Scilab Manual for
Numerical and Statistical Methods Laboratory
by Dr Keval Chandrakant Nikam
Mechanical Engineering
Savitribai Phule Pune University!

Solutions provided by
Dr Keval Chandrakant Nikam
Mechanical Engineering
Savitribai Phule Pune University

January 17, 2026

Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the "Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions 4
1 Program for roots of Equation using Bisection Method ac-
curacy criteria 5
2 Program for roots of Equation using Newton Raphson Method
accuracy criteria 7
3 Program for Simultaneous equations using Gauss Elimina-
tion Method 9
4 Program for Ordinary differential equation using Euler Method
5 Program for Ordinary differential equation using Runge
Kutta 4th order 14
6 Program for Ordinary differential equation using Simulta-
neous equations using Runge Kutta 2nd order method 16
7 Program for Partial differential equation using Simple Laplace
method 19
8 Program for Numerical Integration using Trapezoidal rule 22
9 Program for Numerical Integration using Simpsons 1/3rd

Rule 24

10 Program for Numerical Integration using Simpsons 3/8th

Rule. 26

12

11 Program for Numerical Integration using Gauss Quadrature
2-point and 3-point method

12 Program for Numerical Double Integration using Trape-
zoidal rule

13 Program for Curve fitting using least square technique for
first order equation

14 Program for Curve fitting using least square technique for
power equation

15 Program for Curve fitting using least square technique for
exponential equation

28

31

34

36

38

List of Experiments

Solution 1.1 Bisection Method
Solution 2.2~ Newton Raphson Method
Solution 3.3 Gaussian Elimination method
Solution 4.4 Euler method
Solution 5.5 RK4ORDER
Solution 6.6 RK2Order Simultaneous
Solution 7.7 Laplace Method
Solution 8.8 TrapezoidalRule
Solution 9.9 Simpson 1 3rd Rule
Solution 10.10 Simpson 3 8h Rule
Solution 11.11 Gauss 2 and 3 Point Method
Solution 12.12 Trapezoidal Double Rule
Solution 13.13 First Order Equation
Solution 14.14 Power Equation
Solution 15.15 Exponential Equation

12
14
16
19
22
24
26
28
31
34
36
38

O = W N

10
11

Experiment: 1

Program for roots of Equation
using Bisection Method
accuracy criteria

Scilab code Solution 1.1 Bisection Method

//Scilab code Solution 1 Program for roots of
Equation using Bisection Method accuracy criteria

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 1

// Program for roots of Equation using Bisection
Method accuracy criteria

// Example — Write a computer program in SCILAB

to find root of equation as x"2—-8x+2..

//Take Accuracy as 0.01 using Bisection Method. Take
x1=0 and x2=1

// Input x1=0,x2=1,acc=0.01,f(x)=x"2—-8%x+2

clc;

clear;

close;

12
13
14
15
16
17

18
19
20

21

22
23
24
25
26

27
28

deff (y=f(x)’, y=x"2—8xx+2")

x1=input ("Enter First Initial Guess = ’);

x2=input ('Enter Second Initial Guess = 7);

acc=input ("Enter the value of Accuracy =7);

1=0;

printf ("Iteration \t xI \t \t x2 \t \t z \t \t f(z)\
n)

while abs(x1-x2)>acc // Condition of Accuracy
z=(x1+x2)/2
printf ("%i\t \t%f \t%f \t%f \t%f \n ’,i,x1,x2,z,f(z
))// Print in form of Table
if £(z)*f(x1)>0 // Substitution of initial guess
for next iteration

xl=z
else
x2=z
end
i=i+1 // Increment in Iteration by 1 for each
step
end

printf (’ \n\n The solution of this equation is %g
after %i Iterations ’,z,i-1)// Display final
anaswe to User

(@] QU = W N

© 00

10

Experiment: 2

Program for roots of Equation
using Newton Raphson Method
accuracy criteria

Scilab code Solution 2.2 Newton Raphson Method

//Scilab code Solution 2 Program for roots of
Equation using Newton Raphson Method accuracy
criteria

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 2

// Program for roots of Equation using Newton
Raphson Method accuracy criteria

// Example — Solve using Newton Raphson Method x—exp
(—x)=0

//Take accuracy as 0.001 .Take x0=1
//Input x0=1,acc=0.001,f(x)=x—exp(—x)
clc;

clear;

close;

