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Experiment: 1

Program for roots of Equation
using Bisection Method
accuracy criteria

Scilab code Solution 1.1 Bisection Method

//Scilab code Solution 1 Program for roots of
Equation using Bisection Method accuracy criteria

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 1

// Program for roots of Equation using Bisection
Method accuracy criteria

// Example — Write a computer program in SCILAB

to find root of equation as x"2—-8x+2..

//Take Accuracy as 0.01 using Bisection Method. Take
x1=0 and x2=1

// Input x1=0,x2=1,acc=0.01,f(x)=x"2—-8%x+2

clc;

clear;

close;
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deff (y=f(x)’, y=x"2—8xx+2")

x1=input ("Enter First Initial Guess = ’);

x2=input ('Enter Second Initial Guess = 7);

acc=input ("Enter the value of Accuracy =7);

1=0;

printf ("Iteration \t xI \t \t x2 \t \t z \t \t f(z)\
n )

while abs(x1-x2)>acc // Condition of Accuracy
z=(x1+x2)/2
printf ("%i\t \t%f \t%f \t%f \t%f \n ’,i,x1,x2,z,f(z
))// Print in form of Table
if £(z)*f(x1)>0 // Substitution of initial guess
for next iteration

xl=z
else
x2=z
end
i=i+1 // Increment in Iteration by 1 for each
step
end

printf (’ \n\n The solution of this equation is %g
after %i Iterations ’,z,i-1)// Display final
anaswe to User
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Experiment: 2

Program for roots of Equation
using Newton Raphson Method
accuracy criteria

Scilab code Solution 2.2 Newton Raphson Method

//Scilab code Solution 2 Program for roots of
Equation using Newton Raphson Method accuracy
criteria

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 2

// Program for roots of Equation using Newton
Raphson Method accuracy criteria

// Example — Solve using Newton Raphson Method x—exp
(—x)=0

//Take accuracy as 0.001 .Take x0=1
//Input x0=1,acc=0.001,f(x)=x—exp(—x)
clc;

clear;

close;
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deff ('y=f(x)’, y=x—exp(—x) ")
deff (y=fl(x)’, y=l+exp(—x) ")

x0 =input (’Enter Initial Guess = 7);
acc =input(’Enter the value of Accuracy =");
i=0;

printf (71 \t\t x0 \t\t x1 \n’)

x1=x0-(£(x0)/£1(x0))

printf ("%i\t\t%0.5f\t\t%0.5f \n’ ,i,x0 ,x1 )

while abs(x1-x0)>acc // Condition of Accuracy

x0=x1;

x1=x0-(£(x0)/£f1(x0)) // Formula of finding root of
Equation

i=i+1

printf (" %i\t \t%f \t%f \n ’,i,x0,x1) // Print in
form of Table

end

printf (’\n\n The root of equation is %0.5f ,x1) //
Display final answer to User




D O = W N

© 00

10

Experiment: 3

Program for Simultaneous
equations using Gauss
Elimination Method

Scilab code Solution 3.3 Gaussian Elimination method

//Scilab code Solution 3 Program for Simultaneous
equations using Guass Elimination Method

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 3

// Program for Simultaneous equations using Guass
Elimination Method

// Example — Write a computer program in SCILAB

to solve following set of simultaneous
equations using Gauss Elimination method.
//3 X 4+ 2Y + Z = 10
//2 X4+ 3Y+ 2Z =14
//X + 2Y + 3Z = 14
// Input coeffienct matrix a and solution matrix b
clc;
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clear all;
disp (’OUTPUT: ") ;
a=input ("Enter coefficient matrix a:=");
b=input ("Enter matrix b:=");
[m,n]=size(a);
if m“=n // Check condition of square matrix
error (’Matrix A must be square’);
end
//Perform Partial Pivoting
for i=1:1:n-1
for u=i+1:1:n
if (abs(a(u,i))>abs(a(i,i))) // Comparison
of Pivot Element
for v=1:1:n
temp=a(i,v); // Replacement of Pivot
Element
a(i,v)=a(u,v);
a(u,v)=temp;

end
temp=b (i) ;
b(i)=b(u);
b(u)=temp;
end
end
//Gauss Elimination — operation of Rows

for k=i+1:1:n
factor=a(k,i)/a(i,i);
for j=1:1:n
a(k,j)=a(k,j)-factor*a(i,j); // Formula to
make Coefficent Matrix in Upper
Triangular Matrix
end
b(k)=b(k)-factor*b(i); // Formula also
applicable to solution matrix
end
end
disp(’Final augmented matrix is:’);
disp(la,bl); //Display formed Upper Triagular Matrix

10
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// Back Substitution

for i=n:-1:1
temp=b(i);
for j=i+1:1:n

temp=temp-a(i,j)*x(j);

end

x(i)=temp/a(i,i); // Calculating the value of x
(3) ,x(2) and x(1)

end
disp(’Answer is
disp(x);

)

resp .

