
Scilab Manual for
Numerical and Statistical Methods Laboratory

by Dr Keval Chandrakant Nikam
Mechanical Engineering

Savitribai Phule Pune University1

Solutions provided by
Dr Keval Chandrakant Nikam

Mechanical Engineering
Savitribai Phule Pune University

January 17, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 4

1 Program for roots of Equation using Bisection Method ac-
curacy criteria 5

2 Program for roots of Equation using Newton Raphson Method
accuracy criteria 7

3 Program for Simultaneous equations using Gauss Elimina-
tion Method 9

4 Program for Ordinary differential equation using Euler Method 12

5 Program for Ordinary differential equation using Runge
Kutta 4th order 14

6 Program for Ordinary differential equation using Simulta-
neous equations using Runge Kutta 2nd order method 16

7 Program for Partial differential equation using Simple Laplace
method 19

8 Program for Numerical Integration using Trapezoidal rule 22

9 Program for Numerical Integration using Simpsons 1/3rd
Rule 24

10 Program for Numerical Integration using Simpsons 3/8th
Rule. 26

2

11 Program for Numerical Integration using Gauss Quadrature
2-point and 3-point method 28

12 Program for Numerical Double Integration using Trape-
zoidal rule 31

13 Program for Curve fitting using least square technique for
first order equation 34

14 Program for Curve fitting using least square technique for
power equation 36

15 Program for Curve fitting using least square technique for
exponential equation 38

3

List of Experiments

Solution 1.1 Bisection Method 5
Solution 2.2 Newton Raphson Method 7
Solution 3.3 Gaussian Elimination method 9
Solution 4.4 Euler method . 12
Solution 5.5 RK4ORDER . 14
Solution 6.6 RK2Order Simultaneous 16
Solution 7.7 Laplace Method 19
Solution 8.8 TrapezoidalRule 22
Solution 9.9 Simpson 1 3rd Rule 24
Solution 10.10 Simpson 3 8th Rule 26
Solution 11.11 Gauss 2 and 3 Point Method 28
Solution 12.12 Trapezoidal Double Rule 31
Solution 13.13 First Order Equation 34
Solution 14.14 Power Equation 36
Solution 15.15 Exponential Equation 38

4

Experiment: 1

Program for roots of Equation
using Bisection Method
accuracy criteria

Scilab code Solution 1.1 Bisection Method

1 // S c i l a b code S o l u t i o n 1 Program f o r r o o t s o f
Equat ion u s i n g B i s e c t i o n Method accu ra cy c r i t e r i a

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 1
5 // Program f o r r o o t s o f Equat ion u s i n g B i s e c t i o n

Method accu racy c r i t e r i a
6 // Example − Write a computer program in SCILAB

to f i n d r o o t o f e qua t i on as xˆ2−8x+2 . .
7 //Take Accuracy as 0 . 0 1 u s i n g B i s e c t i o n Method . Take

x1=0 and x2=1
8 // Input x1=0 , x2=1 , acc =0.01 , f (x)=xˆ2−8∗x+2
9 clc;

10 clear;

11 close;

5

12 deff(’ y=f (x) ’ , ’ y=xˆ2−8∗x+2 ’)
13 x1=input(’ Enter F i r s t I n i t i a l Guess = ’);
14 x2=input(’ Enter Second I n i t i a l Guess = ’);
15 acc=input(’ Enter the va lu e o f Accuracy = ’);
16 i=0;

17 printf(’ I t e r a t i o n \ t x1 \ t \ t x2 \ t \ t z \ t \ t f (z) \
n ’)

18 while abs(x1-x2)>acc // Cond i t i on o f Accuracy
19 z=(x1+x2)/2

20 printf (’ %i\ t \ t%f \ t%f \ t%f \ t%f \n ’ ,i,x1,x2,z,f(z
))// Pr i n t i n form o f Table

21 if f(z)*f(x1) >0 // S u b s t i t u t i o n o f i n i t i a l gu e s s
f o r next i t e r a t i o n

22 x1=z

23 else

24 x2=z

25 end

26 i=i+1 // Increment i n I t e r a t i o n by 1 f o r each
s t ep

27 end

28 printf(’ \n\n The s o l u t i o n o f t h i s e qua t i on i s %g
a f t e r %i I t e r a t i o n s ’ ,z,i-1) // D i sp l ay f i n a l
anaswe to User

6

Experiment: 2

Program for roots of Equation
using Newton Raphson Method
accuracy criteria

Scilab code Solution 2.2 Newton Raphson Method

1 // S c i l a b code S o l u t i o n 2 Program f o r r o o t s o f
Equat ion u s i n g Newton Raphson Method accu ra cy
c r i t e r i a

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 2
5 // Program f o r r o o t s o f Equat ion u s i n g Newton

Raphson Method accu ra cy c r i t e r i a
6 // Example − So l v e u s i n g Newton Raphson Method x−exp

(−x)=0
7 //Take ac cu ra cy as 0 . 0 0 1 . Take x0=1
8 // Input x0=1 , acc =0.001 , f (x)=x−exp(−x)
9 clc;

