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Experiment: 1

Verification of Gibb’s
Phenomenon

Scilab code Solution 1.0 Gibbs Phenominon

1 // V e r i f i c a t i o n o f Gibb ’ s Phenomenon
2 // Approximat ion o f symmetr ic r e c t a n g u l a r pu l s e

d e f i n e d as f ( t )= 1 f o r 0<t<p i ; −1 f o r pi<t<2p i
u s i n g a sum o f s i n u s o i d s

3 // f ( t )=s i n t +(1/3) s i n 3 t +(1/5) s i n 5 t + . . .
4 //Windows 10
5 // S c i l a b 6 . 1 . 0
6 clear

7 clc

8 fs=input( ’ Enter the sampl ing f r e qu en cy : ’ )
9 T=input( ’ Enter the du r a t i on ove r which the f ( t ) i s

to be p l o t t e d : ’ )
10 t=0:T/fs:T;

11 p=zeros(1,length(t));

12 q=p;
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Figure 1.1: Gibbs Phenominon
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Figure 1.2: Gibbs Phenominon

8



13 n=input( ’ Enter the number o f s i n u s o i d s : ’ )
14 // This l oop g e n e r a t e s the symmetr ic r e c g t a n g u l a r

pu l s e
15 for i=1: floor(length(t)/2)

16 p(i)=1;

17 p(i+floor(( length(t)/2)))=-1;

18 end

19 // This l oop g e n e r a t e s the approx imat ion o f the
symmetr ic r e c t a n g u l a r pu l s e

20 // u s i n g a s e t o f mutua l ly o r t h o gona l s i n u s o i d a l
f u n c t i o n s

21 for i=0:n-1

22 k=1/(2*i+1);

23 for j=1: length(t)

24 q(j)=(q(j)+(4/ %pi)*k*sin ((1/k)*t(j)));

25 end

26 end

27 plot(t,p, ’ r ’ ,t,q, ’ k ’ , ’ l i n ew i d t h ’ ,3)
28 xgrid

29 mtlb_axis ([0 max(t) min(p)-1 max(p)+1])

30 xtitle(”Approxiamtion o f Symmetric Pu l s e u s i n g
s i n u s o i d s ”,”Time”,”Amplitude ”)

31 xstring(t(floor(length(t)/2)),p(floor(length(t)/2))

,[” Po int o f D i s c o n t i n u i t y ”])
32 legend ([” Rec tangu l a r Pu l s e ”,” S i n u s o i d a l

Approximat ion ”])
33

34

35 // output t e s t c a s e
36 // sampl ing f r e qu en cy : 1 0 00
37 // du r a t i on ove r which the f ( t ) i s to be p l o t t e d : 2 ∗

%pi
38 // number o f s i n u s o i d s : 3
39

40 // output t e s t c a s e
41 // sampl ing f r e qu en cy : 1 0 00
42 // du r a t i on ove r which the f ( t ) i s to be p l o t t e d : 2 ∗

%pi
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Figure 1.3: Gibbs Phenominon

Figure 1.4: Gibbs Phenominon

43 // number o f s i n u s o i d s : 5 0
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Experiment: 2

Verification of sampling
theorem

Scilab code Solution 2.0 Instantaneous Sampling

1 // V e r i f i c a t i o n o f sampl ing Theorem
2 // This program v e r i f i e s Sampl ing Theorem f o r s i n ( 2 0 .

p i . t ) under i n s t a n t a n e ou s sampl ing
3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 t1=input( ’ Enter the l owe r l i m i t o f t ime a x i s : ’ )
8 t2=input( ’ Enter the upper l i m i t o f t ime a x i s : ’ )
9 s=input( ’ Enter the s pa c i n g between the ad j a c en t

va lu e o f t ime a x i s : ’ )
10 f=input( ’ Enter the baseband s i g n a l f r e qu en cy : ’ )
11 t=t1:s:t2;

12 x=sin(2*%pi*f*t);

13 s1=zeros(1,length(t));

14 n=input( ’ Enter the i n t e g e r which d e c i d e s the
sampl ing f r e qu en cy : ’ )

15 // Genera t i on o f sampl ing s i g n a l
16 for i=1: length(t)
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17 if n*i<= length(t)

18 s1(n*i)=1;

19 end

20 end

21 // Genera t i on o f Sampled S i g n a l
22 s11=s1.*x;

23 // Re c on s t r u c t i o n F i l t e r
24 RC =1/(2* %pi*f);

25 h=(1/RC)*exp(-t/RC);

26 // S i g n a l r e c o n s t r u c t i o n
27 y=conv(h,conv(h,s11));

28 subplot (4,1,1)

29 plot(t,x, ’ l i n ew i d t h ’ ,2)
30 xgrid

31 xtitle(”Baseband s i g n a l o f f r qu en cy 10Hz”,”Time”,”
Amplitude ”)

32 legend(” S i g n a l to be sampled ” ,3)
33 subplot (4,1,2)

34 xset(” t h i c k n e s s ” ,2)
35 plot2d3(t,s1,style =-2)

36 xtitle(” Sampl ing S i g n a l ”)
37 subplot (4,1,3)

38 xset(” t h i c k n e s s ” ,2)
39 plot2d3(t,s11 ,style =-2)

40 xtitle(”Sampled S i g n a l ”)
41 subplot (4,1,4)

42 plot(t,y(1: length(t))/length(y), ’ l i n ew i d t h ’ ,2)
43 xtitle(” S i g n a l at the output o f the r e c o n s t r u c t i o n

F i l t e r ”,”Time”,”Amplitude ”)
44 legend(”Recovered S i g n a l ” ,3)
45

46

47 // output Test c a s e
48 // l owe r l i m i t o f t ime a x i s : 0
49 // upper l i m i t o f t ime a x i s : 0 . 2
50 // spa c i n g between the ad j a c en t va l u e o f t ime a x i s :

0 . 0 0 1
51 // baseband s i g n a l f r e qu en cy : 10
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Figure 2.1: Instantaneous Sampling

52 // i n t e g e r which d e c i d e s the sampl ing f r e qu en cy : 10
53

54 // output Test c a s e
55 // l owe r l i m i t o f t ime a x i s : 0
56 // upper l i m i t o f t ime a x i s : 0 . 2
57 // spa c i n g between the ad j a c en t va l u e o f t ime a x i s :

0 . 0 0 1
58 // baseband s i g n a l f r e qu en cy : 10
59 // i n t e g e r which d e c i d e s the sampl ing f r e qu en cy : 5

Scilab code Solution 2.1 Natural sampling

1 // This program g e n e r a t e s the n a t u r a l l y sampled
v e r s i o n o f s i n ( 2 0 . p i . t ) and s imu l a t e s i t s
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Figure 2.2: Instantaneous Sampling

Figure 2.3: Instantaneous Sampling
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Figure 2.4: Instantaneous Sampling
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r e c o v e r y from the sampled v e r s i o n //Windows 10
2 // S c i l a b 6 . 1 . 0
3 clear

4 clc

5 t1=input( ’ Enter the l owe r l i m i t o f t ime a x i s : ’ )
6 t2=input( ’ Enter the upper l i m i t o f t ime a x i s : ’ )
7 s=input( ’ Enter the s pa c i n g between the ad j a c en t

va lu e o f t ime a x i s : ’ )
8 t=t1:s:t2;

