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Experiment: 1

Solve the s-wave Schrodinger
equation for the ground state

and the first excited state of
the hydrogen atom.

Scilab code Solution 1.01 Hydrogen atom problem

// Submitted by Dr. Neetu Agrawal. Assistant
Professor , Physics Dept., Daulat Ram College ,
Univ. of Delhi

// Aim: Solve the s—wave Schrodinger equation for

the ground state and the first excited
//state of the hydrogen atom.
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Figure 1.1: Hydrogen atom problem



Figure 1.2: Hydrogen atom problem



Figure 1.3: Hydrogen atom problem

Input the number of intervals (should be around 500 to 750 for good computation) 500
Ground state energy (1S orbital) for hydrogen atom is (in V)
- 13.5%98212
First excited state (28 orbital) energy for hydrogen atom is (in eV):
— 3.4025004
Second excited state (35S orbital) energy for hydrogen atom is (in eV):
- 1.5118515
Third excited state (45 orbital) energy for hydrogen atom is (in &Vv):

- 0.7744%25

-

Figure 1.4: Hydrogen atom problem
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//Here, m is the reduced mass of the electron.
Obtain the energy eigenvalues and plot

// the corresponding wavefunctions. Remember that
the ground state energy of the

//hydrogen atom is —13.6 eV. Take e = 3.795 (eV )
"1/2, ¢ = 1973 (eV ) and m = 0.511x10°6 eV /c2.

close;
clear;
clc;

// declaring constant values

hbarc=1973; //Plancks constant h divided by 2x(pi)
called as hbar=(h/2xpi). This factor when
multiplied by speed of light ¢ then hbarxc in the
units of (eV ) comes out to be 1973;
mcsq=0.511%10"(6) ; //This is mass of electronsxc "2 we
call it mesq in units of (eV);
e = 3.795; // (eV )"1/2

// We hereby input the ’r’ values so as to obtain
the potential V(r) as a function of 'r’)

r_min=0 // in units of angstrom

r_max=18 // in units of angstrom

N = dinput("Input the number of intervals (should be
around 500 to 750 for good computation)”)
s = (r_max-r_min)/N; //step size

factorl=-(hbarc~2)/(2xmcsq*s~2); // this factor is
(hbar "2xc"2/2mxc"2) divided by s"2 //k=(hbar_cx
hbar_c) /(2+m)

// Kinetic energy matrix (Using central difference
formula)

T=zeros (N-1,N-1)
for i=1:N-1
T(i,1)=-2
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if i<N-1 then

T(i,i+1)=1
T(i+1,i)=1
end
end
T_matrix = factorl*T,; // Kinetic Energy Matrix

final (scaling done)

//Potential energy matrix
V_matrix=zeros(N-1,N-1)
for i=1:N-1
r(i)=r_min+i*s
V_matrix(i,i)=-(exe)/r(i);
end

// Hamiltonian matrix
H_matrix=T_matrix+V_matrix

// energy eigenvalue and eigenstates
[u,eigen]=spec(H_matrix);

// displaying of the ground and first excited state

energies
disp (”Ground state energy (1S orbital) for hydrogen
atom is (in eV) : 7)

disp(eigen(1,1))

disp(” First excited state (2S orbital) energy for
hydrogen atom is (in eV): 7)

disp(eigen(2,2))

disp (”Second excited state (3S orbital) energy for
hydrogen atom is (in eV): 7)

disp(eigen(3,3))

disp (” Third excited state (4S orbital) energy for
hydrogen atom is (in eV): 7)

disp(eigen(4,4))

rmatrix = [0;r;15]; //including the first and last
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point at which wavefunction is zero.

//Displaying the first four energy eigen values

figure (1) ;

//sct()

for n = 1:1:4

plot (rmatrix, eigen(n,n)*ones(N+1,1), ’linewidth ’,n)

hl=legend(['n = 17; 'n= 27; 'n=3"; 'n=4"]);

title(’Energy Eigen values for Hydrogen atom’,
fontsize ’,3)

xlabel (’r (Angstrom)’, fontsize’,3)

ylabel ('Eigen Value’, 'fontsize ’,3)

end

//Plotting
r
figure (2);

//sct()

the Probability |Psi”“2| as a function of

R_wave_1s=u(:,1) ./r; //Radial wavefuction
R_wave_1s_final=[0;R_wave_1s;0]; //including
first and last point at which wavefunction

Z€ro .