10 clear;

11 close;

7

12 deff(’ y=f (x) ’ , ’ y=x−exp(−x) ’)
13 deff(’ y=f 1 (x) ’ , ’ y=1+exp(−x) ’)
14 x0 =input(’ Enter I n i t i a l Guess = ’);
15 acc =input(’ Enter the va l u e o f Accuracy = ’);
16 i=0;

17 printf(’ i \ t \ t x0 \ t \ t x1 \n ’)
18 x1=x0 -(f(x0)/f1(x0))

19 printf(’ %i\ t \t%0 . 5 f \ t \t%0 . 5 f \n ’ ,i,x0 ,x1)

20 while abs(x1-x0)>acc // Cond i t i on o f Accuracy
21 x0=x1;

22 x1=x0 -(f(x0)/f1(x0)) // Formula o f f i n d i n g r o o t o f
Equat ion

23 i=i+1

24 printf (’ %i\ t \ t%f \ t%f \n ’ ,i,x0,x1) // Pr i n t i n
form o f Table

25 end

26 printf(’ \n\n The r o o t o f e qua t i on i s %0 . 5 f ’ ,x1) //
D i sp l ay f i n a l answer to User

8

Experiment: 3

Program for Simultaneous
equations using Gauss
Elimination Method

Scilab code Solution 3.3 Gaussian Elimination method

1 // S c i l a b code S o l u t i o n 3 Program f o r S imu l taneous
e qua t i o n s u s i n g Guass E l im i n a t i o n Method

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 3
5 // Program f o r S imu l taneous e qua t i o n s u s i n g Guass

E l im i n a t i o n Method
6 // Example − Write a computer program in SCILAB

to s o l v e f o l l o w i n g s e t o f s imu l t an eou s
e qua t i o n s u s i n g Gauss E l im i n a t i o n method .

7 // 3 X + 2Y + Z = 10
8 // 2 X + 3 Y + 2Z = 14
9 //X + 2Y + 3Z = 14

10 // Input c o e f f i e n c t matr ix a and s o l u t i o n matr ix b
11 clc;

9

12 clear all;

13 disp(’OUTPUT: ’);
14 a=input(’ Enter c o e f f i c i e n t matr ix a := ’);
15 b=input(’ Enter matr ix b:= ’);
16 [m,n]=size(a);

17 if m~=n // Check c o nd i t i o n o f s qua r e matr ix
18 error(’ Matr ix A must be squa r e ’);
19 end

20 // Perform P a r t i a l P i v o t i n g
21 for i=1:1:n-1

22 for u=i+1:1:n

23 if (abs(a(u,i))>abs(a(i,i))) // Comparison
o f P ivot Element

24 for v=1:1:n

25 temp=a(i,v); // Replacement o f P ivot
Element

26 a(i,v)=a(u,v);

27 a(u,v)=temp;

28 end

29 temp=b(i);

30 b(i)=b(u);

31 b(u)=temp;

32 end

33 end

34 //Gauss E l im i n a t i o n − op e r a t i o n o f Rows
35 for k=i+1:1:n

36 factor=a(k,i)/a(i,i);

37 for j=1:1:n

38 a(k,j)=a(k,j)-factor*a(i,j); // Formula to
make C o e f f i c e n t Matr ix i n Upper
T r i angu l a r Matr ix

39 end

40 b(k)=b(k)-factor*b(i); // Formula a l s o
a p p l i c a b l e to s o l u t i o n matr ix

41 end

42 end

43 disp(’ F i n a l augmented matr ix i s : ’);
44 disp([a,b]); // D i sp l ay formed Upper T r i a g u l a r Matr ix

10

45 // Back S u b s t i t u t i o n
46 for i=n:-1:1

47 temp=b(i);

48 for j=i+1:1:n

49 temp=temp -a(i,j)*x(j);

50 end

51 x(i)=temp/a(i,i); // Ca l c u l a t i n g the va lu e o f x
(3) , x (2) and x (1) r e s p .

52 end

53 disp(’ Answer i s : ’);
54 disp(x);

11

Experiment: 4

Program for Ordinary
differential equation using
Euler Method

Scilab code Solution 4.4 Euler method

1 // S c i l a b code S o l u t i o n 4 Program f o r Ordinary
d i f f e r e n t i a l e qua t i on u s i n g Eu l e r Method

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 4
5 // Program f o r Ordinary d i f f e r e n t i a l e qua t i on u s i n g

Eu l e r Method
6 // Example − Write a computer program in SCILAB to

s o l v e the ODE
7 //dy/dx=−x∗yˆ2 u s i n g E u l e r s method under the

c o n d i t i o n x=0 ,y=2. Find y at x=1 with h=0 .1 .
8 // Input f u n c t i o n −xy ˆ2 , x0=0 , y0=2 ,xn=1 ,h=0.1
9 clc;

10 close;

11 clear;