11
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Experiment: 4

Program for Ordinary

differential equation using
Euler Method

Scilab code Solution 4.4 Euler method

//Scilab code Solution 4 Program for Ordinary

//
//
//
//

//

differential equation using FEuler Method
Operating System  Windows 7

SCILAB version 6.1.1

Experiment No 4

Program for Ordinary differential equation using
Euler Method

Example — Write a computer program in SCILAB to
solve the ODE

//dy/dx=-xxy 2 using Eulers method under the

condition x=0,y=2.Find y at x=1 with h=0.1.

//Input function —xy 2,x0=0,y0=2,xn=1,h=0.1
clc;

close;

clear;

12
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deff ('y=f(x,y)’, 'y==x%xy"2’);// Enter the Function
x0=input ("Enter the value of x0=");
yO=input ("Enter the value of y0=");
xn=input ("Enter the value of xn=’");
h=input ("Enter the value of h=");
n=(xn-x0)/h; // Formuale for finding number of Step
Size
disp(n)
for i=1:1:mn
yn=y0+h*f (x0,y0);// Formulae use in Euler Method
x0=x0+h; // Increment in Step size
yO=yn; // Replacement of y0 as yn for next
iteration
printf (’Value of y(%f)=%f\n’,x0,y0);
end

13
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Experiment: 5

Program for Ordinary
differential equation using
Runge Kutta 4th order

Scilab code Solution 5.5 RK40RDER

//Scilab code Solution 5 Program for Ordinary
differential equation using Runge—Kutta 4th order

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 5

// Program for Ordinary differential equation using
Runge—Kutta 4th order

// Example — Write a computer program in SCILAB to
obtain the numerical solution of

//dy/dx=x"24+y" 2, y(0)=0,h=0.2. Estimate y(0.4) using
Runge Kutta 4 order method

//Input function x"24y"2,x0=0,y0=0,h=0.2,xn=0.4

clc;

close;

clear;

14



12 deff ('y=f(x,y,z)’ , y=xxx+y*xy’);// Enter the Function
13 x0=input (’Enter the value of x0=");

14 yO=input (’Enter the wvalue of y0=");

15 xn=input (’Enter the value of xn=");

16 h=input (’ Enter the value of h=7");

17 n=(xn-x0)/h;// Formuale for finding number of Step

Size
18 disp(n)
19 for i=1:1:mn
20 kl1=h*f(x0,y0);// Calculate value of kl
21 k2=hx*f (x0+h/2,y0+k1/2);// Calculate value of k2
22 k3=hx*f (x0+h/2,y0+k2/2);// Calculate value of k3
23 k4=hx*f (x0+h,y0+k3);// Calculate value of k4
24 k=(k1+2*k2+2%¥k3+k4)/6.0;// Calculate value of k
25 yn=yO+k;// Increment in Step size
26 x0=x0+h;// Increment in Step size
27 yO=yn;// Replacement of z0 as zl for next
iteration
28 printf (’Value of y(%f)=%f\n’,x0,y0);// Display y(
n)
29 end

15
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Experiment: 6

Program for Ordinary
differential equation using
Simultaneous equations using
Runge Kutta 2nd order method

Scilab code Solution 6.6 RK2Order Simultaneous

//Scilab code Solution 6 Program for Ordinary
differential equation using Simultaneous
equations using Runge—Kutta 2nd order method

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 6

// Program for Ordinary differential equation using
Simultaneous equations using Runge—Kutta 2nd
order method

// Example — Write a computer program in SCILAB to
to solve the equation

//dy/dx=-0.5%y,dz/dx=4-0.3xz—0.1xy Using runge kutta
second order simultaneous method where at x = 0,
y =4, z =6.

