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Experiment: 1

Program for roots of Equation
using Bisection Method
accuracy criteria

Scilab code Solution 1.1 Bisection Method

1 // S c i l a b code S o l u t i o n 1 Program f o r r o o t s o f
Equat ion u s i n g B i s e c t i o n Method accu ra cy c r i t e r i a

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 1
5 // Program f o r r o o t s o f Equat ion u s i n g B i s e c t i o n

Method accu racy c r i t e r i a
6 // Example − Write a computer program in SCILAB

to f i n d r o o t o f e qua t i on as xˆ2−8x+2 . .
7 //Take Accuracy as 0 . 0 1 u s i n g B i s e c t i o n Method . Take

x1=0 and x2=1
8 // Input x1=0 , x2=1 , acc =0.01 , f ( x )=xˆ2−8∗x+2
9 clc;

10 clear;

11 close;
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12 deff( ’ y=f ( x ) ’ , ’ y=xˆ2−8∗x+2 ’ )
13 x1=input( ’ Enter F i r s t I n i t i a l Guess = ’ );
14 x2=input( ’ Enter Second I n i t i a l Guess = ’ );
15 acc=input( ’ Enter the va lu e o f Accuracy = ’ );
16 i=0;

17 printf( ’ I t e r a t i o n \ t x1 \ t \ t x2 \ t \ t z \ t \ t f ( z ) \
n ’ )

18 while abs(x1-x2)>acc // Cond i t i on o f Accuracy
19 z=(x1+x2)/2

20 printf ( ’ %i\ t \ t%f \ t%f \ t%f \ t%f \n ’ ,i,x1,x2,z,f(z
))// Pr i n t i n form o f Table

21 if f(z)*f(x1) >0 // S u b s t i t u t i o n o f i n i t i a l gu e s s
f o r next i t e r a t i o n

22 x1=z

23 else

24 x2=z

25 end

26 i=i+1 // Increment i n I t e r a t i o n by 1 f o r each
s t ep

27 end

28 printf( ’ \n\n The s o l u t i o n o f t h i s e qua t i on i s %g
a f t e r %i I t e r a t i o n s ’ ,z,i-1) // D i sp l ay f i n a l
anaswe to User
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Experiment: 2

Program for roots of Equation
using Newton Raphson Method
accuracy criteria

Scilab code Solution 2.2 Newton Raphson Method

1 // S c i l a b code S o l u t i o n 2 Program f o r r o o t s o f
Equat ion u s i n g Newton Raphson Method accu ra cy
c r i t e r i a

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 2
5 // Program f o r r o o t s o f Equat ion u s i n g Newton

Raphson Method accu ra cy c r i t e r i a
6 // Example − So l v e u s i n g Newton Raphson Method x−exp

(−x )=0
7 //Take ac cu ra cy as 0 . 0 0 1 . Take x0=1
8 // Input x0=1 , acc =0.001 , f ( x )=x−exp(−x )
9 clc;

10 clear;

11 close;
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12 deff( ’ y=f ( x ) ’ , ’ y=x−exp(−x ) ’ )
13 deff( ’ y=f 1 ( x ) ’ , ’ y=1+exp(−x ) ’ )
14 x0 =input( ’ Enter I n i t i a l Guess = ’ );
15 acc =input( ’ Enter the va l u e o f Accuracy = ’ );
16 i=0;

17 printf( ’ i \ t \ t x0 \ t \ t x1 \n ’ )
18 x1=x0 -(f(x0)/f1(x0))

19 printf( ’ %i\ t \t%0 . 5 f \ t \t%0 . 5 f \n ’ ,i,x0 ,x1 )

20 while abs(x1-x0)>acc // Cond i t i on o f Accuracy
21 x0=x1;

22 x1=x0 -(f(x0)/f1(x0)) // Formula o f f i n d i n g r o o t o f
Equat ion

23 i=i+1

24 printf ( ’ %i\ t \ t%f \ t%f \n ’ ,i,x0,x1) // Pr i n t i n
form o f Table

25 end

26 printf( ’ \n\n The r o o t o f e qua t i on i s %0 . 5 f ’ ,x1) //
D i sp l ay f i n a l answer to User

8



Experiment: 3

Program for Simultaneous
equations using Gauss
Elimination Method

Scilab code Solution 3.3 Gaussian Elimination method

1 // S c i l a b code S o l u t i o n 3 Program f o r S imu l taneous
e qua t i o n s u s i n g Guass E l im i n a t i o n Method

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 3
5 // Program f o r S imu l taneous e qua t i o n s u s i n g Guass

E l im i n a t i o n Method
6 // Example − Write a computer program in SCILAB

to s o l v e f o l l o w i n g s e t o f s imu l t an eou s
e qua t i o n s u s i n g Gauss E l im i n a t i o n method .

