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Experiment: 1

Solve the s-wave Schrodinger
equation for the ground state
and the first excited state of
the hydrogen atom.

Scilab code Solution 1.01 Hydrogen atom problem

1 // Submitted by Dr . Neetu Agrawal . A s s i s t a n t
P r o f e s s o r , Phy s i c s Dept . , Daulat Ram Co l l e g e ,
Univ . o f De lh i

2

3 // Aim : So l v e the s−wave S ch r od i n g e r equa t i on f o r
the ground s t a t e and the f i r s t e x c i t e d

4 // s t a t e o f the hydrogen atom .

5



Figure 1.1: Hydrogen atom problem
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Figure 1.2: Hydrogen atom problem
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Figure 1.3: Hydrogen atom problem

Figure 1.4: Hydrogen atom problem
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5 //Here , m i s the reduced mass o f the e l e c t r o n .
Obtain the ene rgy e i g e n v a l u e s and p l o t

6 // the c o r r e s p ond i n g wave f un c t i on s . Remember tha t
the ground s t a t e ene rgy o f the

7 // hydrogen atom i s −13.6 eV . Take e = 3 . 7 95 ( e V )
ˆ1/2 , c = 1973 ( e V ) and m = 0 . 511 x10 ˆ6 eV/ c2 .

8

9 close;

10 clear;

11 clc;

12

13 // d e c l a r i n g c on s t an t v a l u e s
14

15 hbarc =1973; // Plancks c on s t an t h d i v i d e d by 2∗ ( p i )
c a l l e d as hbar=(h/2∗ p i ) . This f a c t o r when
mu l t i p l i e d by speed o f l i g h t c then hbar ∗ c i n the
u n i t s o f ( e V ) comes out to be 1973 ;

16 mcsq =0.511*10^(6);// This i s mass o f e l e c t r o n ∗ c ˆ2 we
c a l l i t mcsq i n u n i t s o f ( eV) ;

17 e = 3.795; // ( e V ) ˆ1/2
18

19 // We hereby input the ’ r ’ v a l u e s so as to ob t a i n
the p o t e n t i a l V( r ) as a f u n c t i o n o f ’ r ’ )

20 r_min=0 // i n u n i t s o f angstrom
21 r_max =18 // i n u n i t s o f angstrom
22 N = input(” Input the number o f i n t e r v a l s ( shou ld be

around 500 to 750 f o r good computat ion ) ”)
23 s = (r_max -r_min)/N; // s t e p s i z e
24 factor1=-(hbarc ^2) /(2* mcsq*s^2); // t h i s f a c t o r i s

( hbar ˆ2∗ c ˆ2/2m∗ c ˆ2) d i v i d e d by s ˆ2 //k=( hba r c ∗
hba r c ) /(2∗m)

25

26 // K i n e t i c ene rgy matr ix ( Using c e n t r a l d i f f e r e n c e
fo rmu la )

27

28 T=zeros(N-1,N-1)

29 for i=1:N-1

30 T(i,i)=-2
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31 if i<N-1 then

32 T(i,i+1)=1

33 T(i+1,i)=1

34 end

35 end

36

37 T_matrix = factor1*T; // K i n e t i c Energy Matr ix
f i n a l ( s c a l i n g done )

38

39 // P o t e n t i a l ene rgy matr ix
40 V_matrix=zeros(N-1,N-1)

41 for i=1:N-1

42 r(i)=r_min+i*s

43 V_matrix(i,i)=-(e*e)/r(i);

44 end

45

46 // Hami l ton ian matr ix
47 H_matrix=T_matrix+V_matrix

48

49 // ene rgy e i g e n v a l u e and e i g e n s t a t e s
50 [u,eigen]=spec(H_matrix);

51

52 // d i s p l a y i n g o f the ground and f i r s t e x c i t e d s t a t e
e n e r g i e s

