
7 fs= input(’ Enter the s t op band edge (Hz) = ’);
8 kp= input(’ Enter the pa s s band a t t e nu a t i o n (dB) = ’)

;

9 ks= input(’ Enter the s t op band a t t e nu a t i o n (dB) = ’)
;

10 Fs= input(’ Enter the sampl ing r a t e sample s / s e c = ’)
;

11 d1 = 10^(kp/20);

12 d2 = 10^(ks/20);

13 d = sqrt ((1/(d2^2)) -1);

14 E = sqrt ((1/(d1^2)) -1);

15 // D i g i t a l f i l t e r s p e c i f i c a t i o n s (rad / sample s)
16 wp=2*%pi*fp*1/Fs;

17 ws=2*%pi*fs*1/Fs;

18 disp(wp, ’ D i g i t a l Pass band edge f r e q i n rad / sample s
wp= ’)

19 disp(ws, ’ D i g i t a l Stop band edge f r e q i n rad / sample s
ws= ’)

20 // Pre warping
21 op=2*Fs*tan(wp/2);

22 os=2*Fs*tan(ws/2);

23 disp(op, ’ Analog Pass Band Edge Freq . i n rad / s e c op= ’
)

24 disp(os, ’ Analog Stop band Edge Freq . i n rad / s e c os= ’
)

25 N = acosh(d/E)/acosh(os/op);

26 oc = op/((E^2) ^(1/(2*N)));

27 N = ceil(N);// rounded to n e a r e s t i n t e g e r
28 disp(N, ’ I IR F i l t e r o rd e r N = ’);
29 disp(oc, ’ Cu t o f f Frequency i n rad / s e cond s OC = ’)
30 [pols ,gn] = zpch1(N,E,op);

45

31 disp(gn, ’ Gain o f Analog IIR Chebyshev Type−I LPF
Gain = ’)

32 disp(pols , ’ Po l e s o f Analog IIR Chebyshev Type−I LPF
Po l e s = ’)

33 HS = poly(gn, ’ s ’ , ’ c o e f f ’)/real(poly(pols , ’ s ’));
34 disp(HS, ’ T r an s f e r f u n c t i o n o f Ananlog IIR Chebyshev

Type−I LPF H(S)= ’)
35 z = poly(0, ’ z ’)
36 Hz = horner(HS ,(2*Fs*(z-1)/(z+1)))

37 num = coeff(Hz(2))

38 den = coeff(Hz(3))

39 Hz(2)= Hz(2)./den (3);

40 Hz(3) = Hz(3)./den(3);

41 disp(Hz, ’ T r an s f e r f u n c t i o n o f D i g i t l a IIR Chebyshev
LPF H(Z)= ’)

42 [Hw ,w] = frmag(Hz ,256);

43 figure (1)

44 plot (2*w*%pi ,20* log10(abs(Hw)));

45 xlabel(’ D i g i t a l Frequency w−−−> ’)
46 ylabel(’ Magnitude i n dB 20 l o g |H(w) |= ’)
47 title(’ Magnitude Response o f IIR LPF ’)
48 xgrid (1)

49 // Re su l t
50 // Enter the pa s s band edge (Hz) = 1500
51 //
52 // Enter the s t op band edge (Hz) = 2000
53 //
54 // Enter the pa s s band a t t e nu a t i o n (dB) = −1
55 //
56 // Enter the s t op band a t t e nu a t i o n (dB) = −3
57 //
58 // Enter the sampl ing r a t e sample s / s e c = 8000
59 //
60 // D i g i t a l Pass band edge f r e q i n rad / sample s wp=
61 //
62 // 1 . 1780972
63 //
64 // D i g i t a l Stop band edge f r e q i n rad / sample s ws=