//Find y & z at x = 0.5 (take h=0.5)

16



9 //Input function f(x,y,z)=—0.5%xy, g(x,y,z)= 4—0.3%z
—0.1xy,x0=0,y0=4,z0=6,h=2,xn=0.5

10 clc;

11 clear;

12 deff ('y=f(x,y,z)’, y=-0.5%y’);// Enter the Function

13 deff(’'z=g(x,y,z)’ , 2=4—0.3%xz—0.1xy’);// Enter the
Function

14 x0=input (’Enter the value of x0=");

15 yO=input (’Enter the value of y0=");

16 zO=input (’Enter the value of z0=");

17 xn=input (’Enter the value of xn=");

18 h=input (' Enter the value of h=7");

19 n=(xn-x0)/h;// Formuale for finding number of Step

Size

20 for i=1:1:mn

21 ki1=h*f(x0,y0,2z0);// Calculate value of kl

22 Li=h*g(x0,y0,2z0);// Calculate value of LI

23 k2=hx*f (x0+h,y0+k1,z0+L1);// Calculate value of k2

24 L2=h*g(x0+h,y0+k1,z0+L1);// Calculate value of L2

25 k=(k1+k2)/2.0; // Finding out increment in y
direction

26 yl=y0+k;// Increment in Step size

27 L=(L1+L2)/2.0;// Finding out increment in z
direction

28 z1=2z0+L;// Increment in Step size

29 x0=x0+h; // Increment in Step size

30 yO=y1;// Replacement of y0 as yl for next
iteration

31 z0=z1;// Replacement of z0 as zl for next

iteration
32 printf (’value of y(%f)=%f\n’,x0,y0);// Display y(n
)
33 printf (’value of z(%f)=%f\n’,x0,z0);// Display z(n

)

34 end

17
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Experiment: 7

Program for Partial differential
equation using Simple Laplace
method

Scilab code Solution 7.7 Laplace Method

//Scilab code Solution 7 Program for Partial
differential equation using Simple Laplace method

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 7

// Program for Partial differential equation using

Simple Laplace method

// Example — A steel Plate of 750x750mm has its two
adjancent sides maintained at

//100 C .While the two other sides are maintained at
0 C .What will be the

//steady state temperature at interior assuming a
grid size of 250mm. Solve upto 11 iteration

19
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//Input function nl=11,n=4m=4,u(1,1)=0,u(2,1)=0,u
(3,1)=0,u(4,1)=0

//u(4,2)=0,u(4,3)=0,u(4,4)=0,u(3,4)=100,u(2,4)=100,u
(1,4)=100

//u(1,3)=100,u(1,2)=100

clc;

clear;

nl=input ("Enter the no. of iteration to solve
simultaneous eqn:’);

n=input (’ Enter the no.of mesh point(No.of B.V.
values) in x—direction: ’);

m=input (° Enter the no.of mesh point(No.of B.V.
values) in y—direction:’);

printf (’ Enter boundary value(B.V.) in anticlockwise
direction Starting from bottom left corner\n’);

u=zeros(m,n); //to create matrix of total size and
to take initial guess as 0,0,0...

for i=1:n// to take input as a boundary value at
bottom side
printf ('Enter u(%d,1)=",1);
u(i,1)=input(’’);

end

for j=2:m //to take I/P at Right hand side B.V.
bottom to top
printf (’Enter u(%d,%d)=",n,j);
u(n,j)=input(’’);

end

for i=n-1:-1:1 // to take I/P at top side B.V. right
to left
printf (’Enter u(%d,%d)=",1i,m);
u(i,m)=input(’’);

end

for j=m-1:-1:2 //to take I/P at left hand side B.V.
top to bottom
printf ("Enter u(1,%d)=",3);
u(l,j)=input(’ 7);

end

for k=1:n1 // To repeat nl iterations

20
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e
end

for j=2:m-1 //To calculate value at intermediate
point by Gauss Seidal method
for i=2:n-1
u(i,j)=1/4x(u(i-1,j)+u(i,j+1)+u(i+1,j)+u(i,
j-1));// Formula for finding Internal
Elements
end
end
printf (’Value after iteration mno.:%d\n’,k);
for j=m:-1:1 //To print value after each
[teration in Tabulated form
for i=1:n
printf (’\t %0.4f \t’ ,u(i,j));
end
printf (’\n’);
nd

21
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Experiment: 8

Program for Numerical
Integration using Trapezoidal
rule

Scilab code Solution 8.8 TrapezoidalRule

//Scilab code Solution> 8 Program for Numerical
Integration using Trapezoidal rule

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 8

// Program for Numerical Integration using
Trapezoidal rule

// Example — Write a computer program in SCILAB to
solve integration 4xx+2

//limits x0=0,xn=1 by using Trapezoidal Method.