7 // 3 X + 2Y + Z = 10
8 // 2 X + 3 Y + 2Z = 14
9 //X + 2Y + 3Z = 14

10 // Input c o e f f i e n c t matr ix a and s o l u t i o n matr ix b
11 clc;
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12 clear all;

13 disp( ’OUTPUT: ’ );
14 a=input( ’ Enter c o e f f i c i e n t matr ix a := ’ );
15 b=input( ’ Enter matr ix b:= ’ );
16 [m,n]=size(a);

17 if m~=n // Check c o nd i t i o n o f s qua r e matr ix
18 error( ’ Matr ix A must be squa r e ’ );
19 end

20 // Perform P a r t i a l P i v o t i n g
21 for i=1:1:n-1

22 for u=i+1:1:n

23 if (abs(a(u,i))>abs(a(i,i))) // Comparison
o f P ivot Element

24 for v=1:1:n

25 temp=a(i,v); // Replacement o f P ivot
Element

26 a(i,v)=a(u,v);

27 a(u,v)=temp;

28 end

29 temp=b(i);

30 b(i)=b(u);

31 b(u)=temp;

32 end

33 end

34 //Gauss E l im i n a t i o n − op e r a t i o n o f Rows
35 for k=i+1:1:n

36 factor=a(k,i)/a(i,i);

37 for j=1:1:n

38 a(k,j)=a(k,j)-factor*a(i,j); // Formula to
make C o e f f i c e n t Matr ix i n Upper
T r i angu l a r Matr ix

39 end

40 b(k)=b(k)-factor*b(i); // Formula a l s o
a p p l i c a b l e to s o l u t i o n matr ix

41 end

42 end

43 disp( ’ F i n a l augmented matr ix i s : ’ );
44 disp([a,b]); // D i sp l ay formed Upper T r i a g u l a r Matr ix
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45 // Back S u b s t i t u t i o n
46 for i=n:-1:1

47 temp=b(i);

48 for j=i+1:1:n

49 temp=temp -a(i,j)*x(j);

50 end

51 x(i)=temp/a(i,i); // Ca l c u l a t i n g the va lu e o f x
( 3 ) , x ( 2 ) and x ( 1 ) r e s p .

52 end

53 disp( ’ Answer i s : ’ );
54 disp(x);
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Experiment: 4

Program for Ordinary
differential equation using
Euler Method

Scilab code Solution 4.4 Euler method

1 // S c i l a b code S o l u t i o n 4 Program f o r Ordinary
d i f f e r e n t i a l e qua t i on u s i n g Eu l e r Method

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 4
5 // Program f o r Ordinary d i f f e r e n t i a l e qua t i on u s i n g

Eu l e r Method
6 // Example − Write a computer program in SCILAB to

s o l v e the ODE
7 //dy/dx=−x∗yˆ2 u s i n g E u l e r s method under the

c o n d i t i o n x=0 ,y=2. Find y at x=1 with h=0 .1 .
8 // Input f u n c t i o n −xy ˆ2 , x0=0 , y0=2 ,xn=1 ,h=0.1
9 clc;

10 close;

11 clear;
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12 deff( ’ y=f ( x , y ) ’ , ’ y=−x∗yˆ2 ’ );// Enter the Funct ion
13 x0=input( ’ Enter the va lu e o f x0= ’ );
14 y0=input( ’ Enter the va lu e o f y0= ’ );
15 xn=input( ’ Enter the va lu e o f xn= ’ );
16 h=input( ’ Enter the va l u e o f h= ’ );
17 n=(xn-x0)/h; // Formuale f o r f i n d i n g number o f Step

S i z e
18 disp(n)

19 for i=1:1:n

20 yn=y0+h*f(x0 ,y0);// Formulae use i n Eu l e r Method
21 x0=x0+h; // Increment i n Step s i z e
22 y0=yn; // Replacement o f y0 as yn f o r next

i t e r a t i o n
23 printf( ’ Value o f y (%f )=%f\n ’ ,x0 ,y0);
24 end
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Experiment: 5

Program for Ordinary
differential equation using
Runge Kutta 4th order

Scilab code Solution 5.5 RK4ORDER

1 // S c i l a b code S o l u t i o n 5 Program f o r Ordinary
d i f f e r e n t i a l e qua t i on u s i n g Runge−Kutta 4 th o rd e r

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 5
5 // Program f o r Ordinary d i f f e r e n t i a l e qua t i on u s i n g

Runge−Kutta 4 th o rd e r
6 // Example − Write a computer program in SCILAB to

ob ta i n the numer i c a l s o l u t i o n o f
7 //dy/dx=xˆ2+y ˆ2 , y ( 0 ) =0 ,h=0 .2 . Est imate y ( 0 . 4 ) u s i n g

