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Experiment: 1

Observe the effect of change in
time constant of the first-order
systems.

Scilab code Solution 1.1 Effect of time constant

//Lab 1 : Observe the effect of change in time

//

//
//
//
//

T/

co

10

//
//

constant of the first —order systems.

Problem Statement: Compare step response of
Gl=1/(2s+1), G2=1/(s+1) and
G3=1/(4s+1)

Operating System OSX (Mac) 10.14.6
Scilab Version 6.1.0
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xdel (winsid ()) // close the figure windows
clear; // clear the workspace
clc; // clear the console

//

// system representation
s=%s //Laplace operator

//system with various time constants.

Gl=syslin(’c’,1/(2%s+1)) //system 1 represented
by Gl(s)=1/(2s+1)

G2=syslin(’c’,1/(s+1)) //system 2 represented
by G2(s)=1/(s+1)

G3=syslin(’c’,1/(4*s+1)) //system 3 represented
by G3(s)=1/(4s+1)

//

// Unit step response

u=1

t=0:0.2:15 // Simulation time

cl=csim(’step’,t,Gl*u) // Response of system GIl(s)
=1/(2s+1)

c2=csim(’step ’,t,G2*u) // Response of system G2(s)
=1/(s+1)

c3=csim(’step ’,t,G3*u) // Response of system G3(s)
=1/(4s+1)

//plots

plot(t,cl,t,c2,’'r—",t,c3, LineWidth’,2)

lot of response value at one time—constant
p p
plot(2,0.6321,’07,1,0.6321, ’r0’,4,0.6321, 70",
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Figure 1.1: Effect of time constant

LineWidth’ ,2)
39 plot(t,0.6321,"

40 xgrid

41

", "LineWidth ’,1.5)

and grid to the figure

labels

42 //Title ,

.for G1’, Time constant

"Time constant 4 sec.

43 legend ( 'Time constant 2 sec

for G27,

1 sec.
44 title(’Responses

of first —order

,2)
45 xlabel(’Time t (sec.)’, fontsize’

46 ylabel(’c(t)’, fontsize’,2)
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Experiment: 2

Plot the time response of
second-order system with real
poles and compare it with
responses of it’s individual
poles.

Scilab code Solution 2.1 Time response of SOS

//Lab 2 : Plot the time response of second—order
system with real poles

// and compare it with responses of it ’s individual
poles.

//

// Problem Statement: Plot the time response of

//G=1/(2s+1)/(3s+1)) and comapare it with responses
of
// Gl=1/(2s+1) and G2=1/(3s+1))

//
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//

// Operating System OSX (Mac) 10.14.6
// Scilab Version 6.1.0

//

xdel (winsid ()) // close the figure windows
clear; // clear the workspace
clc; // clear the console

//

// system representation
s=%s //Laplace operator
//system with various time constants.

G=syslin(’c’,1/(2%s+1) /(3*s+1)) // representation
of original system G(s)=1/(2s+1)/(3s+1)

Gl=syslin(’c’,1/(2%s+1)) /] Gl(s)=1/(2s+1)
G2=syslin(’c’,1/(3%s+1)) /] G2(s)=1/(3s+1)
//

// Unit step response

t=0:0.2:30 // Simulation time
dim=size (t);
u=ones (dim (1) ,dim(2)) // unit step input



36
37
38
39
40
41
42
43
44
45
46
47

48

49
50

c=csim(u,t,G) // Response of system G

cl=csim(u,t,Gl) // Response of system GI
c2=csim(u,t,G2) // Response of system G2

//plot
plot(t,c,t,cl,t,c2, LineWidth’,2)

xgrid

// Title ; labels and grid to the figure

legend ('System G (SO)’, ' System G1(FO)’, ’'System G2(
FO) "’ ,4)

title(’Responses of second—order system and its
first —order poles’ , ’fontsize’,2)

xlabel ('Time t (sec.)’, fontsize’,2)

ylabel(’c(t)’, fontsize’,2)

10
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Figure 2.1: Time response of SOS
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Experiment: 3

Plot the time-responses of the
second-order system with
various damping factors.

Scilab code Solution 3.1 Time response of SOS

//Lab 3 : Plot the time—responses of the second-—
order systems with
//various damping factors.