//Take h=0.5.

//Program on Trapezoidal Rule

clc;

close;

clear;

22
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deff ('y=f(x)’, y=4%x+2");// Enter the Function
xO0=input ("Enter lower limit:’);// Enter Lower Limit
xn=input ("Enter upper limit:’);// Enter Upper Limit
h=input (’Enter step Size h:’);// Enter Step Size
x=%x0;
n=(xn-x0)/h;// Enter number of Step size
s=0;
for i=1:n-1
x=x+h;
s=s+2%f (x) ;
end
s=f(x0)+s+f(xn);
I=h/2*s;// Formula for finding Area by using
Trapezoidal Rule
printf (’Integration of given function is=%f\n’,I);

23
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Experiment: 9

Program for Numerical

Integration using Simpsons
1/3rd Rule

Scilab code Solution 9.9 Simpson 1 3rd Rule

//Scilab code Solution 9 Program for Numerical
Integration using Simpsons 1/3 rd Rule

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 9

// Program for Numerical Integration using

Simpsons 1/3 rd Rule

// Example — Write a Program in Scilab for finding
area of fucntion (sin(x))/(2+3*sin(x)) for

//upper limit of 1 and lower limit of 0.Take n=6 by
using Simpson’s 1/3 Rule

//Program on Simpson’s 1/3rd Rule

clc;

clear;

deff ('y=f(x)’, y=(sin(x))/(2+3xsin(x))’);// Enter

24



the Function

12 x0=input (’Enter lower limit:’);// Enter the lower
limit of x

13 xn=input (’Enter upper limit:’);// Enter the upper
limit of x

14 n=input(’Enter number of steps:’);// Enter the
number of steps

15 x=x0;

16 h=(xn-x0)/n;// Calculate step size

17 s=0;

18 for i=1:n-1

19 x=x+h;

20 if modulo(i,2)==0 // Calculating Even Term of
Simpson 1/3rd Formula

21 s=s+2*xf (x);

22 else

23 s=s+4xf (x);

24 end

25 end

26 s=f(x0)+s+f(xn);

27 I=(h/3)*s;// Finding Integrating value

28 printf(’\nlntegration of given function is=%f\n’,I);
// Display Value

25



QU = W N

10
11

Experiment: 10

Program for Numerical

Integration using Simpsons
3/8th Rule.

Scilab code Solution 10.10 Simpson 3 8th Rule

//Scilab code Solution 10 Program for Numerical
Integration using Simpsons 3/8 Rule

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 10

// Program for Numerical Integration using
Simpsons 3/8 Rule

// Example — Write a Program in Scilab for finding
area of fucntion exp(x)/x for

//upper limit of 2 and lower limit of 1.Take n=6 by
using Simpson’s 3/8 Rule

//Program on Simpson’s 3/8th Rule

clc;

close;

clear;

26
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deff ('y=f(x)’, y=exp(x)/x’);// Enter function
xO0=input ("Enter lower limit:’);// Enter lower limit

of x

xn=input ("Enter upper limit:’);// Enter upper limit
of x

n=input ("'Enter number of steps:’);// Enter number of
step

x=x0;

h=(xn-x0)/n;// Finding out of step size

s=0;

for i=1:n-1
x=x+h;

if modulo(i,3)==0 // Condition for adding the odd
value together
s=s+2*xf (x) ;
else
s=s+3*f (x);
end
end
s=f (x0)+f (xn)+s;
I=((3xh)/8)*s; // Calculating Area
printf (’\nlntegration of given function is=%f\n’,I);

27
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Experiment: 11

Program for Numerical
Integration using Gauss
Quadrature 2-point and 3-point
method

Scilab code Solution 11.11 Gauss 2 and 3 Point Method

//Scilab code Solution 11 Program for Numerical

//

Integration using Gauss Quadrature 2—point and 3—
point method

Operating System Windows 7

SCILAB version 6.1.1

Experiment No 11

Program for Numerical Integration wusing Gauss
Quadrature 2—point and 3—point method