Runge Kutta 4 o rd e r method
8 // Input f u n c t i o n xˆ2+y ˆ2 , x0=0 , y0=0 ,h=0.2 , xn=0.4
9 clc;

10 close;

11 clear;
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12 deff( ’ y=f ( x , y , z ) ’ , ’ y=x∗x+y∗y ’ );// Enter the Funct ion
13 x0=input( ’ Enter the va lu e o f x0= ’ );
14 y0=input( ’ Enter the va lu e o f y0= ’ );
15 xn=input( ’ Enter the va lu e o f xn= ’ );
16 h=input( ’ Enter the va l u e o f h= ’ );
17 n=(xn-x0)/h;// Formuale f o r f i n d i n g number o f Step

S i z e
18 disp(n)

19 for i=1:1:n

20 k1=h*f(x0,y0);// Ca l c u l a t e va l u e o f k1
21 k2=h*f(x0+h/2,y0+k1/2);// Ca l c u l a t e va l u e o f k2
22 k3=h*f(x0+h/2,y0+k2/2);// Ca l c u l a t e va l u e o f k3
23 k4=h*f(x0+h,y0+k3);// Ca l c u l a t e va l u e o f k4
24 k=(k1+2*k2+2*k3+k4)/6.0; // Ca l c u l a t e va l u e o f k
25 yn=y0+k;// Increment i n Step s i z e
26 x0=x0+h;// Increment i n Step s i z e
27 y0=yn;// Replacement o f z0 as z1 f o r next

i t e r a t i o n
28 printf( ’ Value o f y (%f )=%f\n ’ ,x0 ,y0);// D i sp l ay y (

n )
29 end
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Experiment: 6

Program for Ordinary
differential equation using
Simultaneous equations using
Runge Kutta 2nd order method

Scilab code Solution 6.6 RK2Order Simultaneous

1 // S c i l a b code S o l u t i o n 6 Program f o r Ordinary
d i f f e r e n t i a l e qua t i on u s i n g S imu l taneous
e qua t i o n s u s i n g Runge−Kutta 2nd o rd e r method

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 6
5 // Program f o r Ordinary d i f f e r e n t i a l e qua t i on u s i n g

S imu l taneous e qua t i o n s u s i n g Runge−Kutta 2nd
o rd e r method

6 // Example − Write a computer program in SCILAB to
to s o l v e the equa t i on

7 //dy/dx=−0.5∗y , dz /dx=4−0.3∗z −0.1∗y Using runge kut ta
second o rd e r s imu l t an eou s method where at x = 0 ,
y =4 , z =6.

8 // Find y & z at x = 0 . 5 ( take h=0.5)
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9 // Input f u n c t i o n f ( x , y , z ) =−0.5∗y , g ( x , y , z )= 4−0.3∗ z
−0.1∗y , x0=0 , y0=4 , z0=6 ,h=2 ,xn=0.5

10 clc;

11 clear;

12 deff( ’ y=f ( x , y , z ) ’ , ’ y=−0.5∗y ’ );// Enter the Funct ion
13 deff( ’ z=g ( x , y , z ) ’ , ’ z=4−0.3∗z −0.1∗y ’ );// Enter the

Funct ion
14 x0=input( ’ Enter the va lu e o f x0= ’ );
15 y0=input( ’ Enter the va lu e o f y0= ’ );
16 z0=input( ’ Enter the va lu e o f z0= ’ );
17 xn=input( ’ Enter the va lu e o f xn= ’ );
18 h=input( ’ Enter the va l u e o f h= ’ );
19 n=(xn -x0)/h;// Formuale f o r f i n d i n g number o f Step

S i z e
20 for i=1:1:n

21 k1=h*f(x0,y0 ,z0);// Ca l c u l a t e va l u e o f k1
22 L1=h*g(x0,y0 ,z0);// Ca l c u l a t e va l u e o f L1
23 k2=h*f(x0+h,y0+k1,z0+L1);// Ca l c u l a t e va l u e o f k2
24 L2=h*g(x0+h,y0+k1,z0+L1);// Ca l c u l a t e va l u e o f L2
25 k=(k1+k2)/2.0; // F ind ing out inc r ement i n y

d i r e c t i o n
26 y1=y0+k;// Increment i n Step s i z e
27 L=(L1+L2)/2.0; // F ind ing out inc r ement i n z

d i r e c t i o n
28 z1=z0+L;// Increment i n Step s i z e
29 x0=x0+h;// Increment i n Step s i z e
30 y0=y1;// Replacement o f y0 as y1 f o r next

i t e r a t i o n
31 z0=z1;// Replacement o f z0 as z1 f o r next

i t e r a t i o n
32 printf( ’ v a l u e o f y (%f )=%f\n ’ ,x0 ,y0);// D i sp l ay y ( n