//

// Problem Statement: Compare Step response of G=1/(
824 2% xi*wnks+wn " 2)
//with natural frequency wn=1 rad/sec and xi=0.3 (

underdamped) ,
//xi=1.5 (overdamped) and xi=0 (undamped) .
//
//
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// Operating System OSX (Mac) 10.14.6
// Scilab Version 6.1.0

//

xdel (winsid ()) // close the figure windows
clear; // clear the workspace
clc; // clear the console

//

// system representation

s=%s // Laplace operator

s=poly (0, 's’);

wn=1 // Natural frequency wn=1 rad/sec.

// case 1 : underdamped system with xi=0.3
x1i=0.3
Gl=syslin(’c’,1/(s " 2+2*xi*wn*s+wn"2)) //Gl(s)=1/(s

"240.35+1)
// case 2 : overdamped system with xi=1.5
xi=1.5

G2=syslin(’c’,1/(s " 2+2*xi*wn*s+wn"2)) //G2(s)=1/(s
"241.55+1)

// case 3 : undamped system with xi=0

x1=0

G3=syslin(’c’,1/(s " 2+2*xi*wn*s+wn"2)) //G3(s)=1/(s
"241)

//

// Unit step response

u=1

t=0:0.1:20 // Simulation time
cl=csim(’step’,t,Gl*u) // Response of system GI

13



38
39
40
41
42
43
44
45
46
47
48
49

50

o1
52

c2=csim(’step’,t,G2*u) // Response of system G2
c3=csim(’step ’,t,G3*u) // Response of system G3

//plots

plot(t,cl,t,c2,’'r—",t,c3, LineWidth’,2) //Responses
plot(t,u, —’, LineWidth’,1) // input signal

xgrid

// Title ; labels and grid to the figure

legend ("Underdamped System ', "overdamped System ’,
Undamped System ’,4)

title(’Responses of second—order systems
’,3)

xlabel ('Time t (sec.)’, fontsize’,2)

ylabel(’c(t)’, fontsize’,2)

Y

)

, fontsize
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Figure 3.1: Time response of SOS
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Experiment: 4

Examine the steady state
errors for Type 0 system.

Scilab code Solution 4.1 Steady state error analysis

//Lab 4 : Examine the steady state errors for Type
0 system.

//

// (a) Problem Statement: Examine the steady state

//
//

//

//
//
//

errors in step,

ramp and parabolic response of Type 0 system G
=0.5/(s+0.8).

Operating System OSX (Mac) 10.14.6
Scilab Version 6.1.0
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xdel (winsid ()) // close the figure windows
clear; // clear the workspace

clc; // clear the console

//

// system representation

s=%s //Laplace operator

//Type 0 system G=0.5/(s+0.8)

G=syslin(’'c’,0.5/(s+0.8))
Gcl=G/(1+G) //closed loop

//

Gel=0.5/(s+1.3)

£=0:0.2:12 //
dim=size(t);

ul=ones (dim (1) ,dim(2)) //
u2=t //
u3=t-2/2 //

// Unit step response

Simulation time

unit step input
unit ramp;
unit parabolic input

cl=csim(ul,t,Gecl) // unit step response of closed

loop system

c2=csim(u2,t,Gecl) // unit rmp response of closed

loop system

c3=csim(u3,t,Gcl) // unit parabolic response closed

loop system

17
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plot(t,cl,t,c2,t,c3,t, LineWidth’,2)
plot(t,ul, —’',t,u2, —’',t,u3,’ — ', LineWidth’,1.5)

zoom_rect ([0,0,8,1.5]) //zoom the grapics window for
clarity

xgrid

//Title , labels and grid to the figure

legend ('unit step response’, unit ramp response’, ’
unit parabolic response’,4)

title ('Responses of Type 0 system (dashed lines are
inputs)’ ,’fontsize ' ,2)

xlabel ('Time t (sec.)’, fontsize’,2)

ylabel(’c(t)’, fontsize ,2)

18



Figure 4.1: Steady state error analysis
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Experiment: 5

Examine the steady state
errors for Type 1 system.

Scilab code Solution 5.1 Steady state error analysis

//Lab 5 : Examine the steady state errors for Type
1 system.