9 t1=ones(1,length(t));

10 f=input( ’ Enter the baseband s i g n a l f r e qu en cy : ’ )
11 x=sin(2*%pi*f*t);

12 n=input( ’ Enter the i n t e g e r which d e c i d e s the width
o f the pu l s e : ’ )

13 sa=[0 ones(1,n) zeros(1,n)]

14 // Genera t i on o f Sampl ing s i g n a l which i s a
r e c t a n g u l a r Pu l s e Tra in

15 while length(sa)<=length(t)

16 sa=[sa ones(1,n) zeros(1,n)]

17 end

18 sa(length(t)+1: length(sa))=[];

19 // Genera t i on o f sampled S i g n a l
20 NAT=sa.*x;

21 // Re c on s t r u c t i o n F i l t e r
22 RC =1/(2* %pi*f);

23 h=(1/RC)*exp(-t/RC);

24 // S i g n a l r e c o n s t r u c t i o n
25 y=conv(h,conv(h,NAT));

26 subplot (4,1,1)

27 plot(t,x)

28 plot(t,x, ’ l i n ew i d t h ’ ,3)
29 xgrid

30 xtitle(”Baseband s i g n a l o f f r qu en cy 10Hz ( to be
Sampled ) ”,”Time”,”Amplitude ”)

31 subplot (4,1,2)

32 plot(t,sa, ’ l i n ew i d t h ’ ,3)
33 xgrid

34 xtitle(” Rec tangu l a r Pu l s e Tra in ( Sampl ing S i g n a l ) ”,”
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Figure 2.5: Natural sampling

Time”,”Amplitude ”)
35 subplot (4,1,3)

36 plot(t,NAT , ’ l i n ew i d t h ’ ,3)
37 xgrid

38 xtitle(” Sampled S i g n a l under Natura l Sampl ing ”,”
Time”,”Amplitude ”)

39 subplot (4,1,4)

40 plot(t,y(1: length(t))/length(y), ’ l i n ew i d t h ’ ,2)
41 xgrid

42 xtitle(”Recovered S i g n a l ”,”Time”,”Amplitude ”)
43

44

45 // Te s t c a s e
46 // l owe r l i m i t o f t ime a x i s : 0
47 // upper l i m i t o f t ime a x i s : 0 . 2
48 // spa c i n g between the ad j a c en t va l u e o f t ime a x i s :

0 . 0 0 1
49 // baseband s i g n a l f r e qu en cy : 10
50 // i n t e g e r which d e c i d e s the width o f the pu l s e : 4
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Figure 2.6: Natural sampling
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Scilab code Solution 2.2 Flat Top sampling

1 // This program g e n e r a t e s the FlatTop sampled v e r s i o n
o f s i n ( 2 0 . p i . t ) and s imu l a t e s i t s r e c o v e r y from
the sampled v e r s i o n

2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 t1=input( ’ Enter the l owe r l i m i t o f t ime a x i s : ’ )
7 t2=input( ’ Enter the upper l i m i t o f t ime a x i s : ’ )
8 s=input( ’ Enter the s pa c i n g between the ad j a c en t

va lu e o f t ime a x i s : ’ )
9 t=t1:s:t2

10 f=input( ’ Enter the baseband s i g n a l f r e qu en cy : ’ )
11 x=sin(2*%pi*f*t);

12 n=input( ’ Enter the i n t e g e r which d e c i d e s the width
o f the pu l s e : ’ )

13 sa=[0 ones(1,n) zeros(1,n)]

14 // Genera t i on o f r e c t a n g u l a r Pu l s e Tra in which i s the
Sampl ing s i g n a l

15 while length(sa)<=length(t)

16 sa=[sa ones(1,n) zeros(1,n)]

17 end

18 sa(length(t)+1: length(sa))=[];

19 // Genera t i on o f sampled s i g n a l
20 FLA=sa.*x;

21 //Making the top o f the sample F l a t
22 for i=1: length(sa)

23 if sa(i)==1

24 FLA(i+1:i+n)=FLA(i+1)

25 end

26 end

27 // Re c on s t r u c t i o n F i l t e r

19



28 RC =1/(2* %pi*f);

29 h=(1/RC)*exp(-t/RC);

30 // S i g n a l r e c o n s t r u c t i o n
31 y=conv(h,conv(h,FLA));

32 subplot (4,1,1)

33 plot(t,x, ’ l i n ew i d t h ’ ,3)
34 xgrid

35 xtitle(”Baseband s i g n a l o f f r qu en cy 10Hz ( to be
sampled ) ”,”Time”,”Amplitude ”)

36 subplot (4,1,2)

37 plot(t,sa, ’ l i n ew i d t h ’ ,3)
38 xgrid

39 xtitle(” Rec tangu l a r Pu l s e Tra in ( Sampl ing S i g n a l ) ”,”
Time”,”Amplitude ”)

40 subplot (4,1,3)

41 plot(t,FLA , ’ l i n ew i d t h ’ ,3)
42 xgrid

43 xtitle(” F l a t Top Sampled S i g n a l ”,”Time”,”Amplitude ”
)

44 subplot (4,1,4)

45 plot(t,y(1: length(t))/length(y), ’ l i n ew i d t h ’ ,3)
46 xgrid

47 xtitle(” Recovered S i g n a l ”,”Time”,”Amplitude ”)
48 // Te s t c a s e
49 // l owe r l i m i t o f t ime a x i s : 0
50 // upper l i m i t o f t ime a x i s : 0 . 2
51 // spa c i n g between the ad j a c en t va l u e o f t ime a x i s :

0 . 0 0 1
52 // baseband s i g n a l f r e qu en cy : 10
53 // i n t e g e r which d e c i d e s the width o f the pu l s e : 4
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Figure 2.7: Flat Top sampling

Figure 2.8: Flat Top sampling
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Experiment: 3

Wave Form Synthesis

Scilab code Solution 3.0 Staircase waveform

1 //Waveform s y n t h e s i s o f x ( t )=2u ( t )−3u ( t −2)+2u ( t −4)
2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 // P lo t o f x ( t )
7 f=input( ’ Enter the sampl ing f r e qu en cy : ’ )
8 T=1/f;

9 L=input( ’ Enter the l owe r bound f o r the t ime a x i s o f
x ( t ) : ’ )

10 U=input( ’ Enter the upper bound f o r the t ime a x i s o f
x ( t ) : ’ )

11 t=L-1:T:U+2;

12 x=zeros(1,length(t));

13 y=x;

14 x(find(t==0):find(t==2))=2;

15 x(find(t==2):find(t==4))=-3;

16 x(find(t==4):length(t))=2;

17 // Syn t h e s i s
18 z=find(diff(x)==2);

19 y(z(1)+1: length(y))=2;
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20 subplot (4,1,1)

21 xset(” t h i c k n e s s ” ,3)
22 plot2d2(t,x,rect=[L-1 min(x) -1 U+2 max(x)+1])