53 disp(”Ground s t a t e ene rgy (1 S o r b i t a l ) f o r hydrogen
atom i s ( i n eV) : ”)

54 disp(eigen (1,1))

55 disp(” F i r s t e x c i t e d s t a t e (2 S o r b i t a l ) ene rgy f o r
hydrogen atom i s ( i n eV) : ”)

56 disp(eigen (2,2))

57 disp(” Second e x c i t e d s t a t e (3 S o r b i t a l ) ene rgy f o r
hydrogen atom i s ( i n eV) : ”)

58 disp(eigen (3,3))

59 disp(”Third e x c i t e d s t a t e (4 S o r b i t a l ) ene rgy f o r
hydrogen atom i s ( i n eV) : ”)

60 disp(eigen (4,4))

61

62 rmatrix = [0;r;15]; // i n c l u d i n g the f i r s t and l a s t
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po i n t at which wave func t i on i s z e r o .
63

64 // D i s p l a y i n g the f i r s t f o u r ene rgy e i g e n v a l u e s
65 figure (1);

66 // s c f ( )
67 for n = 1:1:4

68 plot(rmatrix , eigen(n,n)*ones(N+1,1), ’ l i n ew i d t h ’ ,n)
69 hl=legend ([ ’ n = 1 ’ ; ’ n= 2 ’ ; ’ n=3 ’ ; ’ n=4 ’ ]);
70 title( ’ Energy Eigen v a l u e s f o r Hydrogen atom ’ , ’

f o n t s i z e ’ ,3)
71 xlabel( ’ r ( Angstrom ) ’ , ’ f o n t s i z e ’ ,3)
72 ylabel( ’ E igen Value ’ , ’ f o n t s i z e ’ ,3)
73 end

74

75 // P l o t t i n g the P r o b a b i l i t y | Ps i ˆ 2 | as a f u n c t i o n o f
r

76 figure (2);

77 // s c f ( )
78 R_wave_1s=u(:,1)./r; // Rad ia l wave f u c t i on
79 R_wave_1s_final =[0; R_wave_1s ;0]; // i n c l u d i n g the

f i r s t and l a s t po i n t at which wave func t i on i s
z e r o .

80 // p l o t o f p r o b a b i l i t y f u n c t i o n
81 P_wave_1s= R_wave_1s_final .* R_wave_1s_final;

82 plot(rmatrix ,P_wave_1s , ’ l i n ew i d t h ’ ,3)
83 title( ’ P l o t o f P r o b a b i l i t y f u n c t i o n f o r 1 s o r b i t a l ’ ,

’ f o n t s i z e ’ ,3)
84 xlabel( ’ r ( Angstrom ) ’ , ’ f o n t s i z e ’ ,3)
85 ylabel( ’ P r o b a b i l i t y ’ , ’ f o n t s i z e ’ ,3)
86

87 figure (3);

88 // s c f ( )
89 R_wave_2s=u(:,2)./r;

90 R_wave_2s_final =[0; R_wave_2s ;0]; // i n c l u d i n g the
f i r s t and l a s t po i n t at which wave func t i on i s
z e r o .

91 // p l o t o f p r o b a b i l i t y f u n c t i o n
92 P_wave_2s= R_wave_2s_final .* R_wave_2s_final;
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93 plot(rmatrix ,P_wave_2s , ’ l i n ew i d t h ’ ,3)
94 title( ’ P l o t o f P r o b a b i l i t y f u n c t i o n f o r 2 s o r b i t a l ’ ,

’ f o n t s i z e ’ ,3)
95 xlabel( ’ r ( Angstrom ) ’ , ’ f o n t s i z e ’ ,3)
96 ylabel( ’ P r o b a b i l i t y ’ , ’ f o n t s i z e ’ ,3)
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Experiment: 2

Solve the s-wave radial
Schrodinger equation for an
atom for the screened coulomb
potential.