12

12 deff(’ y=f (x , y) ’ , ’ y=−x∗yˆ2 ’);// Enter the Funct ion
13 x0=input(’ Enter the va lu e o f x0= ’);
14 y0=input(’ Enter the va lu e o f y0= ’);
15 xn=input(’ Enter the va lu e o f xn= ’);
16 h=input(’ Enter the va l u e o f h= ’);
17 n=(xn-x0)/h; // Formuale f o r f i n d i n g number o f Step

S i z e
18 disp(n)

19 for i=1:1:n

20 yn=y0+h*f(x0 ,y0);// Formulae use i n Eu l e r Method
21 x0=x0+h; // Increment i n Step s i z e
22 y0=yn; // Replacement o f y0 as yn f o r next

i t e r a t i o n
23 printf(’ Value o f y (%f)=%f\n ’ ,x0 ,y0);
24 end

13

Experiment: 5

Program for Ordinary
differential equation using
Runge Kutta 4th order

Scilab code Solution 5.5 RK4ORDER

1 // S c i l a b code S o l u t i o n 5 Program f o r Ordinary
d i f f e r e n t i a l e qua t i on u s i n g Runge−Kutta 4 th o rd e r

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 5
5 // Program f o r Ordinary d i f f e r e n t i a l e qua t i on u s i n g

Runge−Kutta 4 th o rd e r
6 // Example − Write a computer program in SCILAB to

ob ta i n the numer i c a l s o l u t i o n o f
7 //dy/dx=xˆ2+y ˆ2 , y (0) =0 ,h=0 .2 . Est imate y (0 . 4) u s i n g

Runge Kutta 4 o rd e r method
8 // Input f u n c t i o n xˆ2+y ˆ2 , x0=0 , y0=0 ,h=0.2 , xn=0.4
9 clc;

10 close;

11 clear;

14

12 deff(’ y=f (x , y , z) ’ , ’ y=x∗x+y∗y ’);// Enter the Funct ion
13 x0=input(’ Enter the va lu e o f x0= ’);
14 y0=input(’ Enter the va lu e o f y0= ’);
15 xn=input(’ Enter the va lu e o f xn= ’);
16 h=input(’ Enter the va l u e o f h= ’);
17 n=(xn-x0)/h;// Formuale f o r f i n d i n g number o f Step

S i z e
18 disp(n)

19 for i=1:1:n

20 k1=h*f(x0,y0);// Ca l c u l a t e va l u e o f k1
21 k2=h*f(x0+h/2,y0+k1/2);// Ca l c u l a t e va l u e o f k2
22 k3=h*f(x0+h/2,y0+k2/2);// Ca l c u l a t e va l u e o f k3
23 k4=h*f(x0+h,y0+k3);// Ca l c u l a t e va l u e o f k4
24 k=(k1+2*k2+2*k3+k4)/6.0; // Ca l c u l a t e va l u e o f k
25 yn=y0+k;// Increment i n Step s i z e
26 x0=x0+h;// Increment i n Step s i z e
27 y0=yn;// Replacement o f z0 as z1 f o r next

i t e r a t i o n
28 printf(’ Value o f y (%f)=%f\n ’ ,x0 ,y0);// D i sp l ay y (

n)
29 end

15

Experiment: 6

Program for Ordinary
differential equation using
Simultaneous equations using
Runge Kutta 2nd order method

Scilab code Solution 6.6 RK2Order Simultaneous

1 // S c i l a b code S o l u t i o n 6 Program f o r Ordinary
d i f f e r e n t i a l e qua t i on u s i n g S imu l taneous
e qua t i o n s u s i n g Runge−Kutta 2nd o rd e r method

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 6
5 // Program f o r Ordinary d i f f e r e n t i a l e qua t i on u s i n g

S imu l taneous e qua t i o n s u s i n g Runge−Kutta 2nd
o rd e r method

6 // Example − Write a computer program in SCILAB to
to s o l v e the equa t i on

7 //dy/dx=−0.5∗y , dz /dx=4−0.3∗z −0.1∗y Using runge kut ta
second o rd e r s imu l t an eou s method where at x = 0 ,
y =4 , z =6.

8 // Find y & z at x = 0 . 5 (take h=0.5)

16

9 // Input f u n c t i o n f (x , y , z) =−0.5∗y , g (x , y , z)= 4−0.3∗ z
−0.1∗y , x0=0 , y0=4 , z0=6 ,h=2 ,xn=0.5

10 clc;

11 clear;

12 deff(’ y=f (x , y , z) ’ , ’ y=−0.5∗y ’);// Enter the Funct ion
13 deff(’ z=g (x , y , z) ’ , ’ z=4−0.3∗z −0.1∗y ’);// Enter the

Funct ion
14 x0=input(’ Enter the va lu e o f x0= ’);
15 y0=input(’ Enter the va lu e o f y0= ’);
16 z0=input(’ Enter the va lu e o f z0= ’);
17 xn=input(’ Enter the va lu e o f xn= ’);
18 h=input(’ Enter the va l u e o f h= ’);
19 n=(xn -x0)/h;// Formuale f o r f i n d i n g number o f Step