// plot of

P_wave_1ls=

probability function
R_wave_1s_final.*xR_wave_1s_final;

plot (rmatrix,P_wave_1s, ’'linewidth ’,3)

title(’Plot of Probability function for 1s orbital’,

"fontsize ’,3)
xlabel (’r (Angstrom)’, fontsize ’,3)
ylabel (' Probability 7, "fontsize ’,3)

figure (3);

//sct()

R_wave_2s=u(:,2)./r;

R_wave_2s_final=[0;R_wave_2s;0];

first and last point at which wavefunction

Zero .

// plot of

P_wave_2s=

probability function
R_wave_2s_final .*R_wave_2s_final,;

11

Y

the

18

//including the

1s



93
94

95
96

plot (rmatrix,P_wave_2s, ’'linewidth ’,3)
title (' Plot of Probability function for 2s

"fontsize ’,3)
xlabel (’r (Angstrom)’, fontsize
ylabel (" Probability ', "fontsize

7,3)

7’3)

orbital 7,
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Experiment: 2

Solve the s-wave radial
Schrodinger equation for an
atom for the screened coulomb
potential.

Scilab code Solution 2.0 Screened coulomb potential

//Solve the s—wave Schrodinger equation for the
ground state and the first excited
//state of the hydrogen atom.

close;
clear;
clc;

// declaring constant values

hbarc=1973; // Plancks constant = h , hbarxc=(h/2xpi)
c.

mcsq=0.511%x10"(6) ; // (mass of electron)*c "2 in
units of (eV);

e = 3.795; // (eV )"1/2

//a = input (” Input the vaue of a in units of
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angstrom: 7) ;
a=3 ; // in units of Angstrom
// we can check it for 3, 5, 7 angstrom etc..

r_min=0 // in units of angstrom
r_max=5 // in units of angstrom

N = dinput(”Input the number of intervals (should be
around 500 to 1000 for good computation): 7)
s = (r_max-r_min)/N; //step size

factorl=-(hbarc~2)/(2xmcsq*s”~2);
// this factor is (hbar 2xc”2/2mxc"2) divided by s"2
//k=(hbar_cxhbar_c) /(2%m)

// Kinetic energy matrix (Using central difference
formula)

T=zeros (N-1,N-1)

for i=1:N-1

T(i,i)=-2
if i<N-1 then
T(i,i+1)=1
T(i+1,i)=1
end
end
// Kinetic Energy Matrix final (scaling factor
included)
T_matrix = factorlx*T;

//Potential energy matrix
V_matrix=zeros(N-1,N-1)
for i=1:N-1
r(i)=r_min+i*s
V_vector(i,1) = -((exe)/r(i))*exp(-r(i)/a);
V_matrix(i,i)=-((exe)/r(i))*exp(-r(i)/a);
end

// This is to plot the potential V(r)as a function
of r
figure;
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plot(r,V_vector,’ —. , linewidth ’,3)

xlabel (’r (in Angstrom units)’, fontsize’,2)
ylabel (’V(r)’, fontsize ’,2)

legend ([’Screened coloumb potential '])

// Hamiltonian matrix
H_matrix=T_matrix+V_matrix

// energy eigenvalue and eigenstates
[u,eigen]=spec(H_matrix);

// displaying of the groundstate energies
disp (" Ground state energy in the presence of

screened coloumb potential is : 7)
disp(eigen(1,1))

//Radial wavefuction

figure () ;

Psi=u(:,1) ./r;

plot(r,Psi, 'm’, ’linewidth’,3)

title(’Eign function plot in presence of screened
coloumb potential’,  fontsize ,2)

xlabel (’r (in Angstrom units)’, fontsize’,2)

ylabel ('Eigen Function’, fontsize ’,2)

legend ([’Ground state wavefunction '])
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Figure 2.1: Screened coulomb potential

Input the number of intervals (should be around 500 to 1000 for good computation): 750

"Ground state energy in the presence of screened coloumb potential is : "

-8.3865350

Figure 2.2: Screened coulomb potential
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Figure 2.3: Screened coulomb potential
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Experiment: 3

Solve the s-wave radial
Schrodinger equation for a
particle of mass m, for an
harmonic oscillator potential.
Plot wavefunctions.