Scilab code Solution 2.0 Screened coulomb potential

1 // So l v e the s−wave S ch r od i n g e r equa t i on f o r the
ground s t a t e and the f i r s t e x c i t e d

2 // s t a t e o f the hydrogen atom .
3

4 close;

5 clear;

6 clc;

7

8 // d e c l a r i n g c on s t an t v a l u e s
9 hbarc =1973; // Plancks c on s t an t = h , hbar ∗ c=(h/2∗ p i )

ˆ c .
10 mcsq =0.511*10^(6); // ( mass o f e l e c t r o n ) ∗ c ˆ2 i n

u n i t s o f ( eV) ;
11 e = 3.795; // ( e V ) ˆ1/2
12 // a = input (” Input the vaue o f a i n u n i t s o f
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angstrom : ”) ;
13 a=3 ; // i n u n i t s o f Angstrom
14 // we can check i t f o r 3 , 5 , 7 angstrom e t c . .
15

16 r_min=0 // i n u n i t s o f angstrom
17 r_max=5 // i n u n i t s o f angstrom
18 N = input(” Input the number o f i n t e r v a l s ( shou ld be

around 500 to 1000 f o r good computat ion ) : ”)
19 s = (r_max -r_min)/N; // s t e p s i z e
20 factor1=-(hbarc ^2) /(2* mcsq*s^2);

21 // t h i s f a c t o r i s ( hbar ˆ2∗ c ˆ2/2m∗ c ˆ2) d i v i d e d by s ˆ2
//k=( hba r c ∗ hba r c ) /(2∗m)

22

23 // K i n e t i c ene rgy matr ix ( Using c e n t r a l d i f f e r e n c e
fo rmu la )

24 T=zeros(N-1,N-1)

25 for i=1:N-1

26 T(i,i)=-2

27 if i<N-1 then

28 T(i,i+1)=1

29 T(i+1,i)=1

30 end

31 end

32 // K i n e t i c Energy Matr ix f i n a l ( s c a l i n g f a c t o r
i n c l u d ed )

33 T_matrix = factor1*T;

34

35 // P o t e n t i a l ene rgy matr ix
36 V_matrix=zeros(N-1,N-1)

37 for i=1:N-1

38 r(i)=r_min+i*s

39 V_vector(i,1) = -((e*e)/r(i))*exp(-r(i)/a);

40 V_matrix(i,i)=-((e*e)/r(i))*exp(-r(i)/a);

41 end

42

43 // This i s to p l o t the p o t e n t i a l V( r ) as a f u n c t i o n
o f r

44 figure;
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45 plot(r,V_vector , ’ −. ’ , ’ l i n ew i d t h ’ ,3)
46 xlabel( ’ r ( i n Angstrom un i t s ) ’ , ’ f o n t s i z e ’ ,2)
47 ylabel( ’V( r ) ’ , ’ f o n t s i z e ’ ,2)
48 legend ([ ’ S c r e ened coloumb p o t e n t i a l ’ ])
49

50 // Hami l ton ian matr ix
51 H_matrix=T_matrix+V_matrix

52

53 // ene rgy e i g e n v a l u e and e i g e n s t a t e s
54 [u,eigen]=spec(H_matrix);

55

56 // d i s p l a y i n g o f the g r ound s t a t e e n e r g i e s
57 disp(”Ground s t a t e ene rgy i n the p r e s e n c e o f

s c r e e n ed coloumb p o t e n t i a l i s : ”)
58 disp(eigen (1,1))

59

60 // Rad ia l wave f u c t i on
61 figure ();

62 Psi=u(:,1)./r;

63 plot(r,Psi , ’m ’ , ’ l i n ew i d t h ’ ,3)
64 title( ’ Eign f u n c t i o n p l o t i n p r e s e n c e o f s c r e e n ed

coloumb p o t e n t i a l ’ , ’ f o n t s i z e ’ ,2)
65 xlabel( ’ r ( i n Angstrom un i t s ) ’ , ’ f o n t s i z e ’ ,2)
66 ylabel( ’ E igen Funct ion ’ , ’ f o n t s i z e ’ ,2)
67 legend ([ ’ Ground s t a t e wave func t i on ’ ])
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Figure 2.1: Screened coulomb potential

Figure 2.2: Screened coulomb potential
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Figure 2.3: Screened coulomb potential
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Experiment: 3

Solve the s-wave radial
Schrodinger equation for a
particle of mass m, for an
harmonic oscillator potential.
Plot wavefunctions.