//

//Problem Statement: Examine the steady state errors
in step,

// ramp and parabolic response of Type 1 system G
=0.5/s/(s+0.8)

//

//

// Operating System OSX (Mac) 10.14.6
// Scilab Version 6.1.0

//

20
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xdel (winsid ()) // close the figure windows
clear; // clear the workspace
clc; // clear the console

//

// system representation
s=%s //Laplace operator
//Type 1 system G=0.5/s/(s+0.8)

G=syslin(’'c’,0.5/s/(s+0.8))
Gecl=G/(1+G) //closed loop Gel=0.5/(s"24+0.8s+;0.5)

//

t=0:0.2:12 // Simulation time
dim=size (t);

ul=ones(dim (1) ,dim(2)) // unit step input
u2=t // unit ramp;
u3=t"2/2 // unit parabolic input

// Unit step response

cl=csim(ul,t,Gecl) // unit step response of closed
loop system

c2=csim(u2,t,Gcl) // unit rmp response of closed
loop system

c3=csim(u3,t,Gcl) // unit parabolic response closed
loop system

plot(t,cl,t,c2,t,c3,t, LineWidth’,2)
plot (t,ul, — ,t,u2, —,t,ud, —, LineWidth’,1.5)

21
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zoom_rect ([0,0,8,20]) //zoom the grapics window for
clarity

xgrid

// Title , labels and grid to the figure

legend ( 'unit step response’, unit ramp response’, ’
unit parabolic response’,2)

title (’Responses of Type 1 system (dashed lines are
inputs)’ , ' fontsize ’,2)

xlabel ('Time t (sec.)’, fontsize’,2)

ylabel(’c(t)’, fontsize’,2)

22



Figure 5.1: Steady state error analysis
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Experiment: 6

Examine the steady state
errors for Type 2 system.

Scilab code Solution 6.1 Steady state error analysis

//Lab 6 : Examine the steady state errors for Type
2 system.

//

//Problem Statement: Examine the steady state errors
in step,

//ramp and parabolic response of Type 2 system G=(s
+0.5)/s"2/(s+0.8)

//

//

// Operating System OSX (Mac) 10.14.6
// Scilab Version 6.1.0

//

24
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xdel (winsid ()) // close the figure windows
clear; // clear the workspace
clc; // clear the console

//

// system representation

s=%s //Laplace operator

//Type 1 system G=(s+0.5)/s"2/(s+0.8)

G=syslin('c’,(s+0.5)/s"2/(s+0.8))
Gcl=G/(1+G) //closed loop Gecl=(s+0.5)/(s " 3+0.85 2+s

+0.5)

//

t=0:0.2:10
dim=size(t);

// Simulation time

ul=ones(dim (1) ,dim(2)) // unit step input

u2=t
u3=t"2/2

// unit ramp;
// unit parabolic input

// Unit step response

cl=csim(ul,t,Gcl)
loop system

c2=csim(u2,t,Gcl)
loop system

c3=csim(u3,t,Gcl)
loop system

// unit step response of closed
// unit rmp response of closed

// unit parabolic response closed

25
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Figure 6.1: Steady state error analysis

plot(t,cl,t,c2,t,c3,t, LineWidth’,2)

plot(t,ul,’—’,t,u2,’—’',t,u3,’—’, LineWidth’,1.5)
xgrid
//Title , labels and grid to the figure

Y Y )

legend ('unit step response’, unit ramp response’,
unit parabolic response’,2)

title (’Responses of Type 2 system (dashed lines are
inputs)’ ,’fontsize ’,2)

xlabel ('Time t (sec.)’, fontsize’,2)

ylabel(’c(t)’, fontsize ’,2)
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Experiment: 7

Inspect the relative stability of
systems by Root-Locus.

Scilab code Solution 7.1 Stability analysis

//Lab 7 : Inspect the relative stability of systems
by Root—Locus.

//

//Problem Statement: Draw the root locus of the
system G=1/s /(s "2+1.5%xs+1).

//Observe settling time of of the system with
different gains.