23 xtitle(”x ( t ) ”,” t ime ”,”Amplitude ”)
24 legend( ’ 2u ( t )−3u ( t −2)+2u ( t −4) with f =1000 ’ ,3)
25 xstring(t(find(t==1)),x(find(t==1)) ,[”2”])
26 xstring(t(find(t==3)),x(find(t==3)) ,[”−3”])
27 xstring(t(find(t==5)),x(find(t==5)) ,[”2”])
28 subplot (4,1,2)

29 xset(” t h i c k n e s s ” ,3)
30 plot2d2(t,y,rect=[L-1 min(y) U+2 max(y)+1])

31 xtitle(””,” t ime ”,”Amplitude ”)
32 legend( ’ The F i r s t Con s t i t u en t Step Funct ion ’ ,2)
33 xstring(t(find(t==1)),x(find(t==1)) ,[”2”])
34 y=y-y;

35 z=find(diff(x)==-5);

36 y(z(1)+1: length(y))=-5;

37 subplot (4,1,3)

38 xset(” t h i c k n e s s ” ,3)
39 plot2d2(t,y,rect=[L-1 min(y) -1 U+2 max(y)])

40 xtitle(””,” t ime ”,”Amplitude ”)
41 legend( ’ The Second Con s t i t u en t Step Funct ion ’ )
42 xstring(t(find(t==2)),x(find(t==2)) ,[”−5”])
43 y=y-y;

44 z=find(diff(x)==5);

45 y(z(1)+1: length(y))=5;

46 subplot (4,1,4)

47 xset(” t h i c k n e s s ” ,3)
48 plot2d2(t,y,rect=[L-1 min(y) U+2 max(y)+1])

49 xtitle(””,” t ime ”,”Amplitude ”)
50 legend( ’ The Third Con s t i t u en t Step Funct ion ’ ,2)
51 xstring(t(find(t==4)),x(find(t==4)) ,[”5”])
52

53 // output t e s t c a s e
54 // sampl ing f r e qu en cy 1000
55 // l owe r bound f o r the t ime a x i s o f x ( t ) 0
56 // upper bound f o r the t ime a x i s o f x ( t ) 5

23



Figure 3.1: Staircase waveform

Figure 3.2: Staircase waveform

Scilab code Solution 3.1 Triangular Pulse

1 //Waveform s y n t h e s i s o f x ( t )=r ( t )−2r ( t −1)+r ( t −2)
2 //Windows 10

24



3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 f=input( ’ Enter the sampl ing f r e qu en cy : ’ )
7 T=1/f;

8 U=input( ’ Enter the upper bound f o r the t ime a x i s : ’ )
9 t=0:T:U;

10 // F ind ing the f i r s t Con s t i t u en t Ramp
11 x=t;

12 // F ind ing the second c o n s t i t u e n t Ramp
13 y=zeros(1,length(t));

14 z=y;

15 i=find(t==1);

16 j=length(i:length(t));

17 y(i:i+j-1) =2*x(1:j)

18 // F ind ing the t h i r d c o n s t i t u e n t Ramp
19 i=find(t==2);

20 j=length(i:length(t));

21 z(i:i+j-1)=x(1:j);

22 subplot (2,2,1)

23 xset(” t h i c k n e s s ” ,2)
24 plot2d(t,x-y+z,rect =[0 0 U 1])

25 xtitle( ’ x ( t )=r ( t )−2r ( t −1)+r ( t −2) with f =10 and U=3 ’
, ’ Time ’ , ’ Amplitude ’ )

26 legend( ’ x ( t ) ’ )
27 xgrid

28 subplot (2,2,2)

29 xset(” t h i c k n e s s ” ,2)
30 plot2d(t,x,rect =[0 0 U 1])

31 xtitle( ’ F i r s t c o n s t i t u e n t ramp s i g n a l ’ , ’ Time ’ , ’
Amplitude ’ )

32 legend( ’ r ( t ) ’ )
33 xgrid

34 subplot (2,2,3)

35 xset(” t h i c k n e s s ” ,2)
36 plot2d(t,-y,rect =[0 min(-y) U max(y)])

37 xtitle( ’ Second c o n s t i t u e n t ramp s i g n a l ’ , ’ Time ’ , ’
Amplitude ’ )
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Figure 3.3: Triangular Pulse

38 legend( ’−2r ( t −1) ’ )
39 xgrid

40 subplot (2,2,4)

41 xset(” t h i c k n e s s ” ,2)
42 plot2d(t,z,rect =[0 0 U 1])

43 xtitle( ’ Third c o n s t i t u e n t ramp s i g n a l ’ , ’ Time ’ , ’
Amplitude ’ )

44 legend( ’ r ( t −2) ’ ,3)
45 xgrid

46 // output Test c a s e
47 // sampl ing f r e qu en cy 10
48 // upper bound f o r the t ime a x i s 3
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Figure 3.4: Triangular Pulse
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Experiment: 4

Location of Poles and Zeros of
a given Transfer function in
S-plane and Z-plane

Scilab code Solution 4.0 SPlane

1 // This program f i n d s the p o l e s and z e r o s o f H( s )=( s
ˆ2+3∗ s+4) /( s ˆ2+3∗ s +12) and g i v e s the po le−z e r o
p l o t i n S−Plane

2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 a=poly ([4 3 1],” s ”,” c o e f f ”)
7 b=poly ([12 3 1],” s ”,” c o e f f ”)
8 z=roots(a);

9 p=roots(b);

10 disp( ’ The p o l e s o f the g i v en H( s ) a r e ’ )
11 disp(p)

12 disp( ’ The z e r o s o f the g i v en H( s ) a r e ’ )
13 disp(z)

14 h=syslin( ’ c ’ , a/b)

15 disp( ’ The T r an s f e r Funct ion i s H( s )= ’ ,h)
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16 plzr(h)

17 title( ’ Pole−Zero p l o t o f H( s )=( s ˆ2+3∗ s+4) /( s ˆ2+3∗ s
+12) ’ )

18

19 // output Te s t c a s e
20 // ”The p o l e s o f the g i v en H( s ) a r e ”
21 // −1.5 + 3 . 122499 i
22 // −1.5 − 3 . 122499 i
23 // ”The z e r o s o f the g i v en H( s ) a r e ”
24 // −1.5 + 1 . 3228757 i
25 // −1.5 − 1 . 3228757 i
26 // ”The Tran s f e r Funct ion i s H( s )=”
27 // 4 +3s + s
28 //−−−−−−−−−−
29 // 12 +3s + s

Scilab code Solution 4.1 Zplane

1 // This program f i n d s the p o l e s and z e r o s o f H( z )=z
ˆ2/( z ˆ3+2. zˆ2−z−2) and g i v e s the po le−z e r o p l o t
i n Z−Plane

2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 a=poly ([0 0 1],” z ”,” c o e f f ”)
7 b=poly([-2 -1 2 1],” z ”,” c o e f f ”)
8 z=roots(a);

9 p=roots(b);

10 disp( ’ The p o l e s o f the g i v en H( z ) a r e ’ )
11 disp(p)

12 disp( ’ The z e r o s o f the g i v en H( z ) a r e ’ )
13 disp(z)

29



Figure 4.1: SPlane
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14 h=syslin( ’ d ’ , a/b)