Scilab code Solution 3.0 Harmonic Oscillator

1 // So l v e the s−wave r a d i a l S ch r od i n g e r equa t i on f o r a
p a r t i c l e o f mass m

2 // f o r an harmonic o s c i l l a t o r p o t e n t i a l f o r ground
s t a t e ene rgy ( i n MeV) .

3

4 close;

5 clear;

6 clc;

7

8 // d e c l a r i n g c on s t an t v a l u e s
9 hbarc =197.3 // Plancks c on s t an t h d i v i d e d by 2∗ ( p i )

c a l l e d as hbarc=(h/2∗ p i ) ∗ c .
10 mcsq =940; // mass o f e l e c t r o n ∗ c ˆ2 = mcsq i n u n i t s
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o f (MeV) ;
11 k = 100; // harmonic o s c i l l a t o r p o t e n t i a l c on s t an t

i n u n i t s o f MeV fm−2
12 b = 0;

13 disp(”The va lu e o f b i n the p o t e n t i a l i s chosen to
be : ”);

14 disp(b)

15 //To ob ta i n the p l o t the p o t e n t i a l V( r ) as a
f u n c t i o n o f ’ r ’

16 r_min = 0;

17 r_max = 4;

18 N = input(” Input the number o f i n t e r v a l s ( shou ld be
around 500 to 1000 f o r good computat ion : ) ”)

19 s = (r_max -r_min)/N; // s t e p s i z e
20 factor1=-(hbarc ^2) /(2* mcsq*s^2);

21

22 // making a row v e c t o r to input r v a l u e s
23 for i=1:1:N

24 rmat(1,i)=r_min+(i-1)*s

25 end

26

27 for ir = 1:1: size(rmat ,2)

28 r = rmat(ir);

29 V(1,ir) = 0.5*k*(r)^2 + 0.5*b*(r)^3;

30 end

31 figure;

32 plot(rmat ,V, ’ −. ’ , ’ l i n ew i d t h ’ ,3)
33

34 // K i n e t i c ene rgy matr ix ( Using c e n t r a l d i f f e r e n c e
fo rmu la )

35 T=zeros(N,N)

36 for i=1:1:N

37 T(i,i)=-2;

38 if (i<N)

39 T(i,i+1)=1;

40 T(i+1,i)=1

41 end

42 end
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43

44 T_matrix = factor1*T; // K i n e t i c Energy Matr ix f i n a l
i n MeV

45

46 // P o t e n t i a l ene rgy matr ix i n MeV
47 U_matrix = zeros(N,N)

48 for i = 1:1:N

49 U_matrix(i,i)=V(i)

50 end

51

52 // Hami l ton ian matr ix
53 Ham = T_matrix+U_matrix;

54 [u,eigen] = spec(Ham);

55 eigval_numeric = spec(Ham)

56

57

58 disp ( ’ The f i r s t f i v e e i g e n v a l u e s ob ta i n ed u s i n g
FDM are : ’ )

59 disp(eigval_numeric (1:5))

60

61 // P l o t t i n g the e i g e n v a l u e s ob ta i n ed by numer i c a l
computat ion

62

63 for n =1:1:5

64 eigvalue_num = eigval_numeric(n)

65 eigvalue_num_vector = eigvalue_num*ones(1,N);