)
33 printf( ’ v a l u e o f z (%f )=%f\n ’ ,x0 ,z0);// D i sp l ay z ( n

)
34 end

17



18



Experiment: 7

Program for Partial differential
equation using Simple Laplace
method

Scilab code Solution 7.7 Laplace Method

1 // S c i l a b code S o l u t i o n 7 Program f o r P a r t i a l
d i f f e r e n t i a l e qua t i on u s i n g S imple Lap lace method

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 7
5 // Program f o r P a r t i a l d i f f e r e n t i a l e qua t i on u s i n g

S imple Lap lace method
6 // Example − A s t e e l P l a t e o f 750x750mm has i t s two

ad j an c en t s i d e s ma inta ined at
7 // 100 C . While the two o th e r s i d e s a r e ma inta ined at

0 C .What w i l l be the
8 // s t eady s t a t e t empera tu r e at i n t e r i o r assuming a

g r i d s i z e o f 250mm. So l v e upto 11 i t e r a t i o n
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9 // Input f u n c t i o n n1=11 ,n=4 ,m=4 ,u ( 1 , 1 ) =0 ,u ( 2 , 1 ) =0 ,u
( 3 , 1 ) =0 ,u ( 4 , 1 )=0

10 //u ( 4 , 2 ) =0 ,u ( 4 , 3 ) =0 ,u ( 4 , 4 ) =0 ,u ( 3 , 4 ) =100 ,u ( 2 , 4 ) =100 ,u
( 1 , 4 ) =100

11 //u ( 1 , 3 ) =100 ,u ( 1 , 2 ) =100
12 clc;

13 clear;

14 n1=input( ’ Enter the no . o f i t e r a t i o n to s o l v e
s imu l t an eou s eqn : ’ );

15 n=input( ’ Enter the no . o f mesh po i n t (No . o f B .V.
v a l u e s ) i n x−d i r e c t i o n : ’ );

16 m=input( ’ Enter the no . o f mesh po i n t (No . o f B .V.
v a l u e s ) i n y−d i r e c t i o n : ’ );

17 printf( ’ Enter boundary va lu e (B .V . ) i n a n t i c l o c kw i s e
d i r e c t i o n S t a r t i n g from bottom l e f t c o r n e r \n ’ );

18 u=zeros(m,n); // to c r e a t e matr ix o f t o t a l s i z e and
to take i n i t i a l gu e s s as 0 , 0 , 0 . . .

19 for i=1:n// to take input as a boundary va lu e at
bottom s i d e

20 printf( ’ Enter u (%d, 1 )= ’ ,i);
21 u(i,1)=input( ’ ’ );
22 end

23 for j=2:m // to take I /P at Right hand s i d e B .V.
bottom to top

24 printf( ’ Enter u (%d,%d)= ’ ,n,j);
25 u(n,j)=input( ’ ’ );
26 end

27 for i=n-1: -1:1 // to take I /P at top s i d e B .V. r i g h t
to l e f t

28 printf( ’ Enter u (%d,%d)= ’ ,i,m);
29 u(i,m)=input( ’ ’ );
30 end

31 for j=m-1: -1:2 // to take I /P at l e f t hand s i d e B .V.
top to bottom

32 printf( ’ Enter u ( 1 ,%d)= ’ ,j);
33 u(1,j)=input( ’ ’ );
34 end

35 for k=1:n1 // To r ep e a t n1 i t e r a t i o n s
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36 for j=2:m-1 //To c a l c u l a t e va l u e at i n t e rmed i a t e
po i n t by Gauss S e i d a l method

37 for i=2:n-1

38 u(i,j)=1/4*(u(i-1,j)+u(i,j+1)+u(i+1,j)+u(i,

j-1));// Formula f o r f i n d i n g I n t e r n a l
Elements

39 end

40 end

41 printf( ’ Value a f t e r i t e r a t i o n no . : %d\n ’ ,k);
42 for j=m:-1:1 //To p r i n t va l u e a f t e r each

I t e r a t i o n i n Tabulated form
43 for i=1:n

44 printf( ’ \ t %0 . 4 f \ t ’ ,u(i,j));
45 end

46 printf( ’ \n ’ );
47 end

48 end
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Experiment: 8

Program for Numerical
Integration using Trapezoidal
rule

Scilab code Solution 8.8 TrapezoidalRule

1 // S c i l a b code So l u t i on> 8 Program f o r Numer ica l
I n t e g r a t i o n u s i n g Trap e z o i d a l r u l e