15 disp( ’ The T r an s f e r Funct ion i s H( z )= ’ ,h)
16 plzr(h)

17 title( ’ Pole−Zero p l o t o f H( z )=z ˆ2/( z ˆ3+2. zˆ2−z−2) ’ )
18

19 // output Test Case
20 // ”The p o l e s o f the g i v en H( z ) a r e ”
21 // 1 . + 0 . i
22 // −2. + 0 . i
23 // −1. + 0 . i
24 // ”The z e r o s o f the g i v en H( z ) a r e ”
25 // 0 . + 0 . i
26 // 0 . + 0 . i
27 // ”The Tran s f e r Funct ion i s H( z )=”
28 // z
29 // −−−−−−−−−−−−−−
30 // −2 −z +2 z + z
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Figure 4.2: Zplane
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Experiment: 5

Removal of Noise from the
combination of signal and noise
using Auto/Cross correlation

Scilab code Solution 5.0 Noise Removal for sequence

1 //Removal o f No i s e from the combinat i on o f d i s c r e t e
S i g n a l and n o i s e

2 // No i s e removal i s f a c i l i t a t e d u s i n g the c r o s s
c o r r e l a t i o n o f s equence p l u s No i s e and an impu l s e
t r a i n

3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 // F ind ing the Length o f the s equence u s i n g
Au t o c o r r e l a t i o n

8 x=input( ’ Enter the s equence ’ )
9 x1=x;

10 // g e n e r a t i o n o f random no i s e s equence
11 rand( ’ normal ’ )
12 N=rand(1,length(x));

13 y=x+N;
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14 h=flipdim(y,2);

15 [m,n]=max(conv(y,h));

16 //Removal o f No i s e / Es t imat i on o f the S i g n a l i n the
p r e s e n c e o f No i s e

17 x1=x;

18 l=length(x);

19 c=input( ’ Enter the number o f c y c l e s ’ )
20 I=eye(l,l);

21 I1=I;

22 // c r e a t i n g the p e r i o d i c e x t e n s i o n s
23 for i=1:c-1

24 x=[x x1];

25 I=[I I1];

26 end

27 rand( ’ normal ’ )
28 q=rand(1,length(x));

29 p=x+q;

30 // c o r r e l a t i n g the s i g n a l p l u s n o i s e with an impu l s e
t r a i n

31 for i=1:l

32 y(i)=sum(p.*I(i,:));

33 end

34 //The p o s i t i o n o f the maximum va lu e o f
Au t o c o r r e l a t i o n w i l l be the l e n g t h o f the
s equence

35 disp( ’ Pe r i od or l e n g t h o f the s equence x ( n ) i s ’ ,n)
36 disp( ’ The e s t ima t e o f x ( n ) i s ’ ,y/c)
37 // output t e s t c a s e
38 // s equence : [ 1 3 5 7 ]
39 //number o f c y c l e s : 5 0
40 // Per i od or l e n g t h o f the s equence x ( n ) i s 4 .
41 //The e s t ima t e o f x ( n ) i s
42 // 0 . 9119912 3 . 1947049 4 . 9297445 7 . 0546042
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Figure 5.1: Noise Removal for sequence

Scilab code Solution 5.1 Noise Removal for signal

1 //Removal o f No i s e from the combinat i on o f
s i n u s o i d a l S i g n a l p l u s n o i s e

2 // No i s e removal i s f a c i l i t a t e d u s i n g the c r o s s
c o r r e l a t i o n o f s i g n a l p l u s No i s e and an impu l s e
t r a i n

3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 // Genera t i on o f s i g n a l p l u s No i s e
8 f=input( ’ Enter the f r e qu en cy o f the s i g n a l : ’ )
9 T=1/f;

10 t=0:T/f:T;

11 x=sin(2*%pi*f*t);

12 x1=x;

13 // g e n e r a t i o n o f random no i s e
14 rand( ’ normal ’ )
15 N=rand(1,length(t));

16 // s i g n a l+No i s e
17 y=x+N;

18 h=flipdim(y,2);

19 // F ind ing the Per i od / l e n g t h o f a s i n u s o i d a l s i g n a l ,
mixed with No i s e

20 [m,n]=max(conv(y,h));

21 l=length(x);

22 c=input( ’ Enter the number o f c y c l e s : ’ )
23 I=eye(l,l);

24 I1=I;

35



25 for i=1:c-1

26 x=[x x1]

27 I=[I I1]

28 end

29 rand( ’ normal ’ )
30 q=rand(1,length(x))

31 p=x+q;

32 for i=1:l

33 y(i)=sum(p.*I(i,:));

34 end

35 //The p o s i t i o n o f the maximum va lu e o f
Au t o c o r r e l a t i o n w i l l be the l e n g t h o f the
s equence

36 disp( ’ The l e n g t h o f the s i g n a l i s ’ ,n)
37 subplot (3,1,1)

38 xset(” t h i c k n e s s ” ,3)
39 plot2d(t,x1,rect =[0 min(x1) -1 T max(x1)])

40 xtitle(”x ( t ) ”,”Time”,”Amplitude ”)
41 legend(” s i n u s o i d a l s i g n a l o f f r e qu en cy 10 Hz”)
42 subplot (3,1,2)

43 xset(” t h i c k n e s s ” ,3)
44 plot2d(t,p(1: length(x1)),rect =[0 min(p) -0.5 T max(p)

])

45 xtitle(”x ( t )+n ( t ) ”,”Time”,”Amplitude ”)
46 legend(” S i g n a l p l u s n o i s e ”)
47 subplot (3,1,3)

48 xset(” t h i c k n e s s ” ,3)
49 plot2d(t,y,rect =[0 min(y) -0.5 T max(y)])

50 xtitle(”Estmated x ( t ) ”,”Time”,”Amplitude ”)
51 legend(” Est imated s i n u s o i d a l s i g n a l ”)
52

53

54 // output t e s t c a s e
55 // f r e qu en cy o f the s i g n a l : 1 0
56 //number o f c y c l e s : 1 0
57 //The l e n g t h o f the s i g n a l i s : 1 1 .
58

59 // output t e s t c a s e
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Figure 5.2: Noise Removal for signal

60 // f r e qu en cy o f the s i g n a l : 1 0
61 //number o f c y c l e s : 7 5 0
62 //The l e n g t h o f the s i g n a l : 1 1
63

64 //About the r e s u l t
65 //The rand f u n c t i o n g e n e r a t e s d i s s i m i l a r data i n

each run o f the code
66 //Hence , Re su l t w i l l vary from run to run o f the

code
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Figure 5.3: Noise Removal for signal

Figure 5.4: Noise Removal for signal
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Figure 5.5: Noise Removal for signal
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Experiment: 6

Verification of Physical
realizability and Stability of a
given LTI system

Scilab code Solution 6.0 Causality and Stability

1 // Checking the g i v en D i s c r e t e LTI system f o r i t s
p h y s i c a l r e a l i z a b i l i t y and s t a b i l i t y

2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 a=input( ’ Enter the c o e f f i c i e n t s o f numerator i n the
o rd e r o f d e c r e a s i n g o rd e r o f the v a r i a b l e z : ’ )