66 plot(rmat ,eigvalue_num_vector , ’ r ’ )
67 end

68

69

70 // n o rma l i s a t i o n check (The va lu e comes out to be 1)
71 normalisation = sum((u(:,1).*conj(u(:,1))))

72

73 // p l o t t i n g the e i g e n f u n c t i o n s .
74 // ( p l o t o f mod p s i squared ) . Done the s c a l i n g o f

e i g e n f u n c t i o n magnitude
75

76 psisq1 = (1/ normalisation)*(u(:,1).*conj(u(:,1)))
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77 plot(rmat (1,:) ,8000*psisq1 ’+ eigval_numeric (1), ’ k ’ )
78

79 psisq2 = (1/ normalisation)*(u(:,2).*conj(u(:,2)))

80 plot(rmat (1,:) ,8000*psisq2 ’+ eigval_numeric (2), ’ k ’ )
81

82 psisq3 = (1/ normalisation)*(u(:,3).*conj(u(:,3)))

83 plot(rmat (1,:) ,8000*psisq3 ’+ eigval_numeric (3), ’ k ’ )
84

85 psisq4 = (1/ normalisation)*(u(:,4).*conj(u(:,4)))

86 plot(rmat (1,:) ,8000*psisq4 ’+ eigval_numeric (4), ’ k ’ )
87

88 psisq5 = (1/ normalisation)*(u(:,5).*conj(u(:,5)))

89 plot(rmat (1,:) ,8000*psisq5 ’+ eigval_numeric (5), ’ k ’ )
90

91 title( ’ P l o t o f f i r s t 5 p r o b a b i l i t y d e n s i t y f u n c t i o n s
’ , ’ f o n t s i z e ’ ,2);

92 xlabel( ’ r ( i n fm ) −−> ’ , ’ f o n t s i z e ’ ,2)
93 ylabel( ’ Energy ( i n MeV) and s c a l e d p r o b a b i l i t y d e n s i t y

f u n c t i o n s ) ’ , ’ f o n t s i z e ’ ,2)
94

95 legend ([ ’ P o t e n t i a l P l o t ’ , ’ E i g enva l u e s ’ ])
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Figure 3.1: Harmonic Oscillator

Figure 3.2: Harmonic Oscillator
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Experiment: 4

Solve the s-wave radial
Schrodinger equation for the
vibrations of hydrogen
molecule. Find the lowest
vibrational energy (in MeV

Scilab code Solution 4.0 Morse Potential

1 // This program s o l v e s the s−wave r a d i a l S ch r od i n g e r
equa t i on f o r the v i b r a t i o n s o f hydrogen mo l e cu l e
f o r the Morse p o t e n t i a l

2 // Find the l owe s t v i b r a t i o n a l ene rgy ( i n MeV) o f the
mo l e cu l e . Also p l o t the c o r r e s p ond i n g wave

f u n c t i o n . //Take : m = 940 x106 eV/c2 , D = 0 .755501
eV , = 1 . 4 4 , r0 = 0 . 131349 //Where s

the reduced mass o f the two−atom system f o r the
Morse p o t e n t i a l // Find the l owe s t v i b r a t i o n a l
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Figure 4.1: Morse Potential

Figure 4.2: Morse Potential
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ene rgy ( i n MeV) o f the mo l e cu l e to an accu racy o f
t h r e e s i g n i f i c a n t d i g i t s . Also p l o t the //

c o r r e s p ond i n g wave f u n c t i o n . //Take : m = 940 x106
eV/c2 , D = 0 . 755501 eV , = 1 . 4 4 , ro = 0 . 131349

3

4 clear

5 close

6 clc

7

8 // De c l a r i n g the v a l u e s o f c o n s t a n t s
9 hcutc =1973 // Planck ’ s c on s t an t h d i v i d e d by 2∗ p i (

hcut=h/2∗ p i ) . This when mu l t i p l i e d by speed o f
l i g h t c g i v e s hcutc ( i n u n i t s o f eV A)