//

//

// Operating System OSX (Mac) 10.14.6
// Scilab Version 6.1.0

//

27
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xdel (winsid ()) // close the figure windows
clear; // clear the workspace
clc; // clear the console

//

// system representation
s=%s // Laplace operator
s=poly (0, 's’);

G=syslin(’c’,1/(s*(s"2+1.5%s+1))) // system
representation G(s)=1/(s(s"2+1.5s+1))

//Compute marginal (critical) gain
//gain margin

gm= g_margin(G);

//gm=log10 (kmar) ==> kmar=10"(gm/20)
kmar=10"(gm/20)

kmax=2 // maximum gain for ploting of root locus
evans (G, kmax)

xgrid

// for various k, system transfer functions are
k1=0.4

Gl=k1*G/(1+k1*G) //G1=0.4/(s"3+1.55"24+s+0.4)
[z1,pl,k1]=tf2zp (G1)

plot(real(pl),imag(pl), 'bx’)

k2=0.8
G2=k2*G/ (1+k2*GC) //G2=0.8/(s"34+1.55 2+s+0.8)

[z2,p2,k2]=tf2zp (G2)
plot (real(p2),imag(p2), 'gx’)

k3=kmar //kmar=1.5
G3=k3*G/(1+k3*G) //G1=0.4/(s"34+1.58"24+s+1.5)

28
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[23,p3,k3]1=t£2zp (G3)

plot(real (p3),imag(p3),’

//

cx ')

// Unit step response
t=0:0.1:40
dim=size (t);

u=ones (dim (1) ,dim(2)) // unit

cl=csim(u,t,Gl) // Response of system G with kIl
c2=csim(u,t,G2) // Response of system G2 with k2
c3=csim(u,t,G3) // Response of system G2 with k3

//plots
figure (1)

clf

plot(t,cl,t,c2,t,c3, ' c:’, LineWidth’,2)

xgrid

//Title , labels and grid to the figure
'k=1.5",4)
title(’Responses of system with different gains

legend('k=0.4", 'k=0.8",

fontsize’,3)

xlabel ('Time t (sec.)’, fontsize’,2)

// Simulation time

ylabel ('c(t)’, fontsize ’,2)

29



Figure 7.1: Stability analysis
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Figure 7.2: Stability analysis
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Experiment: 8

Inspect the stability of systems
by Bode plot.

Scilab code Solution 8.1 Stability analysis

//Lab 8 : Inspect the relative stability of systems
from the Bode plot.

//

//Problem Statement: Draw the Bode of the system G
—1/s/{s " 2+1.85+1}$.
//Determine the stability margins.

//

//

// Operating System OSX (Mac) 10.14.6
// Scilab Version 6.1.0

//

32
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xdel (winsid ()) // close the figure windows
clear; // clear the workspace
clc; // clear the console

//

// system representation

s=%s // Laplace operator
s=poly (0, 's’);
G=syslin(’c’,1/s/(s"2+1.8%s+1))
//Bode plot with stability margins
show_margins (G, "bode )

[Gm,pcw] = g_margin(G)

[Pm,gcw] = p_margin(G)

disp (" Gain Margin” ,Gm,” Phase crossover frequency”,

pcw)

disp (" Phase Margin” ,Pm,” Gain crossover frequency”,

gcw)

33



Figure 8.1: Stability analysis
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Experiment: 9

Determine the frequency
response specifications from
Nyquist plot of system.

Scilab code Solution 9.1 Nyquist plot

//Lab 9 : Determine the frequency response
specifications from Nyquist plot of system.

//

//Problem Statement: Draw the Nyquist plot of the
system G=1/s/{s"2+5s+1}.
//Determine the stability margins.

//

//

// Operating System OSX (Mac) 10.14.6
// Scilab Version 6.1.0

//

35
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xdel (winsid ()) // close the figure windows
clear; // clear the workspace
clc; // clear the console

//

// system representation

s=%s // Laplace operator

s=poly (0, s ") ;

G=syslin(’c’,1/s/(s"2+bxs+1)) //System
representation G(s)=1/s/(s " 24+5s+1)

//

//Nyquist plot with stability margins
show_margins (G, 'nyquist ')
zoom_rect ([-1.5 -1.2 0 1.2])

[Gm,pcw] = g_margin(G)
[Pm, gcw] p_margin (G)

disp (" Gain Margin” ,Gm,” Phase crossover frequency”,
pcw)

disp (" Phase Margin” ,Pm,” Gain crossover frequency”,
gecw)

36



Figure 9.1: Nyquist plot
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