Scilab code Solution 3.0 Harmonic Oscillator

//Solve the s—wave radial Schrodinger equation for a
particle of mass m
//for an harmonic oscillator potential for ground
state energy (in MeV).

close;
clear;
clc;

// declaring constant values

hbarc=197.3 //Plancks constant h divided by 2x(pi)
called as hbarc=(h/2xpi)=xc.

mcsq=940; // mass of electron*c 2 = mesq in units

18
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of (MeV);

k = 100; // harmonic oscillator potential constant
in units of MeV fm—2
b = 0;

disp (”"The value of b in the potential is chosen to
be:");

disp (b)

//To obtain the plot the potential V(r) as a

) b

function of 'r

r_min = 0;

r_max = 4;

N = input(”Input the number of intervals (should be
around 500 to 1000 for good computation: )”)

s = (r_max-r_min)/N; //step size

factorl=-(hbarc~2)/(2*xmcsq*s~2);

// making a row vector to input r values
for i=1:1:N
rmat (1,i)=r_min+(i-1) *s

end
for ir = 1:1:size(rmat,?2)
r = rmat (ir);
V(1,ir) = 0.5*%k*(r)"2 + 0.5xb*x(r) "3;
end
figure;
plot (rmat ,V, —.7, linewidth ' ,3)

// Kinetic energy matrix (Using central difference
formula)

T=zeros (N,N)

for i=1:1:N

T(i,i)=-2;

if (i<N)
T(i,i+1)=1;
T(i+1,i)=1

end

end
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T_matrix = factor1xT; // Kinetic Energy Matrix final
in MeV
// Potential energy matrix in MeV
U_matrix = zeros(N,N)
for i = 1:1:N
U_matrix(i,i)=V(1i)
end
// Hamiltonian matrix
Ham = T_matrix+U_matrix;
[u,eigen] = spec(Ham);
eigval_numeric = spec (Ham)
disp (’The first five eigen values
FDM are:’)
disp(eigval_numeric (1:5))
//Plotting the eigenvalues obtained by numerical
computation
for n =1:1:5
eigvalue_num = eigval_numeric(n)
eigvalue_num_vector = eigvalue_num*ones (1,N);
plot (rmat,eigvalue_num_vector, ’'r ')
end
// mormalisation check (The value comes out to be 1)
normalisation = sum((u(:,1) .*conj(u(:,1))))
// plotting the eigen functions.
//(plot of mod psi squared). Done the
eigen function magnitude
psisql = (1/normalisation)*(u(:,1) .xconj(u(:,1)))
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plot (rmat(1,:) ,8000*psisql’+eigval_numeric (1), ’k’)

psisq2 = (1/normalisation)*(u(:,2) .*xconj(u(:,2)))
plot (rmat(1,:) ,8000*%psisq2’+eigval_numeric(2), ’'k’)

psisq3 = (1/normalisation)*(u(:,3).*xconj(u(:,3)))
plot (rmat (1,:) ,8000*%psisq3’+eigval_numeric(3), ’'k’)

psisq4 = (1/normalisation)*(u(:,4) .*xconj(u(:,4)))
plot (rmat(1,:) ,8000*%psisq4’+eigval_numeric(4),’k’)

psisqb = (1/normalisation)*(u(:,5) .*xconj(u(:,5)))
plot (rmat(1,:) ,8000*%psisqb’+eigval_numeric(5), 'k’)

title(’Plot of first 5 probability density functions
7, ' fontsize ’,2);

xlabel(’r (in fm) >7, fontsize ’,2)

ylabel ("Energy (in MeV)and scaled probability density
functions)’, fontsize ’,2)

legend ([ "Potential Plot’, "Eigenvalues’])
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Figure 3.1: Harmonic Oscillator

"The value of b in the potential is chosen to be:"™

Q.
Input the number of intervals (should be around 500 to 1000 for good computation: )700

"The first five eigen values obtained using FDM are:"

96.011767
224.45556
352.96%9

481.69927
612.51479

Figure 3.2: Harmonic Oscillator
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Experiment: 4

Solve the s-wave radial
Schrodinger equation for the
vibrations of hydrogen
molecule. Find the lowest
vibrational energy (in MeV

Scilab code Solution 4.0 Morse Potential

1 //This program solves the s—wave radial Schrodinger
equation for the vibrations of hydrogen molecule
for the Morse potential

2 //Find the lowest vibrational energy (in MeV) of the
molecule. Also plot the corresponding wave
function. //Take: m = 940x106 eV/c2, D = 0.755501
eV, = 1.44, r0 = 0.131349 // Where S
the reduced mass of the two—atom system for the
Morse potential //Find the lowest vibrational

23



Enter the number of intervals(should be around 500 to 1000 for good computation) 750

Warning : redefining function: eval . Use funcprot(0) to avoid this message

The Eigenvalues calculated using FDM are

0.4042986

0.7535893

0.8403509

0.9841226

Figure 4.1: Morse Potential

Plot of first four Energy eigenvalues and Probabhility density for eigenfunctions
16