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 8
5 // Program f o r Numer ica l I n t e g r a t i o n u s i n g

Trap e z o i d a l r u l e
6 // Example − Write a computer program in SCILAB to

s o l v e i n t e g r a t i o n 4∗x+2
7 // l i m i t s x0=0 ,xn=1 by u s i n g Trap e z o i d a l Method .
8 //Take h=0 .5 .
9 //Program on Trap e z o i d a l Rule

10 clc;

11 close;

12 clear;
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13 deff( ’ y=f ( x ) ’ , ’ y=4∗x+2 ’ );// Enter the Funct ion
14 x0=input( ’ Enter l owe r l i m i t : ’ );// Enter Lower L imit
15 xn=input( ’ Enter upper l i m i t : ’ );// Enter Upper L imit
16 h=input( ’ Enter s t e p S i z e h : ’ );// Enter Step S i z e
17 x=x0;

18 n=(xn-x0)/h;// Enter number o f Step s i z e
19 s=0;

20 for i=1:n-1

21 x=x+h;

22 s=s+2*f(x);

23 end

24 s=f(x0)+s+f(xn);

25 I=h/2*s;// Formula f o r f i n d i n g Area by u s i n g
Trap e z o i d a l Rule

26 printf( ’ I n t e g r a t i o n o f g i v en f u n c t i o n i s=%f\n ’ ,I);
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Experiment: 9

Program for Numerical
Integration using Simpsons
1/3rd Rule

Scilab code Solution 9.9 Simpson 1 3rd Rule

1 // S c i l a b code S o l u t i o n 9 Program f o r Numer ica l
I n t e g r a t i o n u s i n g S i m p s o n s 1/3 rd Rule

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 9
5 // Program f o r Numer ica l I n t e g r a t i o n u s i n g

S i m p s o n s 1/3 rd Rule
6 // Example − Write a Program in S c i l a b f o r f i n d i n g

a r ea o f f u c n t i o n ( s i n ( x ) ) /(2+3∗ s i n ( x ) ) f o r
7 // upper l i m i t o f 1 and l owe r l i m i t o f 0 . Take n=6 by

u s i n g Simpson ’ s 1/3 Rule
8 //Program on Simpson ’ s 1/3 rd Rule
9 clc;

10 clear;

11 deff( ’ y=f ( x ) ’ , ’ y=( s i n ( x ) ) /(2+3∗ s i n ( x ) ) ’ );// Enter
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the Funct ion
12 x0=input( ’ Enter l owe r l i m i t : ’ );// Enter the l owe r

l i m i t o f x
13 xn=input( ’ Enter upper l i m i t : ’ );// Enter the upper

l i m i t o f x
14 n=input( ’ Enter number o f s t e p s : ’ );// Enter the

number o f s t e p s
15 x=x0;

16 h=(xn-x0)/n;// Ca l c u l a t e s t e p s i z e
17 s=0;

18 for i=1:n-1

19 x=x+h;

20 if modulo(i,2) ==0 // Ca l c u l a t i n g Even Term o f
Simpson 1/3 rd Formula

21 s=s+2*f(x);

22 else

23 s=s+4*f(x);

24 end

25 end

26 s=f(x0)+s+f(xn);

27 I=(h/3)*s;// F ind ing I n t e g r a t i n g va lu e
28 printf( ’ \ n I n t e g r a t i o n o f g i v en f u n c t i o n i s=%f\n ’ ,I);

// D i sp l ay Value
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Experiment: 10

Program for Numerical
Integration using Simpsons
3/8th Rule.

Scilab code Solution 10.10 Simpson 3 8th Rule

1 // S c i l a b code S o l u t i o n 10 Program f o r Numer ica l
I n t e g r a t i o n u s i n g S i m p s o n s 3/8 Rule

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 10
5 // Program f o r Numer ica l I n t e g r a t i o n u s i n g

S i m p s o n s 3/8 Rule
6 // Example − Write a Program in S c i l a b f o r f i n d i n g

a r ea o f f u c n t i o n exp ( x ) /x f o r
7 // upper l i m i t o f 2 and l owe r l i m i t o f 1 . Take n=6 by

u s i n g Simpson ’ s 3/8 Rule
8 //Program on Simpson ’ s 3/8 th Rule
9 clc;

10 close;

11 clear;
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12 deff( ’ y=f ( x ) ’ , ’ y=exp ( x ) /x ’ );// Enter f u n c t i o n
13 x0=input( ’ Enter l owe r l i m i t : ’ );// Enter l owe r l i m i t

o f x
14 xn=input( ’ Enter upper l i m i t : ’ );// Enter upper l i m i t

o f x
15 n=input( ’ Enter number o f s t e p s : ’ );// Enter number o f

s t e p
16 x=x0;