12
13
14
15
16
17
18
19
20
21
22

23
24

25
26

deff ('y=f(x)’, y=x—exp(—x) ")
deff (y=fl(x)’, y=l+exp(—x) ")

x0 =input (’Enter Initial Guess = 7);
acc =input(’Enter the value of Accuracy =");
i=0;

printf (71 \t\t x0 \t\t x1 \n’)

x1=x0-(£(x0)/£1(x0))

printf ("%i\t\t%0.5f\t\t%0.5f \n’ ,i,x0 ,x1)

while abs(x1-x0)>acc // Condition of Accuracy

x0=x1;

x1=x0-(£(x0)/£f1(x0)) // Formula of finding root of
Equation

i=i+1

printf (" %i\t \t%f \t%f \n ’,i,x0,x1) // Print in
form of Table

end

printf (’\n\n The root of equation is %0.5f ,x1) //
Display final answer to User

D O = W N

© 00

10

Experiment: 3

Program for Simultaneous
equations using Gauss
Elimination Method

Scilab code Solution 3.3 Gaussian Elimination method

//Scilab code Solution 3 Program for Simultaneous
equations using Guass Elimination Method

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 3

// Program for Simultaneous equations using Guass
Elimination Method

// Example — Write a computer program in SCILAB

to solve following set of simultaneous
equations using Gauss Elimination method.
//3 X 4+ 2Y + Z = 10
//2 X4+ 3Y+ 2Z =14
//X + 2Y + 3Z = 14
// Input coeffienct matrix a and solution matrix b
clc;

12
13
14
15
16
17
18
19
20
21
22
23

24
25

26
27
28
29
30
31
32
33

35
36
37
38

39
40

41
42
43
44

clear all;
disp (’OUTPUT: ") ;
a=input ("Enter coefficient matrix a:=");
b=input ("Enter matrix b:=");
[m,n]=size(a);
if m“=n // Check condition of square matrix
error (’Matrix A must be square’);
end
//Perform Partial Pivoting
for i=1:1:n-1
for u=i+1:1:n
if (abs(a(u,i))>abs(a(i,i))) // Comparison
of Pivot Element
for v=1:1:n
temp=a(i,v); // Replacement of Pivot
Element
a(i,v)=a(u,v);
a(u,v)=temp;

end
temp=b (i) ;
b(i)=b(u);
b(u)=temp;
end
end
//Gauss Elimination — operation of Rows

for k=i+1:1:n
factor=a(k,i)/a(i,i);
for j=1:1:n
a(k,j)=a(k,j)-factor*a(i,j); // Formula to
make Coefficent Matrix in Upper
Triangular Matrix
end
b(k)=b(k)-factor*b(i); // Formula also
applicable to solution matrix
end
end
disp(’Final augmented matrix is:’);
disp(la,bl); //Display formed Upper Triagular Matrix

10

45
46
47
48
49
50
51

52
53
54

// Back Substitution

for i=n:-1:1
temp=b(i);
for j=i+1:1:n

temp=temp-a(i,j)*x(j);

end

x(i)=temp/a(i,i); // Calculating the value of x
(3) ,x(2) and x(1)

end
disp(’Answer is
disp(x);

)

resp .

11

O = W N

10
11

Experiment: 4

Program for Ordinary

differential equation using
Euler Method

Scilab code Solution 4.4 Euler method

//Scilab code Solution 4 Program for Ordinary

//
//
//
//

//

differential equation using FEuler Method
Operating System Windows 7

SCILAB version 6.1.1

Experiment No 4

Program for Ordinary differential equation using
Euler Method

Example — Write a computer program in SCILAB to
solve the ODE

//dy/dx=-xxy 2 using Eulers method under the

condition x=0,y=2.Find y at x=1 with h=0.1.