7 b=input( ’ Enter the c o e f f i c i e n t s o f denominator i n
the o rd e r o f d e c r e a s i n g o rd e r o f the v a r i a b l e z : ’
)

8 p=roots(a);

9 q=roots(b);

10 i=find(abs(q) <1);

11 R1=input( ’ Enter the l owe r bound o f ROC: ’ )
12 R2=input( ’ Enter the upper bound o f ROC: ’ )
13 // Checking f o r Cau s a l i t y
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14 //The ROC o f a c a u s a l D i s c r e t e LTI system shou ld
i n c l u d e i n f i n i t y and H( z ) shou ld not have the
o rd e r o f the numerator g r e a t e r than tha t o f the
denominator

15 if length(p) <=length(q) & R2==%inf

16 ans1= ’ The system i s ’ ’ c a u s a l ’ ’ ’
17 ans2= ’ Hence , i s ’ ’ P h y s i c a l l y R e a l i z a b l e ’ ’ ’
18 disp(ans1)

19 disp(ans2)

20 else

21 ans1= ’ The system i s ’ ’ not c a u s a l ’ ’ ’
22 ans2= ’ Hence , i s ’ ’ not P h y s i c a l l y R e a l i z a b l e ’ ’ ’
23 disp(ans1)

24 disp(ans2)

25 end

26 // ch e ck i ng f o r S t a b i l i t y
27 //ROC o f a s t a b l e d i s c r e t e system f u n c t i o n shou ld

i n c l u d e the un i t c i r c l e .
28 // A c au s a l system i s s t a b l e i f a l l the p o l e s l i e

w i t h i n the un i t c i r c l e .
29 if R1 <1&R2 >1 | length(i)== length(q)

30 disp( ’ System i s ’ ’ s t a b l e ’ ’ ’ )
31 else

32 disp( ’ System i s ’ ’ u n s t a b l e ’ ’ ’ )
33 end

34

35 // output t e s t c a s e 1
36 // c o e f f i c i e n t s o f numerator i n the o rd e r o f

d e c r e a s i n g o rd e r o f the v a r i a b l e z : [ 1 0 ]
37 // c o e f f i c i e n t s o f denominator i n the o rd e r o f

d e c r e a s i n g o rd e r o f the v a r i a b l e z : [ 3 −4 1 ]
38 // l owe r bound o f ROC: 1
39 // upper bound o f ROC: %inf
40 //The system i s ’ c au sa l ’
41 //Hence , i s ’ P h y s i c a l l y R e a l i z a b l e ’
42 // System i s ’ un s tab l e ’
43

44 // output t e s t c a s e 2
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Figure 6.1: Causality and Stability

Figure 6.2: Causality and Stability

45 // c o e f f i c i e n t s o f numerator i n the o rd e r o f
d e c r e a s i n g o rd e r o f the v a r i a b l e z : [ 1 0 ]

46 // c o e f f i c i e n t s o f denominator i n the o rd e r o f
d e c r e a s i n g o rd e r o f the v a r i a b l e z : [ 3 −4 1 ]

47 // l owe r bound o f ROC: 1/3
48 // upper bound o f ROC: 1
49 //The system i s ’ not cau sa l ’
50 //Hence , i s ’ not P h y s i c a l l y R e a l i z a b l e ’
51 // System i s ’ un s tab l e ’
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Experiment: 7

Plotting the CDF and pdf of a
Random Variable

Scilab code Solution 7.0 CDF and pdf

1 // F ind ing the CDF and pdf o f a d i s c r e t e random
v a r i a b l e from i t s pmf

2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 x=input( ’ Enter the v a l u e s taken by Random Va r i a b l e : ’
)

7 p=input( ’ Enter the p r o b a b i l i t i e s : ’ )
8 // computat ion o f CDF va l u e s
9 for i=2: length(x)

10 p(i)=p(i)+p(i-1);

11 end

12 x1=min(x) -1:0.01: max(x)+2;

13 cdf=zeros(1,length(x1));

14 cdf(find(x1==max(x)):length(x1))=1;

15 // c r e a t i n g CDF ve c t o r
16 for i=1: length(x) -1

17 cdf(find(x1==x(i)):find(x1==x(i+1)))=p(i);
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18 end

19 // computat ion o f pdf
20 pdf=diff(cdf);

21 pdf(length(pdf)+1)=0;

22 subplot (2,1,1)

23 xset(” t h i c k n e s s ” ,3)
24 plot2d2(x1,cdf ,rect=[min(x1) min(p) -0.5 max(x1) max(

p)+0.25 ])

25 a=gca();

26 a.x_location=” o r i g i n ”;
27 a.y_location=” o r i g i n ”;
28 xtitle( ’ P l o t o f CDF ’ , ’ v a l u e s taken by the random

v a r i a b l e ’ , ’ Cumulat ive D i s t r i b u t i o n Funct ion ’ )
29 legend(”x=[−1 1 3 5 ] , p=[1/2 1/8 1/8 1/4 ] ” ,4)
30 xstring(x1(find(x1==-1)),cdf(find(cdf ==1/2)) ,[” 0 . 5 ”

])

31 xstring(x1(find(x1==1)),cdf(find(cdf ==0.625)) ,[”
0 . 6 25 ”])

32 xstring(x1(find(x1==3)),cdf(find(cdf ==0.75)) ,[” 0 . 7 5 ”
])

33 xstring(x1(find(x1==5)),cdf(find(cdf ==1)),[”1”])
34 subplot (2,1,2)

35 xset(” t h i c k n e s s ” ,3)
36 plot2d3(x1,pdf ,rect=[min(x1) 0 max(x1) max(p) ])

37 b=gca();

38 b.x_location=” o r i g i n ”;
39 b.y_location=” o r i g i n ”;
40 xtitle( ’ P l o t o f pdf ’ , ’ v a l u e s taken by the random

v a r i a b l e ’ , ’ P r o b a b i l i t y Dens i ty Funct ion ’ )
41 legend(” P r o b a b i l i t y Dens i ty Funct ion ”)
42 xstring(x1(find(x1==-1)),pdf(find(pdf ==1/2)) ,[” 1/2 ”

])

43 xstring(x1(find(x1==1)),pdf(find(pdf ==1/8)) ,[” 1/8 ”])
44 xstring(x1(find(x1==3)),pdf(find(pdf ==1/8)) ,[” 1/8 ”])
45 xstring(x1(find(x1==5)),pdf(find(pdf ==1/4)) ,[” 1/4 ”])
46

47 // output t e s t c a s e
48 // v a l u e s taken by Random Va r i a b l e : [ −1 1 3 5 ]
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Figure 7.1: CDF and pdf

Figure 7.2: CDF and pdf

49 // p r o b a b i l i t i e s : [ 1 / 2 1/8 1/8 1/4 ]
50 // I f the p r o b a b i l i t i e s a r e changed , the x s t r i n g

s t a t emen t s a r e to be mod i f i e d a c c o r d i n g l y
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Experiment: 8

Computation of Moments of a
Random variable

Scilab code Solution 8.0 Moments Discrete

1 // Computation o f Moments o f a D i s c r e t e random
v a r i a b l e

2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 x=input( ’ Enter the v a l u e s taken by Random Va r i a b l e ’ )
7 p=input( ’ Enter the p r o b a b i l i t i e s ’ )
8 // Computation f o F i r s t Moment about o r i g i n
9 M=sum(x.*p);