S i z e
20 for i=1:1:n

21 k1=h*f(x0,y0 ,z0);// Ca l c u l a t e va l u e o f k1
22 L1=h*g(x0,y0 ,z0);// Ca l c u l a t e va l u e o f L1
23 k2=h*f(x0+h,y0+k1,z0+L1);// Ca l c u l a t e va l u e o f k2
24 L2=h*g(x0+h,y0+k1,z0+L1);// Ca l c u l a t e va l u e o f L2
25 k=(k1+k2)/2.0; // F ind ing out inc r ement i n y

d i r e c t i o n
26 y1=y0+k;// Increment i n Step s i z e
27 L=(L1+L2)/2.0; // F ind ing out inc r ement i n z

d i r e c t i o n
28 z1=z0+L;// Increment i n Step s i z e
29 x0=x0+h;// Increment i n Step s i z e
30 y0=y1;// Replacement o f y0 as y1 f o r next

i t e r a t i o n
31 z0=z1;// Replacement o f z0 as z1 f o r next

i t e r a t i o n
32 printf(’ v a l u e o f y (%f)=%f\n ’ ,x0 ,y0);// D i sp l ay y (n

)
33 printf(’ v a l u e o f z (%f)=%f\n ’ ,x0 ,z0);// D i sp l ay z (n

)
34 end

17

18

Experiment: 7

Program for Partial differential
equation using Simple Laplace
method

Scilab code Solution 7.7 Laplace Method

1 // S c i l a b code S o l u t i o n 7 Program f o r P a r t i a l
d i f f e r e n t i a l e qua t i on u s i n g S imple Lap lace method

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 7
5 // Program f o r P a r t i a l d i f f e r e n t i a l e qua t i on u s i n g

S imple Lap lace method
6 // Example − A s t e e l P l a t e o f 750x750mm has i t s two

ad j an c en t s i d e s ma inta ined at
7 // 100 C . While the two o th e r s i d e s a r e ma inta ined at

0 C .What w i l l be the
8 // s t eady s t a t e t empera tu r e at i n t e r i o r assuming a

g r i d s i z e o f 250mm. So l v e upto 11 i t e r a t i o n

19

9 // Input f u n c t i o n n1=11 ,n=4 ,m=4 ,u (1 , 1) =0 ,u (2 , 1) =0 ,u
(3 , 1) =0 ,u (4 , 1)=0

10 //u (4 , 2) =0 ,u (4 , 3) =0 ,u (4 , 4) =0 ,u (3 , 4) =100 ,u (2 , 4) =100 ,u
(1 , 4) =100

11 //u (1 , 3) =100 ,u (1 , 2) =100
12 clc;

13 clear;

14 n1=input(’ Enter the no . o f i t e r a t i o n to s o l v e
s imu l t an eou s eqn : ’);

15 n=input(’ Enter the no . o f mesh po i n t (No . o f B .V.
v a l u e s) i n x−d i r e c t i o n : ’);

16 m=input(’ Enter the no . o f mesh po i n t (No . o f B .V.
v a l u e s) i n y−d i r e c t i o n : ’);

17 printf(’ Enter boundary va lu e (B .V .) i n a n t i c l o c kw i s e
d i r e c t i o n S t a r t i n g from bottom l e f t c o r n e r \n ’);

18 u=zeros(m,n); // to c r e a t e matr ix o f t o t a l s i z e and
to take i n i t i a l gu e s s as 0 , 0 , 0 . . .

19 for i=1:n// to take input as a boundary va lu e at
bottom s i d e

20 printf(’ Enter u (%d, 1)= ’ ,i);
21 u(i,1)=input(’ ’);
22 end

23 for j=2:m // to take I /P at Right hand s i d e B .V.
bottom to top

24 printf(’ Enter u (%d,%d)= ’ ,n,j);
25 u(n,j)=input(’ ’);
26 end

27 for i=n-1: -1:1 // to take I /P at top s i d e B .V. r i g h t
to l e f t

28 printf(’ Enter u (%d,%d)= ’ ,i,m);
29 u(i,m)=input(’ ’);
30 end

31 for j=m-1: -1:2 // to take I /P at l e f t hand s i d e B .V.
top to bottom

32 printf(’ Enter u (1 ,%d)= ’ ,j);
33 u(1,j)=input(’ ’);
34 end

35 for k=1:n1 // To r ep e a t n1 i t e r a t i o n s

20

36 for j=2:m-1 //To c a l c u l a t e va l u e at i n t e rmed i a t e
po i n t by Gauss S e i d a l method

37 for i=2:n-1

38 u(i,j)=1/4*(u(i-1,j)+u(i,j+1)+u(i+1,j)+u(i,

j-1));// Formula f o r f i n d i n g I n t e r n a l
Elements

39 end

40 end

41 printf(’ Value a f t e r i t e r a t i o n no . : %d\n ’ ,k);
42 for j=m:-1:1 //To p r i n t va l u e a f t e r each