//Input function —xy 2,x0=0,y0=2,xn=1,h=0.1
clc;

close;

clear;

12

12
13
14
15
16
17

18
19
20
21
22

23
24

deff ('y=f(x,y)’, 'y==x%xy"2’);// Enter the Function
x0=input ("Enter the value of x0=");
yO=input ("Enter the value of y0=");
xn=input ("Enter the value of xn=’");
h=input ("Enter the value of h=");
n=(xn-x0)/h; // Formuale for finding number of Step
Size
disp(n)
for i=1:1:mn
yn=y0+h*f (x0,y0);// Formulae use in Euler Method
x0=x0+h; // Increment in Step size
yO=yn; // Replacement of y0 as yn for next
iteration
printf (’Value of y(%f)=%f\n’,x0,y0);
end

13

O = W N

10
11

Experiment: 5

Program for Ordinary
differential equation using
Runge Kutta 4th order

Scilab code Solution 5.5 RK40RDER

//Scilab code Solution 5 Program for Ordinary
differential equation using Runge—Kutta 4th order

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 5

// Program for Ordinary differential equation using
Runge—Kutta 4th order

// Example — Write a computer program in SCILAB to
obtain the numerical solution of

//dy/dx=x"24+y" 2, y(0)=0,h=0.2. Estimate y(0.4) using
Runge Kutta 4 order method

//Input function x"24y"2,x0=0,y0=0,h=0.2,xn=0.4

clc;

close;

clear;

14

12 deff ('y=f(x,y,z)’ , y=xxx+y*xy’);// Enter the Function
13 x0=input (’Enter the value of x0=");

14 yO=input (’Enter the wvalue of y0=");

15 xn=input (’Enter the value of xn=");

16 h=input (’ Enter the value of h=7");

17 n=(xn-x0)/h;// Formuale for finding number of Step

Size
18 disp(n)
19 for i=1:1:mn
20 kl1=h*f(x0,y0);// Calculate value of kl
21 k2=hx*f (x0+h/2,y0+k1/2);// Calculate value of k2
22 k3=hx*f (x0+h/2,y0+k2/2);// Calculate value of k3
23 k4=hx*f (x0+h,y0+k3);// Calculate value of k4
24 k=(k1+2*k2+2%¥k3+k4)/6.0;// Calculate value of k
25 yn=yO+k;// Increment in Step size
26 x0=x0+h;// Increment in Step size
27 yO=yn;// Replacement of z0 as zl for next
iteration
28 printf (’Value of y(%f)=%f\n’,x0,y0);// Display y(
n)
29 end

15

Ot = W N

Experiment: 6

Program for Ordinary
differential equation using
Simultaneous equations using
Runge Kutta 2nd order method

Scilab code Solution 6.6 RK2Order Simultaneous

//Scilab code Solution 6 Program for Ordinary
differential equation using Simultaneous
equations using Runge—Kutta 2nd order method

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 6

// Program for Ordinary differential equation using
Simultaneous equations using Runge—Kutta 2nd
order method

// Example — Write a computer program in SCILAB to
to solve the equation

//dy/dx=-0.5%y,dz/dx=4-0.3xz—0.1xy Using runge kutta
second order simultaneous method where at x = 0,
y =4, z =6.

//Find y & z at x = 0.5 (take h=0.5)

16

9 //Input function f(x,y,z)=—0.5%xy, g(x,y,z)= 4—0.3%z
—0.1xy,x0=0,y0=4,z0=6,h=2,xn=0.5

10 clc;

11 clear;

12 deff ('y=f(x,y,z)’, y=-0.5%y’);// Enter the Function

13 deff(’'z=g(x,y,z)’ , 2=4—0.3%xz—0.1xy’);// Enter the
Function

14 x0=input (’Enter the value of x0=");

15 yO=input (’Enter the value of y0=");

16 zO=input (’Enter the value of z0=");

17 xn=input (’Enter the value of xn=");

18 h=input (' Enter the value of h=7");

19 n=(xn-x0)/h;// Formuale for finding number of Step

Size

20 for i=1:1:mn

21 ki1=h*f(x0,y0,2z0);// Calculate value of kl

22 Li=h*g(x0,y0,2z0);// Calculate value of LI

23 k2=hx*f (x0+h,y0+k1,z0+L1);// Calculate value of k2

24 L2=h*g(x0+h,y0+k1,z0+L1);// Calculate value of L2

25 k=(k1+k2)/2.0; // Finding out increment in y
direction

26 yl=y0+k;// Increment in Step size

27 L=(L1+L2)/2.0;// Finding out increment in z
direction

28 z1=2z0+L;// Increment in Step size

29 x0=x0+h; // Increment in Step size

30 yO=y1;// Replacement of y0 as yl for next
iteration

31 z0=z1;// Replacement of z0 as zl for next

iteration
32 printf (’value of y(%f)=%f\n’,x0,y0);// Display y(n
)
33 printf (’value of z(%f)=%f\n’,x0,z0);// Display z(n