10 mcsq =940*10^6; //mass∗ c ˆ2 i n u n i t s o f eV/ c ˆ2
11

12 x0 =0.131349 // In u n i t s o f Angstrom
13 alpha =1.44 // a∗x0 where ’ a ’ i s a c on s t an t f o r

p a r t i c u l a r mo l e cu l e
14 D=0.755501 // D i s s o c i a t i o n Energy In u n i t s o f eV
15

16 // Get t ing v a l u e s o f x to p l o t ’V( x ) ’ v/ s ’ x ’ p l o t
17 xmin =0.05; // i n u n i t s o f Aˆo
18 xmax =1; // i n u n i t s o f Aˆo
19

20 n=input(” Enter the number o f i n t e r v a l s ( shou ld be
around 500 to 1000 f o r good computat ion ) ”);

21 s=(xmax -xmin)/n; // s t e p s i z e
22

23 for i=1:1:n

24 x(1,i)=xmin+s*(i-1); //x v e c t o r o f 1 row and n
columns to input v a l u e s o f i n t e r n u c l e a r
s e p e r a t i o n

25 x_(1,i)=(x(1,i)-x0)/x0 // x v e c t o r= ( x−x0 ) /x0
26 end

27

28 factor1=-(hcutc ^2) /(2* mcsq*s^2) // t h i s f a c t o r i s (
hcut ˆ2∗ c ˆ2/2∗m∗ c ˆ2∗ s ˆ2)
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29

30 // p l o t o f p o t e n t i a l V( x ) v/ s x
31 V=zeros(n,n); // P o t e n t i a l ene rgy matr ix
32 for i=1:1:n

33 V_matrix(i,i)=(D*(1-exp(-alpha*x_(1,i)))^2) //
fo rmu la f o r p o t e n t i a l

34 end

35

36 for j=1:1: size(V_matrix ,2)

37 V_vec(1,j)=V_matrix(j,j)

38 end

39 plot(x,( V_vec),” l i n ew i d t h ” ,2) // l i n ew i d t h command to
s e t width o f l i n e

40 title(” P lo t o f f i r s t f o u r Energy e i g e n v a l u e s and
P r o b a b i l i t y d e n s i t y f o r e i g e n f u n c t i o n s ”,” f o n t s i z e
” ,2) // t i t l e o f the p l o t

41 xlabel( ’ I n t e r n u c l e a r s e p a r a t i o n − x ( Angstrom )−−−> ’ ,”
f o n t s i z e ” ,3) // f o n t s i z e command to s e t the f o n t
s i z e o f l a b e l s

42 ylabel( ’ Energy (MeV) −>>(And the s c a l e d wave f unc t i on s
) ’ ,” f o n t s i z e ” ,3)

43

44 for i=1:1:n

45 for j=1:1:n

46 if i==j then

47 K(i,j)=-2;

48 elseif i==(j-1)|i==(j+1) then

49 K(i,j)=1;

50 else

51 K(i,j)=0;

52 end

53 end

54 end

55 T_matrix=factor1*K; // K i n e t i c ene rgy matr ix
56 H_matrix=V_matrix+T_matrix; // Hami l ton ian matr ix
57 eval=spec(H_matrix); // e v a l s t o r e s the e i g e n v a l u e s

o f matr ix H
58 [a,b]=spec(H_matrix); // a s t o r e s the e i g e n v e c t o r s

26



59 disp(”The E i g enva l u e s c a l c u l a t e d u s i n g FDM are ”)
60 for i=1:1:4

61 disp(eval(i,1))

62 end

63

64 // P l o t t i n g the e i g e n v a l u e s ob ta i n ed by Numer ica l
computat ion

65 for i=1:1:4

66 eval_num=eval(i)

67 eval_num_vec=eval_num*ones(1,n)