I t e r a t i o n i n Tabulated form
43 for i=1:n

44 printf(’ \ t %0 . 4 f \ t ’ ,u(i,j));
45 end

46 printf(’ \n ’);
47 end

48 end

21

Experiment: 8

Program for Numerical
Integration using Trapezoidal
rule

Scilab code Solution 8.8 TrapezoidalRule

1 // S c i l a b code So l u t i on> 8 Program f o r Numer ica l
I n t e g r a t i o n u s i n g Trap e z o i d a l r u l e

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 8
5 // Program f o r Numer ica l I n t e g r a t i o n u s i n g

Trap e z o i d a l r u l e
6 // Example − Write a computer program in SCILAB to

s o l v e i n t e g r a t i o n 4∗x+2
7 // l i m i t s x0=0 ,xn=1 by u s i n g Trap e z o i d a l Method .
8 //Take h=0 .5 .
9 //Program on Trap e z o i d a l Rule

10 clc;

11 close;

12 clear;

22

13 deff(’ y=f (x) ’ , ’ y=4∗x+2 ’);// Enter the Funct ion
14 x0=input(’ Enter l owe r l i m i t : ’);// Enter Lower L imit
15 xn=input(’ Enter upper l i m i t : ’);// Enter Upper L imit
16 h=input(’ Enter s t e p S i z e h : ’);// Enter Step S i z e
17 x=x0;

18 n=(xn-x0)/h;// Enter number o f Step s i z e
19 s=0;

20 for i=1:n-1

21 x=x+h;

22 s=s+2*f(x);

23 end

24 s=f(x0)+s+f(xn);

25 I=h/2*s;// Formula f o r f i n d i n g Area by u s i n g
Trap e z o i d a l Rule

26 printf(’ I n t e g r a t i o n o f g i v en f u n c t i o n i s=%f\n ’ ,I);

23

Experiment: 9

Program for Numerical
Integration using Simpsons
1/3rd Rule

Scilab code Solution 9.9 Simpson 1 3rd Rule

1 // S c i l a b code S o l u t i o n 9 Program f o r Numer ica l
I n t e g r a t i o n u s i n g S i m p s o n s 1/3 rd Rule

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 9
5 // Program f o r Numer ica l I n t e g r a t i o n u s i n g

S i m p s o n s 1/3 rd Rule
6 // Example − Write a Program in S c i l a b f o r f i n d i n g

a r ea o f f u c n t i o n (s i n (x)) /(2+3∗ s i n (x)) f o r
7 // upper l i m i t o f 1 and l owe r l i m i t o f 0 . Take n=6 by

u s i n g Simpson ’ s 1/3 Rule
8 //Program on Simpson ’ s 1/3 rd Rule
9 clc;

10 clear;

11 deff(’ y=f (x) ’ , ’ y=(s i n (x)) /(2+3∗ s i n (x)) ’);// Enter

24

the Funct ion
12 x0=input(’ Enter l owe r l i m i t : ’);// Enter the l owe r

l i m i t o f x
13 xn=input(’ Enter upper l i m i t : ’);// Enter the upper

l i m i t o f x
14 n=input(’ Enter number o f s t e p s : ’);// Enter the

number o f s t e p s
15 x=x0;

16 h=(xn-x0)/n;// Ca l c u l a t e s t e p s i z e
17 s=0;

18 for i=1:n-1

19 x=x+h;

20 if modulo(i,2) ==0 // Ca l c u l a t i n g Even Term o f
Simpson 1/3 rd Formula

21 s=s+2*f(x);

22 else

23 s=s+4*f(x);

24 end

25 end

26 s=f(x0)+s+f(xn);

27 I=(h/3)*s;// F ind ing I n t e g r a t i n g va lu e
28 printf(’ \ n I n t e g r a t i o n o f g i v en f u n c t i o n i s=%f\n ’ ,I);

// D i sp l ay Value

25

Experiment: 10

Program for Numerical
Integration using Simpsons
3/8th Rule.

Scilab code Solution 10.10 Simpson 3 8th Rule

1 // S c i l a b code S o l u t i o n 10 Program f o r Numer ica l
I n t e g r a t i o n u s i n g S i m p s o n s 3/8 Rule

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 10
5 // Program f o r Numer ica l I n t e g r a t i o n u s i n g

S i m p s o n s 3/8 Rule
6 // Example − Write a Program in S c i l a b f o r f i n d i n g

a r ea o f f u c n t i o n exp (x) /x f o r
7 // upper l i m i t o f 2 and l owe r l i m i t o f 1 . Take n=6 by

u s i n g Simpson ’ s 3/8 Rule
8 //Program on Simpson ’ s 3/8 th Rule
9 clc;

10 close;

11 clear;

26

12 deff(’ y=f (x) ’ , ’ y=exp (x) /x ’);// Enter f u n c t i o n
13 x0=input(’ Enter l owe r l i m i t : ’);// Enter l owe r l i m i t

o f x
14 xn=input(’ Enter upper l i m i t : ’);// Enter upper l i m i t

o f x
15 n=input(’ Enter number o f s t e p s : ’);// Enter number o f

s t e p
16 x=x0;