)

34 end

17

18

QU > W N

Experiment: 7

Program for Partial differential
equation using Simple Laplace
method

Scilab code Solution 7.7 Laplace Method

//Scilab code Solution 7 Program for Partial
differential equation using Simple Laplace method

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 7

// Program for Partial differential equation using

Simple Laplace method

// Example — A steel Plate of 750x750mm has its two
adjancent sides maintained at

//100 C .While the two other sides are maintained at
0 C .What will be the

//steady state temperature at interior assuming a
grid size of 250mm. Solve upto 11 iteration

19

10

11
12
13
14

15

16

17

18

19

20
21
22
23

24
25
26
27

28
29
30
31

32
33
34
35

//Input function nl=11,n=4m=4,u(1,1)=0,u(2,1)=0,u
(3,1)=0,u(4,1)=0

//u(4,2)=0,u(4,3)=0,u(4,4)=0,u(3,4)=100,u(2,4)=100,u
(1,4)=100

//u(1,3)=100,u(1,2)=100

clc;

clear;

nl=input ("Enter the no. of iteration to solve
simultaneous eqn:’);

n=input (’ Enter the no.of mesh point(No.of B.V.
values) in x—direction: ’);

m=input (° Enter the no.of mesh point(No.of B.V.
values) in y—direction:’);

printf (’ Enter boundary value(B.V.) in anticlockwise
direction Starting from bottom left corner\n’);

u=zeros(m,n); //to create matrix of total size and
to take initial guess as 0,0,0...

for i=1:n// to take input as a boundary value at
bottom side
printf ('Enter u(%d,1)=",1);
u(i,1)=input(’’);

end

for j=2:m //to take I/P at Right hand side B.V.
bottom to top
printf (’Enter u(%d,%d)=",n,j);
u(n,j)=input(’’);

end

for i=n-1:-1:1 // to take I/P at top side B.V. right
to left
printf (’Enter u(%d,%d)=",1i,m);
u(i,m)=input(’’);

end

for j=m-1:-1:2 //to take I/P at left hand side B.V.
top to bottom
printf ("Enter u(1,%d)=",3);
u(l,j)=input(’ 7);

end

for k=1:n1 // To repeat nl iterations

20

36

37
38

39
40
41
42

43
44
45
46
47
48

e
end

for j=2:m-1 //To calculate value at intermediate
point by Gauss Seidal method
for i=2:n-1
u(i,j)=1/4x(u(i-1,j)+u(i,j+1)+u(i+1,j)+u(i,
j-1));// Formula for finding Internal
Elements
end
end
printf (’Value after iteration mno.:%d\n’,k);
for j=m:-1:1 //To print value after each
[teration in Tabulated form
for i=1:n
printf (’\t %0.4f \t’ ,u(i,j));
end
printf (’\n’);
nd

21

D Ot = W N

© 00

10

12

Experiment: 8

Program for Numerical
Integration using Trapezoidal
rule

Scilab code Solution 8.8 TrapezoidalRule

//Scilab code Solution> 8 Program for Numerical
Integration using Trapezoidal rule

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 8

// Program for Numerical Integration using
Trapezoidal rule

// Example — Write a computer program in SCILAB to
solve integration 4xx+2

//limits x0=0,xn=1 by using Trapezoidal Method.

//Take h=0.5.

//Program on Trapezoidal Rule

clc;

close;

clear;

22

13
14
15
16
17
18
19
20
21
22
23
24
25

26

deff ('y=f(x)’, y=4%x+2");// Enter the Function
xO0=input ("Enter lower limit:’);// Enter Lower Limit
xn=input ("Enter upper limit:’);// Enter Upper Limit
h=input (’Enter step Size h:’);// Enter Step Size
x=%x0;
n=(xn-x0)/h;// Enter number of Step size
s=0;
for i=1:n-1
x=x+h;
s=s+2%f (x) ;
end
s=f(x0)+s+f(xn);
I=h/2*s;// Formula for finding Area by using
Trapezoidal Rule
printf (’Integration of given function is=%f\n’,I);

23

QU = W N

10
11

Experiment: 9

Program for Numerical

Integration using Simpsons
1/3rd Rule

Scilab code Solution 9.9 Simpson 1 3rd Rule

//Scilab code Solution 9 Program for Numerical
Integration using Simpsons 1/3 rd Rule