Morse Potential Curve

Energy Eigenvalues

1.4+

1.2

0.8+

0.8~

0.4

0.2

Energy(MeV) ->=(And the scaled wavefunctions)

0 T T T T T T T T T
o 0.1 D2 03 0.4 05 o0& 07 og og 1

Internuclear separatian- x(Angstram)—:=

Figure 4.2: Morse Potential
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energy (in MeV) of the molecule to an accuracy of
three significant digits. Also plot the //
corresponding wave function. //Take: m = 940x106
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eV/c2, D = 0.755501 eV, = 1.44, ro = 0.131349

clear
close
clc

//Declaring the values of constants

hcutc=1973 //Planck’s constant h divided by 2xpi
hcut=h/2%pi).This when multiplied by speed of
light ¢ gives hcutc(in units of eV A)

mcsq=940%10"6; //mass*xc 2 in units of eV/c 2

x0=0.131349 //In units of Angstrom
alpha=1.44 //axx0 where ’a’ is

particular molecule

a constant for

D=0.755501 //Dissociation Energy In units of eV

// Getting values of x to plot
xmin=0.05; //in units of A"o

xmax=1; //in units of A’o

V(x) v/s 'x’

plot

n=input (" Enter the number of intervals(should be
around 500 to 1000 for good computation)”);
s=(xmax-xmin)/n; //step size

for i=1:1:n

x(1,i)=xmin+s*x(i-1); //x vector of 1 row and n

columns to input values
seperation

x_(1,1)=(x(1,1)-x0)/x0 //x_ vector= (x—x0)/x0

end

of

internuclear

factorl=-(hcutc~2)/(2*mcsqx*s~2) //this factor

hceut "2xc¢”2/2%mxc "2%xs " 2)

25
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//plot of potential V(x) v/s x

V=zeros(n,n); //Potential energy matrix

for i=1:1:n

V_matrix(i,i)=(D*(1-exp(-alpha*x_(1,1i)))"2) //
formula for potential

end

for j=1:1:size(V_matrix,2)

V_vec(1l,j)=V_matrix(j,j)

end

plot(x,(V_vec),”linewidth” ,2) //linewidth command to
set width of line

title (" Plot of first four Energy eigenvalues and
Probability density for eigenfunctions”,” fontsize
7,2) //title of the plot

xlabel ('Internuclear separation— x(Angstrom)—>",”
fontsize” ,3) //fontsize command to set the font
size of labels

ylabel (’Energy (MeV) —>>(And the scaled wavefunctions
), fontsize” ,3)

for i=1:1:n

for j=1:1:n

if i==j then

K(i,j)=-2;

elseif i==(j-1)|i==(j+1) then

K(i,j)=1;

else

K(i,j)=0;

end

end

end

T_matrix=factorl*K; //Kinetic energy matrix

H_matrix=V_matrix+T_matrix; //Hamiltonian matrix

eval=spec(H_matrix); //eval stores the eigenvalues
of matrix H

[a,bl=spec(H_matrix); //a stores the eigenvectors
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disp(”The Eigenvalues calculated using FDM are”)
for i=1:1:4

disp(eval(i,1))

end

//Plotting the eigenvalues obtained by Numerical
computation

for i=1:1:4

eval_num=eval (i)

eval_num_vec=eval_numx*ones (1,n)

plot(x,eval_num_vec, 'k’,”linewidth” ,2)

end

//normalization check

normalisation=sum(a(:,1).*xconj(a(:,1)));

//Plotting the first four Eigen functions (plot of
mod psi square).We do the scaling of Eigen
functions magnitudes by

//a factor of 15 and raise to level of eigen values
to make the conventional plot with eigen values
and

//eigen functions on the same line

psisql=(1/normalisation)*(a(:,1) .*xconj(a(:,1)))

psisq2=(1/normalisation)*(a(:,2) .*xconj(a(:,2)))
psisq3=(1/normalisation)*(a(:,3) .*xconj(a(:,3)))
psisq4=(1/normalisation)*(a(:,4) .*xconj(a(:,4)))

plot(x(1l,:) ,15*%psisql’+eval (1), 'r’,”linewidth” ,1.5)

plot(x(1,:) ,15*%psisq2’+eval(2),’'r’,”linewidth” ,1.5)

plot(x(1,:) ,15*psisq3’+eval(3),’'r’,”linewidth” ,1.5)

plot(x(1,:) ,15*psisq4’+eval(4),’'r’,”linewidth” ,1.5)

legend ([7 Morse Potential Curve’, "Energy Eigenvalues
D
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Experiment: 5

Plot and analyse the
wavefunctions for particle in an
infinite potential well.