17 h=(xn-x0)/n;// F ind ing out o f s t e p s i z e
18 s=0;

19 for i=1:n-1

20 x=x+h;

21 if modulo(i,3) ==0 // Cond i t i on f o r adding the odd
va lu e t o g e t h e r

22 s=s+2*f(x);

23 else

24 s=s+3*f(x);

25 end

26 end

27 s=f(x0)+f(xn)+s;

28 I=((3*h)/8)*s; // Ca l c u l a t i n g Area
29 printf(’ \ n I n t e g r a t i o n o f g i v en f u n c t i o n i s=%f\n ’ ,I);

27

Experiment: 11

Program for Numerical
Integration using Gauss
Quadrature 2-point and 3-point
method

Scilab code Solution 11.11 Gauss 2 and 3 Point Method

1 // S c i l a b code S o l u t i o n 11 Program f o r Numer ica l
I n t e g r a t i o n u s i n g Gauss Quadrature 2−po i n t and 3−
po i n t method

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 11
5 // Program f o r Numer ica l I n t e g r a t i o n u s i n g Gauss

Quadrature 2−po i n t and 3−po i n t method
6 // Example − Write a Program in S c i l a b to s o l v e

u s i n g two−po i n t or t h r e e po i n t Gauss quadra tu r e
r u l e to

7 // approx imate the d i s t a n c e cove r ed by a r o c k e t from
t = 8 to t = 30 as g i v en by

8 //x=(2000∗ l o g (140000/(140000 −2100∗ t)) −9.8∗ t)
9 // Enter a=lowe r l i m i t =8 ,b=upper l i m i t =30 ,n=Enter 2

28

or 3 depend upon Guass 2 po i n t or 3 po i n t f o rmu la
10 //Program on Gauss Quadrature 2−po i n t and 3−po i n t

method
11 clc;

12 clear;

13 deff(’ x=f (t) ’ , ’ x=(2000∗ l o g (140000/(140000 −2100∗ t))
−9.8∗ t) ’);// Enter the f u n c t i o n

14 a=input(’ Enter l owe r l i m i t : ’);// Enter the l owe r
l i m i t o f I n t e g r a t i o n

15 b=input(’ Enter upper l i m i t : ’);// Enter the upper
l i m i t o f I n t e g r a t i o n

16 n=input(’ Enter 2 po i n t or 3 po i n t method : ’);// Enter
which method you a r e suppose to use

17 if n==2 // For e x e c u t i n g 2 Po int Method
18 c=(b-a)/2;

19 d=(b+a)/2;

20 z1=-1/sqrt (3);

21 z2=1/ sqrt (3);

22 x1=c*z1+d;

23 x2=c*z2+d;

24 I=c*(f(x1)+f(x2));// Formula f o r f i n d i n g
I n t e g r a t i o n va lu e

25 else // For e x e c u t i n g 3 Po int Method
26 c=(b-a)/2;

27 d=(b+a)/2;

28 z1=sqrt (3/5);

29 z2=-sqrt (3/5);

30 x1=c*z1+d;

31 x2=c*z2+d;

32 x3=d;

33 I=c*(5/9*f(x1)+5/9*f(x2)+8/9*f(x3));// Formula
f o r f i n d i n g I n t e g r a t i o n va lu e

34 end

35 printf(’ \n I n t e g r a t i o n o f g i v en f u n c t i o n i s=%f\n ’ ,I)
;// D i sp l ay the I n t e g r a t i o n

29

30

Experiment: 12

Program for Numerical Double
Integration using Trapezoidal
rule

Scilab code Solution 12.12 Trapezoidal Double Rule

1 // S c i l a b code S o l u t i o n 12 Program f o r Numer ica l
Double I n t e g r a t i o n u s i n g Trap e z o i d a l r u l e

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 12
5 // Program f o r Numer ica l Double I n t e g r a t i o n u s i n g

Trap e z o i d a l r u l e
6 // Example − Write a Program in S c i l a b f o r f i n d i n g

a r ea o f f u c n t i o n x+y f o r
7 // upper l i m i t o f 0 and l owe r l i m i t o f 1 f o r x , y . Take

n=m=6 by u s i n g Numer ica l Double I n t e g r a t i o n
u s i n g Trap e z o i d a l r u l e

8 //Take f (x , y)=x+y , x0=0 ,xn=1 , y0=0 ,yn=1 ,n=m=6
9 // Program f o r Numer ica l Double I n t e g r a t i o n u s i n g

Trap e z o i d a l r u l e

31

10 clc;

11 close;

12 clear;

13 deff(’ y=f (x , y) ’ , ’ y=x+y ’);// Enter f u n c t i o n
14 x0=input(’ Enter x0 l owe r l i m i t o f x : ’);// Enter

l owe r l i m i t o f x
15 xn=input(’ Enter xn upper l i m i t o f x : ’);// Enter

upper l i m i t o f x
16 n=input(’ Enter no . o f s t e p s i n x−d i r e c t i o n : ’);//