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 9

// Program for Numerical Integration using

Simpsons 1/3 rd Rule

// Example — Write a Program in Scilab for finding
area of fucntion (sin(x))/(2+3*sin(x)) for

//upper limit of 1 and lower limit of 0.Take n=6 by
using Simpson’s 1/3 Rule

//Program on Simpson’s 1/3rd Rule

clc;

clear;

deff ('y=f(x)’, y=(sin(x))/(2+3xsin(x))’);// Enter

24

the Function

12 x0=input (’Enter lower limit:’);// Enter the lower
limit of x

13 xn=input (’Enter upper limit:’);// Enter the upper
limit of x

14 n=input(’Enter number of steps:’);// Enter the
number of steps

15 x=x0;

16 h=(xn-x0)/n;// Calculate step size

17 s=0;

18 for i=1:n-1

19 x=x+h;

20 if modulo(i,2)==0 // Calculating Even Term of
Simpson 1/3rd Formula

21 s=s+2*xf (x);

22 else

23 s=s+4xf (x);

24 end

25 end

26 s=f(x0)+s+f(xn);

27 I=(h/3)*s;// Finding Integrating value

28 printf(’\nlntegration of given function is=%f\n’,I);
// Display Value

25

QU = W N

10
11

Experiment: 10

Program for Numerical

Integration using Simpsons
3/8th Rule.

Scilab code Solution 10.10 Simpson 3 8th Rule

//Scilab code Solution 10 Program for Numerical
Integration using Simpsons 3/8 Rule

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 10

// Program for Numerical Integration using
Simpsons 3/8 Rule

// Example — Write a Program in Scilab for finding
area of fucntion exp(x)/x for

//upper limit of 2 and lower limit of 1.Take n=6 by
using Simpson’s 3/8 Rule

//Program on Simpson’s 3/8th Rule

clc;

close;

clear;

26

12
13

14

15

16
17
18
19
20
21

22
23
24
25
26
27
28
29

deff ('y=f(x)’, y=exp(x)/x’);// Enter function
xO0=input ("Enter lower limit:’);// Enter lower limit

of x

xn=input ("Enter upper limit:’);// Enter upper limit
of x

n=input ("'Enter number of steps:’);// Enter number of
step

x=x0;

h=(xn-x0)/n;// Finding out of step size

s=0;

for i=1:n-1
x=x+h;

if modulo(i,3)==0 // Condition for adding the odd
value together
s=s+2*xf (x) ;
else
s=s+3*f (x);
end
end
s=f (x0)+f (xn)+s;
I=((3xh)/8)*s; // Calculating Area
printf (’\nlntegration of given function is=%f\n’,I);

27

Ot = W N

Experiment: 11

Program for Numerical
Integration using Gauss
Quadrature 2-point and 3-point
method

Scilab code Solution 11.11 Gauss 2 and 3 Point Method

//Scilab code Solution 11 Program for Numerical

//

Integration using Gauss Quadrature 2—point and 3—
point method

Operating System Windows 7

SCILAB version 6.1.1

Experiment No 11

Program for Numerical Integration wusing Gauss
Quadrature 2—point and 3—point method

Example Write a Program in Scilab to solve
using two—point or three point Gauss quadrature
rule to

//approximate the distance covered by a rocket from

t =8 to t = 30 as given by

//x=(2000%1og (140000/(140000 —2100%t)) —9.8xt)

//

Enter a=lower limit=8,b=upper limit=30,n=Enter 2

28

10

11
12
13

14

15

16

17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33

34
35

or 3 depend upon Guass 2 point or 3 point formula
//Program on Gauss Quadrature 2—point and 3—point
method
clc;
clear;
deff ('x=f(t)’, x=(2000%x1log (140000/(140000—-2100xt))
—9.8%t)’);// Enter the function
a=input ('Enter lower limit:’);// Enter the lower
limit of Integration
b=input (’Enter upper limit:’);// Enter the upper
limit of Integration
n=input ("’Enter 2 point or 3 point method:’);// Enter
which method you are suppose to use
if n== // For executing 2 Point Method
c=(b-a)/2;
d=(b+a)/2;
z1=-1/sqrt (3);
z2=1/sqrt (3);
xl=c*xzl+d;
x2=c*xz2+d;
I=c*(f(x1)+£f(x2));// Formula for finding
Integration value
else // For executing 3 Point Method
c=(b-a)/2;
d=(b+a)/2;
zl=sqrt (3/5);
z2=-sqrt (3/5) ;
x1l=c*xzl+d;
x2=c*xz2+d;
x3=d;
I=c*(5/9*%f(x1)+5/9%f (x2)+8/9*f(x3));// Formula
for finding Integration value
end
printf (’\n Integration of given function is=%f\n’,I)
;// Display the Integration