17 h=(xn-x0)/n;// F ind ing out o f s t e p s i z e
18 s=0;

19 for i=1:n-1

20 x=x+h;

21 if modulo(i,3) ==0 // Cond i t i on f o r adding the odd
va lu e t o g e t h e r

22 s=s+2*f(x);

23 else

24 s=s+3*f(x);

25 end

26 end

27 s=f(x0)+f(xn)+s;

28 I=((3*h)/8)*s; // Ca l c u l a t i n g Area
29 printf( ’ \ n I n t e g r a t i o n o f g i v en f u n c t i o n i s=%f\n ’ ,I);
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Experiment: 11

Program for Numerical
Integration using Gauss
Quadrature 2-point and 3-point
method

Scilab code Solution 11.11 Gauss 2 and 3 Point Method

1 // S c i l a b code S o l u t i o n 11 Program f o r Numer ica l
I n t e g r a t i o n u s i n g Gauss Quadrature 2−po i n t and 3−
po i n t method

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 11
5 // Program f o r Numer ica l I n t e g r a t i o n u s i n g Gauss

Quadrature 2−po i n t and 3−po i n t method
6 // Example − Write a Program in S c i l a b to s o l v e

u s i n g two−po i n t or t h r e e po i n t Gauss quadra tu r e
r u l e to

7 // approx imate the d i s t a n c e cove r ed by a r o c k e t from
t = 8 to t = 30 as g i v en by

8 //x=(2000∗ l o g (140000/(140000 −2100∗ t ) ) −9.8∗ t )
9 // Enter a=lowe r l i m i t =8 ,b=upper l i m i t =30 ,n=Enter 2
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or 3 depend upon Guass 2 po i n t or 3 po i n t f o rmu la
10 //Program on Gauss Quadrature 2−po i n t and 3−po i n t

method
11 clc;

12 clear;

13 deff( ’ x=f ( t ) ’ , ’ x=(2000∗ l o g (140000/(140000 −2100∗ t ) )
−9.8∗ t ) ’ );// Enter the f u n c t i o n

14 a=input( ’ Enter l owe r l i m i t : ’ );// Enter the l owe r
l i m i t o f I n t e g r a t i o n

15 b=input( ’ Enter upper l i m i t : ’ );// Enter the upper
l i m i t o f I n t e g r a t i o n

16 n=input( ’ Enter 2 po i n t or 3 po i n t method : ’ );// Enter
which method you a r e suppose to use

17 if n==2 // For e x e c u t i n g 2 Po int Method
18 c=(b-a)/2;

19 d=(b+a)/2;

20 z1=-1/sqrt (3);

21 z2=1/ sqrt (3);

22 x1=c*z1+d;

23 x2=c*z2+d;

24 I=c*(f(x1)+f(x2));// Formula f o r f i n d i n g
I n t e g r a t i o n va lu e

25 else // For e x e c u t i n g 3 Po int Method
26 c=(b-a)/2;

27 d=(b+a)/2;

28 z1=sqrt (3/5);

29 z2=-sqrt (3/5);

30 x1=c*z1+d;

31 x2=c*z2+d;

32 x3=d;

33 I=c*(5/9*f(x1)+5/9*f(x2)+8/9*f(x3));// Formula
f o r f i n d i n g I n t e g r a t i o n va lu e

34 end

35 printf( ’ \n I n t e g r a t i o n o f g i v en f u n c t i o n i s=%f\n ’ ,I)
;// D i sp l ay the I n t e g r a t i o n

29



30



Experiment: 12

Program for Numerical Double
Integration using Trapezoidal
rule

Scilab code Solution 12.12 Trapezoidal Double Rule

1 // S c i l a b code S o l u t i o n 12 Program f o r Numer ica l
Double I n t e g r a t i o n u s i n g Trap e z o i d a l r u l e

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 12
5 // Program f o r Numer ica l Double I n t e g r a t i o n u s i n g

Trap e z o i d a l r u l e
6 // Example − Write a Program in S c i l a b f o r f i n d i n g

a r ea o f f u c n t i o n x+y f o r
7 // upper l i m i t o f 0 and l owe r l i m i t o f 1 f o r x , y . Take

n=m=6 by u s i n g Numer ica l Double I n t e g r a t i o n
u s i n g Trap e z o i d a l r u l e

8 //Take f ( x , y )=x+y , x0=0 ,xn=1 , y0=0 ,yn=1 ,n=m=6
9 // Program f o r Numer ica l Double I n t e g r a t i o n u s i n g

Trap e z o i d a l r u l e
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10 clc;

11 close;

12 clear;