Enter number o f s t e p s i z e i n x a x i s
17 y0=input(’ Enter y0 l owe r l i m i t o f y : ’);// Enter

l owe r l i m i t o f y
18 ym=input(’ Enter ym upper l i m i t o f y : ’);// Enter

upper l i m i t o f y
19 m=input(’ Enter no . o f s t e p s i n y−d i r e c t i o n : ’);//

Enter number o f s t e p s i z e i n y a x i s
20 h=(xn-x0)/n;// Enter s t e p s i z e i n x a x i s
21 k=(ym-y0)/m;// Enter s t e p s i z e i n y a x i s
22 s=0;

23 x=x0;// Replacement o f x by x0
24 y=y0;// Replacement o f y by y0
25 for i=1:1:m+1

26 for j=1:1:n+1

27 a(i,j)=f(x,y);// A l l o t i n g p i v o t po i n t by
pu t t i n g va lu e i n f u n c t i o n

28 x=x+h;// Increament i n x a x i s
29 end

30 y=y+k;// Increament i n y a x i s
31 x=x0;

32 end

33 disp([a]);

34 for i=1:1:m

35 for j=1:1:n

36 s=s+a(i,j)+a(i,j+1)+a(i+1,j)+a(i+1,j+1);

37 end

38 end

39 I=h*k/4*s;// Ca l c u l a t i n g the Area
40 printf(’ I n t e g r a t i o n o f g i v en f u n c t i o n i s=%f\n ’ ,I);

32

// D i sp l ay the Area

33

Experiment: 13

Program for Curve fitting using
least square technique for first
order equation

Scilab code Solution 13.13 First Order Equation

1 // S c i l a b code S o l u t i o n 13 Program f o r Curve
f i t t i n g u s i n g l e a s t squa r e t e chn i qu e f o r f i r s t
o r d e r equa t i on

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 13
5 // Program f o r Curve f i t t i n g u s i n g l e a s t squa r e

t e chn i qu e f o r f i r s t o r d e r equa t i on
6 // Example − Write a computer program in SCILAB to

f i t a s t r a i g h t l i n e to the data g i v en below :
7 // x=[1 2 3 4 5 6 7] ;
8 //y=[0 . 5 2 . 5 2 . 0 4 . 0 3 . 5 6 . 0 5 . 5] ;
9

10 clc;

11 close;

34

12 clear;

13 //x=input (’ e n t e r va l u e o f x matr ix ’)
14 x=[1 2 3 4 5 6 7]; // Enter the x v a l u e s (Dependent

Va r i a b l e s)
15 disp([x]);

16 //y=input (’ e n t e r va l u e o f y matr ix ’)
17 y=[0.5 2.5 2.0 4.0 3.5 6.0 5.5]; // Enter the y

v a l u e s (Independent Va r i a b l e s)
18 disp([y]);

19 n=length(x);// Enter the data i n x v a l u e s
20 Y=y;

21 X=x;

22 X2=X.*X;// Ca l c u l a t i n g X∗X Values (. ∗ i n d i c a t e s tha t
m u l t i p l i c a t i o n between r e s p e c t i v e va lu e o f x)

23 XY=X.*Y;// Ca l c u l a t i n g X∗y Values (. ∗ i n d i c a t e s tha t
m u l t i p l i c a t i o n between r e s p e c t i v e va lu e o f x and
y)

24 a0=(sum(Y)*sum(X2)-sum(X)*sum(XY))/(n*sum(X2)-(sum(X

)^2)); // Ca l c u l a t i n g c o e f f i c i e n t a0
25 a1=((n*sum(XY)-sum(X)*sum(Y))/(n*sum(X2)-(sum(X))^2)

);// Ca l c u l a t i n g c o e f f i c i e n t a1
26 a=a1;// Replacement va lu e o f a
27 b=a0;// Replacement va lu e o f b
28 printf(’ \n y=%f∗x+%f ’ ,a,b);// D i sp l ay y=ax+b

35

Experiment: 14

Program for Curve fitting using
least square technique for
power equation

Scilab code Solution 14.14 Power Equation

1 // S c i l a b code S o l u t i o n 14 Program f o r Curve
f i t t i n g u s i n g l e a s t squa r e t e chn i qu e f o r power
equa t i on

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 14
5 // 14 Program f o r Curve f i t t i n g u s i n g l e a s t squa r e

t e chn i qu e f o r power equa t i on
6 // Example − Write a computer program in SCILAB to

f i t a power equa t i on y=axˆb to the data g i v en
below :

7 // x=[1 2 3 4 5] ;
8 //y=[0 . 5 1 . 7 3 . 4 5 . 7 8 . 4] ;
9 // Program f o r Curve f i t t i n g u s i n g l e a s t squa r e

t e chn i qu e f o r power equa t i on

36

10 clc;

11 close;

12 clear;

13 //x=input (’ e n t e r va l u e o f x matr ix ’)
14 x=[1 2 3 4 5]; // Enter X va l u e s (Dependent Va r i a b l e s