Example Write a Program in Scilab to solve
using two—point or three point Gauss quadrature
rule to

//approximate the distance covered by a rocket from

t =8 to t = 30 as given by

//x=(2000%1og (140000/(140000 —2100%t)) —9.8xt)

//

Enter a=lower limit=8,b=upper limit=30,n=Enter 2

28
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or 3 depend upon Guass 2 point or 3 point formula
//Program on Gauss Quadrature 2—point and 3—point
method
clc;
clear;
deff ('x=f(t)’, x=(2000%x1log (140000/(140000—-2100xt))
—9.8%t)’);// Enter the function
a=input ('Enter lower limit:’);// Enter the lower
limit of Integration
b=input (’Enter upper limit:’);// Enter the upper
limit of Integration
n=input ("’Enter 2 point or 3 point method:’);// Enter
which method you are suppose to use
if n== // For executing 2 Point Method
c=(b-a)/2;
d=(b+a)/2;
z1=-1/sqrt (3);
z2=1/sqrt (3);
xl=c*xzl+d;
x2=c*xz2+d;
I=c*(f(x1)+£f(x2));// Formula for finding
Integration value
else // For executing 3 Point Method
c=(b-a)/2;
d=(b+a)/2;
zl=sqrt (3/5);
z2=-sqrt (3/5) ;
x1l=c*xzl+d;
x2=c*xz2+d;
x3=d;
I=c*(5/9*%f(x1)+5/9%f (x2)+8/9*f(x3));// Formula
for finding Integration value
end
printf (’\n Integration of given function is=%f\n’,I)
;// Display the Integration

29
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Experiment: 12

Program for Numerical Double
Integration using Trapezoidal
rule

Scilab code Solution 12.12 Trapezoidal Double Rule

//Scilab code Solution 12 Program for Numerical
Double Integration using Trapezoidal rule

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 12

// Program for Numerical Double Integration using

Trapezoidal rule

// Example — Write a Program in Scilab for finding
area of fucntion x+y for

//upper limit of 0 and lower limit of 1 for x,y.Take
n=m=6 by using Numerical Double Integration
using Trapezoidal rule

//Take f(x,y)=x+y,x0=0,xn=1,y0=0,yn=1,n=m=6

// Program for Numerical Double Integration using
Trapezoidal rule

31
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clc;
close;
clear;
deff (y=f(x,y)’, 'y=x+y’');// Enter function
x0=input ("Enter x0 lower limit of x:’);// Enter
lower limit of x
xn=input (’Enter xn upper limit of x:’);// Enter
upper limit of x
n=input (’Enter no. of steps in x-direction:’);//
Enter number of step size in x axis
yO=input ("Enter y0 lower limit of y:’);// Enter
lower limit of y
ym=input (’Enter ym upper limit of y:’);// Enter
upper limit of y
m=input (’Enter no. of steps in y—direction:’);//
Enter number of step size in y axis
h=(xn-x0)/n;// Enter step size in x axis
k=(ym-y0)/m;// Enter step size in y axis
s=0;
x=x0;// Replacement of x by x0
y=y0;// Replacement of y by y0
for i=1:1:m+1
for j=1:1:n+1
a(i,j)=f(x,y);// Alloting pivot point by
putting value in function
x=x+h; //Increament in x axis
end
y=y+k; //Increament in y axis
x=x0;
end
disp([al);
for i=1:1:m
for j=1:1:mn
s=s+a(i,j)+a(i,j+1)+a(i+1l,j)+a(i+l,j+1);
end
end
I=h*k/4xs;// Calculating the Area

printf (’Integration of given function is=%f\n’,I);
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// Display the Area
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Experiment: 13

Program for Curve fitting using
least square technique for first
order equation

Scilab code Solution 13.13 First Order Equation

//Scilab code Solution 13 Program for Curve

fitting using least square technique for first
order equation

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 13

// Program for Curve fitting using least square
technique for first order equation

// Example — Write a computer program in SCILAB to
fit a straight line to the data given below

/) x=[1 2 3 45 6 7];

//y=1]0.5 2.5 2.0 4.0 3.5 6.0 5.5];

clc;

close;
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clear;