13 deff( ’ y=f ( x , y ) ’ , ’ y=x+y ’ );// Enter f u n c t i o n
14 x0=input( ’ Enter x0 l owe r l i m i t o f x : ’ );// Enter

l owe r l i m i t o f x
15 xn=input( ’ Enter xn upper l i m i t o f x : ’ );// Enter

upper l i m i t o f x
16 n=input( ’ Enter no . o f s t e p s i n x−d i r e c t i o n : ’ );//

Enter number o f s t e p s i z e i n x a x i s
17 y0=input( ’ Enter y0 l owe r l i m i t o f y : ’ );// Enter

l owe r l i m i t o f y
18 ym=input( ’ Enter ym upper l i m i t o f y : ’ );// Enter

upper l i m i t o f y
19 m=input( ’ Enter no . o f s t e p s i n y−d i r e c t i o n : ’ );//

Enter number o f s t e p s i z e i n y a x i s
20 h=(xn-x0)/n;// Enter s t e p s i z e i n x a x i s
21 k=(ym-y0)/m;// Enter s t e p s i z e i n y a x i s
22 s=0;

23 x=x0;// Replacement o f x by x0
24 y=y0;// Replacement o f y by y0
25 for i=1:1:m+1

26 for j=1:1:n+1

27 a(i,j)=f(x,y);// A l l o t i n g p i v o t po i n t by
pu t t i n g va lu e i n f u n c t i o n

28 x=x+h;// Increament i n x a x i s
29 end

30 y=y+k;// Increament i n y a x i s
31 x=x0;

32 end

33 disp([a]);

34 for i=1:1:m

35 for j=1:1:n

36 s=s+a(i,j)+a(i,j+1)+a(i+1,j)+a(i+1,j+1);

37 end

38 end

39 I=h*k/4*s;// Ca l c u l a t i n g the Area
40 printf( ’ I n t e g r a t i o n o f g i v en f u n c t i o n i s=%f\n ’ ,I);
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// D i sp l ay the Area
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Experiment: 13

Program for Curve fitting using
least square technique for first
order equation

Scilab code Solution 13.13 First Order Equation

1 // S c i l a b code S o l u t i o n 13 Program f o r Curve
f i t t i n g u s i n g l e a s t squa r e t e chn i qu e f o r f i r s t
o r d e r equa t i on

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 13
5 // Program f o r Curve f i t t i n g u s i n g l e a s t squa r e

t e chn i qu e f o r f i r s t o r d e r equa t i on
6 // Example − Write a computer program in SCILAB to

f i t a s t r a i g h t l i n e to the data g i v en below :
7 // x=[1 2 3 4 5 6 7 ] ;
8 //y=[0 . 5 2 . 5 2 . 0 4 . 0 3 . 5 6 . 0 5 . 5 ] ;
9

10 clc;

11 close;
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12 clear;

13 //x=input ( ’ e n t e r va l u e o f x matr ix ’ )
14 x=[1 2 3 4 5 6 7]; // Enter the x v a l u e s ( Dependent

Va r i a b l e s )
15 disp([x]);

16 //y=input ( ’ e n t e r va l u e o f y matr ix ’ )
17 y=[0.5 2.5 2.0 4.0 3.5 6.0 5.5]; // Enter the y

v a l u e s ( Independent Va r i a b l e s )
18 disp([y]);

19 n=length(x);// Enter the data i n x v a l u e s
20 Y=y;

21 X=x;

22 X2=X.*X;// Ca l c u l a t i n g X∗X Values ( . ∗ i n d i c a t e s tha t
m u l t i p l i c a t i o n between r e s p e c t i v e va lu e o f x )

23 XY=X.*Y;// Ca l c u l a t i n g X∗y Values ( . ∗ i n d i c a t e s tha t
m u l t i p l i c a t i o n between r e s p e c t i v e va lu e o f x and
y )

24 a0=(sum(Y)*sum(X2)-sum(X)*sum(XY))/(n*sum(X2)-(sum(X

)^2)); // Ca l c u l a t i n g c o e f f i c i e n t a0
25 a1=((n*sum(XY)-sum(X)*sum(Y))/(n*sum(X2)-(sum(X))^2)

);// Ca l c u l a t i n g c o e f f i c i e n t a1
26 a=a1;// Replacement va lu e o f a
27 b=a0;// Replacement va lu e o f b
28 printf( ’ \n y=%f∗x+%f ’ ,a,b);// D i sp l ay y=ax+b
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Experiment: 14

Program for Curve fitting using
least square technique for
power equation

Scilab code Solution 14.14 Power Equation

1 // S c i l a b code S o l u t i o n 14 Program f o r Curve
f i t t i n g u s i n g l e a s t squa r e t e chn i qu e f o r power
equa t i on