46

65 //
66 // 1 . 5707963
67 //
68 // Analog Pass Band Edge Freq . i n rad / s e c op=
69 //
70 // 10690 . 858
71 //
72 // Analog Stop band Edge Freq . i n rad / s e c os=
73 //
74 // 16000 .
75 //
76 // IIR F i l t e r o rd e r N =
77 //
78 // 2 .
79 //
80 // Cuto f f Frequency in rad / s e cond s OC =
81 //
82 // 17642 . 912
83 //
84 // Gain o f Analog IIR Chebyshev Type−I LPF Gain =
85 //
86 // 1 . 1 2 3D+08
87 //
88 // Po l e s o f Analog IIR Chebyshev Type−I LPF Po l e s =
89 //
90 // − 5867 . 861 + 9569 . 6927 i − 5867 . 861 − 9569 . 6927 i
91 //
92 // T ran s f e r f u n c t i o n o f Ananlog IIR Chebyshev Type−I

LPF H(S)=
93 //
94 // 1 . 1 2 3D+08
95 // −−−−−−−−−−−−−−−−−−−−−−−−−
96 // 2
97 // 1 . 2 6 0D+08 + 11735 . 722 s + s
98 //
99 // T ran s f e r f u n c t i o n o f D i g i t l a IIR Chebyshev LPF H(

Z)=
100 //

47

101 // 2
102 // 0 . 1971055 + 0 . 3942111 z + 0 . 1971055 z
103 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
104 // 2
105 // 0 . 3409008 − 0 . 4562766 z + z

48

Experiment: 12

Circular convolution of two
given sequences

Scilab code Solution 12.1 Program to perform circular convolution of two
sequences

1 // Capt ion : Program to per fo rm c i r c u l a r c o nv o l u t i o n
o f two s equ en c e s

2 clc;

3 clear;

4 close;

5 x1 = input(’ Enter the f i r s t d i s c r e t e s equence := ’)
6 x2 = input(’ Enter the second d i s c r e t e s equence := ’)
7 m = length(x1);// l e n g t h o f f i r s t s equence
8 n = length(x2);// l e n g t h o f s econd s equence
9 //To make l e n g t h o f x1 and x2 a r e equa l

10 if(m>n)

11 for i = n+1:m

12 x2(i)=0;

13 end

14 elseif(n>m)

15 for i = m+1:n

16 x1(i)=0;

17 end

49

18 end

19 N = length(x1);

20 x3 = zeros(1,N);// c i r c u l a r c o nv o l u t i o n r e s u l t
i n i t i a l i z e d to z e r o

21 a(1) = x2(1);

22 for j = 2:N

23 a(j) = x2(N-j+2);

24 end

25 for i = 1:N

26 x3(1) = x3(1)+x1(i)*a(i);

27 end

28 X(1,:) = a;

29 // Ca l c u l a t i o n o f c i r c u l a r c o nv o l u t i o n
30 for k =2:N

31 for j = 2:N

32 x2(j) = a(j-1);

33 end

34 x2(1) = a(N);

35 X(k,:) = x2;

36 for i = 1:N

37 a(i) = x2(i);

38 x3(k) = x3(k)+x1(i)*a(i);

39 end

40 end

41 disp(x3, ’ C i r c u l a r Convo lu t i on Re su l t x3 [n]= ’)
42 //Example
43 // Enter the f i r s t d i s c r e t e s equence := [2 , 1 , 2 , 1]
44 // Enter the second d i s c r e t e s equence := [1 , 2 , 3 , 4]
45 // C i r c u l a r Convo lu t i on Re su l t x3 [n]=
46 // 1 4 . 1 6 . 1 4 . 1 6 .
47 //

50

	
	Verification of Sampling theorem.
	Impulse response of a given system
	Linear Circular convolution of two given sequences
	Autocorrelation of a given sequence and verification of its properties.
	Cross correlation of given sequences and verification of its properties.
	Solving a given difference equation.
	Computation of N point DFT of a given sequence and to plot magnitude and phase spectrum.
	Linear convolution of two sequences using DFT and IDFT.
	Circular convolution of two given sequences using DFT and IDFT
	Design and implementation of FIR filter to meet given specifications.
	Design and implementation of IIR filter to meet given specifications.
	Circular convolution of two given sequences