68 plot(x,eval_num_vec , ’ k ’ ,” l i n ew i d t h ” ,2)
69 end

70 // n o rma l i z a t i o n check
71 normalisation=sum(a(:,1).*conj(a(:,1)));

72 // P l o t t i n g the f i r s t f o u r Eigen f u n c t i o n s ( p l o t o f
mod p s i s qua r e ) .We do the s c a l i n g o f Eigen
f u n c t i o n s magnitudes by

73 // a f a c t o r o f 15 and r a i s e to l e v e l o f e i g e n v a l u e s
to make the c o n v e n t i o n a l p l o t with e i g e n v a l u e s
and

74 // e i g e n f u n c t i o n s on the same l i n e
75 psisq1 =(1/ normalisation)*(a(:,1).*conj(a(:,1)))

76 psisq2 =(1/ normalisation)*(a(:,2).*conj(a(:,2)))

77 psisq3 =(1/ normalisation)*(a(:,3).*conj(a(:,3)))

78 psisq4 =(1/ normalisation)*(a(:,4).*conj(a(:,4)))

79 plot(x(1,:) ,15*psisq1 ’+eval (1), ’ r ’ ,” l i n ew i d t h ” ,1.5)
80 plot(x(1,:) ,15*psisq2 ’+eval (2), ’ r ’ ,” l i n ew i d t h ” ,1.5)
81 plot(x(1,:) ,15*psisq3 ’+eval (3), ’ r ’ ,” l i n ew i d t h ” ,1.5)
82 plot(x(1,:) ,15*psisq4 ’+eval (4), ’ r ’ ,” l i n ew i d t h ” ,1.5)
83 legend ([ ’ Morse P o t e n t i a l Curve ’ , ’ Energy E i g enva l u e s

’ ])
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Experiment: 5

Plot and analyse the
wavefunctions for particle in an
infinite potential well.

Scilab code Solution 5.0 1D Box potential

1 close

2 clear

3 clc

4

5 // This i s program c a l c u l a t e s the ene rgy e i g e n v au l e s
and e i g e n f u n c t i o n s

6 // f o r a p a r t i c l e i n an i n f i n i t e p o t e n t i a l w e l l o f
width a

7

8

9 // d e c l a r i n g c on s t an t v a l u e s
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Figure 5.1: 1D Box potential
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Figure 5.2: 1D Box potential

10 m = 9.1e-31; // mass o f e l e c t r o n
11 hplanck= 6.63*1e-34 // va lu e o f p l an ck s c on s t an t
12 hbar = hplanck /(2* %pi) // va lu e o f h/2∗ p i ( l e t we

c a l l i t hbar )
13 hbarsqbytwo_m_term = (hbar ^2) /(2*m); // ( va l u e o f

hbar squa r e by 2∗m)
14 eV = 1.6e-19; // v a l e o f e l e c t r o n v o l t s i u n i t s
15 MeV = (1e+6)*eV; // w r i t i n g Mega e l c t r o n v o l t
16 Angst = 1e-10; // va lu e o f one angstrom
17

18 x_min = 0;

19 x_max = 1*Angst; // This va l u e can be changed to
change width o f 1D box

20

21 disp ( ’ The box s i z e i s ( i n mete r s ) : ’ )

22 disp(x_max)

23

24 N = input(” Input the number o f i n t e r v a l s ( shou ld be
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Figure 5.3: 1D Box potential
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around 500 to 1000 f o r good computat ion ) ”)
25 a = (x_max -x_min); // width o f 1 d box
26 s = (x_max -x_min)/N; // s t e p s i z e
27 fac = -hbarsqbytwo_m_term /(s^2); // t h i s f a c t o r

i s ( hbar ˆ2/2m) d i v i d e d by hˆ2
28

29 // making a row v e c t o r to input x v a l u e s
30 for i=1:1:N

31 x(1,i)=x_min+(i-1)*s

32 end

33 // K i n e t i c ene rgy matr ix ( Using c e n t r a l d i f f e r e n c e
fo rmu la )