29

30

O = W N

Experiment: 12

Program for Numerical Double
Integration using Trapezoidal
rule

Scilab code Solution 12.12 Trapezoidal Double Rule

//Scilab code Solution 12 Program for Numerical
Double Integration using Trapezoidal rule

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 12

// Program for Numerical Double Integration using

Trapezoidal rule

// Example — Write a Program in Scilab for finding
area of fucntion x+y for

//upper limit of 0 and lower limit of 1 for x,y.Take
n=m=6 by using Numerical Double Integration
using Trapezoidal rule

//Take f(x,y)=x+y,x0=0,xn=1,y0=0,yn=1,n=m=6

// Program for Numerical Double Integration using
Trapezoidal rule

31

10
11
12
13
14

15

16

17

18

19

20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40

clc;
close;
clear;
deff (y=f(x,y)’, 'y=x+y’');// Enter function
x0=input ("Enter x0 lower limit of x:’);// Enter
lower limit of x
xn=input (’Enter xn upper limit of x:’);// Enter
upper limit of x
n=input (’Enter no. of steps in x-direction:’);//
Enter number of step size in x axis
yO=input ("Enter y0 lower limit of y:’);// Enter
lower limit of y
ym=input (’Enter ym upper limit of y:’);// Enter
upper limit of y
m=input (’Enter no. of steps in y—direction:’);//
Enter number of step size in y axis
h=(xn-x0)/n;// Enter step size in x axis
k=(ym-y0)/m;// Enter step size in y axis
s=0;
x=x0;// Replacement of x by x0
y=y0;// Replacement of y by y0
for i=1:1:m+1
for j=1:1:n+1
a(i,j)=f(x,y);// Alloting pivot point by
putting value in function
x=x+h; //Increament in x axis
end
y=y+k; //Increament in y axis
x=x0;
end
disp([al);
for i=1:1:m
for j=1:1:mn
s=s+a(i,j)+a(i,j+1)+a(i+1l,j)+a(i+l,j+1);
end
end
I=h*k/4xs;// Calculating the Area

printf (’Integration of given function is=%f\n’,I);

32

// Display the Area

33

D QU = W N

© 00

10

Experiment: 13

Program for Curve fitting using
least square technique for first
order equation

Scilab code Solution 13.13 First Order Equation

//Scilab code Solution 13 Program for Curve

fitting using least square technique for first
order equation

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 13

// Program for Curve fitting using least square
technique for first order equation

// Example — Write a computer program in SCILAB to
fit a straight line to the data given below

/) x=[1 2 3 45 6 7];

//y=1]0.5 2.5 2.0 4.0 3.5 6.0 5.5];

clc;

close;

34

12
13
14

15
16
17

18
19
20
21
22

23

24

25

26

27
28

clear;

//x=input (’enter value of x matrix ")

x=[1 2 3 45 6 7];// Enter the x values (Dependent
Variables)

disp ([x1);

//y=input ("enter value of y matrix’)

y=[0.5 2.5 2.0 4.0 3.5 6.0 5.5];// Enter the y
values (Independent Variables)

disp ([yl);

n=length(x);// Enter the data in x values

Y=y;

X=x;

X2=X.xX;// Calculating X«X Values(.x indicates that
multiplication between respective value of x)
XY=X.*Y;// Calculating Xxy Values(.x indicates that

multiplication between respective value of x and
y)
a0=(sum(Y)*sum(X2)-sum(X)*sum(XY))/(n*xsum(X2) -(sum(X
)~2)); // Calculating coefficient a0
al=((n*sum(XY)-sum(X)*sum(Y))/(n*sum(X2) -(sum(X)) ~2)
);// Calculating coefficient al
a=al;//Replacement value of a
b=a0;//Replacement value of b
printf (’\n y=%fxx+%f’,a,b);// Display y=ax+b

35

QU = W N

oo

Experiment: 14

Program for Curve fitting using
least square technique for
power equation

Scilab code Solution 14.14 Power Equation

//Scilab code Solution 14 Program for Curve
fitting using least square technique for power
equation