)
15 disp([x]);

16 //y=input (’ e n t e r va l u e o f y matr ix ’)
17 y=[0.5 1.7 3.4 5.7 8.4]; // Enter Y Values (

Independent v a r i a b l e s)
18 disp([y]);

19 n=length(x);// c a l c u l a t e l e n g t h o f x
20 Y=log(y);// Ca l c u l a t e v a l u r o f Y
21 X=log(x);// Ca l c u l a t e v a l u r o f X
22 X2=X.*X;// Ca l c u l a t e v a l u r o f X∗X
23 XY=X.*Y// Ca l c u l a t e v a l u r o f X∗Y
24 a0=(sum(Y)*sum(X2)-sum(X)*sum(XY))/(n*sum(X2)-(sum(X

)^2));// Ca l c u l a t i n g c o e f f i c i e n c t a0
25 a1=((n*sum(XY)-sum(X)*sum(Y))/(n*sum(X2)-(sum(X))^2)

);// Ca l c u l a t i n g c o e f f i c i e n t a1
26 a=exp(a0); // Replacement o f va l u e
27 b=a1;// Replacement o f va l u e
28 printf(’ \n y=%f∗xˆ%f ’ ,a,b);// D i sp l ay y= axˆb

37

Experiment: 15

Program for Curve fitting using
least square technique for
exponential equation

Scilab code Solution 15.15 Exponential Equation

1 // S c i l a b code S o l u t i o n 15 Program f o r Curve
f i t t i n g u s i n g l e a s t squa r e t e chn i qu e f o r
e x p on e n t i a l e qua t i on

2 // Operat ing System Windows 7
3 // SCILAB v e r s i o n 6 . 1 . 1
4 // Exper iment No 15
5 // 15 Program f o r Curve f i t t i n g u s i n g l e a s t squa r e

t e chn i qu e f o r e x p on e n t i a l e qua t i on
6 // Example − Write a computer program in SCILAB to

f i t a e x p on e n t i a l e qua t i on y=ae ˆbx to the data
g i v en below :

7 // x=[1 3 5 7 9] ;
8 //y=[2 . 473 6 . 7 2 2 18 . 2 74 49 . 6 73 1 3 5 . 0 2 6] ;
9 // Program f o r Curve f i t t i n g u s i n g l e a s t squa r e

t e chn i qu e f o r e x p on e n t i a l e qua t i on
10 clc;

11 close;

38

12 clear;

13 //x=input (’ e n t e r va l u e o f x matr ix ’)
14 x=[1.0 3.0 5.0 7.0 9.0]; // Enter x v a l u e s (Dependent

Va r i a b l e s)
15 disp([x]);

16 //y=input (’ e n t e r va l u e o f y matr ix ’)
17 y=[2.473 6.722 18.274 49.673 135.026]; // Enter y

v a l u e s (Indepent Va r i a b l e s)
18 disp([y]);

19 n=length(x);// Ca l c u l a t e number o f data e n t e r i n x
20 Y=log(y);// Ca l c u l a t i n g Y Value
21 X=x;

22 X2=X.*X;// Ca l c u l a t i n g X∗X Value (. ∗ i n d i c a t e s
r e s p e c t i v e va lu e o f x i s mu l t i p l e d with
r e s p e c t i v e x va lu e)

23 XY=X.*Y// // Ca l c u l a t i n g X∗Y Value
24 a0=(sum(Y)*sum(X2)-sum(X)*sum(XY))/(n*sum(X2)-(sum(X

)^2));// Ca l c u l a t i n g c o e f f i c i e n t a0
25 a1=((n*sum(XY)-sum(X)*sum(Y))/(n*sum(X2)-(sum(X))^2)

);// Ca l c u l a t i n g c o e f f i c i e n t a1
26 a=exp(a0);// F ind ing the va l u e o f a
27 b=a1;// F ind ing the va l u e o f a
28 printf(’ \n y=%f∗ e ˆ%f∗x ’ ,a,b);// D i s p l a y i n g y=ae ˆb

39

	
	Program for roots of Equation using Bisection Method accuracy criteria
	Program for roots of Equation using Newton Raphson Method accuracy criteria
	Program for Simultaneous equations using Gauss Elimination Method
	Program for Ordinary differential equation using Euler Method
	Program for Ordinary differential equation using Runge Kutta 4th order
	Program for Ordinary differential equation using Simultaneous equations using Runge Kutta 2nd order method
	Program for Partial differential equation using Simple Laplace method
	Program for Numerical Integration using Trapezoidal rule
	Program for Numerical Integration using Simpsons 1/3rd Rule
	Program for Numerical Integration using Simpsons 3/8th Rule.
	Program for Numerical Integration using Gauss Quadrature 2-point and 3-point method
	Program for Numerical Double Integration using Trapezoidal rule
	Program for Curve fitting using least square technique for first order equation
	Program for Curve fitting using least square technique for power equation
	Program for Curve fitting using least square technique for exponential equation