//x=input (’enter value of x matrix ")

x=[1 2 3 45 6 7];// Enter the x values (Dependent
Variables)

disp ([x1);

//y=input ("enter value of y matrix’)

y=[0.5 2.5 2.0 4.0 3.5 6.0 5.5];// Enter the y
values (Independent Variables)

disp ([yl);

n=length(x);// Enter the data in x values

Y=y;

X=x;

X2=X.xX;// Calculating X«X Values( .x indicates that
multiplication between respective value of x)
XY=X.*Y;// Calculating Xxy Values( .x indicates that

multiplication between respective value of x and
y)
a0=(sum(Y)*sum(X2)-sum(X)*sum(XY))/(n*xsum(X2) -(sum(X
)~2)); // Calculating coefficient a0
al=((n*sum(XY)-sum(X)*sum(Y))/(n*sum(X2) -(sum(X)) ~2)
);// Calculating coefficient al
a=al;//Replacement value of a
b=a0;//Replacement value of b
printf (’\n y=%fxx+%f’,a,b);// Display y=ax+b
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Experiment: 14

Program for Curve fitting using
least square technique for
power equation

Scilab code Solution 14.14 Power Equation

//Scilab code Solution 14 Program for Curve
fitting using least square technique for power
equation

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 14

/] 14 Program for Curve fitting using least square
technique for power equation

// Example — Write a computer program in SCILAB to
fit a power equation y=ax b to the data given
below :

/] x=[1 2 3 4 5];

//y=[0.5 1.7 3.4 5.7 8.4];

// Program for Curve fitting using least square
technique for power equation
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clc;

close;

clear;

//x=input ("enter value of x matrix ’)

x=[1 2 3 4 5];// Enter X values( Dependent Variables
)

disp ([x]);

//y=input ("enter value of y matrix’)

y=[0.5 1.7 3.4 5.7 8.4]1;// Enter Y Values(
Independent variables)

disp([lyl);

n=length(x);// calculate length of x

Y=1log(y);// Calculate valur of Y

X=log(x);// Calculate valur of X

X2=X.xX;// Calculate valur of X«X

XY=X.*Y// Calculate valur of XxY

a0=(sum(Y)*sum(X2) -sum (X) *sum (XY))/(n*sum(X2) -(sum (X
)"2));// Calculating coefficienct a0

al=((n*xsum (XY)-sum(X) *sum(Y))/(n*sum(X2) -(sum (X)) ~2)
);// Calculating coefficient al

a=exp(a0); // Replacement of value

b=al;//Replacement of value

printf (’\n y=%f*x"%f’,a,b);//Display y= ax"b

37



QU = W N

co

10
11

Experiment: 15

Program for Curve fitting using
least square technique for
exponential equation

Scilab code Solution 15.15 Exponential Equation

//Scilab code Solution 15 Program for Curve
fitting using least square technique for
exponential equation

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 15

/] 15 Program for Curve fitting using least square
technique for exponential equation

// Example — Write a computer program in SCILAB to
fit a exponential equation y=ae bx to the data
given below :

// x=[1 3 5 7 9];

//y=1[2.473 6.722 18.274 49.673 135.026];

// Program for Curve fitting using least square
technique for exponential equation

clc;

close;
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clear;

//x=input (’enter value of x matrix ")

x=[1.0 3.0 5.0 7.0 9.0];// Enter x values(Dependent
Variables)

disp ([x1);

//y=input ("enter value of y matrix’)

y=[2.473 6.722 18.274 49.673 135.026]1;// Enter y
values (Indepent Variables)

disp ([yl);

n=length(x);// Calculate number of data enter in x

Y=1log(y);// Calculating Y Value

X=x;

X2=X.*X;// Calculating X«X Value( .x indicates
respective value of x is multipled with
respective x value)

XY=X.*xY//// Calculating XxY Value

a0=(sum(Y)*sum(X2)-sum (X) *sum (XY))/(n*sum(X2) -(sum (X
)~2));// Calculating coefficient a0

al=((n*xsum (XY)-sum(X) *sum(Y))/(n*sum(X2) -(sum (X)) ~2)
);// Calculating coefficient al

a=exp(a0);// Finding the value of a

b=al;// Finding the value of a

printf (’\n y=%fxe %fxx’,a,b);//Displaying y=ae b
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