Scilab code Solution 5.0 1D Box potential

close
clear
clc

//This is program calculates the energy eigen vaules
and eigen functions

//for a particle in an infinite potential well of
width a

// declaring constant values

28



Figure 5.1: 1D Box potential
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"The box size is (in meters):™

1.000D-10
Input the number of intervals (should be around 500 to 1000 for good computation) 750

"The Eigen (V) wvalues obtained from Finite differemce method are @7

37.6837235
150.54828
338.73117
602.18259
940.897485

"The Eigen values (eV) obtained from Analytic Formula are :"

37.7371723

150.95089

339.63851

603.80357

943.44308
-—>

Figure 5.2: 1D Box potential

m = 9.1e-31; // mass of electron
hplanck= 6.63*1e-34 // value of plancks constant
hbar = hplanck/(2*%pi) // value of h/2xpi (let we

call it hbar)
hbarsqbytwo_m_term = (hbar~2)/(2*m); //(value of
hbar square by 2xm)

eV = 1.6e-19; // vale of electron volt si units

MeV = (le+6)*eV; // writing Mega elctron volt

Angst = 1e-10; // value of one angstrom

x_min = O;

x_max = 1lxAngst; //This value can be changed to
change width of 1D box

disp (’'The box size is (in meters):’ )

disp (x_max)

N = input(”Input the number of intervals (should be

30



Figure 5.3: 1D Box potential
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around 500 to 1000 for good computation)”)

a = (x_max-x_min); // width of 1 d box

s = (x_max-x_min)/N; // step size

fac = -hbarsqbytwo_m_term/(s"2); // this
is (hbar"2/2m) divided by h"2

// making a row vector to input x values
for i=1:1:N

x(1,i)=x_min+(i-1) *s
end

factor

// Kinetic energy matrix (Using central difference

formula)
T=zeros (N,N)
for i=1:1:N

T(i,i)=-2;

if (i<N)
T(i,i+1)=1;
T(i+1,1i)=1

end

end

T_matrix = fac*xT/eV; // Kinetic Energy Matrix in eV

// potential energy matrix
U_matrix = zeros(N,N)

for i = 1:1:N
U_matrix(i,i)=0;

end

// Hamiltonian matrix H=U+T

H_matrix = T_matrix+U_matrix;
[u,eigen] = spec(H_matrix);
eigval_numeric = spec(H_matrix)

// mormalisation check
normalisation = sum((u(:,1) .*conj(u(:,1))))

// By theoretically achieved Formulae
for n= 1:1:5
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eigval_theory = (n~2*%pi~2*xhbar~2)/(2*m*a~2) // in
SI units

eigval_th_eV(n) = eigval_theory/eV // in eV

end

disp (’The Eigen (eV) values obtained from Finite
difference method are :7)

disp(eigval_numeric (1:5))

disp (’The Eigen values (eV) obtained from Analytic
Formula are :7)

disp(eigval_th_eV (1:5))

//Plotting the eigenvalues

figure;

for n =1:1:5
templ = eigval_numeric(n)
eigval_numeric_vector = templ*ones(1,N);

) Y

plot (x/Angst ,eigval_numeric_vector, 'r— ',
linewidth’, 2)

xlabel(’x (in angstrom units)’, fontsize ,3)

ylabel (’Eigenvalue (eV)’,’ fontsize’,3)

title(’Eigenvalues for first 5 Eigen functions’,
"fontsize ’,3)

Y

end

// plotting the Probbility functions. (plot of mod
psi squared)

figure;

for in =1:1:
psisq(:,in)
end

o

(u(:,in) .*xconj(u(:,in)))

subplot(5,1,1)

title (' First five Probability density functions’,
fontsize ’,3)

plot(x(1,:)/Angst,psisq(:,1)’,’r’, linewidth ' ,2)

)
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subplot(5,1,2)
plot(x(1,:)/Angst,psisq(:,2)’,’r’, linewidth’
subplot (5,1,3)
plot(x(1,:)/Angst,psisq(:,3)’,’r’, linewidth’
ylabel (" Probability density”, fontsize ,3)
subplot(5,1,4)
plot(x(1,:)/Angst,psisq(:,4)’,’r’, linewidth’
subplot (5,1,5)
plot(x(1,:)/Angst,psisq(:,5)’,’r’, linewidth’
xlabel (”"x (in angstrom units)”,’ fontsize ,3)

b

J

b

b

2)

2)

2)

2)
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