34 T=zeros(N,N)

35 for i=1:1:N

36 T(i,i)=-2;

37 if (i<N)

38 T(i,i+1)=1;

39 T(i+1,i)=1

40 end

41 end

42 T_matrix = fac*T/eV; // K i n e t i c Energy Matr ix i n eV
43

44 // p o t e n t i a l ene rgy matr ix
45 U_matrix = zeros(N,N)

46 for i = 1:1:N

47 U_matrix(i,i)=0;

48 end

49

50 // Hami l ton ian matr ix H=U+T
51 H_matrix = T_matrix+U_matrix;

52 [u,eigen] = spec(H_matrix);

53 eigval_numeric = spec(H_matrix)

54

55 // n o rma l i s a t i o n check
56 normalisation = sum((u(:,1).*conj(u(:,1))))

57

58 // By t h e o r e t i c a l l y a ch i e v ed Formulae
59 for n= 1:1:5
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60 eigval_theory = (n^2* %pi ^2* hbar ^2) /(2*m*a^2) // i n
SI u n i t s

61 eigval_th_eV(n) = eigval_theory/eV // i n eV
62 end

63

64 disp( ’ The Eigen ( eV) v a l u e s ob ta i n ed from F i n i t e
d i f f e r e n c e method a r e : ’ )

65 disp(eigval_numeric (1:5))

66 disp( ’ The Eigen v a l u e s ( eV) ob ta in ed from Ana l y t i c
Formula a r e : ’ )

67 disp(eigval_th_eV (1:5))

68

69 // P l o t t i n g the e i g e n v a l u e s
70 figure;

71 for n =1:1:5

72 temp1 = eigval_numeric(n)

73 eigval_numeric_vector = temp1*ones(1,N);

74 plot(x/Angst ,eigval_numeric_vector , ’ r−− ’ , ’
l i n ew i d t h ’ , 2)

75 xlabel( ’ x ( i n angstrom un i t s ) ’ , ’ f o n t s i z e ’ ,3)
76 ylabel( ’ E i g enva lu e ( eV) ’ , ’ f o n t s i z e ’ ,3)
77 title( ’ E i g enva l u e s f o r f i r s t 5 Eigen f u n c t i o n s ’ ,

’ f o n t s i z e ’ ,3)
78 end

79

80

81 // p l o t t i n g the P r o b b i l i t y f u n c t i o n s . ( p l o t o f mod
p s i squared )

82

83 figure;

84 for in =1:1:5

85 psisq(:,in) = (u(:,in).*conj(u(:,in)))

86 end

87

88 subplot (5,1,1)

89 title( ’ F i r s t f i v e P r o b a b i l i t y d e n s i t y f u n c t i o n s ’ , ’
f o n t s i z e ’ ,3)

90 plot(x(1,:)/Angst ,psisq (:,1) ’, ’ r ’ , ’ l i n ew i d t h ’ ,2)
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91 subplot (5,1,2)

92 plot(x(1,:)/Angst ,psisq (:,2) ’, ’ r ’ , ’ l i n ew i d t h ’ , 2)

93 subplot (5,1,3)

94 plot(x(1,:)/Angst ,psisq (:,3) ’, ’ r ’ , ’ l i n ew i d t h ’ , 2)

95 ylabel(” P r o b a b i l i t y d e n s i t y ”, ’ f o n t s i z e ’ ,3)
96 subplot (5,1,4)

97 plot(x(1,:)/Angst ,psisq (:,4) ’, ’ r ’ , ’ l i n ew i d t h ’ , 2)

98 subplot (5,1,5)

99 plot(x(1,:)/Angst ,psisq (:,5) ’, ’ r ’ , ’ l i n ew i d t h ’ , 2)

100 xlabel(”x ( i n angstrom un i t s ) ”, ’ f o n t s i z e ’ ,3)
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