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 14
5 // 14 Program f o r Curve f i t t i n g u s i n g l e a s t squa r e

t e chn i qu e f o r power equa t i on
6 // Example − Write a computer program in SCILAB to

f i t a power equa t i on y=axˆb to the data g i v en
below :

7 // x=[1 2 3 4 5 ] ;
8 //y=[0 . 5 1 . 7 3 . 4 5 . 7 8 . 4 ] ;
9 // Program f o r Curve f i t t i n g u s i n g l e a s t squa r e

t e chn i qu e f o r power equa t i on
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10 clc;

11 close;

12 clear;

13 //x=input ( ’ e n t e r va l u e o f x matr ix ’ )
14 x=[1 2 3 4 5]; // Enter X va l u e s ( Dependent Va r i a b l e s

)
15 disp([x]);

16 //y=input ( ’ e n t e r va l u e o f y matr ix ’ )
17 y=[0.5 1.7 3.4 5.7 8.4]; // Enter Y Values (

Independent v a r i a b l e s )
18 disp([y]);

19 n=length(x);// c a l c u l a t e l e n g t h o f x
20 Y=log(y);// Ca l c u l a t e v a l u r o f Y
21 X=log(x);// Ca l c u l a t e v a l u r o f X
22 X2=X.*X;// Ca l c u l a t e v a l u r o f X∗X
23 XY=X.*Y// Ca l c u l a t e v a l u r o f X∗Y
24 a0=(sum(Y)*sum(X2)-sum(X)*sum(XY))/(n*sum(X2)-(sum(X

)^2));// Ca l c u l a t i n g c o e f f i c i e n c t a0
25 a1=((n*sum(XY)-sum(X)*sum(Y))/(n*sum(X2)-(sum(X))^2)

);// Ca l c u l a t i n g c o e f f i c i e n t a1
26 a=exp(a0); // Replacement o f va l u e
27 b=a1;// Replacement o f va l u e
28 printf( ’ \n y=%f∗xˆ%f ’ ,a,b);// D i sp l ay y= axˆb
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Experiment: 15

Program for Curve fitting using
least square technique for
exponential equation

Scilab code Solution 15.15 Exponential Equation

1 // S c i l a b code S o l u t i o n 15 Program f o r Curve
f i t t i n g u s i n g l e a s t squa r e t e chn i qu e f o r
e x p on e n t i a l e qua t i on

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 15
5 // 15 Program f o r Curve f i t t i n g u s i n g l e a s t squa r e

t e chn i qu e f o r e x p on e n t i a l e qua t i on
6 // Example − Write a computer program in SCILAB to

f i t a e x p on e n t i a l e qua t i on y=ae ˆbx to the data
g i v en below :

7 // x=[1 3 5 7 9 ] ;
8 //y=[2 . 473 6 . 7 2 2 18 . 2 74 49 . 6 73 1 3 5 . 0 2 6 ] ;
9 // Program f o r Curve f i t t i n g u s i n g l e a s t squa r e

t e chn i qu e f o r e x p on e n t i a l e qua t i on
10 clc;

11 close;
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12 clear;

13 //x=input ( ’ e n t e r va l u e o f x matr ix ’ )
14 x=[1.0 3.0 5.0 7.0 9.0]; // Enter x v a l u e s ( Dependent

Va r i a b l e s )
15 disp([x]);

16 //y=input ( ’ e n t e r va l u e o f y matr ix ’ )
17 y=[2.473 6.722 18.274 49.673 135.026]; // Enter y

v a l u e s ( Indepent Va r i a b l e s )
18 disp([y]);

19 n=length(x);// Ca l c u l a t e number o f data e n t e r i n x
20 Y=log(y);// Ca l c u l a t i n g Y Value
21 X=x;

22 X2=X.*X;// Ca l c u l a t i n g X∗X Value ( . ∗ i n d i c a t e s
r e s p e c t i v e va lu e o f x i s mu l t i p l e d with
r e s p e c t i v e x va lu e )

23 XY=X.*Y// // Ca l c u l a t i n g X∗Y Value
24 a0=(sum(Y)*sum(X2)-sum(X)*sum(XY))/(n*sum(X2)-(sum(X

)^2));// Ca l c u l a t i n g c o e f f i c i e n t a0
25 a1=((n*sum(XY)-sum(X)*sum(Y))/(n*sum(X2)-(sum(X))^2)

);// Ca l c u l a t i n g c o e f f i c i e n t a1
26 a=exp(a0);// F ind ing the va l u e o f a
27 b=a1;// F ind ing the va l u e o f a
28 printf( ’ \n y=%f∗ e ˆ%f∗x ’ ,a,b);// D i s p l a y i n g y=ae ˆb
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