10 // Computation o f Second Moment about o r i g i n
11 MS=sum((x.^2).*p)

12 // Computation o f Var i ance
13 V=MS -M^2;

14 // Computation o f Skew
15 S=sum(((x-M).^3).*p);

16 // Computation o f Ku r t o s i s
17 K=sum(((x-M).^4).*p)

18 disp( ’ The mean ,Mean Square va lue , va r i anc e , skew and
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Figure 8.1: Moments Discrete

k u r t o s i s o f the g i v en random v a r i a b l e a r e
r e s p e c t i v e l y ’ )

19 disp(M)

20 disp(MS)

21 disp(V)

22 disp(S)

23 disp(K)

24 // output t e s t c a s e
25 // v a l u e s taken by Random Va r i a b l e [ 1 2 3 4 ]
26 // p r o b a b i l i t i e s [ 1 / 4 1/4 1/4 1/4 ]
27 //The mean ,Mean Square va lue , va r i an c e , skew and

k u r t o s i s o f the g i v en random v a r i a b l e a r e
r e s p e c t i v e l y 2 . 5 , 7 . 5 , 1 . 2 5 ,0 2 . 5 625

Scilab code Solution 8.1 Moments Continuous

1 // computat ion o f Moments o f a c on t i nuou s random
v a r i a b l e X with d e n s i t y f ( x )=x /6 , f o r 2<=x<=4;=0
e l s ewh e r e .

2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 a=input( ’ Lower bound f o r the d e n s i t y f u n c t i o n ’ )
7 b=input( ’ Upper bound f o r the d e n s i t y f u n c t i o n ’ )
8 // Computation o f Mean (M) o f the Random Vara i ab l e
9 M=integrate( ’ x∗x/6 ’ , ’ x ’ ,a,b);
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Figure 8.2: Moments Continuous

10 // Computation o f Mean Square va l u e (MS) o f the random
v a r i a b l e

11 MS=integrate( ’ ( x ˆ2) ∗x/6 ’ , ’ x ’ ,a,b);
12 // Computation o f Var i ance (V) o f the random v a r i a b l e
13 V=MS -M^2;

14 // Computation o f Skew ( S ) o f the random Va r i a b l e
15 S=integrate( ’ ( ( x−M) ˆ3) ∗x/6 ’ , ’ x ’ ,a,b);
16 // computat ion o f Ku r t o s i s (K) o f the random v a r i a b l e
17 K=integrate( ’ ( ( x−M) ˆ4) ∗x/6 ’ , ’ x ’ ,a,b);
18 mprintf( ’Mean ,Mean Square va lue , Var iance , Skew and

Ku r t o s i s o f random v a r i a b l e a r e r e s p e c t i v e l y %d,
%d, %f , %f , %f ’ ,M,MS,V,S,K)

19

20 // output t e s t c a s e
21 //Lower bound f o r the d e n s i t y f u n c t i o n : 2
22 //Upper bound f o r the d e n s i t y f u n c t i o n : 4
23 //The mean ,Mean Square va lue , va r i an c e , skew and

k u r t o s i s o f random v a r i a b l e a r e r e s p e c t i v e l y
3 . 1 111111 , 10 , 0 . 3 2 09877 , // −0.0417010 ,
0 . 1 946045
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Experiment: 9

Verification of Central Limit
Theorem

Scilab code Solution 9.0 Central Identical

1 // v e r i f i c a t i o n o f Cen t r a l L imi t Theorem f o r
independent un i f o rm ly d i s t r i b u t e d random
v a r i a b l e s

2 // Dens i ty o f sum o f n number o f independent
i d e n t i c a l l y d i s t r i b u t e d random v a r i a b l e s
approache s g au s s i a n Dens i ty i n the // l i m i t n
t ends to i n f i n i t y

3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 a=input( ’ Enter the l owe r bound f o r the d e n s i t y o f
the random v a r i a b l e : ’ )

8 b=input( ’ Enter the upper bound f o r the d e n s i t y o f
the random Va r i a b l e : ’ )

9 x=a:b;

10 x1=a -2:0.01:b+2;

11 // Genera t i on o f Uniform Dens i ty
12 f=(1/(b-a))*ones(1,length(x));
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13 f11=f;

14 f1=zeros(1,length(x1));

15 f1(find(x1==a):find(x1==b))=1/(b-a);

16 n=input( ’ Enter the number o f Random v a r i a b l e s : ’ )
17 // f i n d i n g the d e n s i t y o f sum o f random v a r i a b l e s
18 for i=1:n-1

19 f=conv(f,f11);

20 end

21 x11=n*a:n*b;

22 subplot (2,1,1)

23 plot(x1,f1, ’ l i n ew i d t h ’ ,3)
24 xgrid

25 xlabel( ’ v a l u e s taken by the random v a r i a b l e ’ )
26 ylabel( ’ Unifrom Dens i ty ’ )
27 title( ’ Uniform Random v a r i a b l e ’ )
28 legend(”Uniform d en s i t y ”)
29 mtlb_axis ([min(x1) max(x1) 0 max(f1)+0.1])

30 subplot (2,1,2)

31 plot(x11 ,f, ’ l i n ew i d t h ’ ,3)
32 xgrid

33 xlabel( ’ v a l u e s taken by the Random v a r i a b l e=Sum o f
independent un i fo rm random v a r i a b l e s ’ )

34 ylabel( ’ Dens i ty o f sum o f independent un i fo rm random
v a r a i b a l e s ’ )

35 title( ’ Dens i ty o f sum o f 10 independent un i fo rm
random v a r i a b l e s ’ )

36 legend(” Dens i ty o f sum o f independent random
v a r i a b l e s ”)

37 mtlb_axis ([min(x11) max(x11) 0 max(f)+0.25])

38

39 // output t e s t c a s e
40 // l owe r bound f o r the d e n s i t y o f the random v a r i a b l e

: −2
41 // upper bound f o r the d e n s i t y o f the random Va r i a b l e

: 2
42 //number o f Random v a r i a b l e s : 10
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Figure 9.1: Central Identical

Scilab code Solution 9.1 Central Non Identical

1 // V e r i f i c a t i o n o f Cen t r a l L imi t Theorem f o r
independent un i fo rm and e xp on e n t i a l random
Va r i a b l e s

2 // Dens i ty o f sum o f n number o f i ndependent
i d e n t i c a l l y or non i d e n t i c a l l y d i s t r i b u t e d
random v a r i a b l e s approache s // g au s s i a n
Dens i ty i n the l i m i t n t ends to i n f i n i t y

3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 // Uniform d en s i t y
8 a=input( ’ Enter the l owe r bound f o r the d e n s i t y o f

the Uniform random v a r i a b l e : ’ )
9 b=input( ’ Enter the upper bound f o r the d e n s i t y o f

the Uniform random Va r i a b l e : ’ )
10 x=a:b;

11 U=(1/(b-a))*ones(1,length(x));
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Figure 9.2: Central Identical
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12 U1=U;