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 14

/] 14 Program for Curve fitting using least square
technique for power equation

// Example — Write a computer program in SCILAB to
fit a power equation y=ax b to the data given
below :

/] x=[1 2 3 4 5];

//y=[0.5 1.7 3.4 5.7 8.4];

// Program for Curve fitting using least square
technique for power equation

36

10
11
12
13
14

15
16
17

18
19
20
21
22
23
24

25

26

27
28

clc;

close;

clear;

//x=input ("enter value of x matrix ’)

x=[1 2 3 4 5];// Enter X values(Dependent Variables
)

disp ([x]);

//y=input ("enter value of y matrix’)

y=[0.5 1.7 3.4 5.7 8.4]1;// Enter Y Values(
Independent variables)

disp([lyl);

n=length(x);// calculate length of x

Y=1log(y);// Calculate valur of Y

X=log(x);// Calculate valur of X

X2=X.xX;// Calculate valur of X«X

XY=X.*Y// Calculate valur of XxY

a0=(sum(Y)*sum(X2) -sum (X) *sum (XY))/(n*sum(X2) -(sum (X
)"2));// Calculating coefficienct a0

al=((n*xsum (XY)-sum(X) *sum(Y))/(n*sum(X2) -(sum (X)) ~2)
);// Calculating coefficient al

a=exp(a0); // Replacement of value

b=al;//Replacement of value

printf (’\n y=%f*x"%f’,a,b);//Display y= ax"b

37

QU = W N

co

10
11

Experiment: 15

Program for Curve fitting using
least square technique for
exponential equation

Scilab code Solution 15.15 Exponential Equation

//Scilab code Solution 15 Program for Curve
fitting using least square technique for
exponential equation

// Operating System Windows 7

// SCILAB version 6.1.1

// Experiment No 15

/] 15 Program for Curve fitting using least square
technique for exponential equation

// Example — Write a computer program in SCILAB to
fit a exponential equation y=ae bx to the data
given below :

// x=[1 3 5 7 9];

//y=1[2.473 6.722 18.274 49.673 135.026];

// Program for Curve fitting using least square
technique for exponential equation

clc;

close;

38

12
13
14

15
16
17

18
19
20
21
22

23

24

25

26

27
28

clear;

//x=input (’enter value of x matrix ")

x=[1.0 3.0 5.0 7.0 9.0];// Enter x values(Dependent
Variables)

disp ([x1);

//y=input ("enter value of y matrix’)

y=[2.473 6.722 18.274 49.673 135.026]1;// Enter y
values (Indepent Variables)

disp ([yl);

n=length(x);// Calculate number of data enter in x

Y=1log(y);// Calculating Y Value

X=x;

X2=X.*X;// Calculating X«X Value(.x indicates
respective value of x is multipled with
respective x value)

XY=X.*xY//// Calculating XxY Value

a0=(sum(Y)*sum(X2)-sum (X) *sum (XY))/(n*sum(X2) -(sum (X
)~2));// Calculating coefficient a0

al=((n*xsum (XY)-sum(X) *sum(Y))/(n*sum(X2) -(sum (X)) ~2)
);// Calculating coefficient al

a=exp(a0);// Finding the value of a

b=al;// Finding the value of a

printf (’\n y=%fxe %fxx’,a,b);//Displaying y=ae b

39

	
	Program for roots of Equation using Bisection Method accuracy criteria
	Program for roots of Equation using Newton Raphson Method accuracy criteria
	Program for Simultaneous equations using Gauss Elimination Method
	Program for Ordinary differential equation using Euler Method
	Program for Ordinary differential equation using Runge Kutta 4th order
	Program for Ordinary differential equation using Simultaneous equations using Runge Kutta 2nd order method
	Program for Partial differential equation using Simple Laplace method
	Program for Numerical Integration using Trapezoidal rule
	Program for Numerical Integration using Simpsons 1/3rd Rule
	Program for Numerical Integration using Simpsons 3/8th Rule.
	Program for Numerical Integration using Gauss Quadrature 2-point and 3-point method
	Program for Numerical Double Integration using Trapezoidal rule
	Program for Curve fitting using least square technique for first order equation
	Program for Curve fitting using least square technique for power equation
	Program for Curve fitting using least square technique for exponential equation