13 // Exponen t i a l d e n s i t y
14 k=input( ’ Enter the parameter f o r the e x p on e n t i a l

random v a r i a b l e : ’ )
15 E=(1/(1 - exp(-k)))*k*exp(-k*x);

16 n1=input( ’ Enter the number o f Uniform random
v a r i a b l e s : ’ )

17 n2=input( ’ Enter the number o f Exponene t i a l random
v a r i a b l e s : ’ )

18 // Dens i ty o f sum o f Uniform random Va r i a b l e s
19 for i=1:n1 -1

20 U=conv(U,U1);

21 end

22 // Dens i ty o f sum o f Uniform and Exponen t i a l random
v a r i a b l e s

23 for i=1:n2

24 U=conv(E,U)

25 end

26 x1=(n1+n2)*a:(n1+n2)*b;

27 xgrid

28 plot(x1,U, ’ l i n ew i d t h ’ ,3)
29 title( ’ Dens i ty o f sum o f random v a r i a b l e s ’ )
30 xlabel( ’ v a l u e s taken by sum o f random v a r i a b l e s ’ )
31 ylabel( ’ P r o b a b i l i t y Dens i ty f u n c t i o n o f sum o f

random v a r i a b l e s ’ )
32 legend(” Dens i ty o f sum o f e x p on e n t i a l and Uniform

random v a r i a b l e s ”)
33 // output t e s t c a s e
34 // l owe r bound f o r the d e n s i t y o f the Uniform random

v a r i a b l e : 0
35 // upper bound f o r the d e n s i t y o f the Uniform random

Va r i a b l e : 4
36 // parameter f o r the e x p on e n t i a l random v a r i a b l e : 1
37 //number o f Uniform random v a r i a b l e s : 10
38 //number o f Exponene t i a l random v a r i a b l e s : 10
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Figure 9.3: Central Non Identical
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Figure 9.4: Central Non Identical
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Experiment: 10

Checking the given random
Process for Stationary

Scilab code Solution 10.0 Stationarity

1 // Checking th r Given random p r o c e s s f o r S t a t i o n a r i t y
2 // This program check s the random p r o c e s s x ( t )=A cos (

wot+Theta ) , where Theta i s a Uniform random
v a r i a b l e ove r ( 0 , 2 p i )

3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 A=input( ’ Enter the Peak o f the P ro c e s s : ’ )
8 fo=input( ’ Enter the va l u e o f f o : ’ )
9 t=input( ’ Enter the va lu e o f t ime i n s t a n t : ’ )

10 k=input( ’ Enter k : ’ )
11 a=input( ’ Enter the l owe r bound f o r t h e t a : ’ )
12 b=input( ’ Enter the upper bound f o r t h e t a : ’ )
13 deff( ’ [w]= f ( t h e t a ) ’ , ’w=A∗ co s (2∗%pi∗ f o ∗ t+th e t a ) ’ )
14 // S c i l a b ’ s i n t e g r a t e r o u t i n e t r i e s to a c h i e v e

a b s o l u t e e r r o r atmost 1e−8 and r e l a t i v e e r r o r
atmost 1e −14.

15 // I f i t i s l e s s than that , i t throws an e r r o r and
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w i l l be d ippayed tha t ” t r y with h i g h e r //
t o l e r a n c e ’ .

16 //The f o l l o w i n g syntax f i x e s the t o l e r a n c e .
17 M=(1/(b-a))*intg(a,b,f,1e-8,1);

18 deff( ’ [ y ]=g ( th e t a ) ’ , ’ y=(Aˆ2/2) ∗ co s (2∗2∗%pi∗ f o ∗ t+2∗
%pi∗ f o ∗k+2∗ t h e t a ) ’ );

19 a1=(1/(b-a))*intg(a,b,g,1e-8,1);

20 deff( ’ [ z ]=h ( th e t a ) ’ , ’ z=(Aˆ2/2) ∗ co s (2∗%pi∗ f o ∗k ) ’ );
21 a2=(1/(b-a))*intg(a,b,h);

22 R=a1+a2;

23 disp(”The mean and the Au t o c o r r e l a t i o n o f the
p r o c e s s a r e r e s p e c t i v e l y ”)

24 disp(M)

25 disp(”and”)
26 disp(R)

27

28 // output t e s t c a s e
29 // f o r g i v en t and k
30 //Peak o f the P ro c e s s : 1
31 // va lu e o f f o : 1
32 // va lu e o f t ime i n s t a n t : 1
33 //k : 1 . 5
34 // l owe r bound f o r t h e t a : 0
35 // upper bound f o r t h e t a : 2 ∗%pi
36 //The mean and the Au t o c o r r e l a t i o n o f the p r o c e s s

a r e r e s p e c t i v e l y 1 . 2 4 9D−16(=0) ) and −0.5
37

38 //Change i n t and no Change i n k
39 //Peak o f the P ro c e s s : 1
40 // va lu e o f f o : 1
41 // va lu e o f t ime i n s t a n t : 2
42 // k : 1 . 5
43 // l owe r bound f o r t h e t a : 0
44 // upper bound f o r t h e t a : 2 ∗%pi
45 //The mean and the Au t o c o r r e l a t i o n o f the p r o c e s s

a r e r e s p e c t i v e l y 1 . 2 4 9D−16(=0) ) and −0.5
46

47 // No change i n t and change i n k
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Figure 10.1: Stationarity

48 //Peak o f the P ro c e s s : 1
49 // va lu e o f f o : 1
50 // va lu e o f t ime i n s t a n t : 2
51 // k : 2
52 // l owe r bound f o r t h e t a : 0
53 // upper bound f o r t h e t a : 2 ∗%pi
54 //The mean and the Au t o c o r r e l a t i o n o f the p r o c e s s

a r e r e s p e c t i v e l y 1 . 2 4 9D−16(=0) and 0 . 5
55

56 //Mean o f the p r o c e s s i s z e r o ( c on s t an t ) , and i s
independent o f t ime i n s t a n t o f measurement .

57 // Au t o c o r r e l a t i o n i s a f u n c t i o n o f k
58 //Hence , the g i v en p r o c e s s i s s t a t i o n a r y .
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Figure 10.2: Stationarity

Figure 10.3: Stationarity
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Experiment: 11

Verification of
Weiner-Khnichine Relation

Scilab code Solution 11.0 Wiener Khinchine Theorem

1 // V e r i f i c a t i o i n o f Wiener−Khnich ine r e l a t i o n f o r
the s i g n a l x ( t )=s i n ( 3 0 . p i . t )+s i n ( 6 0 . p i . t )

2 // Au t o c o r r e l a t i o n f u n c t i o n and Power s p e c t r a l
Dens i ty o f a s i g n a l form a Fou r i e r t r an s f o rm pa i r

3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 fs=input( ’ Enter the sampl ing Frequency : ’ )
8 T=input( ’ Enter the du r a t i on upto which the s i g n a l i s

to be p l o t t e d : ’ )
9 t=0:1/ fs:T;

10 x=sin (30* %pi*t)+sin (60* %pi*t);

11 N=input( ’ Enter the DFT l eng t h : ’ )
12 //making the l e n g t h o f x equa l to N
13 if length(x)<N

14 x(length(x)+1:N)=0;

15 else

16 if length(x)>N
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17 x(N+1: length(x))=[];

18 end

19 end

20 // computat ion o f N po i n t DFT o f the s equence
21 X=fft(x);

22 f=fs*(0:N-1)/N;

23 // computat ion o f PSD = (1/N) ∗ abs ( f f t ) ˆ2 u s i n g the
d i r e c t e x p r e s s i o n

24 PS=(1/N)*(abs(X).^2);

25 // computat ion o f Au t o c o r r e l a t i o n f u n c t i o n o f the
s i g n a l

26 R=xcorr(x,x);

27 //making l e n g t h o f R equa l to N
28 if length(R)<N

29 R(length(R)+1:N)=0;

30 else

31 if length(R)>N

32 R(N+1: length(R))=[];

33 end

34 end

35 // computat ion o f Power S p e c t r a l Dens i ty drom
Au t o c o r r e l a t i o n Funct ion

36 PSD=fft(R);

37 subplot (2,1,1)

38 xset(” t h i c k n e s s ” ,3)
39 plot2d3(f,PS)

40 xtitle(”Power s p e c t r a l d e n s i t y computed”, ’ f r e uq en cy ’
, ’Watts /Hz ’ )

41 mtlb_axis ([min(f) max(f) min(PS) max(PS)])

42 legend(”PSD=(1/N) . |X( k ) | ˆ 2 ”)
43 subplot (2,1,2)

44 xset(” t h i c k n e s s ” ,3)
45 plot2d3(f,abs(PSD))

46 xtitle(”Power s p e c t r a l d e n s i t y computed from
Au t o c o r r e l a t i o n Funct ion ”, ’ f r e uq en cy ’ , ’Watts /Hz ’ )

47 mtlb_axis ([min(f) max(f) min(abs(PSD)) max(abs(PSD))

])

48 legend(”PSD=Fou r i e r Transform o f Au t o c o r r e l a t i o n
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Figure 11.1: Wiener Khinchine Theorem

Funct ion ”)
49 // sampl ing Frequency : 100
50 // du r a t i on upto which the s i g n s a l i s to be p l o t t e d :

10
51 //DFT l eng t h : 1024
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Figure 11.2: Wiener Khinchine Theorem
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Experiment: 12

Simulation of Gaussian
Random Vectors

Scilab code Solution 12.0 Gaussian

1 // S imu l a t i on o f g e n e r a t i o n o f B i v a r i a t e Gauss ian
random ve c t o r

2 //R and S a r e b i v a r i a t e g au s s i a n random Va r i a b l e s
which a r e to be gene ra t ed , with d e s i r e d mean ,
sandard d e v i a t i o n and // c o v a r i a n c e

3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 // sdR=standard d e v i a t i o n o f R
8 sdR=input( ’ Enter the d e s i r e d s tandard d e v i a t i o n o f R

: ’ )
9 // sdS=standard d e v i a t i o n o f S
10 sdS=input( ’ Enter the d e s i r e d s tandard d e v i a t i o n o f S

: ’ )
11 //mR=mean o f R
12 mR=input( ’ Enter the d e s i r e d mean o f R: ’ )
13 //mS=mean o f S
14 mS=input( ’ Enter the d e s i r e d mean o f S : ’ )
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15 //k=c o r r e l a t i o n c o e f f i c i e n t between R and S
16 k=input( ’ Enter the d e s i r e d c o r r e a l t i o n c o e f f i c i e n t

between R and S : ’ )
17 M=input( ’ Enter the number o f r e a l i z a t i o n s : ’ )
18 G=[sdR 0;k*sdS sdS*sqrt(1-k^2)];

19 for i=1:M

20 // g e n e r a t i o n o f two s t a nda r d i z e d Gauss ian random
v a r i a b l e s P and Q

21 P=grand(1,1,” nor ” ,0,1);
22 Q=grand(1,1,” nor ” ,0,1);
23 // Trans f o rmat i on o f P and Q to the d e s i r e d mean and

c o v a r i a n c e
24 //G=[sdR 0 ; k . sdS sdS . s q r t (1−k ˆ2) ]
25 // [R S ] ’=G. ∗ [ P Q] ’+ [mR mS] ’
26 rs=G*[P Q]’+[mR mS]’;

27 RS(:,i)=rs;

28 end

29 // v e r i f y i n g the mean o f the i n d i v i d u a l random
v a r i a b l e s R and S

30 //meanest i s the e s t ima t ed mean
31 meanestR=mean(RS(1,:));

32 meanestS=mean(RS(2,:));

33 // v e r i f y i n g the c o v a r i a n c e matr ix
34 //COV(R, S )=E(RS)−E(R) .E( S )
35 RS1(1,:)=RS(1,:)-meanestR;

36 RS1(2,:)=RS(2,:)-meanestS;

37 covest =[0 0;0 0];

38 // computat ion o f c o v a r i a n c e Matr ix [ var (R) k . sdR . sdS
; k . sdR . sdS var ( S ) ]

39 for i=1:M

40 covest=covest +(RS1(:,i)*RS1(:,i) ’)/M

41 end

42 // computat ion o f c o r r e l a t i o n c o e f f i c i e n t between R
and S

43 corcoe=covest (1,2)/ sqrt(covest (1,1)*covest (2,2));

44 disp( ’ The mean o f the random v a r i a b l e R i s ’ ,meanestR
)

45 disp( ’ The mean o f the random v a r i a b l e S i s ’ ,meanestS

65



)

46 disp( ’ The Standard d e v i a t i o n o f R i s ’ ,sqrt(covest
(1,1)))

47 disp( ’ The Standard d e v i a t i o n o f S i s ’ ,sqrt(covest
(2,2)))

48 disp( ’ The c o v a r i a n c e between R and S i s ’ ,corcoe)
49

50 // output t e s t c a s e
51 // d e s i r e d s tandard d e v i a t i o n o f R: 1
52 // d e s i r e d s tandard d e v i a t i o n o f S : 1
53 // d e s i r e d mean o f R: 1
54 // d e s i r e d mean o f S : 1
55 // d e s i r e d c o r r e a l t i o n c o e f f i c i e n t between R and S :

0 . 9
56 //number o f r e a l i z a t i o n s : 2000
57

58 // Re su l t
59 //The mean o f the random v a r i a b l e R i s 0 . 9 6 6 8 127 (

a g a i n s t the d e s i r e d = 1)
60 //The mean o f the random v a r i a b l e S i s 0 . 9 7 4 8 126 (

a g a i n s t the d e s i e d =1)
61 //The Standard d e v i a t i o n o f R i s 1 . 0 2 7 6 458 ( a g a i n s t

the d e s i r e d =1)
62 //The Standard d e v i a t i o n o f S i s 1 . 0 2 3 2 880 ( a g a i n s t

the d e s i r e d =1)
63 //The c o v a r i a n c e between R and S i s 0 . 9 0 1 5 213 (

a g a i n s t the d e s i r e d =0.9)
64

65 // ’ grand ’ f u n c t i o n o f s c i l a b g e n e r a t e s d i s t i n c t
r e s u l t s i n d i f f e r e n t runs o f the code .

66 //Output i n each run w i l l be un ique
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Figure 12.1: Gaussian

Figure 12.2: Gaussian
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